zig/src/Zcu/PerThread.zig
mlugg b1d3d48f68
Type,Value: mark ResolveStrat parameter of type queries as comptime
This eliminates the statically-reachable recursion loop between code
generation backends and Sema. This is beneficial for optimizers
(although I do not measure any performance improvement for this change),
and for profilers.
2024-07-16 11:38:20 +01:00

3268 lines
125 KiB
Zig

zcu: *Zcu,
/// Dense, per-thread unique index.
tid: Id,
pub const Id = if (InternPool.single_threaded) enum { main } else enum(u8) { main, _ };
pub fn destroyDecl(pt: Zcu.PerThread, decl_index: Zcu.Decl.Index) void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
{
_ = zcu.test_functions.swapRemove(decl_index);
if (zcu.global_assembly.fetchSwapRemove(decl_index)) |kv| {
gpa.free(kv.value);
}
}
pt.zcu.intern_pool.destroyDecl(pt.tid, decl_index);
if (zcu.emit_h) |zcu_emit_h| {
const decl_emit_h = zcu_emit_h.declPtr(decl_index);
decl_emit_h.fwd_decl.deinit(gpa);
decl_emit_h.* = undefined;
}
}
fn deinitFile(pt: Zcu.PerThread, file_index: Zcu.File.Index) void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const file = zcu.fileByIndex(file_index);
const is_builtin = file.mod.isBuiltin();
log.debug("deinit File {s}", .{file.sub_file_path});
if (is_builtin) {
file.unloadTree(gpa);
file.unloadZir(gpa);
} else {
gpa.free(file.sub_file_path);
file.unload(gpa);
}
file.references.deinit(gpa);
if (zcu.fileRootDecl(file_index).unwrap()) |root_decl| {
pt.zcu.intern_pool.destroyDecl(pt.tid, root_decl);
}
if (file.prev_zir) |prev_zir| {
prev_zir.deinit(gpa);
gpa.destroy(prev_zir);
}
file.* = undefined;
}
pub fn destroyFile(pt: Zcu.PerThread, file_index: Zcu.File.Index) void {
const gpa = pt.zcu.gpa;
const file = pt.zcu.fileByIndex(file_index);
const is_builtin = file.mod.isBuiltin();
pt.deinitFile(file_index);
if (!is_builtin) gpa.destroy(file);
}
pub fn astGenFile(
pt: Zcu.PerThread,
file: *Zcu.File,
/// This parameter is provided separately from `file` because it is not
/// safe to access `import_table` without a lock, and this index is needed
/// in the call to `updateZirRefs`.
file_index: Zcu.File.Index,
path_digest: Cache.BinDigest,
opt_root_decl: Zcu.Decl.OptionalIndex,
) !void {
assert(!file.mod.isBuiltin());
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const comp = zcu.comp;
const gpa = zcu.gpa;
// In any case we need to examine the stat of the file to determine the course of action.
var source_file = try file.mod.root.openFile(file.sub_file_path, .{});
defer source_file.close();
const stat = try source_file.stat();
const want_local_cache = file.mod == zcu.main_mod;
const hex_digest = Cache.binToHex(path_digest);
const cache_directory = if (want_local_cache) zcu.local_zir_cache else zcu.global_zir_cache;
const zir_dir = cache_directory.handle;
// Determine whether we need to reload the file from disk and redo parsing and AstGen.
var lock: std.fs.File.Lock = switch (file.status) {
.never_loaded, .retryable_failure => lock: {
// First, load the cached ZIR code, if any.
log.debug("AstGen checking cache: {s} (local={}, digest={s})", .{
file.sub_file_path, want_local_cache, &hex_digest,
});
break :lock .shared;
},
.parse_failure, .astgen_failure, .success_zir => lock: {
const unchanged_metadata =
stat.size == file.stat.size and
stat.mtime == file.stat.mtime and
stat.inode == file.stat.inode;
if (unchanged_metadata) {
log.debug("unmodified metadata of file: {s}", .{file.sub_file_path});
return;
}
log.debug("metadata changed: {s}", .{file.sub_file_path});
break :lock .exclusive;
},
};
// We ask for a lock in order to coordinate with other zig processes.
// If another process is already working on this file, we will get the cached
// version. Likewise if we're working on AstGen and another process asks for
// the cached file, they'll get it.
const cache_file = while (true) {
break zir_dir.createFile(&hex_digest, .{
.read = true,
.truncate = false,
.lock = lock,
}) catch |err| switch (err) {
error.NotDir => unreachable, // no dir components
error.InvalidUtf8 => unreachable, // it's a hex encoded name
error.InvalidWtf8 => unreachable, // it's a hex encoded name
error.BadPathName => unreachable, // it's a hex encoded name
error.NameTooLong => unreachable, // it's a fixed size name
error.PipeBusy => unreachable, // it's not a pipe
error.WouldBlock => unreachable, // not asking for non-blocking I/O
// There are no dir components, so you would think that this was
// unreachable, however we have observed on macOS two processes racing
// to do openat() with O_CREAT manifest in ENOENT.
error.FileNotFound => continue,
else => |e| return e, // Retryable errors are handled at callsite.
};
};
defer cache_file.close();
while (true) {
update: {
// First we read the header to determine the lengths of arrays.
const header = cache_file.reader().readStruct(Zir.Header) catch |err| switch (err) {
// This can happen if Zig bails out of this function between creating
// the cached file and writing it.
error.EndOfStream => break :update,
else => |e| return e,
};
const unchanged_metadata =
stat.size == header.stat_size and
stat.mtime == header.stat_mtime and
stat.inode == header.stat_inode;
if (!unchanged_metadata) {
log.debug("AstGen cache stale: {s}", .{file.sub_file_path});
break :update;
}
log.debug("AstGen cache hit: {s} instructions_len={d}", .{
file.sub_file_path, header.instructions_len,
});
file.zir = Zcu.loadZirCacheBody(gpa, header, cache_file) catch |err| switch (err) {
error.UnexpectedFileSize => {
log.warn("unexpected EOF reading cached ZIR for {s}", .{file.sub_file_path});
break :update;
},
else => |e| return e,
};
file.zir_loaded = true;
file.stat = .{
.size = header.stat_size,
.inode = header.stat_inode,
.mtime = header.stat_mtime,
};
file.status = .success_zir;
log.debug("AstGen cached success: {s}", .{file.sub_file_path});
// TODO don't report compile errors until Sema @importFile
if (file.zir.hasCompileErrors()) {
{
comp.mutex.lock();
defer comp.mutex.unlock();
try zcu.failed_files.putNoClobber(gpa, file, null);
}
file.status = .astgen_failure;
return error.AnalysisFail;
}
return;
}
// If we already have the exclusive lock then it is our job to update.
if (builtin.os.tag == .wasi or lock == .exclusive) break;
// Otherwise, unlock to give someone a chance to get the exclusive lock
// and then upgrade to an exclusive lock.
cache_file.unlock();
lock = .exclusive;
try cache_file.lock(lock);
}
// The cache is definitely stale so delete the contents to avoid an underwrite later.
cache_file.setEndPos(0) catch |err| switch (err) {
error.FileTooBig => unreachable, // 0 is not too big
else => |e| return e,
};
pt.lockAndClearFileCompileError(file);
// If the previous ZIR does not have compile errors, keep it around
// in case parsing or new ZIR fails. In case of successful ZIR update
// at the end of this function we will free it.
// We keep the previous ZIR loaded so that we can use it
// for the update next time it does not have any compile errors. This avoids
// needlessly tossing out semantic analysis work when an error is
// temporarily introduced.
if (file.zir_loaded and !file.zir.hasCompileErrors()) {
assert(file.prev_zir == null);
const prev_zir_ptr = try gpa.create(Zir);
file.prev_zir = prev_zir_ptr;
prev_zir_ptr.* = file.zir;
file.zir = undefined;
file.zir_loaded = false;
}
file.unload(gpa);
if (stat.size > std.math.maxInt(u32))
return error.FileTooBig;
const source = try gpa.allocSentinel(u8, @as(usize, @intCast(stat.size)), 0);
defer if (!file.source_loaded) gpa.free(source);
const amt = try source_file.readAll(source);
if (amt != stat.size)
return error.UnexpectedEndOfFile;
file.stat = .{
.size = stat.size,
.inode = stat.inode,
.mtime = stat.mtime,
};
file.source = source;
file.source_loaded = true;
file.tree = try Ast.parse(gpa, source, .zig);
file.tree_loaded = true;
// Any potential AST errors are converted to ZIR errors here.
file.zir = try AstGen.generate(gpa, file.tree);
file.zir_loaded = true;
file.status = .success_zir;
log.debug("AstGen fresh success: {s}", .{file.sub_file_path});
const safety_buffer = if (Zcu.data_has_safety_tag)
try gpa.alloc([8]u8, file.zir.instructions.len)
else
undefined;
defer if (Zcu.data_has_safety_tag) gpa.free(safety_buffer);
const data_ptr = if (Zcu.data_has_safety_tag)
if (file.zir.instructions.len == 0)
@as([*]const u8, undefined)
else
@as([*]const u8, @ptrCast(safety_buffer.ptr))
else
@as([*]const u8, @ptrCast(file.zir.instructions.items(.data).ptr));
if (Zcu.data_has_safety_tag) {
// The `Data` union has a safety tag but in the file format we store it without.
for (file.zir.instructions.items(.data), 0..) |*data, i| {
const as_struct: *const Zcu.HackDataLayout = @ptrCast(data);
safety_buffer[i] = as_struct.data;
}
}
const header: Zir.Header = .{
.instructions_len = @as(u32, @intCast(file.zir.instructions.len)),
.string_bytes_len = @as(u32, @intCast(file.zir.string_bytes.len)),
.extra_len = @as(u32, @intCast(file.zir.extra.len)),
.stat_size = stat.size,
.stat_inode = stat.inode,
.stat_mtime = stat.mtime,
};
var iovecs = [_]std.posix.iovec_const{
.{
.base = @as([*]const u8, @ptrCast(&header)),
.len = @sizeOf(Zir.Header),
},
.{
.base = @as([*]const u8, @ptrCast(file.zir.instructions.items(.tag).ptr)),
.len = file.zir.instructions.len,
},
.{
.base = data_ptr,
.len = file.zir.instructions.len * 8,
},
.{
.base = file.zir.string_bytes.ptr,
.len = file.zir.string_bytes.len,
},
.{
.base = @as([*]const u8, @ptrCast(file.zir.extra.ptr)),
.len = file.zir.extra.len * 4,
},
};
cache_file.writevAll(&iovecs) catch |err| {
log.warn("unable to write cached ZIR code for {}{s} to {}{s}: {s}", .{
file.mod.root, file.sub_file_path, cache_directory, &hex_digest, @errorName(err),
});
};
if (file.zir.hasCompileErrors()) {
{
comp.mutex.lock();
defer comp.mutex.unlock();
try zcu.failed_files.putNoClobber(gpa, file, null);
}
file.status = .astgen_failure;
return error.AnalysisFail;
}
if (file.prev_zir) |prev_zir| {
try pt.updateZirRefs(file, file_index, prev_zir.*);
// No need to keep previous ZIR.
prev_zir.deinit(gpa);
gpa.destroy(prev_zir);
file.prev_zir = null;
}
if (opt_root_decl.unwrap()) |root_decl| {
// The root of this file must be re-analyzed, since the file has changed.
comp.mutex.lock();
defer comp.mutex.unlock();
log.debug("outdated root Decl: {}", .{root_decl});
try zcu.outdated_file_root.put(gpa, root_decl, {});
}
}
/// This is called from the AstGen thread pool, so must acquire
/// the Compilation mutex when acting on shared state.
fn updateZirRefs(pt: Zcu.PerThread, file: *Zcu.File, file_index: Zcu.File.Index, old_zir: Zir) !void {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const gpa = zcu.gpa;
const new_zir = file.zir;
var inst_map: std.AutoHashMapUnmanaged(Zir.Inst.Index, Zir.Inst.Index) = .{};
defer inst_map.deinit(gpa);
try Zcu.mapOldZirToNew(gpa, old_zir, new_zir, &inst_map);
const old_tag = old_zir.instructions.items(.tag);
const old_data = old_zir.instructions.items(.data);
// TODO: this should be done after all AstGen workers complete, to avoid
// iterating over this full set for every updated file.
for (ip.locals, 0..) |*local, tid| {
local.mutate.tracked_insts.mutex.lock();
defer local.mutate.tracked_insts.mutex.unlock();
const tracked_insts_list = local.getMutableTrackedInsts(gpa);
for (tracked_insts_list.view().items(.@"0"), 0..) |*tracked_inst, tracked_inst_unwrapped_index| {
if (tracked_inst.file != file_index) continue;
const old_inst = tracked_inst.inst;
const tracked_inst_index = (InternPool.TrackedInst.Index.Unwrapped{
.tid = @enumFromInt(tid),
.index = @intCast(tracked_inst_unwrapped_index),
}).wrap(ip);
tracked_inst.inst = inst_map.get(old_inst) orelse {
// Tracking failed for this instruction. Invalidate associated `src_hash` deps.
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
log.debug("tracking failed for %{d}", .{old_inst});
try zcu.markDependeeOutdated(.{ .src_hash = tracked_inst_index });
continue;
};
if (old_zir.getAssociatedSrcHash(old_inst)) |old_hash| hash_changed: {
if (new_zir.getAssociatedSrcHash(tracked_inst.inst)) |new_hash| {
if (std.zig.srcHashEql(old_hash, new_hash)) {
break :hash_changed;
}
log.debug("hash for (%{d} -> %{d}) changed: {} -> {}", .{
old_inst,
tracked_inst.inst,
std.fmt.fmtSliceHexLower(&old_hash),
std.fmt.fmtSliceHexLower(&new_hash),
});
}
// The source hash associated with this instruction changed - invalidate relevant dependencies.
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
try zcu.markDependeeOutdated(.{ .src_hash = tracked_inst_index });
}
// If this is a `struct_decl` etc, we must invalidate any outdated namespace dependencies.
const has_namespace = switch (old_tag[@intFromEnum(old_inst)]) {
.extended => switch (old_data[@intFromEnum(old_inst)].extended.opcode) {
.struct_decl, .union_decl, .opaque_decl, .enum_decl => true,
else => false,
},
else => false,
};
if (!has_namespace) continue;
var old_names: std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, void) = .{};
defer old_names.deinit(zcu.gpa);
{
var it = old_zir.declIterator(old_inst);
while (it.next()) |decl_inst| {
const decl_name = old_zir.getDeclaration(decl_inst)[0].name;
switch (decl_name) {
.@"comptime", .@"usingnamespace", .unnamed_test, .decltest => continue,
_ => if (decl_name.isNamedTest(old_zir)) continue,
}
const name_zir = decl_name.toString(old_zir).?;
const name_ip = try zcu.intern_pool.getOrPutString(
zcu.gpa,
pt.tid,
old_zir.nullTerminatedString(name_zir),
.no_embedded_nulls,
);
try old_names.put(zcu.gpa, name_ip, {});
}
}
var any_change = false;
{
var it = new_zir.declIterator(tracked_inst.inst);
while (it.next()) |decl_inst| {
const decl_name = old_zir.getDeclaration(decl_inst)[0].name;
switch (decl_name) {
.@"comptime", .@"usingnamespace", .unnamed_test, .decltest => continue,
_ => if (decl_name.isNamedTest(old_zir)) continue,
}
const name_zir = decl_name.toString(old_zir).?;
const name_ip = try zcu.intern_pool.getOrPutString(
zcu.gpa,
pt.tid,
old_zir.nullTerminatedString(name_zir),
.no_embedded_nulls,
);
if (!old_names.swapRemove(name_ip)) continue;
// Name added
any_change = true;
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
try zcu.markDependeeOutdated(.{ .namespace_name = .{
.namespace = tracked_inst_index,
.name = name_ip,
} });
}
}
// The only elements remaining in `old_names` now are any names which were removed.
for (old_names.keys()) |name_ip| {
any_change = true;
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
try zcu.markDependeeOutdated(.{ .namespace_name = .{
.namespace = tracked_inst_index,
.name = name_ip,
} });
}
if (any_change) {
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
try zcu.markDependeeOutdated(.{ .namespace = tracked_inst_index });
}
}
}
}
/// Like `ensureDeclAnalyzed`, but the Decl is a file's root Decl.
pub fn ensureFileAnalyzed(pt: Zcu.PerThread, file_index: Zcu.File.Index) Zcu.SemaError!void {
if (pt.zcu.fileRootDecl(file_index).unwrap()) |existing_root| {
return pt.ensureDeclAnalyzed(existing_root);
} else {
return pt.semaFile(file_index);
}
}
/// This ensures that the Decl will have an up-to-date Type and Value populated.
/// However the resolution status of the Type may not be fully resolved.
/// For example an inferred error set is not resolved until after `analyzeFnBody`.
/// is called.
pub fn ensureDeclAnalyzed(pt: Zcu.PerThread, decl_index: Zcu.Decl.Index) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
const mod = pt.zcu;
const ip = &mod.intern_pool;
const decl = mod.declPtr(decl_index);
log.debug("ensureDeclAnalyzed '{d}' (name '{}')", .{
@intFromEnum(decl_index),
decl.name.fmt(ip),
});
// Determine whether or not this Decl is outdated, i.e. requires re-analysis
// even if `complete`. If a Decl is PO, we pessismistically assume that it
// *does* require re-analysis, to ensure that the Decl is definitely
// up-to-date when this function returns.
// If analysis occurs in a poor order, this could result in over-analysis.
// We do our best to avoid this by the other dependency logic in this file
// which tries to limit re-analysis to Decls whose previously listed
// dependencies are all up-to-date.
const decl_as_depender = InternPool.AnalUnit.wrap(.{ .decl = decl_index });
const decl_was_outdated = mod.outdated.swapRemove(decl_as_depender) or
mod.potentially_outdated.swapRemove(decl_as_depender);
if (decl_was_outdated) {
_ = mod.outdated_ready.swapRemove(decl_as_depender);
}
const was_outdated = mod.outdated_file_root.swapRemove(decl_index) or decl_was_outdated;
switch (decl.analysis) {
.in_progress => unreachable,
.file_failure => return error.AnalysisFail,
.sema_failure,
.dependency_failure,
.codegen_failure,
=> if (!was_outdated) return error.AnalysisFail,
.complete => if (!was_outdated) return,
.unreferenced => {},
}
if (was_outdated) {
// The exports this Decl performs will be re-discovered, so we remove them here
// prior to re-analysis.
if (build_options.only_c) unreachable;
mod.deleteUnitExports(decl_as_depender);
mod.deleteUnitReferences(decl_as_depender);
}
const sema_result: Zcu.SemaDeclResult = blk: {
if (decl.zir_decl_index == .none and !mod.declIsRoot(decl_index)) {
// Anonymous decl. We don't semantically analyze these.
break :blk .{
.invalidate_decl_val = false,
.invalidate_decl_ref = false,
};
}
if (mod.declIsRoot(decl_index)) {
const changed = try pt.semaFileUpdate(decl.getFileScopeIndex(mod), decl_was_outdated);
break :blk .{
.invalidate_decl_val = changed,
.invalidate_decl_ref = changed,
};
}
const decl_prog_node = mod.sema_prog_node.start(decl.fqn.toSlice(ip), 0);
defer decl_prog_node.end();
break :blk pt.semaDecl(decl_index) catch |err| switch (err) {
error.AnalysisFail => {
if (decl.analysis == .in_progress) {
// If this decl caused the compile error, the analysis field would
// be changed to indicate it was this Decl's fault. Because this
// did not happen, we infer here that it was a dependency failure.
decl.analysis = .dependency_failure;
}
return error.AnalysisFail;
},
error.GenericPoison => unreachable,
else => |e| {
decl.analysis = .sema_failure;
try mod.failed_analysis.ensureUnusedCapacity(mod.gpa, 1);
try mod.retryable_failures.append(mod.gpa, InternPool.AnalUnit.wrap(.{ .decl = decl_index }));
mod.failed_analysis.putAssumeCapacityNoClobber(InternPool.AnalUnit.wrap(.{ .decl = decl_index }), try Zcu.ErrorMsg.create(
mod.gpa,
decl.navSrcLoc(mod),
"unable to analyze: {s}",
.{@errorName(e)},
));
return error.AnalysisFail;
},
};
};
// TODO: we do not yet have separate dependencies for decl values vs types.
if (decl_was_outdated) {
if (sema_result.invalidate_decl_val or sema_result.invalidate_decl_ref) {
log.debug("Decl tv invalidated ('{d}')", .{@intFromEnum(decl_index)});
// This dependency was marked as PO, meaning dependees were waiting
// on its analysis result, and it has turned out to be outdated.
// Update dependees accordingly.
try mod.markDependeeOutdated(.{ .decl_val = decl_index });
} else {
log.debug("Decl tv up-to-date ('{d}')", .{@intFromEnum(decl_index)});
// This dependency was previously PO, but turned out to be up-to-date.
// We do not need to queue successive analysis.
try mod.markPoDependeeUpToDate(.{ .decl_val = decl_index });
}
}
}
pub fn ensureFuncBodyAnalyzed(pt: Zcu.PerThread, maybe_coerced_func_index: InternPool.Index) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
// We only care about the uncoerced function.
// We need to do this for the "orphaned function" check below to be valid.
const func_index = ip.unwrapCoercedFunc(maybe_coerced_func_index);
const func = zcu.funcInfo(maybe_coerced_func_index);
const decl_index = func.owner_decl;
const decl = zcu.declPtr(decl_index);
log.debug("ensureFuncBodyAnalyzed '{d}' (instance of '{}')", .{
@intFromEnum(func_index),
decl.name.fmt(ip),
});
// First, our owner decl must be up-to-date. This will always be the case
// during the first update, but may not on successive updates if we happen
// to get analyzed before our parent decl.
try pt.ensureDeclAnalyzed(decl_index);
// On an update, it's possible this function changed such that our owner
// decl now refers to a different function, making this one orphaned. If
// that's the case, we should remove this function from the binary.
if (decl.val.ip_index != func_index) {
try zcu.markDependeeOutdated(.{ .func_ies = func_index });
ip.removeDependenciesForDepender(gpa, InternPool.AnalUnit.wrap(.{ .func = func_index }));
ip.remove(pt.tid, func_index);
@panic("TODO: remove orphaned function from binary");
}
// We'll want to remember what the IES used to be before the update for
// dependency invalidation purposes.
const old_resolved_ies = if (func.analysisUnordered(ip).inferred_error_set)
func.resolvedErrorSetUnordered(ip)
else
.none;
switch (decl.analysis) {
.unreferenced => unreachable,
.in_progress => unreachable,
.codegen_failure => unreachable, // functions do not perform constant value generation
.file_failure,
.sema_failure,
.dependency_failure,
=> return error.AnalysisFail,
.complete => {},
}
const func_as_depender = InternPool.AnalUnit.wrap(.{ .func = func_index });
const was_outdated = zcu.outdated.swapRemove(func_as_depender) or
zcu.potentially_outdated.swapRemove(func_as_depender);
if (was_outdated) {
if (build_options.only_c) unreachable;
_ = zcu.outdated_ready.swapRemove(func_as_depender);
zcu.deleteUnitExports(func_as_depender);
zcu.deleteUnitReferences(func_as_depender);
}
switch (func.analysisUnordered(ip).state) {
.success => if (!was_outdated) return,
.sema_failure,
.dependency_failure,
.codegen_failure,
=> if (!was_outdated) return error.AnalysisFail,
.none, .queued => {},
.in_progress => unreachable,
.inline_only => unreachable, // don't queue work for this
}
log.debug("analyze and generate fn body '{d}'; reason='{s}'", .{
@intFromEnum(func_index),
if (was_outdated) "outdated" else "never analyzed",
});
var tmp_arena = std.heap.ArenaAllocator.init(gpa);
defer tmp_arena.deinit();
const sema_arena = tmp_arena.allocator();
var air = pt.analyzeFnBody(func_index, sema_arena) catch |err| switch (err) {
error.AnalysisFail => {
if (func.analysisUnordered(ip).state == .in_progress) {
// If this decl caused the compile error, the analysis field would
// be changed to indicate it was this Decl's fault. Because this
// did not happen, we infer here that it was a dependency failure.
func.setAnalysisState(ip, .dependency_failure);
}
return error.AnalysisFail;
},
error.OutOfMemory => return error.OutOfMemory,
};
errdefer air.deinit(gpa);
const invalidate_ies_deps = i: {
if (!was_outdated) break :i false;
if (!func.analysisUnordered(ip).inferred_error_set) break :i true;
const new_resolved_ies = func.resolvedErrorSetUnordered(ip);
break :i new_resolved_ies != old_resolved_ies;
};
if (invalidate_ies_deps) {
log.debug("func IES invalidated ('{d}')", .{@intFromEnum(func_index)});
try zcu.markDependeeOutdated(.{ .func_ies = func_index });
} else if (was_outdated) {
log.debug("func IES up-to-date ('{d}')", .{@intFromEnum(func_index)});
try zcu.markPoDependeeUpToDate(.{ .func_ies = func_index });
}
const comp = zcu.comp;
const dump_air = build_options.enable_debug_extensions and comp.verbose_air;
const dump_llvm_ir = build_options.enable_debug_extensions and (comp.verbose_llvm_ir != null or comp.verbose_llvm_bc != null);
if (comp.bin_file == null and zcu.llvm_object == null and !dump_air and !dump_llvm_ir) {
air.deinit(gpa);
return;
}
try comp.queueJob(.{ .codegen_func = .{
.func = func_index,
.air = air,
} });
}
/// Takes ownership of `air`, even on error.
/// If any types referenced by `air` are unresolved, marks the codegen as failed.
pub fn linkerUpdateFunc(pt: Zcu.PerThread, func_index: InternPool.Index, air: Air) Allocator.Error!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const comp = zcu.comp;
defer {
var air_mut = air;
air_mut.deinit(gpa);
}
const func = zcu.funcInfo(func_index);
const decl_index = func.owner_decl;
const decl = zcu.declPtr(decl_index);
var liveness = try Liveness.analyze(gpa, air, ip);
defer liveness.deinit(gpa);
if (build_options.enable_debug_extensions and comp.verbose_air) {
std.debug.print("# Begin Function AIR: {}:\n", .{decl.fqn.fmt(ip)});
@import("../print_air.zig").dump(pt, air, liveness);
std.debug.print("# End Function AIR: {}\n\n", .{decl.fqn.fmt(ip)});
}
if (std.debug.runtime_safety) {
var verify: Liveness.Verify = .{
.gpa = gpa,
.air = air,
.liveness = liveness,
.intern_pool = ip,
};
defer verify.deinit();
verify.verify() catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => {
try zcu.failed_analysis.ensureUnusedCapacity(gpa, 1);
zcu.failed_analysis.putAssumeCapacityNoClobber(
InternPool.AnalUnit.wrap(.{ .func = func_index }),
try Zcu.ErrorMsg.create(
gpa,
decl.navSrcLoc(zcu),
"invalid liveness: {s}",
.{@errorName(err)},
),
);
func.setAnalysisState(ip, .codegen_failure);
return;
},
};
}
const codegen_prog_node = zcu.codegen_prog_node.start(decl.fqn.toSlice(ip), 0);
defer codegen_prog_node.end();
if (!air.typesFullyResolved(zcu)) {
// A type we depend on failed to resolve. This is a transitive failure.
// Correcting this failure will involve changing a type this function
// depends on, hence triggering re-analysis of this function, so this
// interacts correctly with incremental compilation.
func.setAnalysisState(ip, .codegen_failure);
} else if (comp.bin_file) |lf| {
lf.updateFunc(pt, func_index, air, liveness) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {
func.setAnalysisState(ip, .codegen_failure);
},
else => {
try zcu.failed_analysis.ensureUnusedCapacity(gpa, 1);
zcu.failed_analysis.putAssumeCapacityNoClobber(InternPool.AnalUnit.wrap(.{ .func = func_index }), try Zcu.ErrorMsg.create(
gpa,
decl.navSrcLoc(zcu),
"unable to codegen: {s}",
.{@errorName(err)},
));
func.setAnalysisState(ip, .codegen_failure);
try zcu.retryable_failures.append(zcu.gpa, InternPool.AnalUnit.wrap(.{ .func = func_index }));
},
};
} else if (zcu.llvm_object) |llvm_object| {
if (build_options.only_c) unreachable;
llvm_object.updateFunc(pt, func_index, air, liveness) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
};
}
}
/// https://github.com/ziglang/zig/issues/14307
pub fn semaPkg(pt: Zcu.PerThread, pkg: *Module) !void {
const import_file_result = try pt.importPkg(pkg);
const root_decl_index = pt.zcu.fileRootDecl(import_file_result.file_index);
if (root_decl_index == .none) {
return pt.semaFile(import_file_result.file_index);
}
}
fn getFileRootStruct(
pt: Zcu.PerThread,
decl_index: Zcu.Decl.Index,
namespace_index: Zcu.Namespace.Index,
file_index: Zcu.File.Index,
) Allocator.Error!InternPool.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const file = zcu.fileByIndex(file_index);
const extended = file.zir.instructions.items(.data)[@intFromEnum(Zir.Inst.Index.main_struct_inst)].extended;
assert(extended.opcode == .struct_decl);
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
assert(!small.has_captures_len);
assert(!small.has_backing_int);
assert(small.layout == .auto);
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).Struct.fields.len;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
const decls = file.zir.bodySlice(extra_index, decls_len);
extra_index += decls_len;
const tracked_inst = try ip.trackZir(gpa, pt.tid, .{
.file = file_index,
.inst = .main_struct_inst,
});
const wip_ty = switch (try ip.getStructType(gpa, pt.tid, .{
.layout = .auto,
.fields_len = fields_len,
.known_non_opv = small.known_non_opv,
.requires_comptime = if (small.known_comptime_only) .yes else .unknown,
.is_tuple = small.is_tuple,
.any_comptime_fields = small.any_comptime_fields,
.any_default_inits = small.any_default_inits,
.inits_resolved = false,
.any_aligned_fields = small.any_aligned_fields,
.has_namespace = true,
.key = .{ .declared = .{
.zir_index = tracked_inst,
.captures = &.{},
} },
})) {
.existing => unreachable, // we wouldn't be analysing the file root if this type existed
.wip => |wip| wip,
};
errdefer wip_ty.cancel(ip, pt.tid);
if (zcu.comp.incremental) {
try ip.addDependency(
gpa,
InternPool.AnalUnit.wrap(.{ .decl = decl_index }),
.{ .src_hash = tracked_inst },
);
}
const decl = zcu.declPtr(decl_index);
decl.val = Value.fromInterned(wip_ty.index);
decl.has_tv = true;
decl.owns_tv = true;
decl.analysis = .complete;
try pt.scanNamespace(namespace_index, decls, decl);
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
return wip_ty.finish(ip, decl_index, namespace_index.toOptional());
}
/// Re-analyze the root Decl of a file on an incremental update.
/// If `type_outdated`, the struct type itself is considered outdated and is
/// reconstructed at a new InternPool index. Otherwise, the namespace is just
/// re-analyzed. Returns whether the decl's tyval was invalidated.
fn semaFileUpdate(pt: Zcu.PerThread, file_index: Zcu.File.Index, type_outdated: bool) Zcu.SemaError!bool {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const file = zcu.fileByIndex(file_index);
const decl = zcu.declPtr(zcu.fileRootDecl(file_index).unwrap().?);
log.debug("semaFileUpdate mod={s} sub_file_path={s} type_outdated={}", .{
file.mod.fully_qualified_name,
file.sub_file_path,
type_outdated,
});
if (file.status != .success_zir) {
if (decl.analysis == .file_failure) {
return false;
} else {
decl.analysis = .file_failure;
return true;
}
}
if (decl.analysis == .file_failure) {
// No struct type currently exists. Create one!
const root_decl = zcu.fileRootDecl(file_index);
_ = try pt.getFileRootStruct(root_decl.unwrap().?, decl.src_namespace, file_index);
return true;
}
assert(decl.has_tv);
assert(decl.owns_tv);
if (type_outdated) {
// Invalidate the existing type, reusing the decl and namespace.
const file_root_decl = zcu.fileRootDecl(file_index).unwrap().?;
ip.removeDependenciesForDepender(zcu.gpa, InternPool.AnalUnit.wrap(.{
.decl = file_root_decl,
}));
ip.remove(pt.tid, decl.val.toIntern());
decl.val = undefined;
_ = try pt.getFileRootStruct(file_root_decl, decl.src_namespace, file_index);
return true;
}
// Only the struct's namespace is outdated.
// Preserve the type - just scan the namespace again.
const extended = file.zir.instructions.items(.data)[@intFromEnum(Zir.Inst.Index.main_struct_inst)].extended;
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).Struct.fields.len;
extra_index += @intFromBool(small.has_fields_len);
const decls_len = if (small.has_decls_len) blk: {
const decls_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
const decls = file.zir.bodySlice(extra_index, decls_len);
if (!type_outdated) {
try pt.scanNamespace(decl.src_namespace, decls, decl);
}
return false;
}
/// Regardless of the file status, will create a `Decl` if none exists so that we can track
/// dependencies and re-analyze when the file becomes outdated.
fn semaFile(pt: Zcu.PerThread, file_index: Zcu.File.Index) Zcu.SemaError!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const file = zcu.fileByIndex(file_index);
assert(zcu.fileRootDecl(file_index) == .none);
log.debug("semaFile zcu={s} sub_file_path={s}", .{
file.mod.fully_qualified_name, file.sub_file_path,
});
// Because these three things each reference each other, `undefined`
// placeholders are used before being set after the struct type gains an
// InternPool index.
const new_namespace_index = try pt.createNamespace(.{
.parent = .none,
.decl_index = undefined,
.file_scope = file_index,
});
errdefer pt.destroyNamespace(new_namespace_index);
const new_decl_index = try pt.allocateNewDecl(new_namespace_index);
const new_decl = zcu.declPtr(new_decl_index);
errdefer @panic("TODO error handling");
zcu.setFileRootDecl(file_index, new_decl_index.toOptional());
zcu.namespacePtr(new_namespace_index).decl_index = new_decl_index;
new_decl.fqn = try file.internFullyQualifiedName(pt);
new_decl.name = new_decl.fqn;
new_decl.is_pub = true;
new_decl.is_exported = false;
new_decl.alignment = .none;
new_decl.@"linksection" = .none;
new_decl.analysis = .in_progress;
if (file.status != .success_zir) {
new_decl.analysis = .file_failure;
return;
}
assert(file.zir_loaded);
const struct_ty = try pt.getFileRootStruct(new_decl_index, new_namespace_index, file_index);
errdefer zcu.intern_pool.remove(pt.tid, struct_ty);
switch (zcu.comp.cache_use) {
.whole => |whole| if (whole.cache_manifest) |man| {
const source = file.getSource(gpa) catch |err| {
try pt.reportRetryableFileError(file_index, "unable to load source: {s}", .{@errorName(err)});
return error.AnalysisFail;
};
const resolved_path = std.fs.path.resolve(gpa, &.{
file.mod.root.root_dir.path orelse ".",
file.mod.root.sub_path,
file.sub_file_path,
}) catch |err| {
try pt.reportRetryableFileError(file_index, "unable to resolve path: {s}", .{@errorName(err)});
return error.AnalysisFail;
};
errdefer gpa.free(resolved_path);
whole.cache_manifest_mutex.lock();
defer whole.cache_manifest_mutex.unlock();
try man.addFilePostContents(resolved_path, source.bytes, source.stat);
},
.incremental => {},
}
}
fn semaDecl(pt: Zcu.PerThread, decl_index: Zcu.Decl.Index) !Zcu.SemaDeclResult {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const decl = zcu.declPtr(decl_index);
const ip = &zcu.intern_pool;
if (decl.getFileScope(zcu).status != .success_zir) {
return error.AnalysisFail;
}
assert(!zcu.declIsRoot(decl_index));
if (decl.zir_decl_index == .none and decl.owns_tv) {
// We are re-analyzing an anonymous owner Decl (for a function or a namespace type).
return pt.semaAnonOwnerDecl(decl_index);
}
log.debug("semaDecl '{d}'", .{@intFromEnum(decl_index)});
log.debug("decl name '{}'", .{decl.fqn.fmt(ip)});
defer log.debug("finish decl name '{}'", .{decl.fqn.fmt(ip)});
const old_has_tv = decl.has_tv;
// The following values are ignored if `!old_has_tv`
const old_ty = if (old_has_tv) decl.typeOf(zcu) else undefined;
const old_val = decl.val;
const old_align = decl.alignment;
const old_linksection = decl.@"linksection";
const old_addrspace = decl.@"addrspace";
const old_is_inline = if (decl.getOwnedFunction(zcu)) |prev_func|
prev_func.analysisUnordered(ip).state == .inline_only
else
false;
const decl_inst = decl.zir_decl_index.unwrap().?.resolve(ip);
const gpa = zcu.gpa;
const zir = decl.getFileScope(zcu).zir;
const builtin_type_target_index: InternPool.Index = ip_index: {
const std_mod = zcu.std_mod;
if (decl.getFileScope(zcu).mod != std_mod) break :ip_index .none;
// We're in the std module.
const std_file_imported = try pt.importPkg(std_mod);
const std_file_root_decl_index = zcu.fileRootDecl(std_file_imported.file_index);
const std_decl = zcu.declPtr(std_file_root_decl_index.unwrap().?);
const std_namespace = std_decl.getInnerNamespace(zcu).?;
const builtin_str = try ip.getOrPutString(gpa, pt.tid, "builtin", .no_embedded_nulls);
const builtin_decl = zcu.declPtr(std_namespace.decls.getKeyAdapted(builtin_str, Zcu.DeclAdapter{ .zcu = zcu }) orelse break :ip_index .none);
const builtin_namespace = builtin_decl.getInnerNamespaceIndex(zcu).unwrap() orelse break :ip_index .none;
if (decl.src_namespace != builtin_namespace) break :ip_index .none;
// We're in builtin.zig. This could be a builtin we need to add to a specific InternPool index.
for ([_][]const u8{
"AtomicOrder",
"AtomicRmwOp",
"CallingConvention",
"AddressSpace",
"FloatMode",
"ReduceOp",
"CallModifier",
"PrefetchOptions",
"ExportOptions",
"ExternOptions",
"Type",
}, [_]InternPool.Index{
.atomic_order_type,
.atomic_rmw_op_type,
.calling_convention_type,
.address_space_type,
.float_mode_type,
.reduce_op_type,
.call_modifier_type,
.prefetch_options_type,
.export_options_type,
.extern_options_type,
.type_info_type,
}) |type_name, type_ip| {
if (decl.name.eqlSlice(type_name, ip)) break :ip_index type_ip;
}
break :ip_index .none;
};
zcu.intern_pool.removeDependenciesForDepender(gpa, InternPool.AnalUnit.wrap(.{ .decl = decl_index }));
decl.analysis = .in_progress;
var analysis_arena = std.heap.ArenaAllocator.init(gpa);
defer analysis_arena.deinit();
var comptime_err_ret_trace = std.ArrayList(Zcu.LazySrcLoc).init(gpa);
defer comptime_err_ret_trace.deinit();
var sema: Sema = .{
.pt = pt,
.gpa = gpa,
.arena = analysis_arena.allocator(),
.code = zir,
.owner_decl = decl,
.owner_decl_index = decl_index,
.func_index = .none,
.func_is_naked = false,
.fn_ret_ty = Type.void,
.fn_ret_ty_ies = null,
.owner_func_index = .none,
.comptime_err_ret_trace = &comptime_err_ret_trace,
.builtin_type_target_index = builtin_type_target_index,
};
defer sema.deinit();
// Every Decl (other than file root Decls, which do not have a ZIR index) has a dependency on its own source.
try sema.declareDependency(.{ .src_hash = try ip.trackZir(gpa, pt.tid, .{
.file = decl.getFileScopeIndex(zcu),
.inst = decl_inst,
}) });
var block_scope: Sema.Block = .{
.parent = null,
.sema = &sema,
.namespace = decl.src_namespace,
.instructions = .{},
.inlining = null,
.is_comptime = true,
.src_base_inst = decl.zir_decl_index.unwrap().?,
.type_name_ctx = decl.name,
};
defer block_scope.instructions.deinit(gpa);
const decl_bodies = decl.zirBodies(zcu);
const result_ref = try sema.resolveInlineBody(&block_scope, decl_bodies.value_body, decl_inst);
// We'll do some other bits with the Sema. Clear the type target index just
// in case they analyze any type.
sema.builtin_type_target_index = .none;
const align_src = block_scope.src(.{ .node_offset_var_decl_align = 0 });
const section_src = block_scope.src(.{ .node_offset_var_decl_section = 0 });
const address_space_src = block_scope.src(.{ .node_offset_var_decl_addrspace = 0 });
const ty_src = block_scope.src(.{ .node_offset_var_decl_ty = 0 });
const init_src = block_scope.src(.{ .node_offset_var_decl_init = 0 });
const decl_val = try sema.resolveFinalDeclValue(&block_scope, init_src, result_ref);
const decl_ty = decl_val.typeOf(zcu);
// Note this resolves the type of the Decl, not the value; if this Decl
// is a struct, for example, this resolves `type` (which needs no resolution),
// not the struct itself.
try decl_ty.resolveLayout(pt);
if (decl.kind == .@"usingnamespace") {
if (!decl_ty.eql(Type.type, zcu)) {
return sema.fail(&block_scope, ty_src, "expected type, found {}", .{decl_ty.fmt(pt)});
}
const ty = decl_val.toType();
if (ty.getNamespace(zcu) == null) {
return sema.fail(&block_scope, ty_src, "type {} has no namespace", .{ty.fmt(pt)});
}
decl.val = ty.toValue();
decl.alignment = .none;
decl.@"linksection" = .none;
decl.has_tv = true;
decl.owns_tv = false;
decl.analysis = .complete;
// TODO: usingnamespace cannot currently participate in incremental compilation
return .{
.invalidate_decl_val = true,
.invalidate_decl_ref = true,
};
}
var queue_linker_work = true;
var is_func = false;
var is_inline = false;
switch (decl_val.toIntern()) {
.generic_poison => unreachable,
.unreachable_value => unreachable,
else => switch (ip.indexToKey(decl_val.toIntern())) {
.variable => |variable| {
decl.owns_tv = variable.decl == decl_index;
queue_linker_work = decl.owns_tv;
},
.extern_func => |extern_func| {
decl.owns_tv = extern_func.decl == decl_index;
queue_linker_work = decl.owns_tv;
is_func = decl.owns_tv;
},
.func => |func| {
decl.owns_tv = func.owner_decl == decl_index;
queue_linker_work = false;
is_inline = decl.owns_tv and decl_ty.fnCallingConvention(zcu) == .Inline;
is_func = decl.owns_tv;
},
else => {},
},
}
decl.val = decl_val;
// Function linksection, align, and addrspace were already set by Sema
if (!is_func) {
decl.alignment = blk: {
const align_body = decl_bodies.align_body orelse break :blk .none;
const align_ref = try sema.resolveInlineBody(&block_scope, align_body, decl_inst);
break :blk try sema.analyzeAsAlign(&block_scope, align_src, align_ref);
};
decl.@"linksection" = blk: {
const linksection_body = decl_bodies.linksection_body orelse break :blk .none;
const linksection_ref = try sema.resolveInlineBody(&block_scope, linksection_body, decl_inst);
const bytes = try sema.toConstString(&block_scope, section_src, linksection_ref, .{
.needed_comptime_reason = "linksection must be comptime-known",
});
if (std.mem.indexOfScalar(u8, bytes, 0) != null) {
return sema.fail(&block_scope, section_src, "linksection cannot contain null bytes", .{});
} else if (bytes.len == 0) {
return sema.fail(&block_scope, section_src, "linksection cannot be empty", .{});
}
break :blk try ip.getOrPutStringOpt(gpa, pt.tid, bytes, .no_embedded_nulls);
};
decl.@"addrspace" = blk: {
const addrspace_ctx: Sema.AddressSpaceContext = switch (ip.indexToKey(decl_val.toIntern())) {
.variable => .variable,
.extern_func, .func => .function,
else => .constant,
};
const target = zcu.getTarget();
const addrspace_body = decl_bodies.addrspace_body orelse break :blk switch (addrspace_ctx) {
.function => target_util.defaultAddressSpace(target, .function),
.variable => target_util.defaultAddressSpace(target, .global_mutable),
.constant => target_util.defaultAddressSpace(target, .global_constant),
else => unreachable,
};
const addrspace_ref = try sema.resolveInlineBody(&block_scope, addrspace_body, decl_inst);
break :blk try sema.analyzeAsAddressSpace(&block_scope, address_space_src, addrspace_ref, addrspace_ctx);
};
}
decl.has_tv = true;
decl.analysis = .complete;
const result: Zcu.SemaDeclResult = if (old_has_tv) .{
.invalidate_decl_val = !decl_ty.eql(old_ty, zcu) or
!decl.val.eql(old_val, decl_ty, zcu) or
is_inline != old_is_inline,
.invalidate_decl_ref = !decl_ty.eql(old_ty, zcu) or
decl.alignment != old_align or
decl.@"linksection" != old_linksection or
decl.@"addrspace" != old_addrspace or
is_inline != old_is_inline,
} else .{
.invalidate_decl_val = true,
.invalidate_decl_ref = true,
};
const has_runtime_bits = queue_linker_work and (is_func or try sema.typeHasRuntimeBits(decl_ty));
if (has_runtime_bits) {
// Needed for codegen_decl which will call updateDecl and then the
// codegen backend wants full access to the Decl Type.
try decl_ty.resolveFully(pt);
try zcu.comp.queueJob(.{ .codegen_decl = decl_index });
if (result.invalidate_decl_ref and zcu.emit_h != null) {
try zcu.comp.queueJob(.{ .emit_h_decl = decl_index });
}
}
if (decl.is_exported) {
const export_src = block_scope.src(.{ .token_offset = @intFromBool(decl.is_pub) });
if (is_inline) return sema.fail(&block_scope, export_src, "export of inline function", .{});
// The scope needs to have the decl in it.
try sema.analyzeExport(&block_scope, export_src, .{ .name = decl.name }, decl_index);
}
try sema.flushExports();
return result;
}
pub fn semaAnonOwnerDecl(pt: Zcu.PerThread, decl_index: Zcu.Decl.Index) !Zcu.SemaDeclResult {
const zcu = pt.zcu;
const decl = zcu.declPtr(decl_index);
assert(decl.has_tv);
assert(decl.owns_tv);
log.debug("semaAnonOwnerDecl '{d}'", .{@intFromEnum(decl_index)});
switch (decl.typeOf(zcu).zigTypeTag(zcu)) {
.Fn => @panic("TODO: update fn instance"),
.Type => {},
else => unreachable,
}
// We are the owner Decl of a type, and we were marked as outdated. That means the *structure*
// of this type changed; not just its namespace. Therefore, we need a new InternPool index.
//
// However, as soon as we make that, the context that created us will require re-analysis anyway
// (as it depends on this Decl's value), meaning the `struct_decl` (or equivalent) instruction
// will be analyzed again. Since Sema already needs to be able to reconstruct types like this,
// why should we bother implementing it here too when the Sema logic will be hit right after?
//
// So instead, let's just mark this Decl as failed - so that any remaining Decls which genuinely
// reference it (via `@This`) end up silently erroring too - and we'll let Sema make a new type
// with a new Decl.
//
// Yes, this does mean that any type owner Decl has a constant value for its entire lifetime.
zcu.intern_pool.removeDependenciesForDepender(zcu.gpa, InternPool.AnalUnit.wrap(.{ .decl = decl_index }));
zcu.intern_pool.remove(pt.tid, decl.val.toIntern());
decl.analysis = .dependency_failure;
return .{
.invalidate_decl_val = true,
.invalidate_decl_ref = true,
};
}
pub fn importPkg(pt: Zcu.PerThread, mod: *Module) !Zcu.ImportFileResult {
const zcu = pt.zcu;
const gpa = zcu.gpa;
// The resolved path is used as the key in the import table, to detect if
// an import refers to the same as another, despite different relative paths
// or differently mapped package names.
const resolved_path = try std.fs.path.resolve(gpa, &.{
mod.root.root_dir.path orelse ".",
mod.root.sub_path,
mod.root_src_path,
});
var keep_resolved_path = false;
defer if (!keep_resolved_path) gpa.free(resolved_path);
const gop = try zcu.import_table.getOrPut(gpa, resolved_path);
errdefer _ = zcu.import_table.pop();
if (gop.found_existing) {
const file_index = gop.value_ptr.*;
const file = zcu.fileByIndex(file_index);
try file.addReference(zcu, .{ .root = mod });
return .{
.file = file,
.file_index = file_index,
.is_new = false,
.is_pkg = true,
};
}
const ip = &zcu.intern_pool;
if (mod.builtin_file) |builtin_file| {
const path_digest = Zcu.computePathDigest(zcu, mod, builtin_file.sub_file_path);
const file_index = try ip.createFile(gpa, pt.tid, .{
.bin_digest = path_digest,
.file = builtin_file,
.root_decl = .none,
});
keep_resolved_path = true; // It's now owned by import_table.
gop.value_ptr.* = file_index;
try builtin_file.addReference(zcu, .{ .root = mod });
return .{
.file = builtin_file,
.file_index = file_index,
.is_new = false,
.is_pkg = true,
};
}
const sub_file_path = try gpa.dupe(u8, mod.root_src_path);
errdefer gpa.free(sub_file_path);
const comp = zcu.comp;
if (comp.file_system_inputs) |fsi|
try comp.appendFileSystemInput(fsi, mod.root, sub_file_path);
const new_file = try gpa.create(Zcu.File);
errdefer gpa.destroy(new_file);
const path_digest = zcu.computePathDigest(mod, sub_file_path);
const new_file_index = try ip.createFile(gpa, pt.tid, .{
.bin_digest = path_digest,
.file = new_file,
.root_decl = .none,
});
keep_resolved_path = true; // It's now owned by import_table.
gop.value_ptr.* = new_file_index;
new_file.* = .{
.sub_file_path = sub_file_path,
.source = undefined,
.source_loaded = false,
.tree_loaded = false,
.zir_loaded = false,
.stat = undefined,
.tree = undefined,
.zir = undefined,
.status = .never_loaded,
.mod = mod,
};
try new_file.addReference(zcu, .{ .root = mod });
return .{
.file = new_file,
.file_index = new_file_index,
.is_new = true,
.is_pkg = true,
};
}
/// Called from a worker thread during AstGen.
/// Also called from Sema during semantic analysis.
pub fn importFile(
pt: Zcu.PerThread,
cur_file: *Zcu.File,
import_string: []const u8,
) !Zcu.ImportFileResult {
const zcu = pt.zcu;
const mod = cur_file.mod;
if (std.mem.eql(u8, import_string, "std")) {
return pt.importPkg(zcu.std_mod);
}
if (std.mem.eql(u8, import_string, "root")) {
return pt.importPkg(zcu.root_mod);
}
if (mod.deps.get(import_string)) |pkg| {
return pt.importPkg(pkg);
}
if (!std.mem.endsWith(u8, import_string, ".zig")) {
return error.ModuleNotFound;
}
const gpa = zcu.gpa;
// The resolved path is used as the key in the import table, to detect if
// an import refers to the same as another, despite different relative paths
// or differently mapped package names.
const resolved_path = try std.fs.path.resolve(gpa, &.{
mod.root.root_dir.path orelse ".",
mod.root.sub_path,
cur_file.sub_file_path,
"..",
import_string,
});
var keep_resolved_path = false;
defer if (!keep_resolved_path) gpa.free(resolved_path);
const gop = try zcu.import_table.getOrPut(gpa, resolved_path);
errdefer _ = zcu.import_table.pop();
if (gop.found_existing) {
const file_index = gop.value_ptr.*;
return .{
.file = zcu.fileByIndex(file_index),
.file_index = file_index,
.is_new = false,
.is_pkg = false,
};
}
const ip = &zcu.intern_pool;
const new_file = try gpa.create(Zcu.File);
errdefer gpa.destroy(new_file);
const resolved_root_path = try std.fs.path.resolve(gpa, &.{
mod.root.root_dir.path orelse ".",
mod.root.sub_path,
});
defer gpa.free(resolved_root_path);
const sub_file_path = p: {
const relative = try std.fs.path.relative(gpa, resolved_root_path, resolved_path);
errdefer gpa.free(relative);
if (!isUpDir(relative) and !std.fs.path.isAbsolute(relative)) {
break :p relative;
}
return error.ImportOutsideModulePath;
};
errdefer gpa.free(sub_file_path);
log.debug("new importFile. resolved_root_path={s}, resolved_path={s}, sub_file_path={s}, import_string={s}", .{
resolved_root_path, resolved_path, sub_file_path, import_string,
});
const comp = zcu.comp;
if (comp.file_system_inputs) |fsi|
try comp.appendFileSystemInput(fsi, mod.root, sub_file_path);
const path_digest = zcu.computePathDigest(mod, sub_file_path);
const new_file_index = try ip.createFile(gpa, pt.tid, .{
.bin_digest = path_digest,
.file = new_file,
.root_decl = .none,
});
keep_resolved_path = true; // It's now owned by import_table.
gop.value_ptr.* = new_file_index;
new_file.* = .{
.sub_file_path = sub_file_path,
.source = undefined,
.source_loaded = false,
.tree_loaded = false,
.zir_loaded = false,
.stat = undefined,
.tree = undefined,
.zir = undefined,
.status = .never_loaded,
.mod = mod,
};
return .{
.file = new_file,
.file_index = new_file_index,
.is_new = true,
.is_pkg = false,
};
}
pub fn embedFile(
pt: Zcu.PerThread,
cur_file: *Zcu.File,
import_string: []const u8,
src_loc: Zcu.LazySrcLoc,
) !InternPool.Index {
const mod = pt.zcu;
const gpa = mod.gpa;
if (cur_file.mod.deps.get(import_string)) |pkg| {
const resolved_path = try std.fs.path.resolve(gpa, &.{
pkg.root.root_dir.path orelse ".",
pkg.root.sub_path,
pkg.root_src_path,
});
var keep_resolved_path = false;
defer if (!keep_resolved_path) gpa.free(resolved_path);
const gop = try mod.embed_table.getOrPut(gpa, resolved_path);
errdefer {
assert(std.mem.eql(u8, mod.embed_table.pop().key, resolved_path));
keep_resolved_path = false;
}
if (gop.found_existing) return gop.value_ptr.*.val;
keep_resolved_path = true;
const sub_file_path = try gpa.dupe(u8, pkg.root_src_path);
errdefer gpa.free(sub_file_path);
return pt.newEmbedFile(pkg, sub_file_path, resolved_path, gop.value_ptr, src_loc);
}
// The resolved path is used as the key in the table, to detect if a file
// refers to the same as another, despite different relative paths.
const resolved_path = try std.fs.path.resolve(gpa, &.{
cur_file.mod.root.root_dir.path orelse ".",
cur_file.mod.root.sub_path,
cur_file.sub_file_path,
"..",
import_string,
});
var keep_resolved_path = false;
defer if (!keep_resolved_path) gpa.free(resolved_path);
const gop = try mod.embed_table.getOrPut(gpa, resolved_path);
errdefer {
assert(std.mem.eql(u8, mod.embed_table.pop().key, resolved_path));
keep_resolved_path = false;
}
if (gop.found_existing) return gop.value_ptr.*.val;
keep_resolved_path = true;
const resolved_root_path = try std.fs.path.resolve(gpa, &.{
cur_file.mod.root.root_dir.path orelse ".",
cur_file.mod.root.sub_path,
});
defer gpa.free(resolved_root_path);
const sub_file_path = p: {
const relative = try std.fs.path.relative(gpa, resolved_root_path, resolved_path);
errdefer gpa.free(relative);
if (!isUpDir(relative) and !std.fs.path.isAbsolute(relative)) {
break :p relative;
}
return error.ImportOutsideModulePath;
};
defer gpa.free(sub_file_path);
return pt.newEmbedFile(cur_file.mod, sub_file_path, resolved_path, gop.value_ptr, src_loc);
}
/// https://github.com/ziglang/zig/issues/14307
fn newEmbedFile(
pt: Zcu.PerThread,
pkg: *Module,
sub_file_path: []const u8,
resolved_path: []const u8,
result: **Zcu.EmbedFile,
src_loc: Zcu.LazySrcLoc,
) !InternPool.Index {
const mod = pt.zcu;
const gpa = mod.gpa;
const ip = &mod.intern_pool;
const new_file = try gpa.create(Zcu.EmbedFile);
errdefer gpa.destroy(new_file);
var file = try pkg.root.openFile(sub_file_path, .{});
defer file.close();
const actual_stat = try file.stat();
const stat: Cache.File.Stat = .{
.size = actual_stat.size,
.inode = actual_stat.inode,
.mtime = actual_stat.mtime,
};
const size = std.math.cast(usize, actual_stat.size) orelse return error.Overflow;
const strings = ip.getLocal(pt.tid).getMutableStrings(gpa);
const bytes = try strings.addManyAsSlice(try std.math.add(usize, size, 1));
const actual_read = try file.readAll(bytes[0][0..size]);
if (actual_read != size) return error.UnexpectedEndOfFile;
bytes[0][size] = 0;
const comp = mod.comp;
switch (comp.cache_use) {
.whole => |whole| if (whole.cache_manifest) |man| {
const copied_resolved_path = try gpa.dupe(u8, resolved_path);
errdefer gpa.free(copied_resolved_path);
whole.cache_manifest_mutex.lock();
defer whole.cache_manifest_mutex.unlock();
try man.addFilePostContents(copied_resolved_path, bytes[0][0..size], stat);
},
.incremental => {},
}
const array_ty = try pt.intern(.{ .array_type = .{
.len = size,
.sentinel = .zero_u8,
.child = .u8_type,
} });
const array_val = try pt.intern(.{ .aggregate = .{
.ty = array_ty,
.storage = .{ .bytes = try ip.getOrPutTrailingString(gpa, pt.tid, @intCast(bytes[0].len), .maybe_embedded_nulls) },
} });
const ptr_ty = (try pt.ptrType(.{
.child = array_ty,
.flags = .{
.alignment = .none,
.is_const = true,
.address_space = .generic,
},
})).toIntern();
const ptr_val = try pt.intern(.{ .ptr = .{
.ty = ptr_ty,
.base_addr = .{ .anon_decl = .{
.val = array_val,
.orig_ty = ptr_ty,
} },
.byte_offset = 0,
} });
result.* = new_file;
new_file.* = .{
.sub_file_path = try ip.getOrPutString(gpa, pt.tid, sub_file_path, .no_embedded_nulls),
.owner = pkg,
.stat = stat,
.val = ptr_val,
.src_loc = src_loc,
};
return ptr_val;
}
pub fn scanNamespace(
pt: Zcu.PerThread,
namespace_index: Zcu.Namespace.Index,
decls: []const Zir.Inst.Index,
parent_decl: *Zcu.Decl,
) Allocator.Error!void {
const tracy = trace(@src());
defer tracy.end();
const zcu = pt.zcu;
const gpa = zcu.gpa;
const namespace = zcu.namespacePtr(namespace_index);
// For incremental updates, `scanDecl` wants to look up existing decls by their ZIR index rather
// than their name. We'll build an efficient mapping now, then discard the current `decls`.
var existing_by_inst: std.AutoHashMapUnmanaged(InternPool.TrackedInst.Index, Zcu.Decl.Index) = .{};
defer existing_by_inst.deinit(gpa);
try existing_by_inst.ensureTotalCapacity(gpa, @intCast(namespace.decls.count()));
for (namespace.decls.keys()) |decl_index| {
const decl = zcu.declPtr(decl_index);
existing_by_inst.putAssumeCapacityNoClobber(decl.zir_decl_index.unwrap().?, decl_index);
}
var seen_decls: std.AutoHashMapUnmanaged(InternPool.NullTerminatedString, void) = .{};
defer seen_decls.deinit(gpa);
namespace.decls.clearRetainingCapacity();
try namespace.decls.ensureTotalCapacity(gpa, decls.len);
namespace.usingnamespace_set.clearRetainingCapacity();
var scan_decl_iter: ScanDeclIter = .{
.pt = pt,
.namespace_index = namespace_index,
.parent_decl = parent_decl,
.seen_decls = &seen_decls,
.existing_by_inst = &existing_by_inst,
.pass = .named,
};
for (decls) |decl_inst| {
try scan_decl_iter.scanDecl(decl_inst);
}
scan_decl_iter.pass = .unnamed;
for (decls) |decl_inst| {
try scan_decl_iter.scanDecl(decl_inst);
}
if (seen_decls.count() != namespace.decls.count()) {
// Do a pass over the namespace contents and remove any decls from the last update
// which were removed in this one.
var i: usize = 0;
while (i < namespace.decls.count()) {
const decl_index = namespace.decls.keys()[i];
const decl = zcu.declPtr(decl_index);
if (!seen_decls.contains(decl.name)) {
// We must preserve namespace ordering for @typeInfo.
namespace.decls.orderedRemoveAt(i);
i -= 1;
}
}
}
}
const ScanDeclIter = struct {
pt: Zcu.PerThread,
namespace_index: Zcu.Namespace.Index,
parent_decl: *Zcu.Decl,
seen_decls: *std.AutoHashMapUnmanaged(InternPool.NullTerminatedString, void),
existing_by_inst: *const std.AutoHashMapUnmanaged(InternPool.TrackedInst.Index, Zcu.Decl.Index),
/// Decl scanning is run in two passes, so that we can detect when a generated
/// name would clash with an explicit name and use a different one.
pass: enum { named, unnamed },
usingnamespace_index: usize = 0,
comptime_index: usize = 0,
unnamed_test_index: usize = 0,
fn avoidNameConflict(iter: *ScanDeclIter, comptime fmt: []const u8, args: anytype) !InternPool.NullTerminatedString {
const pt = iter.pt;
const gpa = pt.zcu.gpa;
const ip = &pt.zcu.intern_pool;
var name = try ip.getOrPutStringFmt(gpa, pt.tid, fmt, args, .no_embedded_nulls);
var gop = try iter.seen_decls.getOrPut(gpa, name);
var next_suffix: u32 = 0;
while (gop.found_existing) {
name = try ip.getOrPutStringFmt(gpa, pt.tid, "{}_{d}", .{ name.fmt(ip), next_suffix }, .no_embedded_nulls);
gop = try iter.seen_decls.getOrPut(gpa, name);
next_suffix += 1;
}
return name;
}
fn scanDecl(iter: *ScanDeclIter, decl_inst: Zir.Inst.Index) Allocator.Error!void {
const tracy = trace(@src());
defer tracy.end();
const pt = iter.pt;
const zcu = pt.zcu;
const namespace_index = iter.namespace_index;
const namespace = zcu.namespacePtr(namespace_index);
const gpa = zcu.gpa;
const zir = namespace.fileScope(zcu).zir;
const ip = &zcu.intern_pool;
const inst_data = zir.instructions.items(.data)[@intFromEnum(decl_inst)].declaration;
const extra = zir.extraData(Zir.Inst.Declaration, inst_data.payload_index);
const declaration = extra.data;
// Every Decl needs a name.
const decl_name: InternPool.NullTerminatedString, const kind: Zcu.Decl.Kind, const is_named_test: bool = switch (declaration.name) {
.@"comptime" => info: {
if (iter.pass != .unnamed) return;
const i = iter.comptime_index;
iter.comptime_index += 1;
break :info .{
try iter.avoidNameConflict("comptime_{d}", .{i}),
.@"comptime",
false,
};
},
.@"usingnamespace" => info: {
// TODO: this isn't right! These should be considered unnamed. Name conflicts can happen here.
// The problem is, we need to preserve the decl ordering for `@typeInfo`.
// I'm not bothering to fix this now, since some upcoming changes will change this code significantly anyway.
if (iter.pass != .named) return;
const i = iter.usingnamespace_index;
iter.usingnamespace_index += 1;
break :info .{
try iter.avoidNameConflict("usingnamespace_{d}", .{i}),
.@"usingnamespace",
false,
};
},
.unnamed_test => info: {
if (iter.pass != .unnamed) return;
const i = iter.unnamed_test_index;
iter.unnamed_test_index += 1;
break :info .{
try iter.avoidNameConflict("test_{d}", .{i}),
.@"test",
false,
};
},
.decltest => info: {
// We consider these to be unnamed since the decl name can be adjusted to avoid conflicts if necessary.
if (iter.pass != .unnamed) return;
assert(declaration.flags.has_doc_comment);
const name = zir.nullTerminatedString(@enumFromInt(zir.extra[extra.end]));
break :info .{
try iter.avoidNameConflict("decltest.{s}", .{name}),
.@"test",
true,
};
},
_ => if (declaration.name.isNamedTest(zir)) info: {
// We consider these to be unnamed since the decl name can be adjusted to avoid conflicts if necessary.
if (iter.pass != .unnamed) return;
break :info .{
try iter.avoidNameConflict("test.{s}", .{zir.nullTerminatedString(declaration.name.toString(zir).?)}),
.@"test",
true,
};
} else info: {
if (iter.pass != .named) return;
const name = try ip.getOrPutString(
gpa,
pt.tid,
zir.nullTerminatedString(declaration.name.toString(zir).?),
.no_embedded_nulls,
);
try iter.seen_decls.putNoClobber(gpa, name, {});
break :info .{
name,
.named,
false,
};
},
};
switch (kind) {
.@"usingnamespace" => try namespace.usingnamespace_set.ensureUnusedCapacity(gpa, 1),
.@"test" => try zcu.test_functions.ensureUnusedCapacity(gpa, 1),
else => {},
}
const parent_file_scope_index = iter.parent_decl.getFileScopeIndex(zcu);
const tracked_inst = try ip.trackZir(gpa, pt.tid, .{
.file = parent_file_scope_index,
.inst = decl_inst,
});
// We create a Decl for it regardless of analysis status.
const prev_exported, const decl_index = if (iter.existing_by_inst.get(tracked_inst)) |decl_index| decl_index: {
// We need only update this existing Decl.
const decl = zcu.declPtr(decl_index);
const was_exported = decl.is_exported;
assert(decl.kind == kind); // ZIR tracking should preserve this
decl.name = decl_name;
decl.fqn = try namespace.internFullyQualifiedName(ip, gpa, pt.tid, decl_name);
decl.is_pub = declaration.flags.is_pub;
decl.is_exported = declaration.flags.is_export;
break :decl_index .{ was_exported, decl_index };
} else decl_index: {
// Create and set up a new Decl.
const new_decl_index = try pt.allocateNewDecl(namespace_index);
const new_decl = zcu.declPtr(new_decl_index);
new_decl.kind = kind;
new_decl.name = decl_name;
new_decl.fqn = try namespace.internFullyQualifiedName(ip, gpa, pt.tid, decl_name);
new_decl.is_pub = declaration.flags.is_pub;
new_decl.is_exported = declaration.flags.is_export;
new_decl.zir_decl_index = tracked_inst.toOptional();
break :decl_index .{ false, new_decl_index };
};
const decl = zcu.declPtr(decl_index);
namespace.decls.putAssumeCapacityNoClobberContext(decl_index, {}, .{ .zcu = zcu });
const comp = zcu.comp;
const decl_mod = namespace.fileScope(zcu).mod;
const want_analysis = declaration.flags.is_export or switch (kind) {
.anon => unreachable,
.@"comptime" => true,
.@"usingnamespace" => a: {
namespace.usingnamespace_set.putAssumeCapacityNoClobber(decl_index, declaration.flags.is_pub);
break :a true;
},
.named => false,
.@"test" => a: {
if (!comp.config.is_test) break :a false;
if (decl_mod != zcu.main_mod) break :a false;
if (is_named_test and comp.test_filters.len > 0) {
const decl_fqn = decl.fqn.toSlice(ip);
for (comp.test_filters) |test_filter| {
if (std.mem.indexOf(u8, decl_fqn, test_filter)) |_| break;
} else break :a false;
}
zcu.test_functions.putAssumeCapacity(decl_index, {}); // may clobber on incremental update
break :a true;
},
};
if (want_analysis) {
// We will not queue analysis if the decl has been analyzed on a previous update and
// `is_export` is unchanged. In this case, the incremental update mechanism will handle
// re-analysis for us if necessary.
if (prev_exported != declaration.flags.is_export or decl.analysis == .unreferenced) {
log.debug("scanDecl queue analyze_decl file='{s}' decl_name='{}' decl_index={d}", .{
namespace.fileScope(zcu).sub_file_path, decl_name.fmt(ip), decl_index,
});
try comp.queueJob(.{ .analyze_decl = decl_index });
}
}
if (decl.getOwnedFunction(zcu) != null) {
// TODO this logic is insufficient; namespaces we don't re-scan may still require
// updated line numbers. Look into this!
// TODO Look into detecting when this would be unnecessary by storing enough state
// in `Decl` to notice that the line number did not change.
try comp.queueJob(.{ .update_line_number = decl_index });
}
}
};
/// Cancel the creation of an anon decl and delete any references to it.
/// If other decls depend on this decl, they must be aborted first.
pub fn abortAnonDecl(pt: Zcu.PerThread, decl_index: Zcu.Decl.Index) void {
assert(!pt.zcu.declIsRoot(decl_index));
pt.destroyDecl(decl_index);
}
/// Finalize the creation of an anon decl.
pub fn finalizeAnonDecl(pt: Zcu.PerThread, decl_index: Zcu.Decl.Index) Allocator.Error!void {
if (pt.zcu.declPtr(decl_index).typeOf(pt.zcu).isFnOrHasRuntimeBits(pt)) {
try pt.zcu.comp.queueJob(.{ .codegen_decl = decl_index });
}
}
pub fn analyzeFnBody(pt: Zcu.PerThread, func_index: InternPool.Index, arena: Allocator) Zcu.SemaError!Air {
const tracy = trace(@src());
defer tracy.end();
const mod = pt.zcu;
const gpa = mod.gpa;
const ip = &mod.intern_pool;
const func = mod.funcInfo(func_index);
const decl_index = func.owner_decl;
const decl = mod.declPtr(decl_index);
log.debug("func name '{}'", .{decl.fqn.fmt(ip)});
defer log.debug("finish func name '{}'", .{decl.fqn.fmt(ip)});
const decl_prog_node = mod.sema_prog_node.start(decl.fqn.toSlice(ip), 0);
defer decl_prog_node.end();
mod.intern_pool.removeDependenciesForDepender(gpa, InternPool.AnalUnit.wrap(.{ .func = func_index }));
var comptime_err_ret_trace = std.ArrayList(Zcu.LazySrcLoc).init(gpa);
defer comptime_err_ret_trace.deinit();
// In the case of a generic function instance, this is the type of the
// instance, which has comptime parameters elided. In other words, it is
// the runtime-known parameters only, not to be confused with the
// generic_owner function type, which potentially has more parameters,
// including comptime parameters.
const fn_ty = decl.typeOf(mod);
const fn_ty_info = mod.typeToFunc(fn_ty).?;
var sema: Sema = .{
.pt = pt,
.gpa = gpa,
.arena = arena,
.code = decl.getFileScope(mod).zir,
.owner_decl = decl,
.owner_decl_index = decl_index,
.func_index = func_index,
.func_is_naked = fn_ty_info.cc == .Naked,
.fn_ret_ty = Type.fromInterned(fn_ty_info.return_type),
.fn_ret_ty_ies = null,
.owner_func_index = func_index,
.branch_quota = @max(func.branchQuotaUnordered(ip), Sema.default_branch_quota),
.comptime_err_ret_trace = &comptime_err_ret_trace,
};
defer sema.deinit();
// Every runtime function has a dependency on the source of the Decl it originates from.
// It also depends on the value of its owner Decl.
try sema.declareDependency(.{ .src_hash = decl.zir_decl_index.unwrap().? });
try sema.declareDependency(.{ .decl_val = decl_index });
if (func.analysisUnordered(ip).inferred_error_set) {
const ies = try arena.create(Sema.InferredErrorSet);
ies.* = .{ .func = func_index };
sema.fn_ret_ty_ies = ies;
}
// reset in case calls to errorable functions are removed.
func.setCallsOrAwaitsErrorableFn(ip, false);
// First few indexes of extra are reserved and set at the end.
const reserved_count = @typeInfo(Air.ExtraIndex).Enum.fields.len;
try sema.air_extra.ensureTotalCapacity(gpa, reserved_count);
sema.air_extra.items.len += reserved_count;
var inner_block: Sema.Block = .{
.parent = null,
.sema = &sema,
.namespace = decl.src_namespace,
.instructions = .{},
.inlining = null,
.is_comptime = false,
.src_base_inst = inst: {
const owner_info = if (func.generic_owner == .none)
func
else
mod.funcInfo(func.generic_owner);
const orig_decl = mod.declPtr(owner_info.owner_decl);
break :inst orig_decl.zir_decl_index.unwrap().?;
},
.type_name_ctx = decl.name,
};
defer inner_block.instructions.deinit(gpa);
const fn_info = sema.code.getFnInfo(func.zirBodyInstUnordered(ip).resolve(ip));
// Here we are performing "runtime semantic analysis" for a function body, which means
// we must map the parameter ZIR instructions to `arg` AIR instructions.
// AIR requires the `arg` parameters to be the first N instructions.
// This could be a generic function instantiation, however, in which case we need to
// map the comptime parameters to constant values and only emit arg AIR instructions
// for the runtime ones.
const runtime_params_len = fn_ty_info.param_types.len;
try inner_block.instructions.ensureTotalCapacityPrecise(gpa, runtime_params_len);
try sema.air_instructions.ensureUnusedCapacity(gpa, fn_info.total_params_len);
try sema.inst_map.ensureSpaceForInstructions(gpa, fn_info.param_body);
// In the case of a generic function instance, pre-populate all the comptime args.
if (func.comptime_args.len != 0) {
for (
fn_info.param_body[0..func.comptime_args.len],
func.comptime_args.get(ip),
) |inst, comptime_arg| {
if (comptime_arg == .none) continue;
sema.inst_map.putAssumeCapacityNoClobber(inst, Air.internedToRef(comptime_arg));
}
}
const src_params_len = if (func.comptime_args.len != 0)
func.comptime_args.len
else
runtime_params_len;
var runtime_param_index: usize = 0;
for (fn_info.param_body[0..src_params_len]) |inst| {
const gop = sema.inst_map.getOrPutAssumeCapacity(inst);
if (gop.found_existing) continue; // provided above by comptime arg
const inst_info = sema.code.instructions.get(@intFromEnum(inst));
const param_name: Zir.NullTerminatedString = switch (inst_info.tag) {
.param_anytype => inst_info.data.str_tok.start,
.param => sema.code.extraData(Zir.Inst.Param, inst_info.data.pl_tok.payload_index).data.name,
else => unreachable,
};
const param_ty = fn_ty_info.param_types.get(ip)[runtime_param_index];
runtime_param_index += 1;
const opt_opv = sema.typeHasOnePossibleValue(Type.fromInterned(param_ty)) catch |err| switch (err) {
error.GenericPoison => unreachable,
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
else => |e| return e,
};
if (opt_opv) |opv| {
gop.value_ptr.* = Air.internedToRef(opv.toIntern());
continue;
}
const arg_index: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
gop.value_ptr.* = arg_index.toRef();
inner_block.instructions.appendAssumeCapacity(arg_index);
sema.air_instructions.appendAssumeCapacity(.{
.tag = .arg,
.data = .{ .arg = .{
.ty = Air.internedToRef(param_ty),
.name = if (inner_block.ownerModule().strip)
.none
else
@enumFromInt(try sema.appendAirString(sema.code.nullTerminatedString(param_name))),
} },
});
}
func.setAnalysisState(ip, .in_progress);
const last_arg_index = inner_block.instructions.items.len;
// Save the error trace as our first action in the function.
// If this is unnecessary after all, Liveness will clean it up for us.
const error_return_trace_index = try sema.analyzeSaveErrRetIndex(&inner_block);
sema.error_return_trace_index_on_fn_entry = error_return_trace_index;
inner_block.error_return_trace_index = error_return_trace_index;
sema.analyzeFnBody(&inner_block, fn_info.body) catch |err| switch (err) {
// TODO make these unreachable instead of @panic
error.GenericPoison => @panic("zig compiler bug: GenericPoison"),
error.ComptimeReturn => @panic("zig compiler bug: ComptimeReturn"),
else => |e| return e,
};
for (sema.unresolved_inferred_allocs.keys()) |ptr_inst| {
// The lack of a resolve_inferred_alloc means that this instruction
// is unused so it just has to be a no-op.
sema.air_instructions.set(@intFromEnum(ptr_inst), .{
.tag = .alloc,
.data = .{ .ty = Type.single_const_pointer_to_comptime_int },
});
}
// If we don't get an error return trace from a caller, create our own.
if (func.analysisUnordered(ip).calls_or_awaits_errorable_fn and
mod.comp.config.any_error_tracing and
!sema.fn_ret_ty.isError(mod))
{
sema.setupErrorReturnTrace(&inner_block, last_arg_index) catch |err| switch (err) {
// TODO make these unreachable instead of @panic
error.GenericPoison => @panic("zig compiler bug: GenericPoison"),
error.ComptimeReturn => @panic("zig compiler bug: ComptimeReturn"),
error.ComptimeBreak => @panic("zig compiler bug: ComptimeBreak"),
else => |e| return e,
};
}
// Copy the block into place and mark that as the main block.
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len +
inner_block.instructions.items.len);
const main_block_index = sema.addExtraAssumeCapacity(Air.Block{
.body_len = @intCast(inner_block.instructions.items.len),
});
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(inner_block.instructions.items));
sema.air_extra.items[@intFromEnum(Air.ExtraIndex.main_block)] = main_block_index;
// Resolving inferred error sets is done *before* setting the function
// state to success, so that "unable to resolve inferred error set" errors
// can be emitted here.
if (sema.fn_ret_ty_ies) |ies| {
sema.resolveInferredErrorSetPtr(&inner_block, .{
.base_node_inst = inner_block.src_base_inst,
.offset = Zcu.LazySrcLoc.Offset.nodeOffset(0),
}, ies) catch |err| switch (err) {
error.GenericPoison => unreachable,
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
error.AnalysisFail => {
// In this case our function depends on a type that had a compile error.
// We should not try to lower this function.
decl.analysis = .dependency_failure;
return error.AnalysisFail;
},
else => |e| return e,
};
assert(ies.resolved != .none);
ip.funcSetIesResolved(func_index, ies.resolved);
}
func.setAnalysisState(ip, .success);
// Finally we must resolve the return type and parameter types so that backends
// have full access to type information.
// Crucially, this happens *after* we set the function state to success above,
// so that dependencies on the function body will now be satisfied rather than
// result in circular dependency errors.
sema.resolveFnTypes(fn_ty) catch |err| switch (err) {
error.GenericPoison => unreachable,
error.ComptimeReturn => unreachable,
error.ComptimeBreak => unreachable,
error.AnalysisFail => {
// In this case our function depends on a type that had a compile error.
// We should not try to lower this function.
decl.analysis = .dependency_failure;
return error.AnalysisFail;
},
else => |e| return e,
};
try sema.flushExports();
return .{
.instructions = sema.air_instructions.toOwnedSlice(),
.extra = try sema.air_extra.toOwnedSlice(gpa),
};
}
pub fn createNamespace(pt: Zcu.PerThread, initialization: Zcu.Namespace) !Zcu.Namespace.Index {
return pt.zcu.intern_pool.createNamespace(pt.zcu.gpa, pt.tid, initialization);
}
pub fn destroyNamespace(pt: Zcu.PerThread, namespace_index: Zcu.Namespace.Index) void {
return pt.zcu.intern_pool.destroyNamespace(pt.tid, namespace_index);
}
pub fn allocateNewDecl(pt: Zcu.PerThread, namespace: Zcu.Namespace.Index) !Zcu.Decl.Index {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const decl_index = try zcu.intern_pool.createDecl(gpa, pt.tid, .{
.name = undefined,
.fqn = undefined,
.src_namespace = namespace,
.has_tv = false,
.owns_tv = false,
.val = undefined,
.alignment = undefined,
.@"linksection" = .none,
.@"addrspace" = .generic,
.analysis = .unreferenced,
.zir_decl_index = .none,
.is_pub = false,
.is_exported = false,
.kind = .anon,
});
if (zcu.emit_h) |zcu_emit_h| {
if (@intFromEnum(decl_index) >= zcu_emit_h.allocated_emit_h.len) {
try zcu_emit_h.allocated_emit_h.append(gpa, .{});
assert(@intFromEnum(decl_index) == zcu_emit_h.allocated_emit_h.len);
}
}
return decl_index;
}
pub fn getErrorValue(
pt: Zcu.PerThread,
name: InternPool.NullTerminatedString,
) Allocator.Error!Zcu.ErrorInt {
return pt.zcu.intern_pool.getErrorValue(pt.zcu.gpa, pt.tid, name);
}
pub fn getErrorValueFromSlice(pt: Zcu.PerThread, name: []const u8) Allocator.Error!Zcu.ErrorInt {
return pt.getErrorValue(try pt.zcu.intern_pool.getOrPutString(pt.zcu.gpa, name));
}
pub fn initNewAnonDecl(
pt: Zcu.PerThread,
new_decl_index: Zcu.Decl.Index,
val: Value,
name: InternPool.NullTerminatedString,
fqn: InternPool.OptionalNullTerminatedString,
) Allocator.Error!void {
const new_decl = pt.zcu.declPtr(new_decl_index);
new_decl.name = name;
new_decl.fqn = fqn.unwrap() orelse try pt.zcu.namespacePtr(new_decl.src_namespace)
.internFullyQualifiedName(&pt.zcu.intern_pool, pt.zcu.gpa, pt.tid, name);
new_decl.val = val;
new_decl.alignment = .none;
new_decl.@"linksection" = .none;
new_decl.has_tv = true;
new_decl.analysis = .complete;
}
fn lockAndClearFileCompileError(pt: Zcu.PerThread, file: *Zcu.File) void {
switch (file.status) {
.success_zir, .retryable_failure => {},
.never_loaded, .parse_failure, .astgen_failure => {
pt.zcu.comp.mutex.lock();
defer pt.zcu.comp.mutex.unlock();
if (pt.zcu.failed_files.fetchSwapRemove(file)) |kv| {
if (kv.value) |msg| msg.destroy(pt.zcu.gpa); // Delete previous error message.
}
},
}
}
/// Called from `Compilation.update`, after everything is done, just before
/// reporting compile errors. In this function we emit exported symbol collision
/// errors and communicate exported symbols to the linker backend.
pub fn processExports(pt: Zcu.PerThread) !void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
// First, construct a mapping of every exported value and Decl to the indices of all its different exports.
var decl_exports: std.AutoArrayHashMapUnmanaged(Zcu.Decl.Index, std.ArrayListUnmanaged(u32)) = .{};
var value_exports: std.AutoArrayHashMapUnmanaged(InternPool.Index, std.ArrayListUnmanaged(u32)) = .{};
defer {
for (decl_exports.values()) |*exports| {
exports.deinit(gpa);
}
decl_exports.deinit(gpa);
for (value_exports.values()) |*exports| {
exports.deinit(gpa);
}
value_exports.deinit(gpa);
}
// We note as a heuristic:
// * It is rare to export a value.
// * It is rare for one Decl to be exported multiple times.
// So, this ensureTotalCapacity serves as a reasonable (albeit very approximate) optimization.
try decl_exports.ensureTotalCapacity(gpa, zcu.single_exports.count() + zcu.multi_exports.count());
for (zcu.single_exports.values()) |export_idx| {
const exp = zcu.all_exports.items[export_idx];
const value_ptr, const found_existing = switch (exp.exported) {
.decl_index => |i| gop: {
const gop = try decl_exports.getOrPut(gpa, i);
break :gop .{ gop.value_ptr, gop.found_existing };
},
.value => |i| gop: {
const gop = try value_exports.getOrPut(gpa, i);
break :gop .{ gop.value_ptr, gop.found_existing };
},
};
if (!found_existing) value_ptr.* = .{};
try value_ptr.append(gpa, export_idx);
}
for (zcu.multi_exports.values()) |info| {
for (zcu.all_exports.items[info.index..][0..info.len], info.index..) |exp, export_idx| {
const value_ptr, const found_existing = switch (exp.exported) {
.decl_index => |i| gop: {
const gop = try decl_exports.getOrPut(gpa, i);
break :gop .{ gop.value_ptr, gop.found_existing };
},
.value => |i| gop: {
const gop = try value_exports.getOrPut(gpa, i);
break :gop .{ gop.value_ptr, gop.found_existing };
},
};
if (!found_existing) value_ptr.* = .{};
try value_ptr.append(gpa, @intCast(export_idx));
}
}
// Map symbol names to `Export` for name collision detection.
var symbol_exports: SymbolExports = .{};
defer symbol_exports.deinit(gpa);
for (decl_exports.keys(), decl_exports.values()) |exported_decl, exports_list| {
const exported: Zcu.Exported = .{ .decl_index = exported_decl };
try pt.processExportsInner(&symbol_exports, exported, exports_list.items);
}
for (value_exports.keys(), value_exports.values()) |exported_value, exports_list| {
const exported: Zcu.Exported = .{ .value = exported_value };
try pt.processExportsInner(&symbol_exports, exported, exports_list.items);
}
}
const SymbolExports = std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, u32);
fn processExportsInner(
pt: Zcu.PerThread,
symbol_exports: *SymbolExports,
exported: Zcu.Exported,
export_indices: []const u32,
) error{OutOfMemory}!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
for (export_indices) |export_idx| {
const new_export = &zcu.all_exports.items[export_idx];
const gop = try symbol_exports.getOrPut(gpa, new_export.opts.name);
if (gop.found_existing) {
new_export.status = .failed_retryable;
try zcu.failed_exports.ensureUnusedCapacity(gpa, 1);
const msg = try Zcu.ErrorMsg.create(gpa, new_export.src, "exported symbol collision: {}", .{
new_export.opts.name.fmt(ip),
});
errdefer msg.destroy(gpa);
const other_export = zcu.all_exports.items[gop.value_ptr.*];
try zcu.errNote(other_export.src, msg, "other symbol here", .{});
zcu.failed_exports.putAssumeCapacityNoClobber(export_idx, msg);
new_export.status = .failed;
} else {
gop.value_ptr.* = export_idx;
}
}
switch (exported) {
.decl_index => |idx| if (failed: {
const decl = zcu.declPtr(idx);
if (decl.analysis != .complete) break :failed true;
// Check if has owned function
if (!decl.owns_tv) break :failed false;
if (decl.typeOf(zcu).zigTypeTag(zcu) != .Fn) break :failed false;
// Check if owned function failed
break :failed zcu.funcInfo(decl.val.toIntern()).analysisUnordered(ip).state != .success;
}) {
// This `Decl` is failed, so was never sent to codegen.
// TODO: we should probably tell the backend to delete any old exports of this `Decl`?
return;
},
.value => {},
}
if (zcu.comp.bin_file) |lf| {
try zcu.handleUpdateExports(export_indices, lf.updateExports(pt, exported, export_indices));
} else if (zcu.llvm_object) |llvm_object| {
if (build_options.only_c) unreachable;
try zcu.handleUpdateExports(export_indices, llvm_object.updateExports(pt, exported, export_indices));
}
}
pub fn populateTestFunctions(
pt: Zcu.PerThread,
main_progress_node: std.Progress.Node,
) !void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const builtin_mod = zcu.root_mod.getBuiltinDependency();
const builtin_file_index = (pt.importPkg(builtin_mod) catch unreachable).file_index;
const root_decl_index = zcu.fileRootDecl(builtin_file_index);
const root_decl = zcu.declPtr(root_decl_index.unwrap().?);
const builtin_namespace = zcu.namespacePtr(root_decl.src_namespace);
const test_functions_str = try ip.getOrPutString(gpa, pt.tid, "test_functions", .no_embedded_nulls);
const decl_index = builtin_namespace.decls.getKeyAdapted(
test_functions_str,
Zcu.DeclAdapter{ .zcu = zcu },
).?;
{
// We have to call `ensureDeclAnalyzed` here in case `builtin.test_functions`
// was not referenced by start code.
zcu.sema_prog_node = main_progress_node.start("Semantic Analysis", 0);
defer {
zcu.sema_prog_node.end();
zcu.sema_prog_node = std.Progress.Node.none;
}
try pt.ensureDeclAnalyzed(decl_index);
}
const decl = zcu.declPtr(decl_index);
const test_fn_ty = decl.typeOf(zcu).slicePtrFieldType(zcu).childType(zcu);
const array_anon_decl: InternPool.Key.Ptr.BaseAddr.AnonDecl = array: {
// Add zcu.test_functions to an array decl then make the test_functions
// decl reference it as a slice.
const test_fn_vals = try gpa.alloc(InternPool.Index, zcu.test_functions.count());
defer gpa.free(test_fn_vals);
for (test_fn_vals, zcu.test_functions.keys()) |*test_fn_val, test_decl_index| {
const test_decl = zcu.declPtr(test_decl_index);
const test_decl_name = test_decl.fqn;
const test_decl_name_len = test_decl_name.length(ip);
const test_name_anon_decl: InternPool.Key.Ptr.BaseAddr.AnonDecl = n: {
const test_name_ty = try pt.arrayType(.{
.len = test_decl_name_len,
.child = .u8_type,
});
const test_name_val = try pt.intern(.{ .aggregate = .{
.ty = test_name_ty.toIntern(),
.storage = .{ .bytes = test_decl_name.toString() },
} });
break :n .{
.orig_ty = (try pt.singleConstPtrType(test_name_ty)).toIntern(),
.val = test_name_val,
};
};
const test_fn_fields = .{
// name
try pt.intern(.{ .slice = .{
.ty = .slice_const_u8_type,
.ptr = try pt.intern(.{ .ptr = .{
.ty = .manyptr_const_u8_type,
.base_addr = .{ .anon_decl = test_name_anon_decl },
.byte_offset = 0,
} }),
.len = try pt.intern(.{ .int = .{
.ty = .usize_type,
.storage = .{ .u64 = test_decl_name_len },
} }),
} }),
// func
try pt.intern(.{ .ptr = .{
.ty = try pt.intern(.{ .ptr_type = .{
.child = test_decl.typeOf(zcu).toIntern(),
.flags = .{
.is_const = true,
},
} }),
.base_addr = .{ .decl = test_decl_index },
.byte_offset = 0,
} }),
};
test_fn_val.* = try pt.intern(.{ .aggregate = .{
.ty = test_fn_ty.toIntern(),
.storage = .{ .elems = &test_fn_fields },
} });
}
const array_ty = try pt.arrayType(.{
.len = test_fn_vals.len,
.child = test_fn_ty.toIntern(),
.sentinel = .none,
});
const array_val = try pt.intern(.{ .aggregate = .{
.ty = array_ty.toIntern(),
.storage = .{ .elems = test_fn_vals },
} });
break :array .{
.orig_ty = (try pt.singleConstPtrType(array_ty)).toIntern(),
.val = array_val,
};
};
{
const new_ty = try pt.ptrType(.{
.child = test_fn_ty.toIntern(),
.flags = .{
.is_const = true,
.size = .Slice,
},
});
const new_val = decl.val;
const new_init = try pt.intern(.{ .slice = .{
.ty = new_ty.toIntern(),
.ptr = try pt.intern(.{ .ptr = .{
.ty = new_ty.slicePtrFieldType(zcu).toIntern(),
.base_addr = .{ .anon_decl = array_anon_decl },
.byte_offset = 0,
} }),
.len = (try pt.intValue(Type.usize, zcu.test_functions.count())).toIntern(),
} });
ip.mutateVarInit(decl.val.toIntern(), new_init);
// Since we are replacing the Decl's value we must perform cleanup on the
// previous value.
decl.val = new_val;
decl.has_tv = true;
}
{
zcu.codegen_prog_node = main_progress_node.start("Code Generation", 0);
defer {
zcu.codegen_prog_node.end();
zcu.codegen_prog_node = std.Progress.Node.none;
}
try pt.linkerUpdateDecl(decl_index);
}
}
pub fn linkerUpdateDecl(pt: Zcu.PerThread, decl_index: Zcu.Decl.Index) !void {
const zcu = pt.zcu;
const comp = zcu.comp;
const decl = zcu.declPtr(decl_index);
const codegen_prog_node = zcu.codegen_prog_node.start(decl.fqn.toSlice(&zcu.intern_pool), 0);
defer codegen_prog_node.end();
if (comp.bin_file) |lf| {
lf.updateDecl(pt, decl_index) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {
decl.analysis = .codegen_failure;
},
else => {
const gpa = zcu.gpa;
try zcu.failed_analysis.ensureUnusedCapacity(gpa, 1);
zcu.failed_analysis.putAssumeCapacityNoClobber(InternPool.AnalUnit.wrap(.{ .decl = decl_index }), try Zcu.ErrorMsg.create(
gpa,
decl.navSrcLoc(zcu),
"unable to codegen: {s}",
.{@errorName(err)},
));
decl.analysis = .codegen_failure;
try zcu.retryable_failures.append(zcu.gpa, InternPool.AnalUnit.wrap(.{ .decl = decl_index }));
},
};
} else if (zcu.llvm_object) |llvm_object| {
if (build_options.only_c) unreachable;
llvm_object.updateDecl(pt, decl_index) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
};
}
}
pub fn reportRetryableAstGenError(
pt: Zcu.PerThread,
src: Zcu.AstGenSrc,
file_index: Zcu.File.Index,
err: anyerror,
) error{OutOfMemory}!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const file = zcu.fileByIndex(file_index);
file.status = .retryable_failure;
const src_loc: Zcu.LazySrcLoc = switch (src) {
.root => .{
.base_node_inst = try ip.trackZir(gpa, pt.tid, .{
.file = file_index,
.inst = .main_struct_inst,
}),
.offset = .entire_file,
},
.import => |info| .{
.base_node_inst = try ip.trackZir(gpa, pt.tid, .{
.file = info.importing_file,
.inst = .main_struct_inst,
}),
.offset = .{ .token_abs = info.import_tok },
},
};
const err_msg = try Zcu.ErrorMsg.create(gpa, src_loc, "unable to load '{}/{s}': {s}", .{
file.mod.root, file.sub_file_path, @errorName(err),
});
errdefer err_msg.destroy(gpa);
{
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
try zcu.failed_files.putNoClobber(gpa, file, err_msg);
}
}
pub fn reportRetryableFileError(
pt: Zcu.PerThread,
file_index: Zcu.File.Index,
comptime format: []const u8,
args: anytype,
) error{OutOfMemory}!void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const file = zcu.fileByIndex(file_index);
file.status = .retryable_failure;
const err_msg = try Zcu.ErrorMsg.create(
gpa,
.{
.base_node_inst = try ip.trackZir(gpa, pt.tid, .{
.file = file_index,
.inst = .main_struct_inst,
}),
.offset = .entire_file,
},
format,
args,
);
errdefer err_msg.destroy(gpa);
zcu.comp.mutex.lock();
defer zcu.comp.mutex.unlock();
const gop = try zcu.failed_files.getOrPut(gpa, file);
if (gop.found_existing) {
if (gop.value_ptr.*) |old_err_msg| {
old_err_msg.destroy(gpa);
}
}
gop.value_ptr.* = err_msg;
}
/// Shortcut for calling `intern_pool.get`.
pub fn intern(pt: Zcu.PerThread, key: InternPool.Key) Allocator.Error!InternPool.Index {
return pt.zcu.intern_pool.get(pt.zcu.gpa, pt.tid, key);
}
/// Shortcut for calling `intern_pool.getCoerced`.
pub fn getCoerced(pt: Zcu.PerThread, val: Value, new_ty: Type) Allocator.Error!Value {
return Value.fromInterned(try pt.zcu.intern_pool.getCoerced(pt.zcu.gpa, pt.tid, val.toIntern(), new_ty.toIntern()));
}
pub fn intType(pt: Zcu.PerThread, signedness: std.builtin.Signedness, bits: u16) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .int_type = .{
.signedness = signedness,
.bits = bits,
} }));
}
pub fn errorIntType(pt: Zcu.PerThread) std.mem.Allocator.Error!Type {
return pt.intType(.unsigned, pt.zcu.errorSetBits());
}
pub fn arrayType(pt: Zcu.PerThread, info: InternPool.Key.ArrayType) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .array_type = info }));
}
pub fn vectorType(pt: Zcu.PerThread, info: InternPool.Key.VectorType) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .vector_type = info }));
}
pub fn optionalType(pt: Zcu.PerThread, child_type: InternPool.Index) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .opt_type = child_type }));
}
pub fn ptrType(pt: Zcu.PerThread, info: InternPool.Key.PtrType) Allocator.Error!Type {
var canon_info = info;
if (info.flags.size == .C) canon_info.flags.is_allowzero = true;
// Canonicalize non-zero alignment. If it matches the ABI alignment of the pointee
// type, we change it to 0 here. If this causes an assertion trip because the
// pointee type needs to be resolved more, that needs to be done before calling
// this ptr() function.
if (info.flags.alignment != .none and
info.flags.alignment == Type.fromInterned(info.child).abiAlignment(pt))
{
canon_info.flags.alignment = .none;
}
switch (info.flags.vector_index) {
// Canonicalize host_size. If it matches the bit size of the pointee type,
// we change it to 0 here. If this causes an assertion trip, the pointee type
// needs to be resolved before calling this ptr() function.
.none => if (info.packed_offset.host_size != 0) {
const elem_bit_size = Type.fromInterned(info.child).bitSize(pt);
assert(info.packed_offset.bit_offset + elem_bit_size <= info.packed_offset.host_size * 8);
if (info.packed_offset.host_size * 8 == elem_bit_size) {
canon_info.packed_offset.host_size = 0;
}
},
.runtime => {},
_ => assert(@intFromEnum(info.flags.vector_index) < info.packed_offset.host_size),
}
return Type.fromInterned(try pt.intern(.{ .ptr_type = canon_info }));
}
/// Like `ptrType`, but if `info` specifies an `alignment`, first ensures the pointer
/// child type's alignment is resolved so that an invalid alignment is not used.
/// In general, prefer this function during semantic analysis.
pub fn ptrTypeSema(pt: Zcu.PerThread, info: InternPool.Key.PtrType) Zcu.SemaError!Type {
if (info.flags.alignment != .none) {
_ = try Type.fromInterned(info.child).abiAlignmentAdvanced(pt, .sema);
}
return pt.ptrType(info);
}
pub fn singleMutPtrType(pt: Zcu.PerThread, child_type: Type) Allocator.Error!Type {
return pt.ptrType(.{ .child = child_type.toIntern() });
}
pub fn singleConstPtrType(pt: Zcu.PerThread, child_type: Type) Allocator.Error!Type {
return pt.ptrType(.{
.child = child_type.toIntern(),
.flags = .{
.is_const = true,
},
});
}
pub fn manyConstPtrType(pt: Zcu.PerThread, child_type: Type) Allocator.Error!Type {
return pt.ptrType(.{
.child = child_type.toIntern(),
.flags = .{
.size = .Many,
.is_const = true,
},
});
}
pub fn adjustPtrTypeChild(pt: Zcu.PerThread, ptr_ty: Type, new_child: Type) Allocator.Error!Type {
var info = ptr_ty.ptrInfo(pt.zcu);
info.child = new_child.toIntern();
return pt.ptrType(info);
}
pub fn funcType(pt: Zcu.PerThread, key: InternPool.GetFuncTypeKey) Allocator.Error!Type {
return Type.fromInterned(try pt.zcu.intern_pool.getFuncType(pt.zcu.gpa, pt.tid, key));
}
/// Use this for `anyframe->T` only.
/// For `anyframe`, use the `InternPool.Index.anyframe` tag directly.
pub fn anyframeType(pt: Zcu.PerThread, payload_ty: Type) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .anyframe_type = payload_ty.toIntern() }));
}
pub fn errorUnionType(pt: Zcu.PerThread, error_set_ty: Type, payload_ty: Type) Allocator.Error!Type {
return Type.fromInterned(try pt.intern(.{ .error_union_type = .{
.error_set_type = error_set_ty.toIntern(),
.payload_type = payload_ty.toIntern(),
} }));
}
pub fn singleErrorSetType(pt: Zcu.PerThread, name: InternPool.NullTerminatedString) Allocator.Error!Type {
const names: *const [1]InternPool.NullTerminatedString = &name;
return Type.fromInterned(try pt.zcu.intern_pool.getErrorSetType(pt.zcu.gpa, pt.tid, names));
}
/// Sorts `names` in place.
pub fn errorSetFromUnsortedNames(
pt: Zcu.PerThread,
names: []InternPool.NullTerminatedString,
) Allocator.Error!Type {
std.mem.sort(
InternPool.NullTerminatedString,
names,
{},
InternPool.NullTerminatedString.indexLessThan,
);
const new_ty = try pt.zcu.intern_pool.getErrorSetType(pt.zcu.gpa, pt.tid, names);
return Type.fromInterned(new_ty);
}
/// Supports only pointers, not pointer-like optionals.
pub fn ptrIntValue(pt: Zcu.PerThread, ty: Type, x: u64) Allocator.Error!Value {
const mod = pt.zcu;
assert(ty.zigTypeTag(mod) == .Pointer and !ty.isSlice(mod));
assert(x != 0 or ty.isAllowzeroPtr(mod));
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = ty.toIntern(),
.base_addr = .int,
.byte_offset = x,
} }));
}
/// Creates an enum tag value based on the integer tag value.
pub fn enumValue(pt: Zcu.PerThread, ty: Type, tag_int: InternPool.Index) Allocator.Error!Value {
if (std.debug.runtime_safety) {
const tag = ty.zigTypeTag(pt.zcu);
assert(tag == .Enum);
}
return Value.fromInterned(try pt.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = tag_int,
} }));
}
/// Creates an enum tag value based on the field index according to source code
/// declaration order.
pub fn enumValueFieldIndex(pt: Zcu.PerThread, ty: Type, field_index: u32) Allocator.Error!Value {
const ip = &pt.zcu.intern_pool;
const enum_type = ip.loadEnumType(ty.toIntern());
if (enum_type.values.len == 0) {
// Auto-numbered fields.
return Value.fromInterned(try pt.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = try pt.intern(.{ .int = .{
.ty = enum_type.tag_ty,
.storage = .{ .u64 = field_index },
} }),
} }));
}
return Value.fromInterned(try pt.intern(.{ .enum_tag = .{
.ty = ty.toIntern(),
.int = enum_type.values.get(ip)[field_index],
} }));
}
pub fn undefValue(pt: Zcu.PerThread, ty: Type) Allocator.Error!Value {
return Value.fromInterned(try pt.intern(.{ .undef = ty.toIntern() }));
}
pub fn undefRef(pt: Zcu.PerThread, ty: Type) Allocator.Error!Air.Inst.Ref {
return Air.internedToRef((try pt.undefValue(ty)).toIntern());
}
pub fn intValue(pt: Zcu.PerThread, ty: Type, x: anytype) Allocator.Error!Value {
if (std.math.cast(u64, x)) |casted| return pt.intValue_u64(ty, casted);
if (std.math.cast(i64, x)) |casted| return pt.intValue_i64(ty, casted);
var limbs_buffer: [4]usize = undefined;
var big_int = BigIntMutable.init(&limbs_buffer, x);
return pt.intValue_big(ty, big_int.toConst());
}
pub fn intRef(pt: Zcu.PerThread, ty: Type, x: anytype) Allocator.Error!Air.Inst.Ref {
return Air.internedToRef((try pt.intValue(ty, x)).toIntern());
}
pub fn intValue_big(pt: Zcu.PerThread, ty: Type, x: BigIntConst) Allocator.Error!Value {
return Value.fromInterned(try pt.intern(.{ .int = .{
.ty = ty.toIntern(),
.storage = .{ .big_int = x },
} }));
}
pub fn intValue_u64(pt: Zcu.PerThread, ty: Type, x: u64) Allocator.Error!Value {
return Value.fromInterned(try pt.intern(.{ .int = .{
.ty = ty.toIntern(),
.storage = .{ .u64 = x },
} }));
}
pub fn intValue_i64(pt: Zcu.PerThread, ty: Type, x: i64) Allocator.Error!Value {
return Value.fromInterned(try pt.intern(.{ .int = .{
.ty = ty.toIntern(),
.storage = .{ .i64 = x },
} }));
}
pub fn unionValue(pt: Zcu.PerThread, union_ty: Type, tag: Value, val: Value) Allocator.Error!Value {
return Value.fromInterned(try pt.intern(.{ .un = .{
.ty = union_ty.toIntern(),
.tag = tag.toIntern(),
.val = val.toIntern(),
} }));
}
/// This function casts the float representation down to the representation of the type, potentially
/// losing data if the representation wasn't correct.
pub fn floatValue(pt: Zcu.PerThread, ty: Type, x: anytype) Allocator.Error!Value {
const storage: InternPool.Key.Float.Storage = switch (ty.floatBits(pt.zcu.getTarget())) {
16 => .{ .f16 = @as(f16, @floatCast(x)) },
32 => .{ .f32 = @as(f32, @floatCast(x)) },
64 => .{ .f64 = @as(f64, @floatCast(x)) },
80 => .{ .f80 = @as(f80, @floatCast(x)) },
128 => .{ .f128 = @as(f128, @floatCast(x)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = storage,
} }));
}
pub fn nullValue(pt: Zcu.PerThread, opt_ty: Type) Allocator.Error!Value {
assert(pt.zcu.intern_pool.isOptionalType(opt_ty.toIntern()));
return Value.fromInterned(try pt.intern(.{ .opt = .{
.ty = opt_ty.toIntern(),
.val = .none,
} }));
}
pub fn smallestUnsignedInt(pt: Zcu.PerThread, max: u64) Allocator.Error!Type {
return pt.intType(.unsigned, Type.smallestUnsignedBits(max));
}
/// Returns the smallest possible integer type containing both `min` and
/// `max`. Asserts that neither value is undef.
/// TODO: if #3806 is implemented, this becomes trivial
pub fn intFittingRange(pt: Zcu.PerThread, min: Value, max: Value) !Type {
const mod = pt.zcu;
assert(!min.isUndef(mod));
assert(!max.isUndef(mod));
if (std.debug.runtime_safety) {
assert(Value.order(min, max, pt).compare(.lte));
}
const sign = min.orderAgainstZero(pt) == .lt;
const min_val_bits = pt.intBitsForValue(min, sign);
const max_val_bits = pt.intBitsForValue(max, sign);
return pt.intType(
if (sign) .signed else .unsigned,
@max(min_val_bits, max_val_bits),
);
}
/// Given a value representing an integer, returns the number of bits necessary to represent
/// this value in an integer. If `sign` is true, returns the number of bits necessary in a
/// twos-complement integer; otherwise in an unsigned integer.
/// Asserts that `val` is not undef. If `val` is negative, asserts that `sign` is true.
pub fn intBitsForValue(pt: Zcu.PerThread, val: Value, sign: bool) u16 {
const mod = pt.zcu;
assert(!val.isUndef(mod));
const key = mod.intern_pool.indexToKey(val.toIntern());
switch (key.int.storage) {
.i64 => |x| {
if (std.math.cast(u64, x)) |casted| return Type.smallestUnsignedBits(casted) + @intFromBool(sign);
assert(sign);
// Protect against overflow in the following negation.
if (x == std.math.minInt(i64)) return 64;
return Type.smallestUnsignedBits(@as(u64, @intCast(-(x + 1)))) + 1;
},
.u64 => |x| {
return Type.smallestUnsignedBits(x) + @intFromBool(sign);
},
.big_int => |big| {
if (big.positive) return @as(u16, @intCast(big.bitCountAbs() + @intFromBool(sign)));
// Zero is still a possibility, in which case unsigned is fine
if (big.eqlZero()) return 0;
return @as(u16, @intCast(big.bitCountTwosComp()));
},
.lazy_align => |lazy_ty| {
return Type.smallestUnsignedBits(Type.fromInterned(lazy_ty).abiAlignment(pt).toByteUnits() orelse 0) + @intFromBool(sign);
},
.lazy_size => |lazy_ty| {
return Type.smallestUnsignedBits(Type.fromInterned(lazy_ty).abiSize(pt)) + @intFromBool(sign);
},
}
}
pub fn getUnionLayout(pt: Zcu.PerThread, loaded_union: InternPool.LoadedUnionType) Zcu.UnionLayout {
const mod = pt.zcu;
const ip = &mod.intern_pool;
assert(loaded_union.haveLayout(ip));
var most_aligned_field: u32 = undefined;
var most_aligned_field_size: u64 = undefined;
var biggest_field: u32 = undefined;
var payload_size: u64 = 0;
var payload_align: InternPool.Alignment = .@"1";
for (loaded_union.field_types.get(ip), 0..) |field_ty, field_index| {
if (!Type.fromInterned(field_ty).hasRuntimeBitsIgnoreComptime(pt)) continue;
const explicit_align = loaded_union.fieldAlign(ip, field_index);
const field_align = if (explicit_align != .none)
explicit_align
else
Type.fromInterned(field_ty).abiAlignment(pt);
const field_size = Type.fromInterned(field_ty).abiSize(pt);
if (field_size > payload_size) {
payload_size = field_size;
biggest_field = @intCast(field_index);
}
if (field_align.compare(.gte, payload_align)) {
payload_align = field_align;
most_aligned_field = @intCast(field_index);
most_aligned_field_size = field_size;
}
}
const have_tag = loaded_union.flagsUnordered(ip).runtime_tag.hasTag();
if (!have_tag or !Type.fromInterned(loaded_union.enum_tag_ty).hasRuntimeBits(pt)) {
return .{
.abi_size = payload_align.forward(payload_size),
.abi_align = payload_align,
.most_aligned_field = most_aligned_field,
.most_aligned_field_size = most_aligned_field_size,
.biggest_field = biggest_field,
.payload_size = payload_size,
.payload_align = payload_align,
.tag_align = .none,
.tag_size = 0,
.padding = 0,
};
}
const tag_size = Type.fromInterned(loaded_union.enum_tag_ty).abiSize(pt);
const tag_align = Type.fromInterned(loaded_union.enum_tag_ty).abiAlignment(pt).max(.@"1");
return .{
.abi_size = loaded_union.sizeUnordered(ip),
.abi_align = tag_align.max(payload_align),
.most_aligned_field = most_aligned_field,
.most_aligned_field_size = most_aligned_field_size,
.biggest_field = biggest_field,
.payload_size = payload_size,
.payload_align = payload_align,
.tag_align = tag_align,
.tag_size = tag_size,
.padding = loaded_union.paddingUnordered(ip),
};
}
pub fn unionAbiSize(mod: *Module, loaded_union: InternPool.LoadedUnionType) u64 {
return mod.getUnionLayout(loaded_union).abi_size;
}
/// Returns 0 if the union is represented with 0 bits at runtime.
pub fn unionAbiAlignment(pt: Zcu.PerThread, loaded_union: InternPool.LoadedUnionType) InternPool.Alignment {
const mod = pt.zcu;
const ip = &mod.intern_pool;
const have_tag = loaded_union.flagsPtr(ip).runtime_tag.hasTag();
var max_align: InternPool.Alignment = .none;
if (have_tag) max_align = Type.fromInterned(loaded_union.enum_tag_ty).abiAlignment(pt);
for (loaded_union.field_types.get(ip), 0..) |field_ty, field_index| {
if (!Type.fromInterned(field_ty).hasRuntimeBits(pt)) continue;
const field_align = mod.unionFieldNormalAlignment(loaded_union, @intCast(field_index));
max_align = max_align.max(field_align);
}
return max_align;
}
/// Returns the field alignment of a non-packed union. Asserts the layout is not packed.
pub fn unionFieldNormalAlignment(
pt: Zcu.PerThread,
loaded_union: InternPool.LoadedUnionType,
field_index: u32,
) InternPool.Alignment {
return pt.unionFieldNormalAlignmentAdvanced(loaded_union, field_index, .normal) catch unreachable;
}
/// Returns the field alignment of a non-packed union. Asserts the layout is not packed.
/// If `strat` is `.sema`, may perform type resolution.
pub fn unionFieldNormalAlignmentAdvanced(
pt: Zcu.PerThread,
loaded_union: InternPool.LoadedUnionType,
field_index: u32,
comptime strat: Type.ResolveStrat,
) Zcu.SemaError!InternPool.Alignment {
const ip = &pt.zcu.intern_pool;
assert(loaded_union.flagsUnordered(ip).layout != .@"packed");
const field_align = loaded_union.fieldAlign(ip, field_index);
if (field_align != .none) return field_align;
const field_ty = Type.fromInterned(loaded_union.field_types.get(ip)[field_index]);
if (field_ty.isNoReturn(pt.zcu)) return .none;
return (try field_ty.abiAlignmentAdvanced(pt, strat.toLazy())).scalar;
}
/// Returns the field alignment of a non-packed struct. Asserts the layout is not packed.
pub fn structFieldAlignment(
pt: Zcu.PerThread,
explicit_alignment: InternPool.Alignment,
field_ty: Type,
layout: std.builtin.Type.ContainerLayout,
) InternPool.Alignment {
return pt.structFieldAlignmentAdvanced(explicit_alignment, field_ty, layout, .normal) catch unreachable;
}
/// Returns the field alignment of a non-packed struct. Asserts the layout is not packed.
/// If `strat` is `.sema`, may perform type resolution.
pub fn structFieldAlignmentAdvanced(
pt: Zcu.PerThread,
explicit_alignment: InternPool.Alignment,
field_ty: Type,
layout: std.builtin.Type.ContainerLayout,
comptime strat: Type.ResolveStrat,
) Zcu.SemaError!InternPool.Alignment {
assert(layout != .@"packed");
if (explicit_alignment != .none) return explicit_alignment;
const ty_abi_align = (try field_ty.abiAlignmentAdvanced(pt, strat.toLazy())).scalar;
switch (layout) {
.@"packed" => unreachable,
.auto => if (pt.zcu.getTarget().ofmt != .c) return ty_abi_align,
.@"extern" => {},
}
// extern
if (field_ty.isAbiInt(pt.zcu) and field_ty.intInfo(pt.zcu).bits >= 128) {
return ty_abi_align.maxStrict(.@"16");
}
return ty_abi_align;
}
/// https://github.com/ziglang/zig/issues/17178 explored storing these bit offsets
/// into the packed struct InternPool data rather than computing this on the
/// fly, however it was found to perform worse when measured on real world
/// projects.
pub fn structPackedFieldBitOffset(
pt: Zcu.PerThread,
struct_type: InternPool.LoadedStructType,
field_index: u32,
) u16 {
const mod = pt.zcu;
const ip = &mod.intern_pool;
assert(struct_type.layout == .@"packed");
assert(struct_type.haveLayout(ip));
var bit_sum: u64 = 0;
for (0..struct_type.field_types.len) |i| {
if (i == field_index) {
return @intCast(bit_sum);
}
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
bit_sum += field_ty.bitSize(pt);
}
unreachable; // index out of bounds
}
pub fn getBuiltin(pt: Zcu.PerThread, name: []const u8) Allocator.Error!Air.Inst.Ref {
const decl_index = try pt.getBuiltinDecl(name);
pt.ensureDeclAnalyzed(decl_index) catch @panic("std.builtin is corrupt");
return Air.internedToRef(pt.zcu.declPtr(decl_index).val.toIntern());
}
pub fn getBuiltinDecl(pt: Zcu.PerThread, name: []const u8) Allocator.Error!InternPool.DeclIndex {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const std_file_imported = pt.importPkg(zcu.std_mod) catch @panic("failed to import lib/std.zig");
const std_file_root_decl = zcu.fileRootDecl(std_file_imported.file_index).unwrap().?;
const std_namespace = zcu.declPtr(std_file_root_decl).getOwnedInnerNamespace(zcu).?;
const builtin_str = try ip.getOrPutString(gpa, pt.tid, "builtin", .no_embedded_nulls);
const builtin_decl = std_namespace.decls.getKeyAdapted(builtin_str, Zcu.DeclAdapter{ .zcu = zcu }) orelse @panic("lib/std.zig is corrupt and missing 'builtin'");
pt.ensureDeclAnalyzed(builtin_decl) catch @panic("std.builtin is corrupt");
const builtin_namespace = zcu.declPtr(builtin_decl).getInnerNamespace(zcu) orelse @panic("std.builtin is corrupt");
const name_str = try ip.getOrPutString(gpa, pt.tid, name, .no_embedded_nulls);
return builtin_namespace.decls.getKeyAdapted(name_str, Zcu.DeclAdapter{ .zcu = zcu }) orelse @panic("lib/std/builtin.zig is corrupt");
}
pub fn getBuiltinType(pt: Zcu.PerThread, name: []const u8) Allocator.Error!Type {
const ty_inst = try pt.getBuiltin(name);
const ty = Type.fromInterned(ty_inst.toInterned() orelse @panic("std.builtin is corrupt"));
ty.resolveFully(pt) catch @panic("std.builtin is corrupt");
return ty;
}
const Air = @import("../Air.zig");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const Ast = std.zig.Ast;
const AstGen = std.zig.AstGen;
const BigIntConst = std.math.big.int.Const;
const BigIntMutable = std.math.big.int.Mutable;
const build_options = @import("build_options");
const builtin = @import("builtin");
const Cache = std.Build.Cache;
const InternPool = @import("../InternPool.zig");
const isUpDir = @import("../introspect.zig").isUpDir;
const Liveness = @import("../Liveness.zig");
const log = std.log.scoped(.zcu);
const Module = @import("../Package.zig").Module;
const Sema = @import("../Sema.zig");
const std = @import("std");
const target_util = @import("../target.zig");
const trace = @import("../tracy.zig").trace;
const Type = @import("../Type.zig");
const Value = @import("../Value.zig");
const Zcu = @import("../Zcu.zig");
const Zir = std.zig.Zir;