mirror of
https://github.com/ziglang/zig.git
synced 2025-12-16 03:03:09 +00:00
Let's follow the road paved by the removal of 'z'/'Z', the Formatter pattern is nice enough to let us remove the remaining four special cases and declare u8 slices free from any special casing!
516 lines
20 KiB
Zig
516 lines
20 KiB
Zig
// SPDX-License-Identifier: MIT
|
|
// Copyright (c) 2015-2021 Zig Contributors
|
|
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
|
|
// The MIT license requires this copyright notice to be included in all copies
|
|
// and substantial portions of the software.
|
|
const std = @import("std");
|
|
const debug = std.debug;
|
|
const fmt = std.fmt;
|
|
const mem = std.mem;
|
|
|
|
/// Group operations over Edwards25519.
|
|
pub const Edwards25519 = struct {
|
|
/// The underlying prime field.
|
|
pub const Fe = @import("field.zig").Fe;
|
|
/// Field arithmetic mod the order of the main subgroup.
|
|
pub const scalar = @import("scalar.zig");
|
|
/// Length in bytes of a compressed representation of a point.
|
|
pub const encoded_length: usize = 32;
|
|
|
|
x: Fe,
|
|
y: Fe,
|
|
z: Fe,
|
|
t: Fe,
|
|
|
|
is_base: bool = false,
|
|
|
|
/// Decode an Edwards25519 point from its compressed (Y+sign) coordinates.
|
|
pub fn fromBytes(s: [encoded_length]u8) !Edwards25519 {
|
|
const z = Fe.one;
|
|
const y = Fe.fromBytes(s);
|
|
var u = y.sq();
|
|
var v = u.mul(Fe.edwards25519d);
|
|
u = u.sub(z);
|
|
v = v.add(z);
|
|
const v3 = v.sq().mul(v);
|
|
var x = v3.sq().mul(v).mul(u).pow2523().mul(v3).mul(u);
|
|
const vxx = x.sq().mul(v);
|
|
const has_m_root = vxx.sub(u).isZero();
|
|
const has_p_root = vxx.add(u).isZero();
|
|
if ((@boolToInt(has_m_root) | @boolToInt(has_p_root)) == 0) { // best-effort to avoid two conditional branches
|
|
return error.InvalidEncoding;
|
|
}
|
|
x.cMov(x.mul(Fe.sqrtm1), 1 - @boolToInt(has_m_root));
|
|
x.cMov(x.neg(), @boolToInt(x.isNegative()) ^ (s[31] >> 7));
|
|
const t = x.mul(y);
|
|
return Edwards25519{ .x = x, .y = y, .z = z, .t = t };
|
|
}
|
|
|
|
/// Encode an Edwards25519 point.
|
|
pub fn toBytes(p: Edwards25519) [encoded_length]u8 {
|
|
const zi = p.z.invert();
|
|
var s = p.y.mul(zi).toBytes();
|
|
s[31] ^= @as(u8, @boolToInt(p.x.mul(zi).isNegative())) << 7;
|
|
return s;
|
|
}
|
|
|
|
/// Check that the encoding of a point is canonical.
|
|
pub fn rejectNonCanonical(s: [32]u8) !void {
|
|
return Fe.rejectNonCanonical(s, true);
|
|
}
|
|
|
|
/// The edwards25519 base point.
|
|
pub const basePoint = Edwards25519{
|
|
.x = Fe{ .limbs = .{ 3990542415680775, 3398198340507945, 4322667446711068, 2814063955482877, 2839572215813860 } },
|
|
.y = Fe{ .limbs = .{ 1801439850948184, 1351079888211148, 450359962737049, 900719925474099, 1801439850948198 } },
|
|
.z = Fe.one,
|
|
.t = Fe{ .limbs = .{ 1841354044333475, 16398895984059, 755974180946558, 900171276175154, 1821297809914039 } },
|
|
.is_base = true,
|
|
};
|
|
|
|
/// The edwards25519 neutral element.
|
|
pub const neutralElement = Edwards25519{
|
|
.x = Fe{ .limbs = .{ 2251799813685229, 2251799813685247, 2251799813685247, 2251799813685247, 2251799813685247 } },
|
|
.y = Fe{ .limbs = .{ 1507481815385608, 2223447444246085, 1083941587175919, 2059929906842505, 1581435440146976 } },
|
|
.z = Fe{ .limbs = .{ 1507481815385608, 2223447444246085, 1083941587175919, 2059929906842505, 1581435440146976 } },
|
|
.t = Fe{ .limbs = .{ 2251799813685229, 2251799813685247, 2251799813685247, 2251799813685247, 2251799813685247 } },
|
|
.is_base = false,
|
|
};
|
|
|
|
const identityElement = Edwards25519{ .x = Fe.zero, .y = Fe.one, .z = Fe.one, .t = Fe.zero };
|
|
|
|
/// Reject the neutral element.
|
|
pub fn rejectIdentity(p: Edwards25519) !void {
|
|
if (p.x.isZero()) {
|
|
return error.IdentityElement;
|
|
}
|
|
}
|
|
|
|
/// Multiply a point by the cofactor
|
|
pub fn clearCofactor(p: Edwards25519) Edwards25519 {
|
|
return p.dbl().dbl().dbl();
|
|
}
|
|
|
|
/// Flip the sign of the X coordinate.
|
|
pub fn neg(p: Edwards25519) callconv(.Inline) Edwards25519 {
|
|
return .{ .x = p.x.neg(), .y = p.y, .z = p.z, .t = p.t.neg() };
|
|
}
|
|
|
|
/// Double an Edwards25519 point.
|
|
pub fn dbl(p: Edwards25519) Edwards25519 {
|
|
const t0 = p.x.add(p.y).sq();
|
|
var x = p.x.sq();
|
|
var z = p.y.sq();
|
|
const y = z.add(x);
|
|
z = z.sub(x);
|
|
x = t0.sub(y);
|
|
const t = p.z.sq2().sub(z);
|
|
return .{
|
|
.x = x.mul(t),
|
|
.y = y.mul(z),
|
|
.z = z.mul(t),
|
|
.t = x.mul(y),
|
|
};
|
|
}
|
|
|
|
/// Add two Edwards25519 points.
|
|
pub fn add(p: Edwards25519, q: Edwards25519) Edwards25519 {
|
|
const a = p.y.sub(p.x).mul(q.y.sub(q.x));
|
|
const b = p.x.add(p.y).mul(q.x.add(q.y));
|
|
const c = p.t.mul(q.t).mul(Fe.edwards25519d2);
|
|
var d = p.z.mul(q.z);
|
|
d = d.add(d);
|
|
const x = b.sub(a);
|
|
const y = b.add(a);
|
|
const z = d.add(c);
|
|
const t = d.sub(c);
|
|
return .{
|
|
.x = x.mul(t),
|
|
.y = y.mul(z),
|
|
.z = z.mul(t),
|
|
.t = x.mul(y),
|
|
};
|
|
}
|
|
|
|
/// Substract two Edwards25519 points.
|
|
pub fn sub(p: Edwards25519, q: Edwards25519) Edwards25519 {
|
|
return p.add(q.neg());
|
|
}
|
|
|
|
fn cMov(p: *Edwards25519, a: Edwards25519, c: u64) callconv(.Inline) void {
|
|
p.x.cMov(a.x, c);
|
|
p.y.cMov(a.y, c);
|
|
p.z.cMov(a.z, c);
|
|
p.t.cMov(a.t, c);
|
|
}
|
|
|
|
fn pcSelect(comptime n: usize, pc: [n]Edwards25519, b: u8) callconv(.Inline) Edwards25519 {
|
|
var t = Edwards25519.identityElement;
|
|
comptime var i: u8 = 1;
|
|
inline while (i < pc.len) : (i += 1) {
|
|
t.cMov(pc[i], ((@as(usize, b ^ i) -% 1) >> 8) & 1);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
fn nonAdjacentForm(s: [32]u8) [2 * 32]i8 {
|
|
var e: [2 * 32]i8 = undefined;
|
|
for (s) |x, i| {
|
|
e[i * 2 + 0] = @as(i8, @truncate(u4, x));
|
|
e[i * 2 + 1] = @as(i8, @truncate(u4, x >> 4));
|
|
}
|
|
// Now, e[0..63] is between 0 and 15, e[63] is between 0 and 7
|
|
var carry: i8 = 0;
|
|
for (e[0..63]) |*x| {
|
|
x.* += carry;
|
|
carry = (x.* + 8) >> 4;
|
|
x.* -= carry * 16;
|
|
}
|
|
e[63] += carry;
|
|
// Now, e[*] is between -8 and 8, including e[63]
|
|
return e;
|
|
}
|
|
|
|
// Scalar multiplication with a 4-bit window and the first 8 multiples.
|
|
// This requires the scalar to be converted to non-adjacent form.
|
|
// Based on real-world benchmarks, we only use this for multi-scalar multiplication.
|
|
// NAF could be useful to half the size of precomputation tables, but we intentionally
|
|
// avoid these to keep the standard library lightweight.
|
|
fn pcMul(pc: [9]Edwards25519, s: [32]u8, comptime vartime: bool) !Edwards25519 {
|
|
std.debug.assert(vartime);
|
|
const e = nonAdjacentForm(s);
|
|
var q = Edwards25519.identityElement;
|
|
var pos: usize = 2 * 32 - 1;
|
|
while (true) : (pos -= 1) {
|
|
const slot = e[pos];
|
|
if (slot > 0) {
|
|
q = q.add(pc[@intCast(usize, slot)]);
|
|
} else if (slot < 0) {
|
|
q = q.sub(pc[@intCast(usize, -slot)]);
|
|
}
|
|
if (pos == 0) break;
|
|
q = q.dbl().dbl().dbl().dbl();
|
|
}
|
|
try q.rejectIdentity();
|
|
return q;
|
|
}
|
|
|
|
// Scalar multiplication with a 4-bit window and the first 15 multiples.
|
|
fn pcMul16(pc: [16]Edwards25519, s: [32]u8, comptime vartime: bool) !Edwards25519 {
|
|
var q = Edwards25519.identityElement;
|
|
var pos: usize = 252;
|
|
while (true) : (pos -= 4) {
|
|
const slot = @truncate(u4, (s[pos >> 3] >> @truncate(u3, pos)));
|
|
if (vartime) {
|
|
if (slot != 0) {
|
|
q = q.add(pc[slot]);
|
|
}
|
|
} else {
|
|
q = q.add(pcSelect(16, pc, slot));
|
|
}
|
|
if (pos == 0) break;
|
|
q = q.dbl().dbl().dbl().dbl();
|
|
}
|
|
try q.rejectIdentity();
|
|
return q;
|
|
}
|
|
|
|
fn precompute(p: Edwards25519, comptime count: usize) [1 + count]Edwards25519 {
|
|
var pc: [1 + count]Edwards25519 = undefined;
|
|
pc[0] = Edwards25519.identityElement;
|
|
pc[1] = p;
|
|
var i: usize = 2;
|
|
while (i <= count) : (i += 1) {
|
|
pc[i] = if (i % 2 == 0) pc[i / 2].dbl() else pc[i - 1].add(p);
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
const basePointPc = comptime pc: {
|
|
@setEvalBranchQuota(10000);
|
|
break :pc precompute(Edwards25519.basePoint, 15);
|
|
};
|
|
|
|
/// Multiply an Edwards25519 point by a scalar without clamping it.
|
|
/// Return error.WeakPublicKey if the resulting point is
|
|
/// the identity element.
|
|
pub fn mul(p: Edwards25519, s: [32]u8) !Edwards25519 {
|
|
const pc = if (p.is_base) basePointPc else pc: {
|
|
const xpc = precompute(p, 15);
|
|
xpc[4].rejectIdentity() catch |_| return error.WeakPublicKey;
|
|
break :pc xpc;
|
|
};
|
|
return pcMul16(pc, s, false);
|
|
}
|
|
|
|
/// Multiply an Edwards25519 point by a *PUBLIC* scalar *IN VARIABLE TIME*
|
|
/// This can be used for signature verification.
|
|
pub fn mulPublic(p: Edwards25519, s: [32]u8) !Edwards25519 {
|
|
if (p.is_base) {
|
|
return pcMul16(basePointPc, s, true);
|
|
} else {
|
|
const pc = precompute(p, 8);
|
|
pc[4].rejectIdentity() catch |_| return error.WeakPublicKey;
|
|
return pcMul(pc, s, true);
|
|
}
|
|
}
|
|
|
|
/// Multiscalar multiplication *IN VARIABLE TIME* for public data
|
|
/// Computes ps0*ss0 + ps1*ss1 + ps2*ss2... faster than doing many of these operations individually
|
|
pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) !Edwards25519 {
|
|
var pcs: [count][9]Edwards25519 = undefined;
|
|
for (ps) |p, i| {
|
|
if (p.is_base) {
|
|
@setEvalBranchQuota(10000);
|
|
pcs[i] = comptime precompute(Edwards25519.basePoint, 8);
|
|
} else {
|
|
pcs[i] = precompute(p, 8);
|
|
pcs[i][4].rejectIdentity() catch |_| return error.WeakPublicKey;
|
|
}
|
|
}
|
|
var es: [count][2 * 32]i8 = undefined;
|
|
for (ss) |s, i| {
|
|
es[i] = nonAdjacentForm(s);
|
|
}
|
|
var q = Edwards25519.identityElement;
|
|
var pos: usize = 2 * 32 - 1;
|
|
while (true) : (pos -= 1) {
|
|
for (es) |e, i| {
|
|
const slot = e[pos];
|
|
if (slot > 0) {
|
|
q = q.add(pcs[i][@intCast(usize, slot)]);
|
|
} else if (slot < 0) {
|
|
q = q.sub(pcs[i][@intCast(usize, -slot)]);
|
|
}
|
|
}
|
|
if (pos == 0) break;
|
|
q = q.dbl().dbl().dbl().dbl();
|
|
}
|
|
try q.rejectIdentity();
|
|
return q;
|
|
}
|
|
|
|
/// Multiply an Edwards25519 point by a scalar after "clamping" it.
|
|
/// Clamping forces the scalar to be a multiple of the cofactor in
|
|
/// order to prevent small subgroups attacks.
|
|
/// This is strongly recommended for DH operations.
|
|
/// Return error.WeakPublicKey if the resulting point is
|
|
/// the identity element.
|
|
pub fn clampedMul(p: Edwards25519, s: [32]u8) !Edwards25519 {
|
|
var t: [32]u8 = s;
|
|
scalar.clamp(&t);
|
|
return mul(p, t);
|
|
}
|
|
|
|
// montgomery -- recover y = sqrt(x^3 + A*x^2 + x)
|
|
fn xmontToYmont(x: Fe) !Fe {
|
|
var x2 = x.sq();
|
|
const x3 = x.mul(x2);
|
|
x2 = x2.mul32(Fe.edwards25519a_32);
|
|
return x.add(x2).add(x3).sqrt();
|
|
}
|
|
|
|
// montgomery affine coordinates to edwards extended coordinates
|
|
fn montToEd(x: Fe, y: Fe) Edwards25519 {
|
|
const x_plus_one = x.add(Fe.one);
|
|
const x_minus_one = x.sub(Fe.one);
|
|
const x_plus_one_y_inv = x_plus_one.mul(y).invert(); // 1/((x+1)*y)
|
|
|
|
// xed = sqrt(-A-2)*x/y
|
|
const xed = x.mul(Fe.edwards25519sqrtam2).mul(x_plus_one_y_inv).mul(x_plus_one);
|
|
|
|
// yed = (x-1)/(x+1) or 1 if the denominator is 0
|
|
var yed = x_plus_one_y_inv.mul(y).mul(x_minus_one);
|
|
yed.cMov(Fe.one, @boolToInt(x_plus_one_y_inv.isZero()));
|
|
|
|
return Edwards25519{
|
|
.x = xed,
|
|
.y = yed,
|
|
.z = Fe.one,
|
|
.t = xed.mul(yed),
|
|
};
|
|
}
|
|
|
|
/// Elligator2 map - Returns Montgomery affine coordinates
|
|
pub fn elligator2(r: Fe) struct { x: Fe, y: Fe, not_square: bool } {
|
|
const rr2 = r.sq2().add(Fe.one).invert();
|
|
var x = rr2.mul32(Fe.edwards25519a_32).neg(); // x=x1
|
|
var x2 = x.sq();
|
|
const x3 = x2.mul(x);
|
|
x2 = x2.mul32(Fe.edwards25519a_32); // x2 = A*x1^2
|
|
const gx1 = x3.add(x).add(x2); // gx1 = x1^3 + A*x1^2 + x1
|
|
const not_square = !gx1.isSquare();
|
|
|
|
// gx1 not a square => x = -x1-A
|
|
x.cMov(x.neg(), @boolToInt(not_square));
|
|
x2 = Fe.zero;
|
|
x2.cMov(Fe.edwards25519a, @boolToInt(not_square));
|
|
x = x.sub(x2);
|
|
|
|
// We have y = sqrt(gx1) or sqrt(gx2) with gx2 = gx1*(A+x1)/(-x1)
|
|
// but it is about as fast to just recompute y from the curve equation.
|
|
const y = xmontToYmont(x) catch unreachable;
|
|
return .{ .x = x, .y = y, .not_square = not_square };
|
|
}
|
|
|
|
/// Map a 64-bit hash into an Edwards25519 point
|
|
pub fn fromHash(h: [64]u8) Edwards25519 {
|
|
const fe_f = Fe.fromBytes64(h);
|
|
var elr = elligator2(fe_f);
|
|
|
|
const y_sign = elr.not_square;
|
|
const y_neg = elr.y.neg();
|
|
elr.y.cMov(y_neg, @boolToInt(elr.y.isNegative()) ^ @boolToInt(y_sign));
|
|
return montToEd(elr.x, elr.y).clearCofactor();
|
|
}
|
|
|
|
fn stringToPoints(comptime n: usize, ctx: []const u8, s: []const u8) [n]Edwards25519 {
|
|
debug.assert(n <= 2);
|
|
const H = std.crypto.hash.sha2.Sha512;
|
|
const h_l: usize = 48;
|
|
var xctx = ctx;
|
|
var hctx: [H.digest_length]u8 = undefined;
|
|
if (ctx.len > 0xff) {
|
|
var st = H.init(.{});
|
|
st.update("H2C-OVERSIZE-DST-");
|
|
st.update(ctx);
|
|
st.final(&hctx);
|
|
xctx = hctx[0..];
|
|
}
|
|
const empty_block = [_]u8{0} ** H.block_length;
|
|
var t = [3]u8{ 0, n * h_l, 0 };
|
|
var xctx_len_u8 = [1]u8{@intCast(u8, xctx.len)};
|
|
var st = H.init(.{});
|
|
st.update(empty_block[0..]);
|
|
st.update(s);
|
|
st.update(t[0..]);
|
|
st.update(xctx);
|
|
st.update(xctx_len_u8[0..]);
|
|
var u_0: [H.digest_length]u8 = undefined;
|
|
st.final(&u_0);
|
|
var u: [n * H.digest_length]u8 = undefined;
|
|
var i: usize = 0;
|
|
while (i < n * H.digest_length) : (i += H.digest_length) {
|
|
mem.copy(u8, u[i..][0..H.digest_length], u_0[0..]);
|
|
var j: usize = 0;
|
|
while (i > 0 and j < H.digest_length) : (j += 1) {
|
|
u[i + j] ^= u[i + j - H.digest_length];
|
|
}
|
|
t[2] += 1;
|
|
st = H.init(.{});
|
|
st.update(u[i..][0..H.digest_length]);
|
|
st.update(t[2..3]);
|
|
st.update(xctx);
|
|
st.update(xctx_len_u8[0..]);
|
|
st.final(u[i..][0..H.digest_length]);
|
|
}
|
|
var px: [n]Edwards25519 = undefined;
|
|
i = 0;
|
|
while (i < n) : (i += 1) {
|
|
mem.set(u8, u_0[0 .. H.digest_length - h_l], 0);
|
|
mem.copy(u8, u_0[H.digest_length - h_l ..][0..h_l], u[i * h_l ..][0..h_l]);
|
|
px[i] = fromHash(u_0);
|
|
}
|
|
return px;
|
|
}
|
|
|
|
/// Hash a context `ctx` and a string `s` into an Edwards25519 point
|
|
///
|
|
/// This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_
|
|
/// methods from the "Hashing to Elliptic Curves" standard document.
|
|
///
|
|
/// Although not strictly required by the standard, it is recommended to avoid NUL characters in
|
|
/// the context in order to be compatible with other implementations.
|
|
pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519 {
|
|
if (random_oracle) {
|
|
const px = stringToPoints(2, ctx, s);
|
|
return px[0].add(px[1]);
|
|
} else {
|
|
return stringToPoints(1, ctx, s)[0];
|
|
}
|
|
}
|
|
|
|
/// Map a 32 bit uniform bit string into an edwards25519 point
|
|
pub fn fromUniform(r: [32]u8) Edwards25519 {
|
|
var s = r;
|
|
const x_sign = s[31] >> 7;
|
|
s[31] &= 0x7f;
|
|
const elr = elligator2(Fe.fromBytes(s));
|
|
var p = montToEd(elr.x, elr.y);
|
|
const p_neg = p.neg();
|
|
p.cMov(p_neg, @boolToInt(p.x.isNegative()) ^ x_sign);
|
|
return p.clearCofactor();
|
|
}
|
|
};
|
|
|
|
const htest = @import("../test.zig");
|
|
|
|
test "edwards25519 packing/unpacking" {
|
|
const s = [_]u8{170} ++ [_]u8{0} ** 31;
|
|
var b = Edwards25519.basePoint;
|
|
const pk = try b.mul(s);
|
|
var buf: [128]u8 = undefined;
|
|
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&pk.toBytes())}), "074BC7E0FCBD587FDBC0969444245FADC562809C8F6E97E949AF62484B5B81A6");
|
|
|
|
const small_order_ss: [7][32]u8 = .{
|
|
.{
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 (order 4)
|
|
},
|
|
.{
|
|
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 1 (order 1)
|
|
},
|
|
.{
|
|
0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05, // 270738550114484064931822528722565878893680426757531351946374360975030340202(order 8)
|
|
},
|
|
.{
|
|
0xc7, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0x7a, // 55188659117513257062467267217118295137698188065244968500265048394206261417927 (order 8)
|
|
},
|
|
.{
|
|
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p-1 (order 2)
|
|
},
|
|
.{
|
|
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p (=0, order 4)
|
|
},
|
|
.{
|
|
0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p+1 (=1, order 1)
|
|
},
|
|
};
|
|
for (small_order_ss) |small_order_s| {
|
|
const small_p = try Edwards25519.fromBytes(small_order_s);
|
|
std.testing.expectError(error.WeakPublicKey, small_p.mul(s));
|
|
}
|
|
}
|
|
|
|
test "edwards25519 point addition/substraction" {
|
|
var s1: [32]u8 = undefined;
|
|
var s2: [32]u8 = undefined;
|
|
std.crypto.random.bytes(&s1);
|
|
std.crypto.random.bytes(&s2);
|
|
const p = try Edwards25519.basePoint.clampedMul(s1);
|
|
const q = try Edwards25519.basePoint.clampedMul(s2);
|
|
const r = p.add(q).add(q).sub(q).sub(q);
|
|
try r.rejectIdentity();
|
|
std.testing.expectError(error.IdentityElement, r.sub(p).rejectIdentity());
|
|
std.testing.expectError(error.IdentityElement, p.sub(p).rejectIdentity());
|
|
std.testing.expectError(error.IdentityElement, p.sub(q).add(q).sub(p).rejectIdentity());
|
|
}
|
|
|
|
test "edwards25519 uniform-to-point" {
|
|
var r = [32]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 };
|
|
var p = Edwards25519.fromUniform(r);
|
|
htest.assertEqual("0691eee3cf70a0056df6bfa03120635636581b5c4ea571dfc680f78c7e0b4137", p.toBytes()[0..]);
|
|
|
|
r[31] = 0xff;
|
|
p = Edwards25519.fromUniform(r);
|
|
htest.assertEqual("f70718e68ef42d90ca1d936bb2d7e159be6c01d8095d39bd70487c82fe5c973a", p.toBytes()[0..]);
|
|
}
|
|
|
|
// Test vectors from draft-irtf-cfrg-hash-to-curve-10
|
|
test "edwards25519 hash-to-curve operation" {
|
|
var p = Edwards25519.fromString(true, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_RO_", "abc");
|
|
htest.assertEqual("31558a26887f23fb8218f143e69d5f0af2e7831130bd5b432ef23883b895831a", p.toBytes()[0..]);
|
|
|
|
p = Edwards25519.fromString(false, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_NU_", "abc");
|
|
htest.assertEqual("42fa27c8f5a1ae0aa38bb59d5938e5145622ba5dedd11d11736fa2f9502d73e7", p.toBytes()[0..]);
|
|
}
|