mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
172 lines
5.2 KiB
Zig
172 lines
5.2 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinhf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/csinh.c
|
|
|
|
const std = @import("../../std.zig");
|
|
const testing = std.testing;
|
|
const math = std.math;
|
|
const cmath = math.complex;
|
|
const Complex = cmath.Complex;
|
|
|
|
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
|
|
|
|
/// Returns the hyperbolic sine of z.
|
|
pub fn sinh(z: anytype) @TypeOf(z) {
|
|
const T = @TypeOf(z.re);
|
|
return switch (T) {
|
|
f32 => sinh32(z),
|
|
f64 => sinh64(z),
|
|
else => @compileError("tan not implemented for " ++ @typeName(z)),
|
|
};
|
|
}
|
|
|
|
fn sinh32(z: Complex(f32)) Complex(f32) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const hx = @bitCast(u32, x);
|
|
const ix = hx & 0x7fffffff;
|
|
|
|
const hy = @bitCast(u32, y);
|
|
const iy = hy & 0x7fffffff;
|
|
|
|
if (ix < 0x7f800000 and iy < 0x7f800000) {
|
|
if (iy == 0) {
|
|
return Complex(f32).init(math.sinh(x), y);
|
|
}
|
|
// small x: normal case
|
|
if (ix < 0x41100000) {
|
|
return Complex(f32).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
|
|
}
|
|
|
|
// |x|>= 9, so cosh(x) ~= exp(|x|)
|
|
if (ix < 0x42b17218) {
|
|
// x < 88.7: exp(|x|) won't overflow
|
|
const h = @exp(@fabs(x)) * 0.5;
|
|
return Complex(f32).init(math.copysign(h, x) * @cos(y), h * @sin(y));
|
|
}
|
|
// x < 192.7: scale to avoid overflow
|
|
else if (ix < 0x4340b1e7) {
|
|
const v = Complex(f32).init(@fabs(x), y);
|
|
const r = ldexp_cexp(v, -1);
|
|
return Complex(f32).init(r.re * math.copysign(@as(f32, 1.0), x), r.im);
|
|
}
|
|
// x >= 192.7: result always overflows
|
|
else {
|
|
const h = 0x1p127 * x;
|
|
return Complex(f32).init(h * @cos(y), h * h * @sin(y));
|
|
}
|
|
}
|
|
|
|
if (ix == 0 and iy >= 0x7f800000) {
|
|
return Complex(f32).init(math.copysign(@as(f32, 0.0), x * (y - y)), y - y);
|
|
}
|
|
|
|
if (iy == 0 and ix >= 0x7f800000) {
|
|
if (hx & 0x7fffff == 0) {
|
|
return Complex(f32).init(x, y);
|
|
}
|
|
return Complex(f32).init(x, math.copysign(@as(f32, 0.0), y));
|
|
}
|
|
|
|
if (ix < 0x7f800000 and iy >= 0x7f800000) {
|
|
return Complex(f32).init(y - y, x * (y - y));
|
|
}
|
|
|
|
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
|
|
if (iy >= 0x7f800000) {
|
|
return Complex(f32).init(x * x, x * (y - y));
|
|
}
|
|
return Complex(f32).init(x * @cos(y), math.inf(f32) * @sin(y));
|
|
}
|
|
|
|
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
|
|
}
|
|
|
|
fn sinh64(z: Complex(f64)) Complex(f64) {
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const fx = @bitCast(u64, x);
|
|
const hx = @intCast(u32, fx >> 32);
|
|
const lx = @truncate(u32, fx);
|
|
const ix = hx & 0x7fffffff;
|
|
|
|
const fy = @bitCast(u64, y);
|
|
const hy = @intCast(u32, fy >> 32);
|
|
const ly = @truncate(u32, fy);
|
|
const iy = hy & 0x7fffffff;
|
|
|
|
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
|
|
if (iy | ly == 0) {
|
|
return Complex(f64).init(math.sinh(x), y);
|
|
}
|
|
// small x: normal case
|
|
if (ix < 0x40360000) {
|
|
return Complex(f64).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
|
|
}
|
|
|
|
// |x|>= 22, so cosh(x) ~= exp(|x|)
|
|
if (ix < 0x40862e42) {
|
|
// x < 710: exp(|x|) won't overflow
|
|
const h = @exp(@fabs(x)) * 0.5;
|
|
return Complex(f64).init(math.copysign(h, x) * @cos(y), h * @sin(y));
|
|
}
|
|
// x < 1455: scale to avoid overflow
|
|
else if (ix < 0x4096bbaa) {
|
|
const v = Complex(f64).init(@fabs(x), y);
|
|
const r = ldexp_cexp(v, -1);
|
|
return Complex(f64).init(r.re * math.copysign(@as(f64, 1.0), x), r.im);
|
|
}
|
|
// x >= 1455: result always overflows
|
|
else {
|
|
const h = 0x1p1023 * x;
|
|
return Complex(f64).init(h * @cos(y), h * h * @sin(y));
|
|
}
|
|
}
|
|
|
|
if (ix | lx == 0 and iy >= 0x7ff00000) {
|
|
return Complex(f64).init(math.copysign(@as(f64, 0.0), x * (y - y)), y - y);
|
|
}
|
|
|
|
if (iy | ly == 0 and ix >= 0x7ff00000) {
|
|
if ((hx & 0xfffff) | lx == 0) {
|
|
return Complex(f64).init(x, y);
|
|
}
|
|
return Complex(f64).init(x, math.copysign(@as(f64, 0.0), y));
|
|
}
|
|
|
|
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
|
|
return Complex(f64).init(y - y, x * (y - y));
|
|
}
|
|
|
|
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
|
|
if (iy >= 0x7ff00000) {
|
|
return Complex(f64).init(x * x, x * (y - y));
|
|
}
|
|
return Complex(f64).init(x * @cos(y), math.inf(f64) * @sin(y));
|
|
}
|
|
|
|
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
|
|
}
|
|
|
|
const epsilon = 0.0001;
|
|
|
|
test "complex.csinh32" {
|
|
const a = Complex(f32).init(5, 3);
|
|
const c = sinh(a);
|
|
|
|
try testing.expect(math.approxEqAbs(f32, c.re, -73.460617, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, c.im, 10.472508, epsilon));
|
|
}
|
|
|
|
test "complex.csinh64" {
|
|
const a = Complex(f64).init(5, 3);
|
|
const c = sinh(a);
|
|
|
|
try testing.expect(math.approxEqAbs(f64, c.re, -73.460617, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, c.im, 10.472508, epsilon));
|
|
}
|