zig/lib/std/math/complex/exp.zig
expikr 0c70d9c714 use Peer Type Resolution for standalone complex fn
use peer type resolution

Update complex.zig

Revert "use peer type resolution"

This reverts commit 1bc681ca5b36d2b55b5efab5a5dbec7e8a17332e.

Revert "Update pow.zig"

This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f.

Update pow.zig

Revert "Update pow.zig"

This reverts commit 521153d1ef004d627c785f2d3fe5e6497dc15073.

Update pow.zig
2024-01-14 18:09:17 -08:00

161 lines
4.8 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexpf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexp.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
/// Returns e raised to the power of z (e^z).
pub fn exp(z: anytype) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => exp32(z),
f64 => exp64(z),
else => @compileError("exp not implemented for " ++ @typeName(z)),
};
}
fn exp32(z: Complex(f32)) Complex(f32) {
const exp_overflow = 0x42b17218; // max_exp * ln2 ~= 88.72283955
const cexp_overflow = 0x43400074; // (max_exp - min_denom_exp) * ln2
const x = z.re;
const y = z.im;
const hy = @as(u32, @bitCast(y)) & 0x7fffffff;
// cexp(x + i0) = exp(x) + i0
if (hy == 0) {
return Complex(f32).init(@exp(x), y);
}
const hx = @as(u32, @bitCast(x));
// cexp(0 + iy) = cos(y) + isin(y)
if ((hx & 0x7fffffff) == 0) {
return Complex(f32).init(@cos(y), @sin(y));
}
if (hy >= 0x7f800000) {
// cexp(finite|nan +- i inf|nan) = nan + i nan
if ((hx & 0x7fffffff) != 0x7f800000) {
return Complex(f32).init(y - y, y - y);
} // cexp(-inf +- i inf|nan) = 0 + i0
else if (hx & 0x80000000 != 0) {
return Complex(f32).init(0, 0);
} // cexp(+inf +- i inf|nan) = inf + i nan
else {
return Complex(f32).init(x, y - y);
}
}
// 88.7 <= x <= 192 so must scale
if (hx >= exp_overflow and hx <= cexp_overflow) {
return ldexp_cexp(z, 0);
} // - x < exp_overflow => exp(x) won't overflow (common)
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
// - x = +-inf
// - x = nan
else {
const exp_x = @exp(x);
return Complex(f32).init(exp_x * @cos(y), exp_x * @sin(y));
}
}
fn exp64(z: Complex(f64)) Complex(f64) {
const exp_overflow = 0x40862e42; // high bits of max_exp * ln2 ~= 710
const cexp_overflow = 0x4096b8e4; // (max_exp - min_denorm_exp) * ln2
const x = z.re;
const y = z.im;
const fy: u64 = @bitCast(y);
const hy: u32 = @intCast((fy >> 32) & 0x7fffffff);
const ly: u32 = @truncate(fy);
// cexp(x + i0) = exp(x) + i0
if (hy | ly == 0) {
return Complex(f64).init(@exp(x), y);
}
const fx: u64 = @bitCast(x);
const hx: u32 = @intCast(fx >> 32);
const lx: u32 = @truncate(fx);
// cexp(0 + iy) = cos(y) + isin(y)
if ((hx & 0x7fffffff) | lx == 0) {
return Complex(f64).init(@cos(y), @sin(y));
}
if (hy >= 0x7ff00000) {
// cexp(finite|nan +- i inf|nan) = nan + i nan
if (lx != 0 or (hx & 0x7fffffff) != 0x7ff00000) {
return Complex(f64).init(y - y, y - y);
} // cexp(-inf +- i inf|nan) = 0 + i0
else if (hx & 0x80000000 != 0) {
return Complex(f64).init(0, 0);
} // cexp(+inf +- i inf|nan) = inf + i nan
else {
return Complex(f64).init(x, y - y);
}
}
// 709.7 <= x <= 1454.3 so must scale
if (hx >= exp_overflow and hx <= cexp_overflow) {
return ldexp_cexp(z, 0);
} // - x < exp_overflow => exp(x) won't overflow (common)
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
// - x = +-inf
// - x = nan
else {
const exp_x = @exp(x);
return Complex(f64).init(exp_x * @cos(y), exp_x * @sin(y));
}
}
test "complex.cexp32" {
const tolerance_f32 = @sqrt(math.floatEps(f32));
{
const a = Complex(f32).init(5, 3);
const c = exp(a);
try testing.expectApproxEqRel(@as(f32, -1.46927917e+02), c.re, tolerance_f32);
try testing.expectApproxEqRel(@as(f32, 2.0944065e+01), c.im, tolerance_f32);
}
{
const a = Complex(f32).init(88.8, 0x1p-149);
const c = exp(a);
try testing.expectApproxEqAbs(math.inf(f32), c.re, tolerance_f32);
try testing.expectApproxEqAbs(@as(f32, 5.15088629e-07), c.im, tolerance_f32);
}
}
test "complex.cexp64" {
const tolerance_f64 = @sqrt(math.floatEps(f64));
{
const a = Complex(f64).init(5, 3);
const c = exp(a);
try testing.expectApproxEqRel(@as(f64, -1.469279139083189e+02), c.re, tolerance_f64);
try testing.expectApproxEqRel(@as(f64, 2.094406620874596e+01), c.im, tolerance_f64);
}
{
const a = Complex(f64).init(709.8, 0x1p-1074);
const c = exp(a);
try testing.expectApproxEqAbs(math.inf(f64), c.re, tolerance_f64);
try testing.expectApproxEqAbs(@as(f64, 9.036659362159884e-16), c.im, tolerance_f64);
}
}