zig/src/Autodoc.zig
2022-07-19 19:10:11 -07:00

2624 lines
104 KiB
Zig

const std = @import("std");
const Autodoc = @This();
const Compilation = @import("Compilation.zig");
const Module = @import("Module.zig");
const File = Module.File;
const Zir = @import("Zir.zig");
const Ref = Zir.Inst.Ref;
module: *Module,
doc_location: Compilation.EmitLoc,
arena: std.mem.Allocator,
// The goal of autodoc is to fill up these arrays
// that will then be serialized as JSON and consumed
// by the JS frontend.
files: std.AutoHashMapUnmanaged(*File, usize) = .{},
calls: std.ArrayListUnmanaged(DocData.Call) = .{},
types: std.ArrayListUnmanaged(DocData.Type) = .{},
decls: std.ArrayListUnmanaged(DocData.Decl) = .{},
exprs: std.ArrayListUnmanaged(DocData.Expr) = .{},
ast_nodes: std.ArrayListUnmanaged(DocData.AstNode) = .{},
comptime_exprs: std.ArrayListUnmanaged(DocData.ComptimeExpr) = .{},
// These fields hold temporary state of the analysis process
// and are mainly used by the decl path resolving algorithm.
pending_ref_paths: std.AutoHashMapUnmanaged(
*DocData.Expr, // pointer to declpath tail end (ie `&decl_path[decl_path.len - 1]`)
std.ArrayListUnmanaged(RefPathResumeInfo),
) = .{},
ref_paths_pending_on_decls: std.AutoHashMapUnmanaged(
usize,
std.ArrayListUnmanaged(RefPathResumeInfo),
) = .{},
ref_paths_pending_on_types: std.AutoHashMapUnmanaged(
usize,
std.ArrayListUnmanaged(RefPathResumeInfo),
) = .{},
const RefPathResumeInfo = struct {
file: *File,
ref_path: []DocData.Expr,
};
var arena_allocator: std.heap.ArenaAllocator = undefined;
pub fn init(m: *Module, doc_location: Compilation.EmitLoc) Autodoc {
arena_allocator = std.heap.ArenaAllocator.init(m.gpa);
return .{
.module = m,
.doc_location = doc_location,
.arena = arena_allocator.allocator(),
};
}
pub fn deinit(_: *Autodoc) void {
arena_allocator.deinit();
}
/// The entry point of the Autodoc generation process.
pub fn generateZirData(self: *Autodoc) !void {
if (self.doc_location.directory) |dir| {
if (dir.path) |path| {
std.debug.print("path: {s}\n", .{path});
}
}
std.debug.print("basename: {s}\n", .{self.doc_location.basename});
var buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const dir =
if (self.module.main_pkg.root_src_directory.path) |rp|
std.os.realpath(rp, &buf) catch unreachable
else
std.os.getcwd(&buf) catch unreachable;
const root_file_path = self.module.main_pkg.root_src_path;
const abs_root_path = try std.fs.path.join(self.arena, &.{ dir, root_file_path });
defer self.arena.free(abs_root_path);
const file = self.module.import_table.get(abs_root_path).?;
// Append all the types in Zir.Inst.Ref.
{
try self.types.append(self.arena, .{
.ComptimeExpr = .{ .name = "ComptimeExpr" },
});
// this skipts Ref.none but it's ok becuse we replaced it with ComptimeExpr
var i: u32 = 1;
while (i <= @enumToInt(Ref.anyerror_void_error_union_type)) : (i += 1) {
var tmpbuf = std.ArrayList(u8).init(self.arena);
try Ref.typed_value_map[i].val.fmtDebug().format("", .{}, tmpbuf.writer());
try self.types.append(
self.arena,
switch (@intToEnum(Ref, i)) {
else => blk: {
// TODO: map the remaining refs to a correct type
// instead of just assinging "array" to them.
break :blk .{
.Array = .{
.len = .{
.int = .{
.value = 1,
.negated = false,
},
},
.child = .{ .type = 0 },
},
};
},
.u1_type,
.u8_type,
.i8_type,
.u16_type,
.i16_type,
.u32_type,
.i32_type,
.u64_type,
.i64_type,
.u128_type,
.i128_type,
.usize_type,
.isize_type,
.c_short_type,
.c_ushort_type,
.c_int_type,
.c_uint_type,
.c_long_type,
.c_ulong_type,
.c_longlong_type,
.c_ulonglong_type,
.c_longdouble_type,
=> .{
.Int = .{ .name = tmpbuf.toOwnedSlice() },
},
.f16_type,
.f32_type,
.f64_type,
.f128_type,
=> .{
.Float = .{ .name = tmpbuf.toOwnedSlice() },
},
.comptime_int_type => .{
.ComptimeInt = .{ .name = tmpbuf.toOwnedSlice() },
},
.comptime_float_type => .{
.ComptimeFloat = .{ .name = tmpbuf.toOwnedSlice() },
},
.bool_type => .{
.Bool = .{ .name = tmpbuf.toOwnedSlice() },
},
.void_type => .{
.Void = .{ .name = tmpbuf.toOwnedSlice() },
},
.type_type => .{
.Type = .{ .name = tmpbuf.toOwnedSlice() },
},
},
);
}
}
const main_type_index = self.types.items.len;
var root_scope = Scope{ .parent = null, .enclosing_type = main_type_index };
try self.ast_nodes.append(self.arena, .{ .name = "(root)" });
try self.files.put(self.arena, file, main_type_index);
_ = try self.walkInstruction(file, &root_scope, Zir.main_struct_inst, false);
if (self.ref_paths_pending_on_decls.count() > 0) {
@panic("some decl paths were never fully analized (pending on decls)");
}
if (self.ref_paths_pending_on_types.count() > 0) {
@panic("some decl paths were never fully analized (pending on types)");
}
if (self.pending_ref_paths.count() > 0) {
@panic("some decl paths were never fully analized");
}
var data = DocData{
.files = .{ .data = self.files },
.calls = self.calls.items,
.types = self.types.items,
.decls = self.decls.items,
.exprs = self.exprs.items,
.astNodes = self.ast_nodes.items,
.comptimeExprs = self.comptime_exprs.items,
};
data.packages[0].main = main_type_index;
if (self.doc_location.directory) |d| {
d.handle.makeDir(
self.doc_location.basename,
) catch |e| switch (e) {
error.PathAlreadyExists => {},
else => unreachable,
};
} else {
self.module.zig_cache_artifact_directory.handle.makeDir(
self.doc_location.basename,
) catch |e| switch (e) {
error.PathAlreadyExists => {},
else => unreachable,
};
}
const output_dir = if (self.doc_location.directory) |d|
(d.handle.openDir(self.doc_location.basename, .{}) catch unreachable)
else
(self.module.zig_cache_artifact_directory.handle.openDir(self.doc_location.basename, .{}) catch unreachable);
const data_js_f = output_dir.createFile("data.js", .{}) catch unreachable;
defer data_js_f.close();
const out = data_js_f.writer();
out.print(
\\ /** @type {{DocData}} */
\\ var zigAnalysis=
, .{}) catch unreachable;
std.json.stringify(
data,
.{
.whitespace = .{},
.emit_null_optional_fields = false,
},
out,
) catch unreachable;
out.print(";", .{}) catch unreachable;
// copy main.js, index.html
const docs = try self.module.comp.zig_lib_directory.join(self.arena, &.{ "docs", std.fs.path.sep_str });
var docs_dir = std.fs.openDirAbsolute(docs, .{}) catch unreachable;
defer docs_dir.close();
docs_dir.copyFile("main.js", output_dir, "main.js", .{}) catch unreachable;
docs_dir.copyFile("index.html", output_dir, "index.html", .{}) catch unreachable;
}
/// Represents a chain of scopes, used to resolve decl references to the
/// corresponding entry in `self.decls`.
const Scope = struct {
parent: ?*Scope,
map: std.AutoHashMapUnmanaged(u32, usize) = .{}, // index into `decls`
enclosing_type: usize, // index into `types`
/// Assumes all decls in present scope and upper scopes have already
/// been either fully resolved or at least reserved.
pub fn resolveDeclName(self: Scope, string_table_idx: u32) usize {
var cur: ?*const Scope = &self;
return while (cur) |s| : (cur = s.parent) {
break s.map.get(string_table_idx) orelse continue;
} else unreachable;
}
pub fn insertDeclRef(
self: *Scope,
arena: std.mem.Allocator,
decl_name_index: u32, // decl name
decls_slot_index: usize,
) !void {
try self.map.put(arena, decl_name_index, decls_slot_index);
}
};
/// The output of our analysis process.
const DocData = struct {
typeKinds: []const []const u8 = std.meta.fieldNames(DocTypeKinds),
rootPkg: u32 = 0,
params: struct {
zigId: []const u8 = "arst",
zigVersion: []const u8 = "arst",
target: []const u8 = "arst",
rootName: []const u8 = "arst",
builds: []const struct { target: []const u8 } = &.{
.{ .target = "arst" },
},
} = .{},
packages: [1]Package = .{.{}},
errors: []struct {} = &.{},
// non-hardcoded stuff
astNodes: []AstNode,
calls: []Call,
files: struct {
// this struct is a temporary hack to support json serialization
data: std.AutoHashMapUnmanaged(*File, usize),
pub fn jsonStringify(
self: @This(),
opt: std.json.StringifyOptions,
w: anytype,
) !void {
var idx: usize = 0;
var it = self.data.iterator();
try w.writeAll("{\n");
var options = opt;
if (options.whitespace) |*ws| ws.indent_level += 1;
while (it.next()) |kv| : (idx += 1) {
if (options.whitespace) |ws| try ws.outputIndent(w);
try w.print("\"{s}\": {d}", .{
kv.key_ptr.*.sub_file_path,
kv.value_ptr.*,
});
if (idx != self.data.count() - 1) try w.writeByte(',');
try w.writeByte('\n');
}
if (opt.whitespace) |ws| try ws.outputIndent(w);
try w.writeAll("}");
}
},
types: []Type,
decls: []Decl,
exprs: []Expr,
comptimeExprs: []ComptimeExpr,
const Call = struct {
func: Expr,
args: []Expr,
ret: Expr,
};
/// All the type "families" as described by `std.builtin.TypeId`
/// plus a couple extra that are unique to our use case.
///
/// `Unanalyzed` is used so that we can refer to types that have started
/// analysis but that haven't been fully analyzed yet (in case we find
/// self-referential stuff, like `@This()`).
///
/// `ComptimeExpr` represents the result of a piece of comptime logic
/// that we weren't able to analyze fully. Examples of that are comptime
/// function calls and comptime if / switch / ... expressions.
const DocTypeKinds = blk: {
var info = @typeInfo(std.builtin.TypeId);
const original_len = info.Enum.fields.len;
info.Enum.fields = info.Enum.fields ++ [2]std.builtin.TypeInfo.EnumField{
.{
.name = "ComptimeExpr",
.value = original_len,
},
.{
.name = "Unanalyzed",
.value = original_len + 1,
},
};
break :blk @Type(info);
};
const ComptimeExpr = struct {
code: []const u8,
};
const Package = struct {
name: []const u8 = "root",
file: usize = 0, // index into `files`
main: usize = 0, // index into `decls`
table: struct { root: usize } = .{
.root = 0,
},
};
const Decl = struct {
name: []const u8,
kind: []const u8,
isTest: bool,
src: usize, // index into astNodes
value: WalkResult,
// The index in astNodes of the `test declname { }` node
decltest: ?usize = null,
_analyzed: bool, // omitted in json data
};
const AstNode = struct {
file: usize = 0, // index into files
line: usize = 0,
col: usize = 0,
name: ?[]const u8 = null,
docs: ?[]const u8 = null,
fields: ?[]usize = null, // index into astNodes
@"comptime": bool = false,
};
const Type = union(DocTypeKinds) {
Unanalyzed: void,
Type: struct { name: []const u8 },
Void: struct { name: []const u8 },
Bool: struct { name: []const u8 },
NoReturn: struct { name: []const u8 },
Int: struct { name: []const u8 },
Float: struct { name: []const u8 },
Pointer: struct {
size: std.builtin.TypeInfo.Pointer.Size,
child: Expr,
},
Array: struct {
len: Expr,
child: Expr,
},
Struct: struct {
name: []const u8,
src: usize, // index into astNodes
privDecls: []usize = &.{}, // index into decls
pubDecls: []usize = &.{}, // index into decls
fields: ?[]Expr = null, // (use src->fields to find names)
},
ComptimeExpr: struct { name: []const u8 },
ComptimeFloat: struct { name: []const u8 },
ComptimeInt: struct { name: []const u8 },
Undefined: struct { name: []const u8 },
Null: struct { name: []const u8 },
Optional: struct {
name: []const u8,
child: Expr,
},
ErrorUnion: struct { name: []const u8 },
ErrorSet: struct {
name: []const u8,
fields: []const Field,
// TODO: fn field for inferred error sets?
},
Enum: struct {
name: []const u8,
src: usize, // index into astNodes
privDecls: []usize = &.{}, // index into decls
pubDecls: []usize = &.{}, // index into decls
// (use src->fields to find field names)
},
Union: struct {
name: []const u8,
src: usize, // index into astNodes
privDecls: []usize = &.{}, // index into decls
pubDecls: []usize = &.{}, // index into decls
fields: []Expr = &.{}, // (use src->fields to find names)
},
Fn: struct {
name: []const u8,
src: ?usize = null, // index into astNodes
ret: Expr,
params: ?[]Expr = null, // (use src->fields to find names)
},
BoundFn: struct { name: []const u8 },
Opaque: struct { name: []const u8 },
Frame: struct { name: []const u8 },
AnyFrame: struct { name: []const u8 },
Vector: struct { name: []const u8 },
EnumLiteral: struct { name: []const u8 },
const Field = struct {
name: []const u8,
docs: []const u8,
};
pub fn jsonStringify(
self: Type,
opt: std.json.StringifyOptions,
w: anytype,
) !void {
try w.print(
\\{{ "kind": {},
\\
, .{@enumToInt(std.meta.activeTag(self))});
var options = opt;
if (options.whitespace) |*ws| ws.indent_level += 1;
switch (self) {
.Array => |v| try printTypeBody(v, options, w),
.Bool => |v| try printTypeBody(v, options, w),
.Void => |v| try printTypeBody(v, options, w),
.ComptimeExpr => |v| try printTypeBody(v, options, w),
.ComptimeInt => |v| try printTypeBody(v, options, w),
.ComptimeFloat => |v| try printTypeBody(v, options, w),
.Null => |v| try printTypeBody(v, options, w),
.Optional => |v| try printTypeBody(v, options, w),
.Struct => |v| try printTypeBody(v, options, w),
.Fn => |v| try printTypeBody(v, options, w),
.Union => |v| try printTypeBody(v, options, w),
.ErrorSet => |v| try printTypeBody(v, options, w),
.Enum => |v| try printTypeBody(v, options, w),
.Int => |v| try printTypeBody(v, options, w),
.Float => |v| try printTypeBody(v, options, w),
.Type => |v| try printTypeBody(v, options, w),
.Pointer => |v| {
if (options.whitespace) |ws| try ws.outputIndent(w);
try w.print(
\\"size": {},
\\
, .{@enumToInt(v.size)});
if (options.whitespace) |ws| try ws.outputIndent(w);
try w.print(
\\"child":
, .{});
if (options.whitespace) |*ws| ws.indent_level += 1;
try v.child.jsonStringify(options, w);
},
else => {
std.debug.print(
"TODO: add {s} to `DocData.Type.jsonStringify`\n",
.{@tagName(self)},
);
},
}
try w.print("}}", .{});
}
fn printTypeBody(
body: anytype,
options: std.json.StringifyOptions,
w: anytype,
) !void {
const fields = std.meta.fields(@TypeOf(body));
inline for (fields) |f, idx| {
if (options.whitespace) |ws| try ws.outputIndent(w);
try w.print("\"{s}\": ", .{f.name});
try std.json.stringify(@field(body, f.name), options, w);
if (idx != fields.len - 1) try w.writeByte(',');
try w.writeByte('\n');
}
if (options.whitespace) |ws| {
var up = ws;
up.indent_level -= 1;
try up.outputIndent(w);
}
}
};
/// An Expr represents the (untyped) result of analizing instructions.
/// The data is normalized, which means that an Expr that results in a
/// type definition will hold an index into `self.types`.
pub const Expr = union(enum) {
comptimeExpr: usize, // index in `comptimeExprs`
void,
@"unreachable",
@"null",
@"undefined",
@"struct": []FieldVal,
bool: bool,
@"anytype",
type: usize, // index in `types`
this: usize, // index in `types`
declRef: usize, // index in `decls`
fieldRef: FieldRef,
refPath: []Expr,
int: struct {
value: usize, // direct value
negated: bool = false,
},
float: f64, // direct value
array: []usize, // index in `exprs`
call: usize, // index in `calls`
enumLiteral: []const u8, // direct value
typeOf: usize, // index in `exprs`
as: As,
sizeOf: usize, // index in `exprs`
compileError: []const u8,
string: []const u8, // direct value
const As = struct {
typeRefArg: ?usize, // index in `exprs`
exprArg: usize, // index in `exprs`
};
const FieldRef = struct {
type: usize, // index in `types`
index: usize, // index in type.fields
};
const FieldVal = struct {
name: []const u8,
val: WalkResult,
};
pub fn jsonStringify(
self: Expr,
options: std.json.StringifyOptions,
w: anytype,
) std.os.WriteError!void {
switch (self) {
.void, .@"unreachable", .@"anytype", .@"null", .@"undefined" => {
try w.print(
\\{{ "{s}":{{}} }}
, .{@tagName(self)});
},
.type, .comptimeExpr, .call, .this, .declRef, .typeOf => |v| {
try w.print(
\\{{ "{s}":{} }}
, .{ @tagName(self), v });
},
.int => |v| {
const neg = if (v.negated) "-" else "";
try w.print(
\\{{ "int": {s}{} }}
, .{ neg, v.value });
},
.float => |v| {
try w.print(
\\{{ "float": {} }}
, .{v});
},
.bool => |v| {
try w.print(
\\{{ "bool":{} }}
, .{v});
},
.sizeOf => |v| try std.json.stringify(v, options, w),
.fieldRef => |v| try std.json.stringify(
struct { fieldRef: FieldRef }{ .fieldRef = v },
options,
w,
),
.as => |v| try std.json.stringify(
struct { as: As }{ .as = v },
options,
w,
),
.@"struct" => |v| try std.json.stringify(
struct { @"struct": []FieldVal }{ .@"struct" = v },
options,
w,
),
.refPath => |v| {
try w.print("{{ \"refPath\": [", .{});
for (v) |c, i| {
const comma = if (i == v.len - 1) "]}" else ",\n";
try c.jsonStringify(options, w);
try w.print("{s}", .{comma});
}
},
.array => |v| try std.json.stringify(
struct { @"array": []usize }{ .@"array" = v },
options,
w,
),
.compileError => |v| try std.json.stringify(
struct { compileError: []const u8 }{ .compileError = v },
options,
w,
),
.string => |v| try std.json.stringify(
struct { string: []const u8 }{ .string = v },
options,
w,
),
.enumLiteral => |v| try std.json.stringify(
struct { @"enumLiteral": []const u8 }{ .@"enumLiteral" = v },
options,
w,
),
// try w.print("{ len: {},\n", .{v.len});
// if (options.whitespace) |ws| try ws.outputIndent(w);
// try w.print("typeRef: ", .{});
// try v.typeRef.jsonStringify(options, w);
// try w.print("{{ \"data\": [", .{});
// for (v.data) |d, i| {
// const comma = if (i == v.len - 1) "]}" else ",";
// try w.print("{d}{s}", .{ d, comma });
// }
}
}
};
/// A WalkResult represents the result of the analysis process done to a
/// a Zir instruction. Walk results carry type information either inferred
/// from the context (eg string literals are pointers to null-terminated
/// arrays), or because of @as() instructions.
/// Since the type information is only needed in certain contexts, the
/// underlying normalized data (Expr) is untyped.
const WalkResult = struct {
typeRef: ?Expr = null, // index in `exprs`
expr: Expr, // index in `exprs`
};
};
/// Called when we need to analyze a Zir instruction.
/// For example it gets called by `generateZirData` on instruction 0,
/// which represents the top-level struct corresponding to the root file.
/// Note that in some situations where we're analyzing code that only allows
/// for a limited subset of Zig syntax, we don't always resort to calling
/// `walkInstruction` and instead sometimes we handle Zir directly.
/// The best example of that are instructions corresponding to function
/// params, as those can only occur while analyzing a function definition.
fn walkInstruction(
self: *Autodoc,
file: *File,
parent_scope: *Scope,
inst_index: usize,
need_type: bool, // true if the caller needs us to provide also a typeRef
) error{OutOfMemory}!DocData.WalkResult {
const tags = file.zir.instructions.items(.tag);
const data = file.zir.instructions.items(.data);
// We assume that the topmost ast_node entry corresponds to our decl
const self_ast_node_index = self.ast_nodes.items.len - 1;
switch (tags[inst_index]) {
else => {
printWithContext(
file,
inst_index,
"TODO: implement `{s}` for walkInstruction\n\n",
.{@tagName(tags[inst_index])},
);
return self.cteTodo(@tagName(tags[inst_index]));
},
.closure_get => {
const inst_node = data[inst_index].inst_node;
return try self.walkInstruction(file, parent_scope, inst_node.inst, need_type);
},
.closure_capture => {
const un_tok = data[inst_index].un_tok;
return try self.walkRef(file, parent_scope, un_tok.operand, need_type);
},
.import => {
const str_tok = data[inst_index].str_tok;
const path = str_tok.get(file.zir);
// importFile cannot error out since all files
// are already loaded at this point
if (file.pkg.table.get(path) != null) {
const cte_slot_index = self.comptime_exprs.items.len;
try self.comptime_exprs.append(self.arena, .{
.code = path,
});
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .comptimeExpr = cte_slot_index },
};
}
const new_file = self.module.importFile(file, path) catch unreachable;
const result = try self.files.getOrPut(self.arena, new_file.file);
if (result.found_existing) {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = result.value_ptr.* },
};
}
result.value_ptr.* = self.types.items.len;
var new_scope = Scope{
.parent = null,
.enclosing_type = self.types.items.len,
};
return self.walkInstruction(
new_file.file,
&new_scope,
Zir.main_struct_inst,
need_type,
);
},
.str => {
const str = data[inst_index].str.get(file.zir);
const tRef: ?DocData.Expr = if (!need_type) null else blk: {
const arrTypeId = self.types.items.len;
try self.types.append(self.arena, .{
.Array = .{
.len = .{ .int = .{ .value = str.len } },
.child = .{ .type = @enumToInt(Ref.u8_type) },
},
});
const ptrTypeId = self.types.items.len;
try self.types.append(self.arena, .{
.Pointer = .{
.size = .One,
.child = .{ .type = arrTypeId },
// TODO: add sentinel!
},
});
break :blk .{ .type = ptrTypeId };
};
return DocData.WalkResult{
.typeRef = tRef,
.expr = .{ .string = str },
};
},
.compile_error => {
const un_node = data[inst_index].un_node;
var operand: DocData.WalkResult = try self.walkRef(
file,
parent_scope,
un_node.operand,
false,
);
return DocData.WalkResult{
.expr = .{
.compileError = switch (operand.expr) {
.string => |s| s,
else => "TODO: non-string @compileError arguments",
},
},
};
},
.enum_literal => {
const str_tok = data[inst_index].str_tok;
const literal = file.zir.nullTerminatedString(str_tok.start);
return DocData.WalkResult{ .expr = .{ .enumLiteral = literal } };
},
.int => {
const int = data[inst_index].int;
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.comptime_int_type) },
.expr = .{ .int = .{ .value = int } },
};
},
.error_union_type => {
const pl_node = data[inst_index].pl_node;
const extra = file.zir.extraData(Zir.Inst.Bin, pl_node.payload_index);
// TODO: return the actual error union instread of cheating
return self.walkRef(file, parent_scope, extra.data.rhs, need_type);
},
.ptr_type_simple => {
const ptr = data[inst_index].ptr_type_simple;
const type_slot_index = self.types.items.len;
const elem_type_ref = try self.walkRef(file, parent_scope, ptr.elem_type, false);
try self.types.append(self.arena, .{
.Pointer = .{
.size = ptr.size,
.child = elem_type_ref.expr,
},
});
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
},
.ptr_type => {
const ptr = data[inst_index].ptr_type;
const extra = file.zir.extraData(Zir.Inst.PtrType, ptr.payload_index);
const type_slot_index = self.types.items.len;
const elem_type_ref = try self.walkRef(
file,
parent_scope,
extra.data.elem_type,
false,
);
try self.types.append(self.arena, .{
.Pointer = .{
.size = ptr.size,
.child = elem_type_ref.expr,
},
});
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
},
.array_type => {
const bin = data[inst_index].bin;
const len = try self.walkRef(file, parent_scope, bin.lhs, false);
const child = try self.walkRef(file, parent_scope, bin.rhs, false);
const type_slot_index = self.types.items.len;
try self.types.append(self.arena, .{
.Array = .{
.len = len.expr,
.child = child.expr,
},
});
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
},
.array_init => {
const pl_node = data[inst_index].pl_node;
const extra = file.zir.extraData(Zir.Inst.MultiOp, pl_node.payload_index);
const operands = file.zir.refSlice(extra.end, extra.data.operands_len);
const array_data = try self.arena.alloc(usize, operands.len);
// TODO: make sure that you want the array to be fully normalized for real
// then update this code to conform to your choice.
var array_type: ?DocData.Expr = null;
for (operands) |op, idx| {
// we only ask to figure out type info for the first element
// as it will be used later on to find out the array type!
const wr = try self.walkRef(file, parent_scope, op, idx == 0);
if (idx == 0) {
array_type = wr.typeRef;
}
// We know that Zir wraps every operand in an @as expression
// so we want to peel it away and only save the target type
// once, since we need it later to define the array type.
array_data[idx] = wr.expr.as.exprArg;
}
const type_slot_index = self.types.items.len;
try self.types.append(self.arena, .{
.Array = .{
.len = .{
.int = .{
.value = operands.len,
.negated = false,
},
},
.child = array_type.?,
},
});
return DocData.WalkResult{
.typeRef = .{ .type = type_slot_index },
.expr = .{ .array = array_data },
};
},
.float => {
const float = data[inst_index].float;
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.comptime_float_type) },
.expr = .{ .float = float },
};
},
.negate => {
const un_node = data[inst_index].un_node;
var operand: DocData.WalkResult = try self.walkRef(
file,
parent_scope,
un_node.operand,
need_type,
);
switch (operand.expr) {
.int => |*int| int.negated = true,
else => {
printWithContext(
file,
inst_index,
"TODO: support negation for more types",
.{},
);
},
}
return operand;
},
.size_of => {
const un_node = data[inst_index].un_node;
const operand = try self.walkRef(
file,
parent_scope,
un_node.operand,
false,
);
const operand_index = self.exprs.items.len;
try self.exprs.append(self.arena, operand.expr);
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.comptime_int_type) },
.expr = .{ .sizeOf = operand_index },
};
},
.typeof => {
const un_node = data[inst_index].un_node;
const operand = try self.walkRef(
file,
parent_scope,
un_node.operand,
need_type,
);
const operand_index = self.exprs.items.len;
try self.exprs.append(self.arena, operand.expr);
return DocData.WalkResult{
.typeRef = operand.typeRef,
.expr = .{ .typeOf = operand_index },
};
},
.as_node => {
const pl_node = data[inst_index].pl_node;
const extra = file.zir.extraData(Zir.Inst.As, pl_node.payload_index);
const dest_type_walk = try self.walkRef(
file,
parent_scope,
extra.data.dest_type,
false,
);
const operand = try self.walkRef(
file,
parent_scope,
extra.data.operand,
false,
);
const operand_idx = self.exprs.items.len;
try self.exprs.append(self.arena, operand.expr);
const dest_type_idx = self.exprs.items.len;
try self.exprs.append(self.arena, dest_type_walk.expr);
// TODO: there's something wrong with how both `as` and `WalkrResult`
// try to store type information.
return DocData.WalkResult{
.typeRef = dest_type_walk.expr,
.expr = .{
.as = .{
.typeRefArg = dest_type_idx,
.exprArg = operand_idx,
},
},
};
},
.optional_type => {
const un_node = data[inst_index].un_node;
const operand: DocData.WalkResult = try self.walkRef(
file,
parent_scope,
un_node.operand,
false,
);
const operand_idx = self.types.items.len;
try self.types.append(self.arena, .{
.Optional = .{ .name = "?TODO", .child = operand.expr },
});
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = operand_idx },
};
},
.decl_val, .decl_ref => {
const str_tok = data[inst_index].str_tok;
const decls_slot_index = parent_scope.resolveDeclName(str_tok.start);
// While it would make sense to grab the original decl's typeRef info,
// that decl might not have been analyzed yet! The frontend will have
// to navigate through all declRefs to find the underlying type.
return DocData.WalkResult{ .expr = .{ .declRef = decls_slot_index } };
},
.field_val, .field_call_bind, .field_ptr, .field_type => {
// TODO: field type uses Zir.Inst.FieldType, it just happens to have the
// same layout as Zir.Inst.Field :^)
const pl_node = data[inst_index].pl_node;
const extra = file.zir.extraData(Zir.Inst.Field, pl_node.payload_index);
var path: std.ArrayListUnmanaged(DocData.Expr) = .{};
var lhs = @enumToInt(extra.data.lhs) - Ref.typed_value_map.len; // underflow = need to handle Refs
try path.append(self.arena, .{
.string = file.zir.nullTerminatedString(extra.data.field_name_start),
});
// Put inside path the starting index of each decl name that
// we encounter as we navigate through all the field_vals
while (tags[lhs] == .field_val or
tags[lhs] == .field_call_bind or
tags[lhs] == .field_ptr or
tags[lhs] == .field_type)
{
const lhs_extra = file.zir.extraData(
Zir.Inst.Field,
data[lhs].pl_node.payload_index,
);
try path.append(self.arena, .{
.string = file.zir.nullTerminatedString(lhs_extra.data.field_name_start),
});
lhs = @enumToInt(lhs_extra.data.lhs) - Ref.typed_value_map.len; // underflow = need to handle Refs
}
// TODO: double check that we really don't need type info here
const wr = try self.walkInstruction(file, parent_scope, lhs, false);
try path.append(self.arena, wr.expr);
// This way the data in `path` has the same ordering that the ref
// path has in the text: most general component first.
std.mem.reverse(DocData.Expr, path.items);
// Righ now, every element of `path` is a string except its first
// element (at index 0). We're now going to attempt to resolve each
// string. If one or more components in this path are not yet fully
// analyzed, the path will only be solved partially, but we expect
// to eventually solve it fully(or give up in case of a
// comptimeExpr). This means that:
// - (1) Paths can be not fully analyzed temporarily, so any code
// that requires to know where a ref path leads to, neeeds to
// implement support for lazyness (see self.pending_ref_paths)
// - (2) Paths can sometimes never resolve fully. This means that
// any value that depends on that will have to become a
// comptimeExpr.
try self.tryResolveRefPath(file, lhs, path.items);
return DocData.WalkResult{ .expr = .{ .refPath = path.items } };
},
.int_type => {
const int_type = data[inst_index].int_type;
const sign = if (int_type.signedness == .unsigned) "u" else "i";
const bits = int_type.bit_count;
const name = try std.fmt.allocPrint(self.arena, "{s}{}", .{ sign, bits });
try self.types.append(self.arena, .{
.Int = .{ .name = name },
});
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = self.types.items.len - 1 },
};
},
.block => {
const res = DocData.WalkResult{ .expr = .{
.comptimeExpr = self.comptime_exprs.items.len,
} };
try self.comptime_exprs.append(self.arena, .{
.code = "if(banana) 1 else 0",
});
return res;
},
.block_inline => {
return self.walkRef(
file,
parent_scope,
getBlockInlineBreak(file.zir, inst_index),
need_type,
);
},
.struct_init => {
const pl_node = data[inst_index].pl_node;
const extra = file.zir.extraData(Zir.Inst.StructInit, pl_node.payload_index);
const field_vals = try self.arena.alloc(
DocData.Expr.FieldVal,
extra.data.fields_len,
);
var type_ref: DocData.Expr = undefined;
var idx = extra.end;
for (field_vals) |*fv| {
const init_extra = file.zir.extraData(Zir.Inst.StructInit.Item, idx);
defer idx = init_extra.end;
const field_name = blk: {
const field_inst_index = init_extra.data.field_type;
if (tags[field_inst_index] != .field_type) unreachable;
const field_pl_node = data[field_inst_index].pl_node;
const field_extra = file.zir.extraData(
Zir.Inst.FieldType,
field_pl_node.payload_index,
);
// On first iteration use field info to find out the struct type
if (idx == extra.end) {
const wr = try self.walkRef(
file,
parent_scope,
field_extra.data.container_type,
false,
);
type_ref = wr.expr;
}
break :blk file.zir.nullTerminatedString(field_extra.data.name_start);
};
const value = try self.walkRef(
file,
parent_scope,
init_extra.data.init,
need_type,
);
fv.* = .{ .name = field_name, .val = value };
}
return DocData.WalkResult{
.typeRef = type_ref,
.expr = .{ .@"struct" = field_vals },
};
},
.error_set_decl => {
const pl_node = data[inst_index].pl_node;
const extra = file.zir.extraData(Zir.Inst.ErrorSetDecl, pl_node.payload_index);
const fields = try self.arena.alloc(
DocData.Type.Field,
extra.data.fields_len,
);
var idx = extra.end;
for (fields) |*f| {
const name = file.zir.nullTerminatedString(file.zir.extra[idx]);
idx += 1;
const docs = file.zir.nullTerminatedString(file.zir.extra[idx]);
idx += 1;
f.* = .{
.name = name,
.docs = docs,
};
}
const type_slot_index = self.types.items.len;
try self.types.append(self.arena, .{
.ErrorSet = .{
.name = "todo errset",
.fields = fields,
},
});
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
},
.param_anytype => {
// Analysis of anytype function params happens in `.func`.
// This switch case handles the case where an expression depends
// on an anytype field. E.g.: `fn foo(bar: anytype) @TypeOf(bar)`.
// This means that we're looking at a generic expression.
const str_tok = data[inst_index].str_tok;
const name = str_tok.get(file.zir);
const cte_slot_index = self.comptime_exprs.items.len;
try self.comptime_exprs.append(self.arena, .{
.code = name,
});
return DocData.WalkResult{ .expr = .{ .comptimeExpr = cte_slot_index } };
},
.param, .param_comptime => {
// See .param_anytype for more information.
const pl_tok = data[inst_index].pl_tok;
const extra = file.zir.extraData(Zir.Inst.Param, pl_tok.payload_index);
const name = file.zir.nullTerminatedString(extra.data.name);
const cte_slot_index = self.comptime_exprs.items.len;
try self.comptime_exprs.append(self.arena, .{
.code = name,
});
return DocData.WalkResult{ .expr = .{ .comptimeExpr = cte_slot_index } };
},
.call => {
const pl_node = data[inst_index].pl_node;
const extra = file.zir.extraData(Zir.Inst.Call, pl_node.payload_index);
const callee = try self.walkRef(file, parent_scope, extra.data.callee, need_type);
const args_len = extra.data.flags.args_len;
var args = try self.arena.alloc(DocData.Expr, args_len);
const arg_refs = file.zir.refSlice(extra.end, args_len);
for (arg_refs) |ref, idx| {
// TODO: consider toggling need_type to true if we ever want
// to show discrepancies between the types of provided
// arguments and the types declared in the function
// signature for its parameters.
const wr = try self.walkRef(file, parent_scope, ref, false);
args[idx] = wr.expr;
}
const cte_slot_index = self.comptime_exprs.items.len;
try self.comptime_exprs.append(self.arena, .{
.code = "func call",
});
const call_slot_index = self.calls.items.len;
try self.calls.append(self.arena, .{
.func = callee.expr,
.args = args,
.ret = .{ .comptimeExpr = cte_slot_index },
});
return DocData.WalkResult{
.typeRef = if (callee.typeRef) |tr| switch (tr) {
.type => |func_type_idx| self.types.items[func_type_idx].Fn.ret,
else => null,
} else null,
.expr = .{ .call = call_slot_index },
};
},
.func, .func_inferred => {
const type_slot_index = self.types.items.len;
try self.types.append(self.arena, .{ .Unanalyzed = {} });
return self.analyzeFunction(
file,
parent_scope,
inst_index,
self_ast_node_index,
type_slot_index,
);
},
.extended => {
const extended = data[inst_index].extended;
switch (extended.opcode) {
else => {
printWithContext(
file,
inst_index,
"TODO: implement `walkInstruction.extended` for {s}",
.{@tagName(extended.opcode)},
);
return self.cteTodo(@tagName(extended.opcode));
},
.opaque_decl => return self.cteTodo("opaque {...}"),
.variable => {
const small = @bitCast(Zir.Inst.ExtendedVar.Small, extended.small);
var extra_index: usize = extended.operand;
if (small.has_lib_name) extra_index += 1;
if (small.has_align) extra_index += 1;
const value: DocData.WalkResult = if (small.has_init) .{ .expr = .{ .void = {} } } else .{ .expr = .{ .void = {} } };
return value;
},
.union_decl => {
const type_slot_index = self.types.items.len;
try self.types.append(self.arena, .{ .Unanalyzed = {} });
var scope: Scope = .{
.parent = parent_scope,
.enclosing_type = type_slot_index,
};
const small = @bitCast(Zir.Inst.UnionDecl.Small, extended.small);
var extra_index: usize = extended.operand;
const src_node: ?i32 = if (small.has_src_node) blk: {
const src_node = @bitCast(i32, file.zir.extra[extra_index]);
extra_index += 1;
break :blk src_node;
} else null;
_ = src_node;
const tag_type: ?Ref = if (small.has_tag_type) blk: {
const tag_type = file.zir.extra[extra_index];
extra_index += 1;
break :blk @intToEnum(Ref, tag_type);
} else null;
_ = tag_type;
const body_len = if (small.has_body_len) blk: {
const body_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk body_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
_ = fields_len;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
var decl_indexes: std.ArrayListUnmanaged(usize) = .{};
var priv_decl_indexes: std.ArrayListUnmanaged(usize) = .{};
const decls_first_index = self.decls.items.len;
// Decl name lookahead for reserving slots in `scope` (and `decls`).
// Done to make sure that all decl refs can be resolved correctly,
// even if we haven't fully analyzed the decl yet.
{
var it = file.zir.declIterator(@intCast(u32, inst_index));
try self.decls.resize(self.arena, decls_first_index + it.decls_len);
for (self.decls.items[decls_first_index..]) |*slot| {
slot._analyzed = false;
}
var decls_slot_index = decls_first_index;
while (it.next()) |d| : (decls_slot_index += 1) {
const decl_name_index = file.zir.extra[d.sub_index + 5];
try scope.insertDeclRef(self.arena, decl_name_index, decls_slot_index);
}
}
extra_index = try self.walkDecls(
file,
&scope,
decls_first_index,
decls_len,
&decl_indexes,
&priv_decl_indexes,
extra_index,
);
extra_index += body_len;
var field_type_refs = try std.ArrayListUnmanaged(DocData.Expr).initCapacity(
self.arena,
fields_len,
);
var field_name_indexes = try std.ArrayListUnmanaged(usize).initCapacity(
self.arena,
fields_len,
);
try self.collectUnionFieldInfo(
file,
&scope,
fields_len,
&field_type_refs,
&field_name_indexes,
extra_index,
);
self.ast_nodes.items[self_ast_node_index].fields = field_name_indexes.items;
self.types.items[type_slot_index] = .{
.Union = .{
.name = "todo_name",
.src = self_ast_node_index,
.privDecls = priv_decl_indexes.items,
.pubDecls = decl_indexes.items,
.fields = field_type_refs.items,
},
};
if (self.ref_paths_pending_on_types.get(type_slot_index)) |paths| {
for (paths.items) |resume_info| {
try self.tryResolveRefPath(
resume_info.file,
inst_index,
resume_info.ref_path,
);
}
_ = self.ref_paths_pending_on_types.remove(type_slot_index);
// TODO: we should deallocate the arraylist that holds all the
// decl paths. not doing it now since it's arena-allocated
// anyway, but maybe we should put it elsewhere.
}
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
},
.enum_decl => {
const type_slot_index = self.types.items.len;
try self.types.append(self.arena, .{ .Unanalyzed = {} });
var scope: Scope = .{
.parent = parent_scope,
.enclosing_type = type_slot_index,
};
const small = @bitCast(Zir.Inst.EnumDecl.Small, extended.small);
var extra_index: usize = extended.operand;
const src_node: ?i32 = if (small.has_src_node) blk: {
const src_node = @bitCast(i32, file.zir.extra[extra_index]);
extra_index += 1;
break :blk src_node;
} else null;
_ = src_node;
const tag_type: ?Ref = if (small.has_tag_type) blk: {
const tag_type = file.zir.extra[extra_index];
extra_index += 1;
break :blk @intToEnum(Ref, tag_type);
} else null;
_ = tag_type;
const body_len = if (small.has_body_len) blk: {
const body_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk body_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
_ = fields_len;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
var decl_indexes: std.ArrayListUnmanaged(usize) = .{};
var priv_decl_indexes: std.ArrayListUnmanaged(usize) = .{};
const decls_first_index = self.decls.items.len;
// Decl name lookahead for reserving slots in `scope` (and `decls`).
// Done to make sure that all decl refs can be resolved correctly,
// even if we haven't fully analyzed the decl yet.
{
var it = file.zir.declIterator(@intCast(u32, inst_index));
try self.decls.resize(self.arena, decls_first_index + it.decls_len);
for (self.decls.items[decls_first_index..]) |*slot| {
slot._analyzed = false;
}
var decls_slot_index = decls_first_index;
while (it.next()) |d| : (decls_slot_index += 1) {
const decl_name_index = file.zir.extra[d.sub_index + 5];
try scope.insertDeclRef(self.arena, decl_name_index, decls_slot_index);
}
}
extra_index = try self.walkDecls(
file,
&scope,
decls_first_index,
decls_len,
&decl_indexes,
&priv_decl_indexes,
extra_index,
);
// const body = file.zir.extra[extra_index..][0..body_len];
extra_index += body_len;
var field_name_indexes: std.ArrayListUnmanaged(usize) = .{};
{
var bit_bag_idx = extra_index;
var cur_bit_bag: u32 = undefined;
extra_index += std.math.divCeil(usize, fields_len, 32) catch unreachable;
var idx: usize = 0;
while (idx < fields_len) : (idx += 1) {
if (idx % 32 == 0) {
cur_bit_bag = file.zir.extra[bit_bag_idx];
bit_bag_idx += 1;
}
const has_value = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const field_name_index = file.zir.extra[extra_index];
extra_index += 1;
const doc_comment_index = file.zir.extra[extra_index];
extra_index += 1;
const value_ref: ?Ref = if (has_value) blk: {
const value_ref = file.zir.extra[extra_index];
extra_index += 1;
break :blk @intToEnum(Ref, value_ref);
} else null;
_ = value_ref;
const field_name = file.zir.nullTerminatedString(field_name_index);
try field_name_indexes.append(self.arena, self.ast_nodes.items.len);
const doc_comment: ?[]const u8 = if (doc_comment_index != 0)
file.zir.nullTerminatedString(doc_comment_index)
else
null;
try self.ast_nodes.append(self.arena, .{
.name = field_name,
.docs = doc_comment,
});
}
}
self.ast_nodes.items[self_ast_node_index].fields = field_name_indexes.items;
self.types.items[type_slot_index] = .{
.Enum = .{
.name = "todo_name",
.src = self_ast_node_index,
.privDecls = priv_decl_indexes.items,
.pubDecls = decl_indexes.items,
},
};
if (self.ref_paths_pending_on_types.get(type_slot_index)) |paths| {
for (paths.items) |resume_info| {
try self.tryResolveRefPath(
resume_info.file,
inst_index,
resume_info.ref_path,
);
}
_ = self.ref_paths_pending_on_types.remove(type_slot_index);
// TODO: we should deallocate the arraylist that holds all the
// decl paths. not doing it now since it's arena-allocated
// anyway, but maybe we should put it elsewhere.
}
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
},
.struct_decl => {
const type_slot_index = self.types.items.len;
try self.types.append(self.arena, .{ .Unanalyzed = {} });
var scope: Scope = .{
.parent = parent_scope,
.enclosing_type = type_slot_index,
};
const small = @bitCast(Zir.Inst.StructDecl.Small, extended.small);
var extra_index: usize = extended.operand;
const src_node: ?i32 = if (small.has_src_node) blk: {
const src_node = @bitCast(i32, file.zir.extra[extra_index]);
extra_index += 1;
break :blk src_node;
} else null;
_ = src_node;
const body_len = if (small.has_body_len) blk: {
const body_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk body_len;
} else 0;
const fields_len = if (small.has_fields_len) blk: {
const fields_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk fields_len;
} else 0;
_ = fields_len;
const decls_len = if (small.has_decls_len) blk: {
const decls_len = file.zir.extra[extra_index];
extra_index += 1;
break :blk decls_len;
} else 0;
var decl_indexes: std.ArrayListUnmanaged(usize) = .{};
var priv_decl_indexes: std.ArrayListUnmanaged(usize) = .{};
const decls_first_index = self.decls.items.len;
// Decl name lookahead for reserving slots in `scope` (and `decls`).
// Done to make sure that all decl refs can be resolved correctly,
// even if we haven't fully analyzed the decl yet.
{
var it = file.zir.declIterator(@intCast(u32, inst_index));
try self.decls.resize(self.arena, decls_first_index + it.decls_len);
for (self.decls.items[decls_first_index..]) |*slot| {
slot._analyzed = false;
}
var decls_slot_index = decls_first_index;
while (it.next()) |d| : (decls_slot_index += 1) {
const decl_name_index = file.zir.extra[d.sub_index + 5];
try scope.insertDeclRef(self.arena, decl_name_index, decls_slot_index);
}
}
extra_index = try self.walkDecls(
file,
&scope,
decls_first_index,
decls_len,
&decl_indexes,
&priv_decl_indexes,
extra_index,
);
// const body = file.zir.extra[extra_index..][0..body_len];
extra_index += body_len;
var field_type_refs: std.ArrayListUnmanaged(DocData.Expr) = .{};
var field_name_indexes: std.ArrayListUnmanaged(usize) = .{};
try self.collectStructFieldInfo(
file,
&scope,
fields_len,
&field_type_refs,
&field_name_indexes,
extra_index,
);
self.ast_nodes.items[self_ast_node_index].fields = field_name_indexes.items;
self.types.items[type_slot_index] = .{
.Struct = .{
.name = "todo_name",
.src = self_ast_node_index,
.privDecls = priv_decl_indexes.items,
.pubDecls = decl_indexes.items,
.fields = field_type_refs.items,
},
};
if (self.ref_paths_pending_on_types.get(type_slot_index)) |paths| {
for (paths.items) |resume_info| {
try self.tryResolveRefPath(
resume_info.file,
inst_index,
resume_info.ref_path,
);
}
_ = self.ref_paths_pending_on_types.remove(type_slot_index);
// TODO: we should deallocate the arraylist that holds all the
// decl paths. not doing it now since it's arena-allocated
// anyway, but maybe we should put it elsewhere.
}
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
},
.this => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .this = parent_scope.enclosing_type },
};
},
}
},
}
}
/// Called by `walkInstruction` when encountering a container type.
/// Iterates over all decl definitions in its body and it also analyzes each
/// decl's body recursively by calling into `walkInstruction`.
///
/// Does not append to `self.decls` directly because `walkInstruction`
/// is expected to look-ahead scan all decls and reserve `body_len`
/// slots in `self.decls`, which are then filled out by this function.
fn walkDecls(
self: *Autodoc,
file: *File,
scope: *Scope,
decls_first_index: usize,
decls_len: u32,
decl_indexes: *std.ArrayListUnmanaged(usize),
priv_decl_indexes: *std.ArrayListUnmanaged(usize),
extra_start: usize,
) error{OutOfMemory}!usize {
const bit_bags_count = std.math.divCeil(usize, decls_len, 8) catch unreachable;
var extra_index = extra_start + bit_bags_count;
var bit_bag_index: usize = extra_start;
var cur_bit_bag: u32 = undefined;
var decl_i: u32 = 0;
while (decl_i < decls_len) : (decl_i += 1) {
const decls_slot_index = decls_first_index + decl_i;
if (decl_i % 8 == 0) {
cur_bit_bag = file.zir.extra[bit_bag_index];
bit_bag_index += 1;
}
const is_pub = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const is_exported = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const has_align = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const has_section_or_addrspace = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
// const sub_index = extra_index;
// const hash_u32s = file.zir.extra[extra_index..][0..4];
extra_index += 4;
const line = file.zir.extra[extra_index];
extra_index += 1;
const decl_name_index = file.zir.extra[extra_index];
extra_index += 1;
const value_index = file.zir.extra[extra_index];
extra_index += 1;
const doc_comment_index = file.zir.extra[extra_index];
extra_index += 1;
const align_inst: Zir.Inst.Ref = if (!has_align) .none else inst: {
const inst = @intToEnum(Zir.Inst.Ref, file.zir.extra[extra_index]);
extra_index += 1;
break :inst inst;
};
_ = align_inst;
const section_inst: Zir.Inst.Ref = if (!has_section_or_addrspace) .none else inst: {
const inst = @intToEnum(Zir.Inst.Ref, file.zir.extra[extra_index]);
extra_index += 1;
break :inst inst;
};
_ = section_inst;
const addrspace_inst: Zir.Inst.Ref = if (!has_section_or_addrspace) .none else inst: {
const inst = @intToEnum(Zir.Inst.Ref, file.zir.extra[extra_index]);
extra_index += 1;
break :inst inst;
};
_ = addrspace_inst;
// const pub_str = if (is_pub) "pub " else "";
// const hash_bytes = @bitCast([16]u8, hash_u32s.*);
var is_test = false; // we discover if it's a test by lookin at its name
const name: []const u8 = blk: {
if (decl_name_index == 0) {
break :blk if (is_exported) "usingnamespace" else "comptime";
} else if (decl_name_index == 1) {
is_test = true;
break :blk "test";
} else if (decl_name_index == 2) {
is_test = true;
// it is a decltest
const decl_being_tested = scope.resolveDeclName(doc_comment_index);
const ast_node_index = idx: {
const idx = self.ast_nodes.items.len;
const file_source = file.getSource(self.module.gpa) catch unreachable; // TODO fix this
const source_of_decltest_function = srcloc: {
const func_index = getBlockInlineBreak(file.zir, value_index);
// a decltest is always a function
const tag = file.zir.instructions.items(.tag)[Zir.refToIndex(func_index).?];
std.debug.assert(tag == .func_extended);
const pl_node = file.zir.instructions.items(.data)[Zir.refToIndex(func_index).?].pl_node;
const extra = file.zir.extraData(Zir.Inst.ExtendedFunc, pl_node.payload_index);
const bits = @bitCast(Zir.Inst.ExtendedFunc.Bits, extra.data.bits);
var extra_index_for_this_func: usize = extra.end;
if (bits.has_lib_name) extra_index_for_this_func += 1;
if (bits.has_cc) extra_index_for_this_func += 1;
if (bits.has_align) extra_index_for_this_func += 1;
const ret_ty_body = file.zir.extra[extra_index_for_this_func..][0..extra.data.ret_body_len];
extra_index_for_this_func += ret_ty_body.len;
const body = file.zir.extra[extra_index_for_this_func..][0..extra.data.body_len];
extra_index_for_this_func += body.len;
var src_locs: Zir.Inst.Func.SrcLocs = undefined;
if (body.len != 0) {
src_locs = file.zir.extraData(Zir.Inst.Func.SrcLocs, extra_index_for_this_func).data;
} else {
src_locs = .{
.lbrace_line = line,
.rbrace_line = line,
.columns = 0, // TODO get columns when body.len == 0
};
}
break :srcloc src_locs;
};
const source_slice = slice: {
var start_byte_offset: u32 = 0;
var end_byte_offset: u32 = 0;
const rbrace_col = @truncate(u16, source_of_decltest_function.columns >> 16);
var lines: u32 = 0;
for (file_source.bytes) |b, i| {
if (b == '\n') {
lines += 1;
}
if (lines == source_of_decltest_function.lbrace_line) {
start_byte_offset = @intCast(u32, i);
}
if (lines == source_of_decltest_function.rbrace_line) {
end_byte_offset = @intCast(u32, i) + rbrace_col;
break;
}
}
break :slice file_source.bytes[start_byte_offset..end_byte_offset];
};
try self.ast_nodes.append(self.arena, .{
.file = 0,
.line = line,
.col = 0,
.name = try self.arena.dupe(u8, source_slice),
});
break :idx idx;
};
self.decls.items[decl_being_tested].decltest = ast_node_index;
self.decls.items[decls_slot_index] = .{
._analyzed = true,
.name = "test",
.isTest = true,
.src = ast_node_index,
.value = .{ .expr = .{ .type = 0 } },
.kind = "const",
};
continue;
} else {
const raw_decl_name = file.zir.nullTerminatedString(decl_name_index);
if (raw_decl_name.len == 0) {
is_test = true;
break :blk file.zir.nullTerminatedString(decl_name_index + 1);
} else {
break :blk raw_decl_name;
}
}
};
const doc_comment: ?[]const u8 = if (doc_comment_index != 0)
file.zir.nullTerminatedString(doc_comment_index)
else
null;
// astnode
const ast_node_index = idx: {
const idx = self.ast_nodes.items.len;
try self.ast_nodes.append(self.arena, .{
.file = 0,
.line = line,
.col = 0,
.docs = doc_comment,
.fields = null, // walkInstruction will fill `fields` if necessary
});
break :idx idx;
};
const walk_result = if (is_test) // TODO: decide if tests should show up at all
DocData.WalkResult{ .expr = .{ .void = {} } }
else
try self.walkInstruction(file, scope, value_index, true);
if (is_pub) {
try decl_indexes.append(self.arena, decls_slot_index);
} else {
try priv_decl_indexes.append(self.arena, decls_slot_index);
}
// // decl.typeRef == decl.val...typeRef
// const decl_type_ref: DocData.TypeRef = switch (walk_result) {
// .int => |i| i.typeRef,
// .void => .{ .type = @enumToInt(Ref.void_type) },
// .@"undefined", .@"null" => |v| v,
// .@"unreachable" => .{ .type = @enumToInt(Ref.noreturn_type) },
// .@"struct" => |s| s.typeRef,
// .bool => .{ .type = @enumToInt(Ref.bool_type) },
// .type => .{ .type = @enumToInt(Ref.type_type) },
// // this last case is special becauese it's not pointing
// // at the type of the value, but rather at the value itself
// // the js better be aware ot this!
// .declRef => |d| .{ .declRef = d },
// };
self.decls.items[decls_slot_index] = .{
._analyzed = true,
.name = name,
.isTest = is_test,
.src = ast_node_index,
//.typeRef = decl_type_ref,
.value = walk_result,
.kind = "const", // find where this information can be found
};
// Unblock any pending decl path that was waiting for this decl.
if (self.ref_paths_pending_on_decls.get(decls_slot_index)) |paths| {
for (paths.items) |resume_info| {
try self.tryResolveRefPath(
resume_info.file,
value_index,
resume_info.ref_path,
);
}
_ = self.ref_paths_pending_on_decls.remove(decls_slot_index);
// TODO: we should deallocate the arraylist that holds all the
// ref paths. not doing it now since it's arena-allocated
// anyway, but maybe we should put it elsewhere.
}
}
return extra_index;
}
/// An unresolved path has a non-string WalkResult at its beginnig, while every
/// other element is a string WalkResult. Resolving means iteratively map each
/// string to a Decl / Type / Call / etc.
///
/// If we encounter an unanalyzed decl during the process, we append the
/// unsolved sub-path to `self.ref_paths_pending_on_decls` and bail out.
/// Same happens when a decl holds a type definition that hasn't been fully
/// analyzed yet (except that we append to `self.ref_paths_pending_on_types`.
///
/// When walkDecls / walkInstruction finishes analyzing a decl / type, it will
/// then check if there's any pending ref path blocked on it and, if any, it
/// will progress their resolution by calling tryResolveRefPath again.
///
/// Ref paths can also depend on other ref paths. See
/// `self.pending_ref_paths` for more info.
///
/// A ref path that has a component that resolves into a comptimeExpr will
/// give up its resolution process entirely, leaving the remaining components
/// as strings.
fn tryResolveRefPath(
self: *Autodoc,
/// File from which the decl path originates.
file: *File,
inst_index: usize, // used only for panicWithContext
path: []DocData.Expr,
) error{OutOfMemory}!void {
var i: usize = 0;
outer: while (i < path.len - 1) : (i += 1) {
const parent = path[i];
const child_string = path[i + 1].string; // we expect to find a string union case
var resolved_parent = parent;
var j: usize = 0;
while (j < 10_000) : (j += 1) {
switch (resolved_parent) {
else => break,
.this => |t| resolved_parent = .{ .type = t },
.declRef => |decl_index| {
const decl = self.decls.items[decl_index];
if (decl._analyzed) {
resolved_parent = decl.value.expr;
continue;
}
// This decl path is pending completion
{
const res = try self.pending_ref_paths.getOrPut(
self.arena,
&path[path.len - 1],
);
if (!res.found_existing) res.value_ptr.* = .{};
}
const res = try self.ref_paths_pending_on_decls.getOrPut(
self.arena,
decl_index,
);
if (!res.found_existing) res.value_ptr.* = .{};
try res.value_ptr.*.append(self.arena, .{
.file = file,
.ref_path = path[i..path.len],
});
// We return instead doing `break :outer` to prevent the
// code after the :outer while loop to run, as it assumes
// that the path will have been fully analyzed (or we
// have given up because of a comptimeExpr).
return;
},
.refPath => |rp| {
if (self.pending_ref_paths.getPtr(&rp[rp.len - 1])) |waiter_list| {
try waiter_list.append(self.arena, .{
.file = file,
.ref_path = path[i..path.len],
});
// This decl path is pending completion
{
const res = try self.pending_ref_paths.getOrPut(
self.arena,
&path[path.len - 1],
);
if (!res.found_existing) res.value_ptr.* = .{};
}
return;
}
// If the last element is a string or a CTE, then we give up,
// otherwise we resovle the parent to it and loop again.
// NOTE: we assume that if we find a string, it's because of
// a CTE component somewhere in the path. We know that the path
// is not pending futher evaluation because we just checked!
const last = rp[rp.len - 1];
switch (last) {
.comptimeExpr, .string => break :outer,
else => {
resolved_parent = last;
continue;
},
}
},
}
} else {
panicWithContext(
file,
inst_index,
"exhausted eval quota for `{}`in tryResolveDecl\n",
.{resolved_parent},
);
}
switch (resolved_parent) {
else => {
// NOTE: indirect references to types / decls should be handled
// in the switch above this one!
printWithContext(
file,
inst_index,
"TODO: handle `{s}`in tryResolveRefPath\nInfo: {}",
.{ @tagName(resolved_parent), resolved_parent },
);
path[i + 1] = (try self.cteTodo("match failure")).expr;
continue :outer;
},
.comptimeExpr, .call => {
// Since we hit a cte, we leave the remaining strings unresolved
// and completely give up on resolving this decl path.
//decl_path.hasCte = true;
break :outer;
},
.type => |t_index| switch (self.types.items[t_index]) {
else => {
panicWithContext(
file,
inst_index,
"TODO: handle `{s}` in tryResolveDeclPath.type\n",
.{@tagName(self.types.items[t_index])},
);
},
.Unanalyzed => {
// This decl path is pending completion
{
const res = try self.pending_ref_paths.getOrPut(
self.arena,
&path[path.len - 1],
);
if (!res.found_existing) res.value_ptr.* = .{};
}
const res = try self.ref_paths_pending_on_types.getOrPut(
self.arena,
t_index,
);
if (!res.found_existing) res.value_ptr.* = .{};
try res.value_ptr.*.append(self.arena, .{
.file = file,
.ref_path = path[i..path.len],
});
return;
},
.Enum => |t_enum| {
for (t_enum.pubDecls) |d| {
// TODO: this could be improved a lot
// by having our own string table!
const decl = self.decls.items[d];
if (std.mem.eql(u8, decl.name, child_string)) {
path[i + 1] = .{ .declRef = d };
continue :outer;
}
}
for (t_enum.privDecls) |d| {
// TODO: this could be improved a lot
// by having our own string table!
const decl = self.decls.items[d];
if (std.mem.eql(u8, decl.name, child_string)) {
path[i + 1] = .{ .declRef = d };
continue :outer;
}
}
for (self.ast_nodes.items[t_enum.src].fields.?) |ast_node, idx| {
const name = self.ast_nodes.items[ast_node].name.?;
if (std.mem.eql(u8, name, child_string)) {
// TODO: should we really create an artificial
// decl for this type? Probably not.
path[i + 1] = .{
.fieldRef = .{
.type = t_index,
.index = idx,
},
};
continue :outer;
}
}
// if we got here, our search failed
printWithContext(
file,
inst_index,
"failed to match `{s}` in enum",
.{child_string},
);
path[i + 1] = (try self.cteTodo("match failure")).expr;
continue :outer;
},
.Union => |t_union| {
for (t_union.pubDecls) |d| {
// TODO: this could be improved a lot
// by having our own string table!
const decl = self.decls.items[d];
if (std.mem.eql(u8, decl.name, child_string)) {
path[i + 1] = .{ .declRef = d };
continue :outer;
}
}
for (t_union.privDecls) |d| {
// TODO: this could be improved a lot
// by having our own string table!
const decl = self.decls.items[d];
if (std.mem.eql(u8, decl.name, child_string)) {
path[i + 1] = .{ .declRef = d };
continue :outer;
}
}
for (self.ast_nodes.items[t_union.src].fields.?) |ast_node, idx| {
const name = self.ast_nodes.items[ast_node].name.?;
if (std.mem.eql(u8, name, child_string)) {
// TODO: should we really create an artificial
// decl for this type? Probably not.
path[i + 1] = .{
.fieldRef = .{
.type = t_index,
.index = idx,
},
};
continue :outer;
}
}
// if we got here, our search failed
printWithContext(
file,
inst_index,
"failed to match `{s}` in union",
.{child_string},
);
path[i + 1] = (try self.cteTodo("match failure")).expr;
continue :outer;
},
.Struct => |t_struct| {
for (t_struct.pubDecls) |d| {
// TODO: this could be improved a lot
// by having our own string table!
const decl = self.decls.items[d];
if (std.mem.eql(u8, decl.name, child_string)) {
path[i + 1] = .{ .declRef = d };
continue :outer;
}
}
for (t_struct.privDecls) |d| {
// TODO: this could be improved a lot
// by having our own string table!
const decl = self.decls.items[d];
if (std.mem.eql(u8, decl.name, child_string)) {
path[i + 1] = .{ .declRef = d };
continue :outer;
}
}
for (self.ast_nodes.items[t_struct.src].fields.?) |ast_node, idx| {
const name = self.ast_nodes.items[ast_node].name.?;
if (std.mem.eql(u8, name, child_string)) {
// TODO: should we really create an artificial
// decl for this type? Probably not.
path[i + 1] = .{
.fieldRef = .{
.type = t_index,
.index = idx,
},
};
continue :outer;
}
}
// if we got here, our search failed
printWithContext(
file,
inst_index,
"failed to match `{s}` in struct",
.{child_string},
);
path[i + 1] = (try self.cteTodo("match failure")).expr;
continue :outer;
},
},
}
}
if (self.pending_ref_paths.get(&path[path.len - 1])) |waiter_list| {
// It's important to de-register oureslves as pending before
// attempting to resolve any other decl.
_ = self.pending_ref_paths.remove(&path[path.len - 1]);
for (waiter_list.items) |resume_info| {
try self.tryResolveRefPath(resume_info.file, inst_index, resume_info.ref_path);
}
// TODO: this is where we should free waiter_list, but its in the arena
// that said, we might want to store it elsewhere and reclaim memory asap
}
}
fn analyzeFunction(
self: *Autodoc,
file: *File,
scope: *Scope,
inst_index: usize,
self_ast_node_index: usize,
type_slot_index: usize,
) error{OutOfMemory}!DocData.WalkResult {
const tags = file.zir.instructions.items(.tag);
const data = file.zir.instructions.items(.data);
const fn_info = file.zir.getFnInfo(@intCast(u32, inst_index));
try self.ast_nodes.ensureUnusedCapacity(self.arena, fn_info.total_params_len);
var param_type_refs = try std.ArrayListUnmanaged(DocData.Expr).initCapacity(
self.arena,
fn_info.total_params_len,
);
var param_ast_indexes = try std.ArrayListUnmanaged(usize).initCapacity(
self.arena,
fn_info.total_params_len,
);
// TODO: handle scope rules for fn parameters
for (fn_info.param_body[0..fn_info.total_params_len]) |param_index| {
switch (tags[param_index]) {
else => panicWithContext(
file,
param_index,
"TODO: handle `{s}` in walkInstruction.func\n",
.{@tagName(tags[param_index])},
),
.param_anytype, .param_anytype_comptime => {
// TODO: where are the doc comments?
const str_tok = data[param_index].str_tok;
const name = str_tok.get(file.zir);
param_ast_indexes.appendAssumeCapacity(self.ast_nodes.items.len);
self.ast_nodes.appendAssumeCapacity(.{
.name = name,
.docs = "",
.@"comptime" = true,
});
param_type_refs.appendAssumeCapacity(
DocData.Expr{ .@"anytype" = {} },
);
},
.param, .param_comptime => {
const pl_tok = data[param_index].pl_tok;
const extra = file.zir.extraData(Zir.Inst.Param, pl_tok.payload_index);
const doc_comment = if (extra.data.doc_comment != 0)
file.zir.nullTerminatedString(extra.data.doc_comment)
else
"";
const name = file.zir.nullTerminatedString(extra.data.name);
param_ast_indexes.appendAssumeCapacity(self.ast_nodes.items.len);
try self.ast_nodes.append(self.arena, .{
.name = name,
.docs = doc_comment,
.@"comptime" = tags[param_index] == .param_comptime,
});
const break_index = file.zir.extra[extra.end..][extra.data.body_len - 1];
const break_operand = data[break_index].@"break".operand;
const param_type_ref = try self.walkRef(file, scope, break_operand, false);
param_type_refs.appendAssumeCapacity(param_type_ref.expr);
},
}
}
// ret
const ret_type_ref = blk: {
const last_instr_index = fn_info.ret_ty_body[fn_info.ret_ty_body.len - 1];
const break_operand = data[last_instr_index].@"break".operand;
const wr = try self.walkRef(file, scope, break_operand, false);
break :blk wr;
};
self.ast_nodes.items[self_ast_node_index].fields = param_ast_indexes.items;
self.types.items[type_slot_index] = .{
.Fn = .{
.name = "todo_name func",
.src = self_ast_node_index,
.params = param_type_refs.items,
.ret = ret_type_ref.expr,
},
};
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.type_type) },
.expr = .{ .type = type_slot_index },
};
}
fn collectUnionFieldInfo(
self: *Autodoc,
file: *File,
scope: *Scope,
fields_len: usize,
field_type_refs: *std.ArrayListUnmanaged(DocData.Expr),
field_name_indexes: *std.ArrayListUnmanaged(usize),
ei: usize,
) !void {
if (fields_len == 0) return;
var extra_index = ei;
const bits_per_field = 4;
const fields_per_u32 = 32 / bits_per_field;
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
var bit_bag_index: usize = extra_index;
extra_index += bit_bags_count;
var cur_bit_bag: u32 = undefined;
var field_i: u32 = 0;
while (field_i < fields_len) : (field_i += 1) {
if (field_i % fields_per_u32 == 0) {
cur_bit_bag = file.zir.extra[bit_bag_index];
bit_bag_index += 1;
}
const has_type = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const has_align = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const has_tag = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const unused = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
_ = unused;
const field_name = file.zir.nullTerminatedString(file.zir.extra[extra_index]);
extra_index += 1;
const doc_comment_index = file.zir.extra[extra_index];
extra_index += 1;
const field_type = if (has_type)
@intToEnum(Zir.Inst.Ref, file.zir.extra[extra_index])
else
.void_type;
if (has_type) extra_index += 1;
if (has_align) extra_index += 1;
if (has_tag) extra_index += 1;
// type
{
const walk_result = try self.walkRef(file, scope, field_type, false);
try field_type_refs.append(self.arena, walk_result.expr);
}
// ast node
{
try field_name_indexes.append(self.arena, self.ast_nodes.items.len);
const doc_comment: ?[]const u8 = if (doc_comment_index != 0)
file.zir.nullTerminatedString(doc_comment_index)
else
null;
try self.ast_nodes.append(self.arena, .{
.name = field_name,
.docs = doc_comment,
});
}
}
}
fn collectStructFieldInfo(
self: *Autodoc,
file: *File,
scope: *Scope,
fields_len: usize,
field_type_refs: *std.ArrayListUnmanaged(DocData.Expr),
field_name_indexes: *std.ArrayListUnmanaged(usize),
ei: usize,
) !void {
if (fields_len == 0) return;
var extra_index = ei;
const bits_per_field = 4;
const fields_per_u32 = 32 / bits_per_field;
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
var bit_bag_index: usize = extra_index;
extra_index += bit_bags_count;
var cur_bit_bag: u32 = undefined;
var field_i: u32 = 0;
while (field_i < fields_len) : (field_i += 1) {
if (field_i % fields_per_u32 == 0) {
cur_bit_bag = file.zir.extra[bit_bag_index];
bit_bag_index += 1;
}
const has_align = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const has_default = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
// const is_comptime = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
const unused = @truncate(u1, cur_bit_bag) != 0;
cur_bit_bag >>= 1;
_ = unused;
const field_name = file.zir.nullTerminatedString(file.zir.extra[extra_index]);
extra_index += 1;
const field_type = @intToEnum(Zir.Inst.Ref, file.zir.extra[extra_index]);
extra_index += 1;
const doc_comment_index = file.zir.extra[extra_index];
extra_index += 1;
if (has_align) extra_index += 1;
if (has_default) extra_index += 1;
// type
{
const walk_result = try self.walkRef(file, scope, field_type, false);
try field_type_refs.append(self.arena, walk_result.expr);
}
// ast node
{
try field_name_indexes.append(self.arena, self.ast_nodes.items.len);
const doc_comment: ?[]const u8 = if (doc_comment_index != 0)
file.zir.nullTerminatedString(doc_comment_index)
else
null;
try self.ast_nodes.append(self.arena, .{
.name = field_name,
.docs = doc_comment,
});
}
}
}
/// A Zir Ref can either refer to common types and values, or to a Zir index.
/// WalkRef resolves common cases and delegates to `walkInstruction` otherwise.
fn walkRef(
self: *Autodoc,
file: *File,
parent_scope: *Scope,
ref: Ref,
need_type: bool, // true when the caller needs also a typeRef for the return value
) !DocData.WalkResult {
const enum_value = @enumToInt(ref);
if (enum_value <= @enumToInt(Ref.anyerror_void_error_union_type)) {
// We can just return a type that indexes into `types` with the
// enum value because in the beginning we pre-filled `types` with
// the types that are listed in `Ref`.
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(std.builtin.TypeId.Type) },
.expr = .{ .type = enum_value },
};
} else if (enum_value < Ref.typed_value_map.len) {
switch (ref) {
else => {
std.debug.panic("TODO: handle {s} in `walkRef`\n", .{
@tagName(ref),
});
},
.undef => {
return DocData.WalkResult{ .expr = .@"undefined" };
},
.zero => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.comptime_int_type) },
.expr = .{ .int = .{ .value = 0 } },
};
},
.one => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.comptime_int_type) },
.expr = .{ .int = .{ .value = 1 } },
};
},
.void_value => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.void_type) },
.expr = .{ .void = {} },
};
},
.unreachable_value => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.noreturn_type) },
.expr = .{ .@"unreachable" = {} },
};
},
.null_value => {
return DocData.WalkResult{ .expr = .@"null" };
},
.bool_true => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.bool_type) },
.expr = .{ .bool = true },
};
},
.bool_false => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.bool_type) },
.expr = .{ .bool = false },
};
},
.empty_struct => {
return DocData.WalkResult{ .expr = .{ .@"struct" = &.{} } };
},
.zero_usize => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.usize_type) },
.expr = .{ .int = .{ .value = 0 } },
};
},
.one_usize => {
return DocData.WalkResult{
.typeRef = .{ .type = @enumToInt(Ref.usize_type) },
.expr = .{ .int = .{ .value = 1 } },
};
},
// TODO: dunno what to do with those
// .calling_convention_c => {
// return DocData.WalkResult{ .int = .{
// .type = @enumToInt(Ref.comptime_int_type),
// .value = 1,
// } };
// },
// .calling_convention_inline => {
// return DocData.WalkResult{ .int = .{
// .type = @enumToInt(Ref.comptime_int_type),
// .value = 1,
// } };
// },
// .generic_poison => {
// return DocData.WalkResult{ .int = .{
// .type = @enumToInt(Ref.comptime_int_type),
// .value = 1,
// } };
// },
}
} else {
const zir_index = enum_value - Ref.typed_value_map.len;
return self.walkInstruction(file, parent_scope, zir_index, need_type);
}
}
fn getBlockInlineBreak(zir: Zir, inst_index: usize) Zir.Inst.Ref {
const tags = zir.instructions.items(.tag);
const data = zir.instructions.items(.data);
const pl_node = data[inst_index].pl_node;
const extra = zir.extraData(Zir.Inst.Block, pl_node.payload_index);
const break_index = zir.extra[extra.end..][extra.data.body_len - 1];
std.debug.assert(tags[break_index] == .break_inline);
return data[break_index].@"break".operand;
}
fn printWithContext(file: *File, inst: usize, comptime fmt: []const u8, args: anytype) void {
std.debug.print("Context [{s}] % {}\n", .{ file.sub_file_path, inst });
std.debug.print(fmt, args);
std.debug.print("\n", .{});
}
fn panicWithContext(file: *File, inst: usize, comptime fmt: []const u8, args: anytype) noreturn {
printWithContext(file, inst, fmt, args);
unreachable;
}
fn cteTodo(self: *Autodoc, msg: []const u8) error{OutOfMemory}!DocData.WalkResult {
const cte_slot_index = self.comptime_exprs.items.len;
try self.comptime_exprs.append(self.arena, .{
.code = msg,
});
return DocData.WalkResult{ .expr = .{ .comptimeExpr = cte_slot_index } };
}