zig/lib/std/math/log2.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

214 lines
6.3 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
const maxInt = std.math.maxInt;
/// Returns the base-2 logarithm of x.
///
/// Special Cases:
/// - log2(+inf) = +inf
/// - log2(0) = -inf
/// - log2(x) = nan if x < 0
/// - log2(nan) = nan
pub fn log2(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
switch (@typeInfo(T)) {
.ComptimeFloat => {
return @as(comptime_float, log2_64(x));
},
.Float => {
return switch (T) {
f32 => log2_32(x),
f64 => log2_64(x),
else => @compileError("log2 not implemented for " ++ @typeName(T)),
};
},
.ComptimeInt => comptime {
var result = 0;
var x_shifted = x;
while (b: {
x_shifted >>= 1;
break :b x_shifted != 0;
}) : (result += 1) {}
return result;
},
.Int => |IntType| switch (IntType.signedness) {
.signed => return @compileError("log2 not implemented for signed integers"),
.unsigned => return math.log2_int(T, x),
},
else => @compileError("log2 not implemented for " ++ @typeName(T)),
}
}
pub fn log2_32(x_: f32) f32 {
const ivln2hi: f32 = 1.4428710938e+00;
const ivln2lo: f32 = -1.7605285393e-04;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k);
}
pub fn log2_64(x_: f64) f64 {
const ivln2hi: f64 = 1.44269504072144627571e+00;
const ivln2lo: f64 = 1.67517131648865118353e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
var val_hi = hi * ivln2hi;
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
// spadd(val_hi, val_lo, y)
const y = @intToFloat(f64, k);
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
test "math.log2" {
try expect(log2(@as(f32, 0.2)) == log2_32(0.2));
try expect(log2(@as(f64, 0.2)) == log2_64(0.2));
}
test "math.log2_32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, log2_32(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f32, log2_32(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f32, log2_32(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f32, log2_32(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f32, log2_32(123123.234375), 16.909744, epsilon));
}
test "math.log2_64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, log2_64(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f64, log2_64(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f64, log2_64(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f64, log2_64(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f64, log2_64(123123.234375), 16.909744, epsilon));
}
test "math.log2_32.special" {
try expect(math.isPositiveInf(log2_32(math.inf(f32))));
try expect(math.isNegativeInf(log2_32(0.0)));
try expect(math.isNan(log2_32(-1.0)));
try expect(math.isNan(log2_32(math.nan(f32))));
}
test "math.log2_64.special" {
try expect(math.isPositiveInf(log2_64(math.inf(f64))));
try expect(math.isNegativeInf(log2_64(0.0)));
try expect(math.isNan(log2_64(-1.0)));
try expect(math.isNan(log2_64(math.nan(f64))));
}