zig/lib/compiler_rt/log10.zig
Andrew Kelley cd019ee502 compiler_rt: avoid weak aliases on Windows
When exporting math functions for Windows, we provide weak exports of
'l' variants rather than weak aliases. We still use aliases on other
operating systems so that the 'l' variants have one less jump
instruction in this case.
2022-05-08 13:06:21 -07:00

208 lines
6.4 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10.c
const std = @import("std");
const math = std.math;
const testing = std.testing;
const maxInt = std.math.maxInt;
pub fn __log10h(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, log10f(a));
}
pub fn log10f(x_: f32) callconv(.C) f32 {
const ivln10hi: f32 = 4.3432617188e-01;
const ivln10lo: f32 = -3.1689971365e-05;
const log10_2hi: f32 = 3.0102920532e-01;
const log10_2lo: f32 = 7.9034151668e-07;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
const dk = @intToFloat(f32, k);
return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
}
pub fn log10(x_: f64) callconv(.C) f64 {
const ivln10hi: f64 = 4.34294481878168880939e-01;
const ivln10lo: f64 = 2.50829467116452752298e-11;
const log10_2hi: f64 = 3.01029995663611771306e-01;
const log10_2lo: f64 = 3.69423907715893078616e-13;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
// val_hi + val_lo ~ log10(1 + f) + k * log10(2)
var val_hi = hi * ivln10hi;
const dk = @intToFloat(f64, k);
const y = dk * log10_2hi;
var val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
// Extra precision multiplication
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
pub fn __log10x(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, log10q(a));
}
pub fn log10q(a: f128) callconv(.C) f128 {
// TODO: more correct implementation
return log10(@floatCast(f64, a));
}
pub fn log10l(x: c_longdouble) callconv(.C) c_longdouble {
switch (@typeInfo(c_longdouble).Float.bits) {
16 => return __log10h(x),
32 => return log10f(x),
64 => return log10(x),
80 => return __log10x(x),
128 => return log10q(x),
else => @compileError("unreachable"),
}
}
test "log10_32" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f32, log10f(0.2), -0.698970, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(0.8923), -0.049489, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(1.5), 0.176091, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(37.45), 1.573452, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(89.123), 1.94999, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(123123.234375), 5.09034, epsilon));
}
test "log10_64" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f64, log10(0.2), -0.698970, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(0.8923), -0.049489, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(1.5), 0.176091, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(37.45), 1.573452, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(89.123), 1.94999, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(123123.234375), 5.09034, epsilon));
}
test "log10_32.special" {
try testing.expect(math.isPositiveInf(log10f(math.inf(f32))));
try testing.expect(math.isNegativeInf(log10f(0.0)));
try testing.expect(math.isNan(log10f(-1.0)));
try testing.expect(math.isNan(log10f(math.nan(f32))));
}
test "log10_64.special" {
try testing.expect(math.isPositiveInf(log10(math.inf(f64))));
try testing.expect(math.isNegativeInf(log10(0.0)));
try testing.expect(math.isNan(log10(-1.0)));
try testing.expect(math.isNan(log10(math.nan(f64))));
}