mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
When exporting math functions for Windows, we provide weak exports of 'l' variants rather than weak aliases. We still use aliases on other operating systems so that the 'l' variants have one less jump instruction in this case.
156 lines
4.7 KiB
Zig
156 lines
4.7 KiB
Zig
const std = @import("std");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
const trig = @import("trig.zig");
|
|
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
|
|
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
|
|
|
|
pub fn __cosh(a: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, cosf(a));
|
|
}
|
|
|
|
pub fn cosf(x: f32) callconv(.C) f32 {
|
|
// Small multiples of pi/2 rounded to double precision.
|
|
const c1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
|
|
const c2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
|
|
const c3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
|
|
const c4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
|
|
|
|
var ix = @bitCast(u32, x);
|
|
const sign = ix >> 31 != 0;
|
|
ix &= 0x7fffffff;
|
|
|
|
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
|
|
if (ix < 0x39800000) { // |x| < 2**-12
|
|
// raise inexact if x != 0
|
|
math.doNotOptimizeAway(x + 0x1p120);
|
|
return 1.0;
|
|
}
|
|
return trig.__cosdf(x);
|
|
}
|
|
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
|
|
if (ix > 0x4016cbe3) { // |x| ~> 3*pi/4
|
|
return -trig.__cosdf(if (sign) x + c2pio2 else x - c2pio2);
|
|
} else {
|
|
if (sign) {
|
|
return trig.__sindf(x + c1pio2);
|
|
} else {
|
|
return trig.__sindf(c1pio2 - x);
|
|
}
|
|
}
|
|
}
|
|
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
|
|
if (ix > 0x40afeddf) { // |x| ~> 7*pi/4
|
|
return trig.__cosdf(if (sign) x + c4pio2 else x - c4pio2);
|
|
} else {
|
|
if (sign) {
|
|
return trig.__sindf(-x - c3pio2);
|
|
} else {
|
|
return trig.__sindf(x - c3pio2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// cos(Inf or NaN) is NaN
|
|
if (ix >= 0x7f800000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: f64 = undefined;
|
|
const n = rem_pio2f(x, &y);
|
|
return switch (n & 3) {
|
|
0 => trig.__cosdf(y),
|
|
1 => trig.__sindf(-y),
|
|
2 => -trig.__cosdf(y),
|
|
else => trig.__sindf(y),
|
|
};
|
|
}
|
|
|
|
pub fn cos(x: f64) callconv(.C) f64 {
|
|
var ix = @bitCast(u64, x) >> 32;
|
|
ix &= 0x7fffffff;
|
|
|
|
// |x| ~< pi/4
|
|
if (ix <= 0x3fe921fb) {
|
|
if (ix < 0x3e46a09e) { // |x| < 2**-27 * sqrt(2)
|
|
// raise inexact if x!=0
|
|
math.doNotOptimizeAway(x + 0x1p120);
|
|
return 1.0;
|
|
}
|
|
return trig.__cos(x, 0);
|
|
}
|
|
|
|
// cos(Inf or NaN) is NaN
|
|
if (ix >= 0x7ff00000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: [2]f64 = undefined;
|
|
const n = rem_pio2(x, &y);
|
|
return switch (n & 3) {
|
|
0 => trig.__cos(y[0], y[1]),
|
|
1 => -trig.__sin(y[0], y[1], 1),
|
|
2 => -trig.__cos(y[0], y[1]),
|
|
else => trig.__sin(y[0], y[1], 1),
|
|
};
|
|
}
|
|
|
|
pub fn __cosx(a: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, cosq(a));
|
|
}
|
|
|
|
pub fn cosq(a: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return cos(@floatCast(f64, a));
|
|
}
|
|
|
|
pub fn cosl(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __cosh(x),
|
|
32 => return cosf(x),
|
|
64 => return cos(x),
|
|
80 => return __cosx(x),
|
|
128 => return cosq(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "cos32" {
|
|
const epsilon = 0.00001;
|
|
|
|
try expect(math.approxEqAbs(f32, cosf(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, cosf(0.2), 0.980067, epsilon));
|
|
try expect(math.approxEqAbs(f32, cosf(0.8923), 0.627623, epsilon));
|
|
try expect(math.approxEqAbs(f32, cosf(1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f32, cosf(-1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f32, cosf(37.45), 0.969132, epsilon));
|
|
try expect(math.approxEqAbs(f32, cosf(89.123), 0.400798, epsilon));
|
|
}
|
|
|
|
test "cos64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, cos(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos(0.2), 0.980067, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos(0.8923), 0.627623, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos(1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos(-1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos(37.45), 0.969132, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos(89.123), 0.40080, epsilon));
|
|
}
|
|
|
|
test "cos32.special" {
|
|
try expect(math.isNan(cosf(math.inf(f32))));
|
|
try expect(math.isNan(cosf(-math.inf(f32))));
|
|
try expect(math.isNan(cosf(math.nan(f32))));
|
|
}
|
|
|
|
test "cos64.special" {
|
|
try expect(math.isNan(cos(math.inf(f64))));
|
|
try expect(math.isNan(cos(-math.inf(f64))));
|
|
try expect(math.isNan(cos(math.nan(f64))));
|
|
}
|