zig/test/src/Cases.zig

1859 lines
71 KiB
Zig

gpa: Allocator,
arena: Allocator,
cases: std.ArrayList(Case),
translate: std.ArrayList(Translate),
incremental_cases: std.ArrayList(IncrementalCase),
pub const IncrementalCase = struct {
base_path: []const u8,
};
pub const Update = struct {
/// The input to the current update. We simulate an incremental update
/// with the file's contents changed to this value each update.
///
/// This value can change entirely between updates, which would be akin
/// to deleting the source file and creating a new one from scratch; or
/// you can keep it mostly consistent, with small changes, testing the
/// effects of the incremental compilation.
files: std.ArrayList(File),
/// This is a description of what happens with the update, for debugging
/// purposes.
name: []const u8,
case: union(enum) {
/// Check that it compiles with no errors.
Compile: void,
/// Check the main binary output file against an expected set of bytes.
/// This is most useful with, for example, `-ofmt=c`.
CompareObjectFile: []const u8,
/// An error update attempts to compile bad code, and ensures that it
/// fails to compile, and for the expected reasons.
/// A slice containing the expected stderr template, which
/// gets some values substituted.
Error: []const []const u8,
/// An execution update compiles and runs the input, testing the
/// stdout against the expected results
/// This is a slice containing the expected message.
Execution: []const u8,
/// A header update compiles the input with the equivalent of
/// `-femit-h` and tests the produced header against the
/// expected result.
Header: []const u8,
},
pub fn addSourceFile(update: *Update, name: []const u8, src: [:0]const u8) void {
update.files.append(.{ .path = name, .src = src }) catch @panic("out of memory");
}
};
pub const File = struct {
src: [:0]const u8,
path: []const u8,
};
pub const DepModule = struct {
name: []const u8,
path: []const u8,
};
pub const Backend = enum {
stage1,
stage2,
llvm,
};
pub const CFrontend = enum {
clang,
aro,
};
/// A `Case` consists of a list of `Update`. The same `Compilation` is used for each
/// update, so each update's source is treated as a single file being
/// updated by the test harness and incrementally compiled.
pub const Case = struct {
/// The name of the test case. This is shown if a test fails, and
/// otherwise ignored.
name: []const u8,
/// The platform the test targets. For non-native platforms, an emulator
/// such as QEMU is required for tests to complete.
target: CrossTarget,
/// In order to be able to run e.g. Execution updates, this must be set
/// to Executable.
output_mode: std.builtin.OutputMode,
optimize_mode: std.builtin.OptimizeMode = .Debug,
updates: std.ArrayList(Update),
emit_bin: bool = true,
emit_h: bool = false,
is_test: bool = false,
expect_exact: bool = false,
backend: Backend = .stage2,
link_libc: bool = false,
deps: std.ArrayList(DepModule),
pub fn addSourceFile(case: *Case, name: []const u8, src: [:0]const u8) void {
const update = &case.updates.items[case.updates.items.len - 1];
update.files.append(.{ .path = name, .src = src }) catch @panic("OOM");
}
pub fn addDepModule(case: *Case, name: []const u8, path: []const u8) void {
case.deps.append(.{
.name = name,
.path = path,
}) catch @panic("out of memory");
}
/// Adds a subcase in which the module is updated with `src`, compiled,
/// run, and the output is tested against `result`.
pub fn addCompareOutput(self: *Case, src: [:0]const u8, result: []const u8) void {
self.updates.append(.{
.files = std.ArrayList(File).init(self.updates.allocator),
.name = "update",
.case = .{ .Execution = result },
}) catch @panic("out of memory");
addSourceFile(self, "tmp.zig", src);
}
pub fn addError(self: *Case, src: [:0]const u8, errors: []const []const u8) void {
return self.addErrorNamed("update", src, errors);
}
/// Adds a subcase in which the module is updated with `src`, which
/// should contain invalid input, and ensures that compilation fails
/// for the expected reasons, given in sequential order in `errors` in
/// the form `:line:column: error: message`.
pub fn addErrorNamed(
self: *Case,
name: []const u8,
src: [:0]const u8,
errors: []const []const u8,
) void {
assert(errors.len != 0);
self.updates.append(.{
.files = std.ArrayList(File).init(self.updates.allocator),
.name = name,
.case = .{ .Error = errors },
}) catch @panic("out of memory");
addSourceFile(self, "tmp.zig", src);
}
/// Adds a subcase in which the module is updated with `src`, and
/// asserts that it compiles without issue
pub fn addCompile(self: *Case, src: [:0]const u8) void {
self.updates.append(.{
.files = std.ArrayList(File).init(self.updates.allocator),
.name = "compile",
.case = .{ .Compile = {} },
}) catch @panic("out of memory");
addSourceFile(self, "tmp.zig", src);
}
};
pub const Translate = struct {
/// The name of the test case. This is shown if a test fails, and
/// otherwise ignored.
name: []const u8,
input: [:0]const u8,
target: CrossTarget,
link_libc: bool,
c_frontend: CFrontend,
kind: union(enum) {
/// Translate the input, run it and check that it
/// outputs the expected text.
run: []const u8,
/// Translate the input and check that it contains
/// the expected lines of code.
translate: []const []const u8,
},
};
pub fn addExe(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
) *Case {
ctx.cases.append(Case{
.name = name,
.target = target,
.updates = std.ArrayList(Update).init(ctx.cases.allocator),
.output_mode = .Exe,
.deps = std.ArrayList(DepModule).init(ctx.arena),
}) catch @panic("out of memory");
return &ctx.cases.items[ctx.cases.items.len - 1];
}
/// Adds a test case for Zig input, producing an executable
pub fn exe(ctx: *Cases, name: []const u8, target: CrossTarget) *Case {
return ctx.addExe(name, target);
}
pub fn exeFromCompiledC(ctx: *Cases, name: []const u8, target: CrossTarget) *Case {
var target_adjusted = target;
target_adjusted.ofmt = .c;
ctx.cases.append(Case{
.name = name,
.target = target_adjusted,
.updates = std.ArrayList(Update).init(ctx.cases.allocator),
.output_mode = .Exe,
.deps = std.ArrayList(DepModule).init(ctx.arena),
.link_libc = true,
}) catch @panic("out of memory");
return &ctx.cases.items[ctx.cases.items.len - 1];
}
pub fn noEmitUsingLlvmBackend(ctx: *Cases, name: []const u8, target: CrossTarget) *Case {
ctx.cases.append(Case{
.name = name,
.target = target,
.updates = std.ArrayList(Update).init(ctx.cases.allocator),
.output_mode = .Obj,
.emit_bin = false,
.deps = std.ArrayList(DepModule).init(ctx.arena),
.backend = .llvm,
}) catch @panic("out of memory");
return &ctx.cases.items[ctx.cases.items.len - 1];
}
/// Adds a test case that uses the LLVM backend to emit an executable.
/// Currently this implies linking libc, because only then we can generate a testable executable.
pub fn exeUsingLlvmBackend(ctx: *Cases, name: []const u8, target: CrossTarget) *Case {
ctx.cases.append(Case{
.name = name,
.target = target,
.updates = std.ArrayList(Update).init(ctx.cases.allocator),
.output_mode = .Exe,
.deps = std.ArrayList(DepModule).init(ctx.arena),
.backend = .llvm,
.link_libc = true,
}) catch @panic("out of memory");
return &ctx.cases.items[ctx.cases.items.len - 1];
}
pub fn addObj(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
) *Case {
ctx.cases.append(Case{
.name = name,
.target = target,
.updates = std.ArrayList(Update).init(ctx.cases.allocator),
.output_mode = .Obj,
.deps = std.ArrayList(DepModule).init(ctx.arena),
}) catch @panic("out of memory");
return &ctx.cases.items[ctx.cases.items.len - 1];
}
pub fn addTest(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
) *Case {
ctx.cases.append(Case{
.name = name,
.target = target,
.updates = std.ArrayList(Update).init(ctx.cases.allocator),
.output_mode = .Exe,
.is_test = true,
.deps = std.ArrayList(DepModule).init(ctx.arena),
}) catch @panic("out of memory");
return &ctx.cases.items[ctx.cases.items.len - 1];
}
/// Adds a test case for Zig input, producing an object file.
pub fn obj(ctx: *Cases, name: []const u8, target: CrossTarget) *Case {
return ctx.addObj(name, target);
}
/// Adds a test case for ZIR input, producing an object file.
pub fn objZIR(ctx: *Cases, name: []const u8, target: CrossTarget) *Case {
return ctx.addObj(name, target, .ZIR);
}
/// Adds a test case for Zig or ZIR input, producing C code.
pub fn addC(ctx: *Cases, name: []const u8, target: CrossTarget) *Case {
var target_adjusted = target;
target_adjusted.ofmt = std.Target.ObjectFormat.c;
ctx.cases.append(Case{
.name = name,
.target = target_adjusted,
.updates = std.ArrayList(Update).init(ctx.cases.allocator),
.output_mode = .Obj,
.deps = std.ArrayList(DepModule).init(ctx.arena),
}) catch @panic("out of memory");
return &ctx.cases.items[ctx.cases.items.len - 1];
}
pub fn addCompareOutput(
ctx: *Cases,
name: []const u8,
src: [:0]const u8,
expected_stdout: []const u8,
) void {
ctx.addExe(name, .{}).addCompareOutput(src, expected_stdout);
}
/// Adds a test case that compiles the Zig source given in `src`, executes
/// it, runs it, and tests the output against `expected_stdout`
pub fn compareOutput(
ctx: *Cases,
name: []const u8,
src: [:0]const u8,
expected_stdout: []const u8,
) void {
return ctx.addCompareOutput(name, src, expected_stdout);
}
pub fn addTransform(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
src: [:0]const u8,
result: [:0]const u8,
) void {
ctx.addObj(name, target).addTransform(src, result);
}
/// Adds a test case that compiles the Zig given in `src` to ZIR and tests
/// the ZIR against `result`
pub fn transform(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
src: [:0]const u8,
result: [:0]const u8,
) void {
ctx.addTransform(name, target, src, result);
}
pub fn addError(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
src: [:0]const u8,
expected_errors: []const []const u8,
) void {
ctx.addObj(name, target).addError(src, expected_errors);
}
/// Adds a test case that ensures that the Zig given in `src` fails to
/// compile for the expected reasons, given in sequential order in
/// `expected_errors` in the form `:line:column: error: message`.
pub fn compileError(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
src: [:0]const u8,
expected_errors: []const []const u8,
) void {
ctx.addError(name, target, src, expected_errors);
}
/// Adds a test case that asserts that the Zig given in `src` compiles
/// without any errors.
pub fn addCompile(
ctx: *Cases,
name: []const u8,
target: CrossTarget,
src: [:0]const u8,
) void {
ctx.addObj(name, target).addCompile(src);
}
/// Adds a test for each file in the provided directory.
/// Testing strategy (TestStrategy) is inferred automatically from filenames.
/// Recurses nested directories.
///
/// Each file should include a test manifest as a contiguous block of comments at
/// the end of the file. The first line should be the test type, followed by a set of
/// key-value config values, followed by a blank line, then the expected output.
pub fn addFromDir(ctx: *Cases, dir: std.fs.IterableDir) void {
var current_file: []const u8 = "none";
ctx.addFromDirInner(dir, &current_file) catch |err| {
std.debug.panicExtra(
@errorReturnTrace(),
@returnAddress(),
"test harness failed to process file '{s}': {s}\n",
.{ current_file, @errorName(err) },
);
};
}
fn addFromDirInner(
ctx: *Cases,
iterable_dir: std.fs.IterableDir,
/// This is kept up to date with the currently being processed file so
/// that if any errors occur the caller knows it happened during this file.
current_file: *[]const u8,
) !void {
var it = try iterable_dir.walk(ctx.arena);
var filenames = std.ArrayList([]const u8).init(ctx.arena);
while (try it.next()) |entry| {
if (entry.kind != .file) continue;
// Ignore stuff such as .swp files
switch (Compilation.classifyFileExt(entry.basename)) {
.unknown => continue,
else => {},
}
try filenames.append(try ctx.arena.dupe(u8, entry.path));
}
// Sort filenames, so that incremental tests are contiguous and in-order
sortTestFilenames(filenames.items);
var test_it = TestIterator{ .filenames = filenames.items };
while (test_it.next()) |maybe_batch| {
const batch = maybe_batch orelse break;
const strategy: TestStrategy = if (batch.len > 1) .incremental else .independent;
const filename = batch[0];
current_file.* = filename;
if (strategy == .incremental) {
try ctx.incremental_cases.append(.{ .base_path = filename });
continue;
}
const max_file_size = 10 * 1024 * 1024;
const src = try iterable_dir.dir.readFileAllocOptions(ctx.arena, filename, max_file_size, null, 1, 0);
// Parse the manifest
var manifest = try TestManifest.parse(ctx.arena, src);
const backends = try manifest.getConfigForKeyAlloc(ctx.arena, "backend", Backend);
const targets = try manifest.getConfigForKeyAlloc(ctx.arena, "target", CrossTarget);
const c_frontends = try manifest.getConfigForKeyAlloc(ctx.arena, "c_frontend", CFrontend);
const is_test = try manifest.getConfigForKeyAssertSingle("is_test", bool);
const link_libc = try manifest.getConfigForKeyAssertSingle("link_libc", bool);
const output_mode = try manifest.getConfigForKeyAssertSingle("output_mode", std.builtin.OutputMode);
if (manifest.type == .translate_c) {
for (c_frontends) |c_frontend| {
for (targets) |target| {
const output = try manifest.trailingLinesSplit(ctx.arena);
try ctx.translate.append(.{
.name = std.fs.path.stem(filename),
.c_frontend = c_frontend,
.target = target,
.link_libc = link_libc,
.input = src,
.kind = .{ .translate = output },
});
}
}
continue;
}
if (manifest.type == .run_translated_c) {
for (c_frontends) |c_frontend| {
for (targets) |target| {
const output = try manifest.trailingSplit(ctx.arena);
try ctx.translate.append(.{
.name = std.fs.path.stem(filename),
.c_frontend = c_frontend,
.target = target,
.link_libc = link_libc,
.input = src,
.kind = .{ .run = output },
});
}
}
continue;
}
var cases = std.ArrayList(usize).init(ctx.arena);
// Cross-product to get all possible test combinations
for (backends) |backend| {
for (targets) |target| {
if (backend == .stage2 and
target.getCpuArch() != .wasm32 and target.getCpuArch() != .x86_64)
{
// Other backends don't support new liveness format
continue;
}
if (backend == .stage2 and target.getOsTag() == .macos and
target.getCpuArch() == .x86_64 and builtin.cpu.arch == .aarch64)
{
// Rosetta has issues with ZLD
continue;
}
const next = ctx.cases.items.len;
try ctx.cases.append(.{
.name = std.fs.path.stem(filename),
.target = target,
.backend = backend,
.updates = std.ArrayList(Cases.Update).init(ctx.cases.allocator),
.is_test = is_test,
.output_mode = output_mode,
.link_libc = link_libc,
.deps = std.ArrayList(DepModule).init(ctx.cases.allocator),
});
try cases.append(next);
}
}
for (cases.items) |case_index| {
const case = &ctx.cases.items[case_index];
switch (manifest.type) {
.compile => {
case.addCompile(src);
},
.@"error" => {
const errors = try manifest.trailingLines(ctx.arena);
case.addError(src, errors);
},
.run => {
const output = try manifest.trailingSplit(ctx.arena);
case.addCompareOutput(src, output);
},
.translate_c => @panic("c_frontend specified for compile case"),
.run_translated_c => @panic("c_frontend specified for compile case"),
.cli => @panic("TODO cli tests"),
}
}
} else |err| {
// make sure the current file is set to the file that produced an error
current_file.* = test_it.currentFilename();
return err;
}
}
pub fn init(gpa: Allocator, arena: Allocator) Cases {
return .{
.gpa = gpa,
.cases = std.ArrayList(Case).init(gpa),
.translate = std.ArrayList(Translate).init(gpa),
.incremental_cases = std.ArrayList(IncrementalCase).init(gpa),
.arena = arena,
};
}
pub fn lowerToBuildSteps(
self: *Cases,
b: *std.Build,
parent_step: *std.Build.Step,
opt_test_filter: ?[]const u8,
cases_dir_path: []const u8,
incremental_exe: *std.Build.Step.Compile,
) void {
const host = std.zig.system.NativeTargetInfo.detect(.{}) catch |err|
std.debug.panic("unable to detect native host: {s}\n", .{@errorName(err)});
for (self.incremental_cases.items) |incr_case| {
if (true) {
// TODO: incremental tests are disabled for now, as incremental compilation bugs were
// getting in the way of practical improvements to the compiler, and incremental
// compilation is not currently used. They should be re-enabled once incremental
// compilation is in a happier state.
continue;
}
if (opt_test_filter) |test_filter| {
if (std.mem.indexOf(u8, incr_case.base_path, test_filter) == null) continue;
}
const case_base_path_with_dir = std.fs.path.join(b.allocator, &.{
cases_dir_path, incr_case.base_path,
}) catch @panic("OOM");
const run = b.addRunArtifact(incremental_exe);
run.setName(incr_case.base_path);
run.addArgs(&.{
case_base_path_with_dir,
b.zig_exe,
});
run.expectStdOutEqual("");
parent_step.dependOn(&run.step);
}
for (self.cases.items) |case| {
if (case.updates.items.len != 1) continue; // handled with incremental_cases above
assert(case.updates.items.len == 1);
const update = case.updates.items[0];
if (opt_test_filter) |test_filter| {
if (std.mem.indexOf(u8, case.name, test_filter) == null) continue;
}
const writefiles = b.addWriteFiles();
var file_sources = std.StringHashMap(std.Build.LazyPath).init(b.allocator);
defer file_sources.deinit();
for (update.files.items) |file| {
file_sources.put(file.path, writefiles.add(file.path, file.src)) catch @panic("OOM");
}
const root_source_file = writefiles.files.items[0].getPath();
const artifact = if (case.is_test) b.addTest(.{
.root_source_file = root_source_file,
.name = case.name,
.target = case.target,
.optimize = case.optimize_mode,
}) else switch (case.output_mode) {
.Obj => b.addObject(.{
.root_source_file = root_source_file,
.name = case.name,
.target = case.target,
.optimize = case.optimize_mode,
}),
.Lib => b.addStaticLibrary(.{
.root_source_file = root_source_file,
.name = case.name,
.target = case.target,
.optimize = case.optimize_mode,
}),
.Exe => b.addExecutable(.{
.root_source_file = root_source_file,
.name = case.name,
.target = case.target,
.optimize = case.optimize_mode,
}),
};
if (case.link_libc) artifact.linkLibC();
switch (case.backend) {
.stage1 => continue,
.stage2 => {
artifact.use_llvm = false;
artifact.use_lld = false;
},
.llvm => {
artifact.use_llvm = true;
},
}
for (case.deps.items) |dep| {
artifact.addAnonymousModule(dep.name, .{
.source_file = file_sources.get(dep.path).?,
});
}
switch (update.case) {
.Compile => {
parent_step.dependOn(&artifact.step);
},
.CompareObjectFile => |expected_output| {
const check = b.addCheckFile(artifact.getEmittedBin(), .{
.expected_exact = expected_output,
});
parent_step.dependOn(&check.step);
},
.Error => |expected_msgs| {
assert(expected_msgs.len != 0);
artifact.expect_errors = .{ .exact = expected_msgs };
parent_step.dependOn(&artifact.step);
},
.Execution => |expected_stdout| no_exec: {
const run = if (case.target.ofmt == .c) run_step: {
const target_info = std.zig.system.NativeTargetInfo.detect(case.target) catch |err|
std.debug.panic("unable to detect target host: {s}\n", .{@errorName(err)});
if (host.getExternalExecutor(&target_info, .{ .link_libc = true }) != .native) {
// We wouldn't be able to run the compiled C code.
break :no_exec;
}
const run_c = b.addSystemCommand(&.{
b.zig_exe,
"run",
"-cflags",
"-Ilib",
"-std=c99",
"-pedantic",
"-Werror",
"-Wno-dollar-in-identifier-extension",
"-Wno-incompatible-library-redeclaration", // https://github.com/ziglang/zig/issues/875
"-Wno-incompatible-pointer-types",
"-Wno-overlength-strings",
"--",
"-lc",
"-target",
case.target.zigTriple(b.allocator) catch @panic("OOM"),
});
run_c.addArtifactArg(artifact);
break :run_step run_c;
} else b.addRunArtifact(artifact);
run.skip_foreign_checks = true;
if (!case.is_test) {
run.expectStdOutEqual(expected_stdout);
}
parent_step.dependOn(&run.step);
},
.Header => @panic("TODO"),
}
}
for (self.translate.items) |case| switch (case.kind) {
.run => |output| {
const annotated_case_name = b.fmt("run-translated-c {s}", .{case.name});
if (opt_test_filter) |filter| {
if (std.mem.indexOf(u8, annotated_case_name, filter) == null) continue;
}
if (!std.process.can_spawn) {
std.debug.print("Unable to spawn child processes on {s}, skipping test.\n", .{@tagName(builtin.os.tag)});
continue; // Pass test.
}
const target_info = std.zig.system.NativeTargetInfo.detect(case.target) catch |err|
std.debug.panic("unable to detect target host: {s}\n", .{@errorName(err)});
if (host.getExternalExecutor(&target_info, .{ .link_libc = true }) != .native) {
// We wouldn't be able to run the compiled C code.
continue; // Pass test.
}
const write_src = b.addWriteFiles();
const file_source = write_src.add("tmp.c", case.input);
const translate_c = b.addTranslateC(.{
.source_file = file_source,
.optimize = .Debug,
.target = case.target,
.link_libc = case.link_libc,
.use_clang = case.c_frontend == .clang,
});
translate_c.step.name = b.fmt("{s} translate-c", .{annotated_case_name});
const run_exe = translate_c.addExecutable(.{});
run_exe.step.name = b.fmt("{s} build-exe", .{annotated_case_name});
run_exe.linkLibC();
const run = b.addRunArtifact(run_exe);
run.step.name = b.fmt("{s} run", .{annotated_case_name});
run.expectStdOutEqual(output);
parent_step.dependOn(&run.step);
},
.translate => |output| {
const annotated_case_name = b.fmt("zig translate-c {s}", .{case.name});
if (opt_test_filter) |filter| {
if (std.mem.indexOf(u8, annotated_case_name, filter) == null) continue;
}
const write_src = b.addWriteFiles();
const file_source = write_src.add("tmp.c", case.input);
const translate_c = b.addTranslateC(.{
.source_file = file_source,
.optimize = .Debug,
.target = case.target,
.link_libc = case.link_libc,
.use_clang = case.c_frontend == .clang,
});
translate_c.step.name = annotated_case_name;
const check_file = translate_c.addCheckFile(output);
parent_step.dependOn(&check_file.step);
},
};
}
/// Sort test filenames in-place, so that incremental test cases ("foo.0.zig",
/// "foo.1.zig", etc.) are contiguous and appear in numerical order.
fn sortTestFilenames(filenames: [][]const u8) void {
const Context = struct {
pub fn lessThan(_: @This(), a: []const u8, b: []const u8) bool {
const a_parts = getTestFileNameParts(a);
const b_parts = getTestFileNameParts(b);
// Sort "<base_name>.X.<file_ext>" based on "<base_name>" and "<file_ext>" first
return switch (std.mem.order(u8, a_parts.base_name, b_parts.base_name)) {
.lt => true,
.gt => false,
.eq => switch (std.mem.order(u8, a_parts.file_ext, b_parts.file_ext)) {
.lt => true,
.gt => false,
.eq => {
// a and b differ only in their ".X" part
// Sort "<base_name>.<file_ext>" before any "<base_name>.X.<file_ext>"
if (a_parts.test_index) |a_index| {
if (b_parts.test_index) |b_index| {
// Make sure that incremental tests appear in linear order
return a_index < b_index;
} else {
return false;
}
} else {
return b_parts.test_index != null;
}
},
},
};
}
};
std.mem.sort([]const u8, filenames, Context{}, Context.lessThan);
}
/// Iterates a set of filenames extracting batches that are either incremental
/// ("foo.0.zig", "foo.1.zig", etc.) or independent ("foo.zig", "bar.zig", etc.).
/// Assumes filenames are sorted.
const TestIterator = struct {
start: usize = 0,
end: usize = 0,
filenames: []const []const u8,
/// reset on each call to `next`
index: usize = 0,
const Error = error{InvalidIncrementalTestIndex};
fn next(it: *TestIterator) Error!?[]const []const u8 {
try it.nextInner();
if (it.start == it.end) return null;
return it.filenames[it.start..it.end];
}
fn nextInner(it: *TestIterator) Error!void {
it.start = it.end;
if (it.end == it.filenames.len) return;
if (it.end + 1 == it.filenames.len) {
it.end += 1;
return;
}
const remaining = it.filenames[it.end..];
it.index = 0;
while (it.index < remaining.len - 1) : (it.index += 1) {
// First, check if this file is part of an incremental update sequence
// Split filename into "<base_name>.<index>.<file_ext>"
const prev_parts = getTestFileNameParts(remaining[it.index]);
const new_parts = getTestFileNameParts(remaining[it.index + 1]);
// If base_name and file_ext match, these files are in the same test sequence
// and the new one should be the incremented version of the previous test
if (std.mem.eql(u8, prev_parts.base_name, new_parts.base_name) and
std.mem.eql(u8, prev_parts.file_ext, new_parts.file_ext))
{
// This is "foo.X.zig" followed by "foo.Y.zig". Make sure that X = Y + 1
if (prev_parts.test_index == null)
return error.InvalidIncrementalTestIndex;
if (new_parts.test_index == null)
return error.InvalidIncrementalTestIndex;
if (new_parts.test_index.? != prev_parts.test_index.? + 1)
return error.InvalidIncrementalTestIndex;
} else {
// This is not the same test sequence, so the new file must be the first file
// in a new sequence ("*.0.zig") or an independent test file ("*.zig")
if (new_parts.test_index != null and new_parts.test_index.? != 0)
return error.InvalidIncrementalTestIndex;
it.end += it.index + 1;
break;
}
} else {
it.end += remaining.len;
}
}
/// In the event of an `error.InvalidIncrementalTestIndex`, this function can
/// be used to find the current filename that was being processed.
/// Asserts the iterator hasn't reached the end.
fn currentFilename(it: TestIterator) []const u8 {
assert(it.end != it.filenames.len);
const remaining = it.filenames[it.end..];
return remaining[it.index + 1];
}
};
/// For a filename in the format "<filename>.X.<ext>" or "<filename>.<ext>", returns
/// "<filename>", "<ext>" and X parsed as a decimal number. If X is not present, or
/// cannot be parsed as a decimal number, it is treated as part of <filename>
fn getTestFileNameParts(name: []const u8) struct {
base_name: []const u8,
file_ext: []const u8,
test_index: ?usize,
} {
const file_ext = std.fs.path.extension(name);
const trimmed = name[0 .. name.len - file_ext.len]; // Trim off ".<ext>"
const maybe_index = std.fs.path.extension(trimmed); // Extract ".X"
// Attempt to parse index
const index: ?usize = if (maybe_index.len > 0)
std.fmt.parseInt(usize, maybe_index[1..], 10) catch null
else
null;
// Adjust "<filename>" extent based on parsing success
const base_name_end = trimmed.len - if (index != null) maybe_index.len else 0;
return .{
.base_name = name[0..base_name_end],
.file_ext = if (file_ext.len > 0) file_ext[1..] else file_ext,
.test_index = index,
};
}
const TestStrategy = enum {
/// Execute tests as independent compilations, unless they are explicitly
/// incremental ("foo.0.zig", "foo.1.zig", etc.)
independent,
/// Execute all tests as incremental updates to a single compilation. Explicitly
/// incremental tests ("foo.0.zig", "foo.1.zig", etc.) still execute in order
incremental,
};
/// Default config values for known test manifest key-value pairings.
/// Currently handled defaults are:
/// * backend
/// * target
/// * output_mode
/// * is_test
const TestManifestConfigDefaults = struct {
/// Asserts if the key doesn't exist - yep, it's an oversight alright.
fn get(@"type": TestManifest.Type, key: []const u8) []const u8 {
if (std.mem.eql(u8, key, "backend")) {
return "stage2";
} else if (std.mem.eql(u8, key, "target")) {
if (@"type" == .@"error" or @"type" == .translate_c or @"type" == .run_translated_c) {
return "native";
}
return comptime blk: {
var defaults: []const u8 = "";
// TODO should we only return "mainstream" targets by default here?
// TODO we should also specify ABIs explicitly as the backends are
// getting more and more complete
// Linux
inline for (&[_][]const u8{ "x86_64", "arm", "aarch64" }) |arch| {
defaults = defaults ++ arch ++ "-linux" ++ ",";
}
// macOS
inline for (&[_][]const u8{ "x86_64", "aarch64" }) |arch| {
defaults = defaults ++ arch ++ "-macos" ++ ",";
}
// Windows
defaults = defaults ++ "x86_64-windows" ++ ",";
// Wasm
defaults = defaults ++ "wasm32-wasi";
break :blk defaults;
};
} else if (std.mem.eql(u8, key, "output_mode")) {
return switch (@"type") {
.@"error" => "Obj",
.run => "Exe",
.compile => "Obj",
.translate_c => "Obj",
.run_translated_c => "Obj",
.cli => @panic("TODO test harness for CLI tests"),
};
} else if (std.mem.eql(u8, key, "is_test")) {
return "false";
} else if (std.mem.eql(u8, key, "link_libc")) {
return "false";
} else if (std.mem.eql(u8, key, "c_frontend")) {
return "clang";
} else unreachable;
}
};
/// Manifest syntax example:
/// (see https://github.com/ziglang/zig/issues/11288)
///
/// error
/// backend=stage1,stage2
/// output_mode=exe
///
/// :3:19: error: foo
///
/// run
/// target=x86_64-linux,aarch64-macos
///
/// I am expected stdout! Hello!
///
/// cli
///
/// build test
const TestManifest = struct {
type: Type,
config_map: std.StringHashMap([]const u8),
trailing_bytes: []const u8 = "",
const Type = enum {
@"error",
run,
cli,
compile,
translate_c,
run_translated_c,
};
const TrailingIterator = struct {
inner: std.mem.TokenIterator(u8, .any),
fn next(self: *TrailingIterator) ?[]const u8 {
const next_inner = self.inner.next() orelse return null;
return std.mem.trim(u8, next_inner[2..], " \t");
}
};
fn ConfigValueIterator(comptime T: type) type {
return struct {
inner: std.mem.SplitIterator(u8, .scalar),
fn next(self: *@This()) !?T {
const next_raw = self.inner.next() orelse return null;
const parseFn = getDefaultParser(T);
return try parseFn(next_raw);
}
};
}
fn parse(arena: Allocator, bytes: []const u8) !TestManifest {
// The manifest is the last contiguous block of comments in the file
// We scan for the beginning by searching backward for the first non-empty line that does not start with "//"
var start: ?usize = null;
var end: usize = bytes.len;
if (bytes.len > 0) {
var cursor: usize = bytes.len - 1;
while (true) {
// Move to beginning of line
while (cursor > 0 and bytes[cursor - 1] != '\n') cursor -= 1;
if (std.mem.startsWith(u8, bytes[cursor..], "//")) {
start = cursor; // Contiguous comment line, include in manifest
} else {
if (start != null) break; // Encountered non-comment line, end of manifest
// We ignore all-whitespace lines following the comment block, but anything else
// means that there is no manifest present.
if (std.mem.trim(u8, bytes[cursor..end], " \r\n\t").len == 0) {
end = cursor;
} else break; // If it's not whitespace, there is no manifest
}
// Move to previous line
if (cursor != 0) cursor -= 1 else break;
}
}
const actual_start = start orelse return error.MissingTestManifest;
const manifest_bytes = bytes[actual_start..end];
var it = std.mem.tokenizeAny(u8, manifest_bytes, "\r\n");
// First line is the test type
const tt: Type = blk: {
const line = it.next() orelse return error.MissingTestCaseType;
const raw = std.mem.trim(u8, line[2..], " \t");
if (std.mem.eql(u8, raw, "error")) {
break :blk .@"error";
} else if (std.mem.eql(u8, raw, "run")) {
break :blk .run;
} else if (std.mem.eql(u8, raw, "cli")) {
break :blk .cli;
} else if (std.mem.eql(u8, raw, "compile")) {
break :blk .compile;
} else if (std.mem.eql(u8, raw, "translate-c")) {
break :blk .translate_c;
} else if (std.mem.eql(u8, raw, "run-translated-c")) {
break :blk .run_translated_c;
} else {
std.log.warn("unknown test case type requested: {s}", .{raw});
return error.UnknownTestCaseType;
}
};
var manifest: TestManifest = .{
.type = tt,
.config_map = std.StringHashMap([]const u8).init(arena),
};
// Any subsequent line until a blank comment line is key=value(s) pair
while (it.next()) |line| {
const trimmed = std.mem.trim(u8, line[2..], " \t");
if (trimmed.len == 0) break;
// Parse key=value(s)
var kv_it = std.mem.splitScalar(u8, trimmed, '=');
const key = kv_it.first();
try manifest.config_map.putNoClobber(key, kv_it.next() orelse return error.MissingValuesForConfig);
}
// Finally, trailing is expected output
manifest.trailing_bytes = manifest_bytes[it.index..];
return manifest;
}
fn getConfigForKey(
self: TestManifest,
key: []const u8,
comptime T: type,
) ConfigValueIterator(T) {
const bytes = self.config_map.get(key) orelse TestManifestConfigDefaults.get(self.type, key);
return ConfigValueIterator(T){
.inner = std.mem.splitScalar(u8, bytes, ','),
};
}
fn getConfigForKeyAlloc(
self: TestManifest,
allocator: Allocator,
key: []const u8,
comptime T: type,
) ![]const T {
var out = std.ArrayList(T).init(allocator);
defer out.deinit();
var it = self.getConfigForKey(key, T);
while (try it.next()) |item| {
try out.append(item);
}
return try out.toOwnedSlice();
}
fn getConfigForKeyAssertSingle(self: TestManifest, key: []const u8, comptime T: type) !T {
var it = self.getConfigForKey(key, T);
const res = (try it.next()) orelse unreachable;
assert((try it.next()) == null);
return res;
}
fn trailing(self: TestManifest) TrailingIterator {
return .{
.inner = std.mem.tokenizeAny(u8, self.trailing_bytes, "\r\n"),
};
}
fn trailingSplit(self: TestManifest, allocator: Allocator) error{OutOfMemory}![]const u8 {
var out = std.ArrayList(u8).init(allocator);
defer out.deinit();
var trailing_it = self.trailing();
while (trailing_it.next()) |line| {
try out.appendSlice(line);
try out.append('\n');
}
if (out.items.len > 0) {
try out.resize(out.items.len - 1);
}
return try out.toOwnedSlice();
}
fn trailingLines(self: TestManifest, allocator: Allocator) error{OutOfMemory}![]const []const u8 {
var out = std.ArrayList([]const u8).init(allocator);
defer out.deinit();
var it = self.trailing();
while (it.next()) |line| {
try out.append(line);
}
return try out.toOwnedSlice();
}
fn trailingLinesSplit(self: TestManifest, allocator: Allocator) error{OutOfMemory}![]const []const u8 {
// Collect output lines split by empty lines
var out = std.ArrayList([]const u8).init(allocator);
defer out.deinit();
var buf = std.ArrayList(u8).init(allocator);
defer buf.deinit();
var it = self.trailing();
while (it.next()) |line| {
if (line.len == 0) {
if (buf.items.len != 0) {
try out.append(try buf.toOwnedSlice());
buf.items.len = 0;
}
continue;
}
try buf.appendSlice(line);
try buf.append('\n');
}
try out.append(try buf.toOwnedSlice());
return try out.toOwnedSlice();
}
fn ParseFn(comptime T: type) type {
return fn ([]const u8) anyerror!T;
}
fn getDefaultParser(comptime T: type) ParseFn(T) {
if (T == CrossTarget) return struct {
fn parse(str: []const u8) anyerror!T {
var opts = CrossTarget.ParseOptions{
.arch_os_abi = str,
};
return try CrossTarget.parse(opts);
}
}.parse;
switch (@typeInfo(T)) {
.Int => return struct {
fn parse(str: []const u8) anyerror!T {
return try std.fmt.parseInt(T, str, 0);
}
}.parse,
.Bool => return struct {
fn parse(str: []const u8) anyerror!T {
if (std.mem.eql(u8, str, "true")) return true;
if (std.mem.eql(u8, str, "false")) return false;
std.debug.print("{s}\n", .{str});
return error.InvalidBool;
}
}.parse,
.Enum => return struct {
fn parse(str: []const u8) anyerror!T {
return std.meta.stringToEnum(T, str) orelse {
std.log.err("unknown enum variant for {s}: {s}", .{ @typeName(T), str });
return error.UnknownEnumVariant;
};
}
}.parse,
.Struct => @compileError("no default parser for " ++ @typeName(T)),
else => @compileError("no default parser for " ++ @typeName(T)),
}
}
};
const Cases = @This();
const builtin = @import("builtin");
const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const CrossTarget = std.zig.CrossTarget;
const Compilation = @import("../../src/Compilation.zig");
const zig_h = @import("../../src/link.zig").File.C.zig_h;
const introspect = @import("../../src/introspect.zig");
const ThreadPool = std.Thread.Pool;
const WaitGroup = std.Thread.WaitGroup;
const build_options = @import("build_options");
const Package = @import("../../src/Package.zig");
pub const std_options = struct {
pub const log_level: std.log.Level = .err;
};
var general_purpose_allocator = std.heap.GeneralPurposeAllocator(.{
.stack_trace_frames = build_options.mem_leak_frames,
}){};
// TODO: instead of embedding the compiler in this process, spawn the compiler
// as a sub-process and communicate the updates using the compiler protocol.
pub fn main() !void {
const use_gpa = build_options.force_gpa or !builtin.link_libc;
const gpa = gpa: {
if (use_gpa) {
break :gpa general_purpose_allocator.allocator();
}
// We would prefer to use raw libc allocator here, but cannot
// use it if it won't support the alignment we need.
if (@alignOf(std.c.max_align_t) < @alignOf(i128)) {
break :gpa std.heap.c_allocator;
}
break :gpa std.heap.raw_c_allocator;
};
var single_threaded_arena = std.heap.ArenaAllocator.init(gpa);
defer single_threaded_arena.deinit();
var thread_safe_arena: std.heap.ThreadSafeAllocator = .{
.child_allocator = single_threaded_arena.allocator(),
};
const arena = thread_safe_arena.allocator();
const args = try std.process.argsAlloc(arena);
const case_file_path = args[1];
const zig_exe_path = args[2];
var filenames = std.ArrayList([]const u8).init(arena);
const case_dirname = std.fs.path.dirname(case_file_path).?;
var iterable_dir = try std.fs.cwd().openIterableDir(case_dirname, .{});
defer iterable_dir.close();
if (std.mem.endsWith(u8, case_file_path, ".0.zig")) {
const stem = case_file_path[case_dirname.len + 1 .. case_file_path.len - "0.zig".len];
var it = iterable_dir.iterate();
while (try it.next()) |entry| {
if (entry.kind != .file) continue;
if (!std.mem.startsWith(u8, entry.name, stem)) continue;
try filenames.append(try std.fs.path.join(arena, &.{ case_dirname, entry.name }));
}
} else {
try filenames.append(case_file_path);
}
if (filenames.items.len == 0) {
std.debug.print("failed to find the input source file(s) from '{s}'\n", .{
case_file_path,
});
std.process.exit(1);
}
// Sort filenames, so that incremental tests are contiguous and in-order
sortTestFilenames(filenames.items);
var ctx = Cases.init(gpa, arena);
var test_it = TestIterator{ .filenames = filenames.items };
while (try test_it.next()) |batch| {
const strategy: TestStrategy = if (batch.len > 1) .incremental else .independent;
var cases = std.ArrayList(usize).init(arena);
for (batch) |filename| {
const max_file_size = 10 * 1024 * 1024;
const src = try iterable_dir.dir.readFileAllocOptions(arena, filename, max_file_size, null, 1, 0);
// Parse the manifest
var manifest = try TestManifest.parse(arena, src);
if (cases.items.len == 0) {
const backends = try manifest.getConfigForKeyAlloc(arena, "backend", Backend);
const targets = try manifest.getConfigForKeyAlloc(arena, "target", CrossTarget);
const c_frontends = try manifest.getConfigForKeyAlloc(ctx.arena, "c_frontend", CFrontend);
const is_test = try manifest.getConfigForKeyAssertSingle("is_test", bool);
const link_libc = try manifest.getConfigForKeyAssertSingle("link_libc", bool);
const output_mode = try manifest.getConfigForKeyAssertSingle("output_mode", std.builtin.OutputMode);
if (manifest.type == .translate_c) {
for (c_frontends) |c_frontend| {
for (targets) |target| {
const output = try manifest.trailingLinesSplit(ctx.arena);
try ctx.translate.append(.{
.name = std.fs.path.stem(filename),
.c_frontend = c_frontend,
.target = target,
.is_test = is_test,
.link_libc = link_libc,
.input = src,
.kind = .{ .translate = output },
});
}
}
continue;
}
if (manifest.type == .run_translated_c) {
for (c_frontends) |c_frontend| {
for (targets) |target| {
const output = try manifest.trailingSplit(ctx.arena);
try ctx.translate.append(.{
.name = std.fs.path.stem(filename),
.c_frontend = c_frontend,
.target = target,
.is_test = is_test,
.link_libc = link_libc,
.output = output,
.input = src,
.kind = .{ .run = output },
});
}
}
continue;
}
// Cross-product to get all possible test combinations
for (backends) |backend| {
for (targets) |target| {
const next = ctx.cases.items.len;
try ctx.cases.append(.{
.name = std.fs.path.stem(filename),
.target = target,
.backend = backend,
.updates = std.ArrayList(Cases.Update).init(ctx.cases.allocator),
.is_test = is_test,
.output_mode = output_mode,
.link_libc = backend == .llvm,
.deps = std.ArrayList(DepModule).init(ctx.cases.allocator),
});
try cases.append(next);
}
}
}
for (cases.items) |case_index| {
const case = &ctx.cases.items[case_index];
if (strategy == .incremental and case.backend == .stage2 and case.target.getCpuArch() == .x86_64 and !case.link_libc and case.target.getOsTag() != .plan9) {
// https://github.com/ziglang/zig/issues/15174
continue;
}
switch (manifest.type) {
.compile => {
case.addCompile(src);
},
.@"error" => {
const errors = try manifest.trailingLines(arena);
switch (strategy) {
.independent => {
case.addError(src, errors);
},
.incremental => {
case.addErrorNamed("update", src, errors);
},
}
},
.run => {
const output = try manifest.trailingSplit(ctx.arena);
case.addCompareOutput(src, output);
},
.translate_c => @panic("c_frontend specified for compile case"),
.run_translated_c => @panic("c_frontend specified for compile case"),
.cli => @panic("TODO cli tests"),
}
}
}
}
return runCases(&ctx, zig_exe_path);
}
fn runCases(self: *Cases, zig_exe_path: []const u8) !void {
const host = try std.zig.system.NativeTargetInfo.detect(.{});
var progress = std.Progress{};
const root_node = progress.start("compiler", self.cases.items.len);
progress.terminal = null;
defer root_node.end();
var zig_lib_directory = try introspect.findZigLibDirFromSelfExe(self.gpa, zig_exe_path);
defer zig_lib_directory.handle.close();
defer self.gpa.free(zig_lib_directory.path.?);
var aux_thread_pool: ThreadPool = undefined;
try aux_thread_pool.init(.{ .allocator = self.gpa });
defer aux_thread_pool.deinit();
// Use the same global cache dir for all the tests, such that we for example don't have to
// rebuild musl libc for every case (when LLVM backend is enabled).
var global_tmp = std.testing.tmpDir(.{});
defer global_tmp.cleanup();
var cache_dir = try global_tmp.dir.makeOpenPath("zig-cache", .{});
defer cache_dir.close();
const tmp_dir_path = try std.fs.path.join(self.gpa, &[_][]const u8{ ".", "zig-cache", "tmp", &global_tmp.sub_path });
defer self.gpa.free(tmp_dir_path);
const global_cache_directory: Compilation.Directory = .{
.handle = cache_dir,
.path = try std.fs.path.join(self.gpa, &[_][]const u8{ tmp_dir_path, "zig-cache" }),
};
defer self.gpa.free(global_cache_directory.path.?);
{
for (self.cases.items) |*case| {
if (build_options.skip_non_native) {
if (case.target.getCpuArch() != builtin.cpu.arch)
continue;
if (case.target.getObjectFormat() != builtin.object_format)
continue;
}
// Skip tests that require LLVM backend when it is not available
if (!build_options.have_llvm and case.backend == .llvm)
continue;
assert(case.backend != .stage1);
if (build_options.test_filter) |test_filter| {
if (std.mem.indexOf(u8, case.name, test_filter) == null) continue;
}
var prg_node = root_node.start(case.name, case.updates.items.len);
prg_node.activate();
defer prg_node.end();
try runOneCase(
self.gpa,
&prg_node,
case.*,
zig_lib_directory,
zig_exe_path,
&aux_thread_pool,
global_cache_directory,
host,
);
}
for (self.translate.items) |*case| {
_ = case;
@panic("TODO is this even used?");
}
}
}
fn runOneCase(
allocator: Allocator,
root_node: *std.Progress.Node,
case: Case,
zig_lib_directory: Compilation.Directory,
zig_exe_path: []const u8,
thread_pool: *ThreadPool,
global_cache_directory: Compilation.Directory,
host: std.zig.system.NativeTargetInfo,
) !void {
const tmp_src_path = "tmp.zig";
const enable_rosetta = build_options.enable_rosetta;
const enable_qemu = build_options.enable_qemu;
const enable_wine = build_options.enable_wine;
const enable_wasmtime = build_options.enable_wasmtime;
const enable_darling = build_options.enable_darling;
const glibc_runtimes_dir: ?[]const u8 = build_options.glibc_runtimes_dir;
const target_info = try std.zig.system.NativeTargetInfo.detect(case.target);
const target = target_info.target;
var arena_allocator = std.heap.ArenaAllocator.init(allocator);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
var tmp = std.testing.tmpDir(.{});
defer tmp.cleanup();
var cache_dir = try tmp.dir.makeOpenPath("zig-cache", .{});
defer cache_dir.close();
const tmp_dir_path = try std.fs.path.join(
arena,
&[_][]const u8{ ".", "zig-cache", "tmp", &tmp.sub_path },
);
const local_cache_path = try std.fs.path.join(
arena,
&[_][]const u8{ tmp_dir_path, "zig-cache" },
);
const zig_cache_directory: Compilation.Directory = .{
.handle = cache_dir,
.path = local_cache_path,
};
var main_pkg: Package = .{
.root_src_directory = .{ .path = tmp_dir_path, .handle = tmp.dir },
.root_src_path = tmp_src_path,
};
defer {
var it = main_pkg.table.iterator();
while (it.next()) |kv| {
allocator.free(kv.key_ptr.*);
kv.value_ptr.*.destroy(allocator);
}
main_pkg.table.deinit(allocator);
}
for (case.deps.items) |dep| {
var pkg = try Package.create(
allocator,
tmp_dir_path,
dep.path,
);
errdefer pkg.destroy(allocator);
try main_pkg.add(allocator, dep.name, pkg);
}
const bin_name = try std.zig.binNameAlloc(arena, .{
.root_name = "test_case",
.target = target,
.output_mode = case.output_mode,
});
const emit_directory: Compilation.Directory = .{
.path = tmp_dir_path,
.handle = tmp.dir,
};
const emit_bin: Compilation.EmitLoc = .{
.directory = emit_directory,
.basename = bin_name,
};
const emit_h: ?Compilation.EmitLoc = if (case.emit_h) .{
.directory = emit_directory,
.basename = "test_case.h",
} else null;
const use_llvm: bool = switch (case.backend) {
.llvm => true,
else => false,
};
const comp = try Compilation.create(allocator, .{
.local_cache_directory = zig_cache_directory,
.global_cache_directory = global_cache_directory,
.zig_lib_directory = zig_lib_directory,
.thread_pool = thread_pool,
.root_name = "test_case",
.target = target,
// TODO: support tests for object file building, and library builds
// and linking. This will require a rework to support multi-file
// tests.
.output_mode = case.output_mode,
.is_test = case.is_test,
.optimize_mode = case.optimize_mode,
.emit_bin = emit_bin,
.emit_h = emit_h,
.main_pkg = &main_pkg,
.keep_source_files_loaded = true,
.is_native_os = case.target.isNativeOs(),
.is_native_abi = case.target.isNativeAbi(),
.dynamic_linker = target_info.dynamic_linker.get(),
.link_libc = case.link_libc,
.use_llvm = use_llvm,
.self_exe_path = zig_exe_path,
// TODO instead of turning off color, pass in a std.Progress.Node
.color = .off,
.reference_trace = 0,
// TODO: force self-hosted linkers with stage2 backend to avoid LLD creeping in
// until the auto-select mechanism deems them worthy
.use_lld = switch (case.backend) {
.stage2 => false,
else => null,
},
});
defer comp.destroy();
update: for (case.updates.items, 0..) |update, update_index| {
var update_node = root_node.start(update.name, 3);
update_node.activate();
defer update_node.end();
var sync_node = update_node.start("write", 0);
sync_node.activate();
for (update.files.items) |file| {
try tmp.dir.writeFile(file.path, file.src);
}
sync_node.end();
var module_node = update_node.start("parse/analysis/codegen", 0);
module_node.activate();
try comp.makeBinFileWritable();
try comp.update(&module_node);
module_node.end();
if (update.case != .Error) {
var all_errors = try comp.getAllErrorsAlloc();
defer all_errors.deinit(allocator);
if (all_errors.errorMessageCount() > 0) {
all_errors.renderToStdErr(.{
.ttyconf = std.io.tty.detectConfig(std.io.getStdErr()),
});
// TODO print generated C code
return error.UnexpectedCompileErrors;
}
}
switch (update.case) {
.Header => |expected_output| {
var file = try tmp.dir.openFile("test_case.h", .{ .mode = .read_only });
defer file.close();
const out = try file.reader().readAllAlloc(arena, 5 * 1024 * 1024);
try std.testing.expectEqualStrings(expected_output, out);
},
.CompareObjectFile => |expected_output| {
var file = try tmp.dir.openFile(bin_name, .{ .mode = .read_only });
defer file.close();
const out = try file.reader().readAllAlloc(arena, 5 * 1024 * 1024);
try std.testing.expectEqualStrings(expected_output, out);
},
.Compile => {},
.Error => |expected_errors| {
var test_node = update_node.start("assert", 0);
test_node.activate();
defer test_node.end();
var error_bundle = try comp.getAllErrorsAlloc();
defer error_bundle.deinit(allocator);
if (error_bundle.errorMessageCount() == 0) {
return error.ExpectedCompilationErrors;
}
var actual_stderr = std.ArrayList(u8).init(arena);
try error_bundle.renderToWriter(.{
.ttyconf = .no_color,
.include_reference_trace = false,
.include_source_line = false,
}, actual_stderr.writer());
// Render the expected lines into a string that we can compare verbatim.
var expected_generated = std.ArrayList(u8).init(arena);
var actual_line_it = std.mem.splitScalar(u8, actual_stderr.items, '\n');
for (expected_errors) |expect_line| {
const actual_line = actual_line_it.next() orelse {
try expected_generated.appendSlice(expect_line);
try expected_generated.append('\n');
continue;
};
if (std.mem.endsWith(u8, actual_line, expect_line)) {
try expected_generated.appendSlice(actual_line);
try expected_generated.append('\n');
continue;
}
if (std.mem.startsWith(u8, expect_line, ":?:?: ")) {
if (std.mem.endsWith(u8, actual_line, expect_line[":?:?: ".len..])) {
try expected_generated.appendSlice(actual_line);
try expected_generated.append('\n');
continue;
}
}
try expected_generated.appendSlice(expect_line);
try expected_generated.append('\n');
}
try std.testing.expectEqualStrings(expected_generated.items, actual_stderr.items);
},
.Execution => |expected_stdout| {
if (!std.process.can_spawn) {
std.debug.print("Unable to spawn child processes on {s}, skipping test.\n", .{@tagName(builtin.os.tag)});
continue :update; // Pass test.
}
update_node.setEstimatedTotalItems(4);
var argv = std.ArrayList([]const u8).init(allocator);
defer argv.deinit();
var exec_result = x: {
var exec_node = update_node.start("execute", 0);
exec_node.activate();
defer exec_node.end();
// We go out of our way here to use the unique temporary directory name in
// the exe_path so that it makes its way into the cache hash, avoiding
// cache collisions from multiple threads doing `zig run` at the same time
// on the same test_case.c input filename.
const ss = std.fs.path.sep_str;
const exe_path = try std.fmt.allocPrint(
arena,
".." ++ ss ++ "{s}" ++ ss ++ "{s}",
.{ &tmp.sub_path, bin_name },
);
if (case.target.ofmt != null and case.target.ofmt.? == .c) {
if (host.getExternalExecutor(target_info, .{ .link_libc = true }) != .native) {
// We wouldn't be able to run the compiled C code.
continue :update; // Pass test.
}
try argv.appendSlice(&[_][]const u8{
zig_exe_path,
"run",
"-cflags",
"-std=c99",
"-pedantic",
"-Werror",
"-Wno-incompatible-library-redeclaration", // https://github.com/ziglang/zig/issues/875
"--",
"-lc",
exe_path,
});
if (zig_lib_directory.path) |p| {
try argv.appendSlice(&.{ "-I", p });
}
} else switch (host.getExternalExecutor(target_info, .{ .link_libc = case.link_libc })) {
.native => {
if (case.backend == .stage2 and case.target.getCpuArch().isArmOrThumb()) {
// https://github.com/ziglang/zig/issues/13623
continue :update; // Pass test.
}
try argv.append(exe_path);
},
.bad_dl, .bad_os_or_cpu => continue :update, // Pass test.
.rosetta => if (enable_rosetta) {
try argv.append(exe_path);
} else {
continue :update; // Rosetta not available, pass test.
},
.qemu => |qemu_bin_name| if (enable_qemu) {
const need_cross_glibc = target.isGnuLibC() and case.link_libc;
const glibc_dir_arg: ?[]const u8 = if (need_cross_glibc)
glibc_runtimes_dir orelse continue :update // glibc dir not available; pass test
else
null;
try argv.append(qemu_bin_name);
if (glibc_dir_arg) |dir| {
const linux_triple = try target.linuxTriple(arena);
const full_dir = try std.fs.path.join(arena, &[_][]const u8{
dir,
linux_triple,
});
try argv.append("-L");
try argv.append(full_dir);
}
try argv.append(exe_path);
} else {
continue :update; // QEMU not available; pass test.
},
.wine => |wine_bin_name| if (enable_wine) {
try argv.append(wine_bin_name);
try argv.append(exe_path);
} else {
continue :update; // Wine not available; pass test.
},
.wasmtime => |wasmtime_bin_name| if (enable_wasmtime) {
try argv.append(wasmtime_bin_name);
try argv.append("--dir=.");
try argv.append(exe_path);
} else {
continue :update; // wasmtime not available; pass test.
},
.darling => |darling_bin_name| if (enable_darling) {
try argv.append(darling_bin_name);
// Since we use relative to cwd here, we invoke darling with
// "shell" subcommand.
try argv.append("shell");
try argv.append(exe_path);
} else {
continue :update; // Darling not available; pass test.
},
}
try comp.makeBinFileExecutable();
while (true) {
break :x std.ChildProcess.exec(.{
.allocator = allocator,
.argv = argv.items,
.cwd_dir = tmp.dir,
.cwd = tmp_dir_path,
}) catch |err| switch (err) {
error.FileBusy => {
// There is a fundamental design flaw in Unix systems with how
// ETXTBSY interacts with fork+exec.
// https://github.com/golang/go/issues/22315
// https://bugs.openjdk.org/browse/JDK-8068370
// Unfortunately, this could be a real error, but we can't
// tell the difference here.
continue;
},
else => {
std.debug.print("\n{s}.{d} The following command failed with {s}:\n", .{
case.name, update_index, @errorName(err),
});
dumpArgs(argv.items);
return error.ChildProcessExecution;
},
};
}
};
var test_node = update_node.start("test", 0);
test_node.activate();
defer test_node.end();
defer allocator.free(exec_result.stdout);
defer allocator.free(exec_result.stderr);
switch (exec_result.term) {
.Exited => |code| {
if (code != 0) {
std.debug.print("\n{s}\n{s}: execution exited with code {d}:\n", .{
exec_result.stderr, case.name, code,
});
dumpArgs(argv.items);
return error.ChildProcessExecution;
}
},
else => {
std.debug.print("\n{s}\n{s}: execution crashed:\n", .{
exec_result.stderr, case.name,
});
dumpArgs(argv.items);
return error.ChildProcessExecution;
},
}
try std.testing.expectEqualStrings(expected_stdout, exec_result.stdout);
// We allow stderr to have garbage in it because wasmtime prints a
// warning about --invoke even though we don't pass it.
//std.testing.expectEqualStrings("", exec_result.stderr);
},
}
}
}
fn dumpArgs(argv: []const []const u8) void {
for (argv) |arg| {
std.debug.print("{s} ", .{arg});
}
std.debug.print("\n", .{});
}