zig/src/codegen/spirv/Cache.zig
Andrew Kelley 9f0359d78f Revert "Merge pull request #17657 from Snektron/spirv-recursive-ptrs"
This reverts commit b822e841cda0adabe3fec260ff51c18508f7ee32, reversing
changes made to 0c99ba1eab63865592bb084feb271cd4e4b0357e.

This caused a CI failure when it landed in master branch.
2023-10-22 12:15:31 -07:00

1079 lines
36 KiB
Zig

//! This file implements an InternPool-like structure that caches
//! SPIR-V types and constants. Instead of generating type and
//! constant instructions directly, we first keep a representation
//! in a compressed database. This is then only later turned into
//! actual SPIR-V instructions.
//! Note: This cache is insertion-ordered. This means that we
//! can materialize the SPIR-V instructions in the proper order,
//! as SPIR-V requires that the type is emitted before use.
//! Note: According to SPIR-V spec section 2.8, Types and Variables,
//! non-pointer non-aggrerate types (which includes matrices and
//! vectors) must have a _unique_ representation in the final binary.
const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Section = @import("Section.zig");
const Module = @import("Module.zig");
const spec = @import("spec.zig");
const Opcode = spec.Opcode;
const IdResult = spec.IdResult;
const StorageClass = spec.StorageClass;
const Self = @This();
map: std.AutoArrayHashMapUnmanaged(void, void) = .{},
items: std.MultiArrayList(Item) = .{},
extra: std.ArrayListUnmanaged(u32) = .{},
string_bytes: std.ArrayListUnmanaged(u8) = .{},
strings: std.AutoArrayHashMapUnmanaged(void, u32) = .{},
const Item = struct {
tag: Tag,
/// The result-id that this item uses.
result_id: IdResult,
/// The Tag determines how this should be interpreted.
data: u32,
};
const Tag = enum {
// -- Types
/// Simple type that has no additional data.
/// data is SimpleType.
type_simple,
/// Signed integer type
/// data is number of bits
type_int_signed,
/// Unsigned integer type
/// data is number of bits
type_int_unsigned,
/// Floating point type
/// data is number of bits
type_float,
/// Vector type
/// data is payload to VectorType
type_vector,
/// Array type
/// data is payload to ArrayType
type_array,
/// Function (proto)type
/// data is payload to FunctionType
type_function,
/// Pointer type in the CrossWorkgroup storage class
/// data is child type
type_ptr_generic,
/// Pointer type in the CrossWorkgroup storage class
/// data is child type
type_ptr_crosswgp,
/// Pointer type in the Function storage class
/// data is child type
type_ptr_function,
/// Simple pointer type that does not have any decorations.
/// data is payload to SimplePointerType
type_ptr_simple,
/// Simple structure type that does not have any decorations.
/// data is payload to SimpleStructType
type_struct_simple,
/// Simple structure type that does not have any decorations, but does
/// have member names trailing.
/// data is payload to SimpleStructType
type_struct_simple_with_member_names,
/// Opaque type.
/// data is name string.
type_opaque,
// -- Values
/// Value of type u8
/// data is value
uint8,
/// Value of type u32
/// data is value
uint32,
// TODO: More specialized tags here.
/// Integer value for signed values that are smaller than 32 bits.
/// data is pointer to Int32
int_small,
/// Integer value for unsigned values that are smaller than 32 bits.
/// data is pointer to UInt32
uint_small,
/// Integer value for signed values that are beteen 32 and 64 bits.
/// data is pointer to Int64
int_large,
/// Integer value for unsinged values that are beteen 32 and 64 bits.
/// data is pointer to UInt64
uint_large,
/// Value of type f16
/// data is value
float16,
/// Value of type f32
/// data is value
float32,
/// Value of type f64
/// data is payload to Float16
float64,
/// Undefined value
/// data is type
undef,
/// Null value
/// data is type
null,
/// Bool value that is true
/// data is (bool) type
bool_true,
/// Bool value that is false
/// data is (bool) type
bool_false,
const SimpleType = enum { void, bool };
const VectorType = Key.VectorType;
const ArrayType = Key.ArrayType;
// Trailing:
// - [param_len]Ref: parameter types.
const FunctionType = struct {
param_len: u32,
return_type: Ref,
};
const SimplePointerType = struct {
storage_class: StorageClass,
child_type: Ref,
};
/// Trailing:
/// - [members_len]Ref: Member types.
/// - [members_len]String: Member names, -- ONLY if the tag is type_struct_simple_with_member_names
const SimpleStructType = struct {
/// (optional) The name of the struct.
name: String,
/// Number of members that this struct has.
members_len: u32,
};
const Float64 = struct {
// Low-order 32 bits of the value.
low: u32,
// High-order 32 bits of the value.
high: u32,
fn encode(value: f64) Float64 {
const bits = @as(u64, @bitCast(value));
return .{
.low = @as(u32, @truncate(bits)),
.high = @as(u32, @truncate(bits >> 32)),
};
}
fn decode(self: Float64) f64 {
const bits = @as(u64, self.low) | (@as(u64, self.high) << 32);
return @as(f64, @bitCast(bits));
}
};
const Int32 = struct {
ty: Ref,
value: i32,
};
const UInt32 = struct {
ty: Ref,
value: u32,
};
const UInt64 = struct {
ty: Ref,
low: u32,
high: u32,
fn encode(ty: Ref, value: u64) Int64 {
return .{
.ty = ty,
.low = @as(u32, @truncate(value)),
.high = @as(u32, @truncate(value >> 32)),
};
}
fn decode(self: UInt64) u64 {
return @as(u64, self.low) | (@as(u64, self.high) << 32);
}
};
const Int64 = struct {
ty: Ref,
low: u32,
high: u32,
fn encode(ty: Ref, value: i64) Int64 {
return .{
.ty = ty,
.low = @as(u32, @truncate(@as(u64, @bitCast(value)))),
.high = @as(u32, @truncate(@as(u64, @bitCast(value)) >> 32)),
};
}
fn decode(self: Int64) i64 {
return @as(i64, @bitCast(@as(u64, self.low) | (@as(u64, self.high) << 32)));
}
};
};
pub const Ref = enum(u32) { _ };
/// This union represents something that can be interned. This includes
/// types and constants. This structure is used for interfacing with the
/// database: Values described for this structure are ephemeral and stored
/// in a more memory-efficient manner internally.
pub const Key = union(enum) {
// -- Types
void_type,
bool_type,
int_type: IntType,
float_type: FloatType,
vector_type: VectorType,
array_type: ArrayType,
function_type: FunctionType,
ptr_type: PointerType,
struct_type: StructType,
opaque_type: OpaqueType,
// -- values
int: Int,
float: Float,
undef: Undef,
null: Null,
bool: Bool,
pub const IntType = std.builtin.Type.Int;
pub const FloatType = std.builtin.Type.Float;
pub const VectorType = struct {
component_type: Ref,
component_count: u32,
};
pub const ArrayType = struct {
/// Child type of this array.
element_type: Ref,
/// Reference to a constant.
length: Ref,
/// Type has the 'ArrayStride' decoration.
/// If zero, no stride is present.
stride: u32 = 0,
};
pub const FunctionType = struct {
return_type: Ref,
parameters: []const Ref,
};
pub const PointerType = struct {
storage_class: StorageClass,
child_type: Ref,
// TODO: Decorations:
// - Alignment
// - ArrayStride,
// - MaxByteOffset,
};
pub const StructType = struct {
// TODO: Decorations.
/// The name of the structure. Can be `.none`.
name: String = .none,
/// The type of each member.
member_types: []const Ref,
/// Name for each member. May be omitted.
member_names: ?[]const String = null,
fn memberNames(self: @This()) []const String {
return if (self.member_names) |member_names| member_names else &.{};
}
};
pub const OpaqueType = struct {
name: String = .none,
};
pub const Int = struct {
/// The type: any bitness integer.
ty: Ref,
/// The actual value. Only uint64 and int64 types
/// are available here: Smaller types should use these
/// fields.
value: Value,
pub const Value = union(enum) {
uint64: u64,
int64: i64,
};
/// Turns this value into the corresponding 32-bit literal, 2s complement signed.
fn toBits32(self: Int) u32 {
return switch (self.value) {
.uint64 => |val| @as(u32, @intCast(val)),
.int64 => |val| if (val < 0) @as(u32, @bitCast(@as(i32, @intCast(val)))) else @as(u32, @intCast(val)),
};
}
fn toBits64(self: Int) u64 {
return switch (self.value) {
.uint64 => |val| val,
.int64 => |val| @as(u64, @bitCast(val)),
};
}
fn to(self: Int, comptime T: type) T {
return switch (self.value) {
inline else => |val| @as(T, @intCast(val)),
};
}
};
/// Represents a numberic value of some type.
pub const Float = struct {
/// The type: 16, 32, or 64-bit float.
ty: Ref,
/// The actual value.
value: Value,
pub const Value = union(enum) {
float16: f16,
float32: f32,
float64: f64,
};
};
pub const Undef = struct {
ty: Ref,
};
pub const Null = struct {
ty: Ref,
};
pub const Bool = struct {
ty: Ref,
value: bool,
};
fn hash(self: Key) u32 {
var hasher = std.hash.Wyhash.init(0);
switch (self) {
.float => |float| {
std.hash.autoHash(&hasher, float.ty);
switch (float.value) {
.float16 => |value| std.hash.autoHash(&hasher, @as(u16, @bitCast(value))),
.float32 => |value| std.hash.autoHash(&hasher, @as(u32, @bitCast(value))),
.float64 => |value| std.hash.autoHash(&hasher, @as(u64, @bitCast(value))),
}
},
.function_type => |func| {
std.hash.autoHash(&hasher, func.return_type);
for (func.parameters) |param_type| {
std.hash.autoHash(&hasher, param_type);
}
},
.struct_type => |struct_type| {
std.hash.autoHash(&hasher, struct_type.name);
for (struct_type.member_types) |member_type| {
std.hash.autoHash(&hasher, member_type);
}
for (struct_type.memberNames()) |member_name| {
std.hash.autoHash(&hasher, member_name);
}
},
inline else => |key| std.hash.autoHash(&hasher, key),
}
return @as(u32, @truncate(hasher.final()));
}
fn eql(a: Key, b: Key) bool {
const KeyTag = @typeInfo(Key).Union.tag_type.?;
const a_tag: KeyTag = a;
const b_tag: KeyTag = b;
if (a_tag != b_tag) {
return false;
}
return switch (a) {
.function_type => |a_func| {
const b_func = b.function_type;
return a_func.return_type == b_func.return_type and
std.mem.eql(Ref, a_func.parameters, b_func.parameters);
},
.struct_type => |a_struct| {
const b_struct = b.struct_type;
return a_struct.name == b_struct.name and
std.mem.eql(Ref, a_struct.member_types, b_struct.member_types) and
std.mem.eql(String, a_struct.memberNames(), b_struct.memberNames());
},
// TODO: Unroll?
else => std.meta.eql(a, b),
};
}
pub const Adapter = struct {
self: *const Self,
pub fn eql(ctx: @This(), a: Key, b_void: void, b_index: usize) bool {
_ = b_void;
return ctx.self.lookup(@as(Ref, @enumFromInt(b_index))).eql(a);
}
pub fn hash(ctx: @This(), a: Key) u32 {
_ = ctx;
return a.hash();
}
};
fn toSimpleType(self: Key) Tag.SimpleType {
return switch (self) {
.void_type => .void,
.bool_type => .bool,
else => unreachable,
};
}
pub fn isNumericalType(self: Key) bool {
return switch (self) {
.int_type, .float_type => true,
else => false,
};
}
};
pub fn deinit(self: *Self, spv: *const Module) void {
self.map.deinit(spv.gpa);
self.items.deinit(spv.gpa);
self.extra.deinit(spv.gpa);
self.string_bytes.deinit(spv.gpa);
self.strings.deinit(spv.gpa);
}
/// Actually materialize the database into spir-v instructions.
/// This function returns a spir-v section of (only) constant and type instructions.
/// Additionally, decorations, debug names, etc, are all directly emitted into the
/// `spv` module. The section is allocated with `spv.gpa`.
pub fn materialize(self: *const Self, spv: *Module) !Section {
var section = Section{};
errdefer section.deinit(spv.gpa);
for (self.items.items(.result_id), 0..) |result_id, index| {
try self.emit(spv, result_id, @as(Ref, @enumFromInt(index)), &section);
}
return section;
}
fn emit(
self: *const Self,
spv: *Module,
result_id: IdResult,
ref: Ref,
section: *Section,
) !void {
const key = self.lookup(ref);
const Lit = spec.LiteralContextDependentNumber;
switch (key) {
.void_type => {
try section.emit(spv.gpa, .OpTypeVoid, .{ .id_result = result_id });
try spv.debugName(result_id, "void");
},
.bool_type => {
try section.emit(spv.gpa, .OpTypeBool, .{ .id_result = result_id });
try spv.debugName(result_id, "bool");
},
.int_type => |int| {
try section.emit(spv.gpa, .OpTypeInt, .{
.id_result = result_id,
.width = int.bits,
.signedness = switch (int.signedness) {
.unsigned => @as(spec.Word, 0),
.signed => 1,
},
});
const ui: []const u8 = switch (int.signedness) {
.unsigned => "u",
.signed => "i",
};
try spv.debugNameFmt(result_id, "{s}{}", .{ ui, int.bits });
},
.float_type => |float| {
try section.emit(spv.gpa, .OpTypeFloat, .{
.id_result = result_id,
.width = float.bits,
});
try spv.debugNameFmt(result_id, "f{}", .{float.bits});
},
.vector_type => |vector| {
try section.emit(spv.gpa, .OpTypeVector, .{
.id_result = result_id,
.component_type = self.resultId(vector.component_type),
.component_count = vector.component_count,
});
},
.array_type => |array| {
try section.emit(spv.gpa, .OpTypeArray, .{
.id_result = result_id,
.element_type = self.resultId(array.element_type),
.length = self.resultId(array.length),
});
if (array.stride != 0) {
try spv.decorate(result_id, .{ .ArrayStride = .{ .array_stride = array.stride } });
}
},
.function_type => |function| {
try section.emitRaw(spv.gpa, .OpTypeFunction, 2 + function.parameters.len);
section.writeOperand(IdResult, result_id);
section.writeOperand(IdResult, self.resultId(function.return_type));
for (function.parameters) |param_type| {
section.writeOperand(IdResult, self.resultId(param_type));
}
},
.ptr_type => |ptr| {
try section.emit(spv.gpa, .OpTypePointer, .{
.id_result = result_id,
.storage_class = ptr.storage_class,
.type = self.resultId(ptr.child_type),
});
// TODO: Decorations?
},
.struct_type => |struct_type| {
try section.emitRaw(spv.gpa, .OpTypeStruct, 1 + struct_type.member_types.len);
section.writeOperand(IdResult, result_id);
for (struct_type.member_types) |member_type| {
section.writeOperand(IdResult, self.resultId(member_type));
}
if (self.getString(struct_type.name)) |name| {
try spv.debugName(result_id, name);
}
for (struct_type.memberNames(), 0..) |member_name, i| {
if (self.getString(member_name)) |name| {
try spv.memberDebugName(result_id, @as(u32, @intCast(i)), name);
}
}
// TODO: Decorations?
},
.opaque_type => |opaque_type| {
const name = if (self.getString(opaque_type.name)) |name| name else "";
try section.emit(spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = name,
});
},
.int => |int| {
const int_type = self.lookup(int.ty).int_type;
const ty_id = self.resultId(int.ty);
const lit: Lit = switch (int_type.bits) {
1...32 => .{ .uint32 = int.toBits32() },
33...64 => .{ .uint64 = int.toBits64() },
else => unreachable,
};
try section.emit(spv.gpa, .OpConstant, .{
.id_result_type = ty_id,
.id_result = result_id,
.value = lit,
});
},
.float => |float| {
const ty_id = self.resultId(float.ty);
const lit: Lit = switch (float.value) {
.float16 => |value| .{ .uint32 = @as(u16, @bitCast(value)) },
.float32 => |value| .{ .float32 = value },
.float64 => |value| .{ .float64 = value },
};
try section.emit(spv.gpa, .OpConstant, .{
.id_result_type = ty_id,
.id_result = result_id,
.value = lit,
});
},
.undef => |undef| {
try section.emit(spv.gpa, .OpUndef, .{
.id_result_type = self.resultId(undef.ty),
.id_result = result_id,
});
},
.null => |null_info| {
try section.emit(spv.gpa, .OpConstantNull, .{
.id_result_type = self.resultId(null_info.ty),
.id_result = result_id,
});
},
.bool => |bool_info| switch (bool_info.value) {
true => {
try section.emit(spv.gpa, .OpConstantTrue, .{
.id_result_type = self.resultId(bool_info.ty),
.id_result = result_id,
});
},
false => {
try section.emit(spv.gpa, .OpConstantFalse, .{
.id_result_type = self.resultId(bool_info.ty),
.id_result = result_id,
});
},
},
}
}
/// Add a key to this cache. Returns a reference to the key that
/// was added. The corresponding result-id can be queried using
/// self.resultId with the result.
pub fn resolve(self: *Self, spv: *Module, key: Key) !Ref {
const adapter: Key.Adapter = .{ .self = self };
const entry = try self.map.getOrPutAdapted(spv.gpa, key, adapter);
if (entry.found_existing) {
return @as(Ref, @enumFromInt(entry.index));
}
const result_id = spv.allocId();
const item: Item = switch (key) {
inline .void_type, .bool_type => .{
.tag = .type_simple,
.result_id = result_id,
.data = @intFromEnum(key.toSimpleType()),
},
.int_type => |int| blk: {
const t: Tag = switch (int.signedness) {
.signed => .type_int_signed,
.unsigned => .type_int_unsigned,
};
break :blk .{
.tag = t,
.result_id = result_id,
.data = int.bits,
};
},
.float_type => |float| .{
.tag = .type_float,
.result_id = result_id,
.data = float.bits,
},
.vector_type => |vector| .{
.tag = .type_vector,
.result_id = result_id,
.data = try self.addExtra(spv, vector),
},
.array_type => |array| .{
.tag = .type_array,
.result_id = result_id,
.data = try self.addExtra(spv, array),
},
.function_type => |function| blk: {
const extra = try self.addExtra(spv, Tag.FunctionType{
.param_len = @as(u32, @intCast(function.parameters.len)),
.return_type = function.return_type,
});
try self.extra.appendSlice(spv.gpa, @as([]const u32, @ptrCast(function.parameters)));
break :blk .{
.tag = .type_function,
.result_id = result_id,
.data = extra,
};
},
.ptr_type => |ptr| switch (ptr.storage_class) {
.Generic => Item{
.tag = .type_ptr_generic,
.result_id = result_id,
.data = @intFromEnum(ptr.child_type),
},
.CrossWorkgroup => Item{
.tag = .type_ptr_crosswgp,
.result_id = result_id,
.data = @intFromEnum(ptr.child_type),
},
.Function => Item{
.tag = .type_ptr_function,
.result_id = result_id,
.data = @intFromEnum(ptr.child_type),
},
else => |storage_class| Item{
.tag = .type_ptr_simple,
.result_id = result_id,
.data = try self.addExtra(spv, Tag.SimplePointerType{
.storage_class = storage_class,
.child_type = ptr.child_type,
}),
},
},
.struct_type => |struct_type| blk: {
const extra = try self.addExtra(spv, Tag.SimpleStructType{
.name = struct_type.name,
.members_len = @as(u32, @intCast(struct_type.member_types.len)),
});
try self.extra.appendSlice(spv.gpa, @as([]const u32, @ptrCast(struct_type.member_types)));
if (struct_type.member_names) |member_names| {
try self.extra.appendSlice(spv.gpa, @as([]const u32, @ptrCast(member_names)));
break :blk Item{
.tag = .type_struct_simple_with_member_names,
.result_id = result_id,
.data = extra,
};
} else {
break :blk Item{
.tag = .type_struct_simple,
.result_id = result_id,
.data = extra,
};
}
},
.opaque_type => |opaque_type| Item{
.tag = .type_opaque,
.result_id = result_id,
.data = @intFromEnum(opaque_type.name),
},
.int => |int| blk: {
const int_type = self.lookup(int.ty).int_type;
if (int_type.signedness == .unsigned and int_type.bits == 8) {
break :blk .{
.tag = .uint8,
.result_id = result_id,
.data = int.to(u8),
};
} else if (int_type.signedness == .unsigned and int_type.bits == 32) {
break :blk .{
.tag = .uint32,
.result_id = result_id,
.data = int.to(u32),
};
}
switch (int.value) {
inline else => |val| {
if (val >= 0 and val <= std.math.maxInt(u32)) {
break :blk .{
.tag = .uint_small,
.result_id = result_id,
.data = try self.addExtra(spv, Tag.UInt32{
.ty = int.ty,
.value = @as(u32, @intCast(val)),
}),
};
} else if (val >= std.math.minInt(i32) and val <= std.math.maxInt(i32)) {
break :blk .{
.tag = .int_small,
.result_id = result_id,
.data = try self.addExtra(spv, Tag.Int32{
.ty = int.ty,
.value = @as(i32, @intCast(val)),
}),
};
} else if (val < 0) {
break :blk .{
.tag = .int_large,
.result_id = result_id,
.data = try self.addExtra(spv, Tag.Int64.encode(int.ty, @as(i64, @intCast(val)))),
};
} else {
break :blk .{
.tag = .uint_large,
.result_id = result_id,
.data = try self.addExtra(spv, Tag.UInt64.encode(int.ty, @as(u64, @intCast(val)))),
};
}
},
}
},
.float => |float| switch (self.lookup(float.ty).float_type.bits) {
16 => .{
.tag = .float16,
.result_id = result_id,
.data = @as(u16, @bitCast(float.value.float16)),
},
32 => .{
.tag = .float32,
.result_id = result_id,
.data = @as(u32, @bitCast(float.value.float32)),
},
64 => .{
.tag = .float64,
.result_id = result_id,
.data = try self.addExtra(spv, Tag.Float64.encode(float.value.float64)),
},
else => unreachable,
},
.undef => |undef| .{
.tag = .undef,
.result_id = result_id,
.data = @intFromEnum(undef.ty),
},
.null => |null_info| .{
.tag = .null,
.result_id = result_id,
.data = @intFromEnum(null_info.ty),
},
.bool => |bool_info| .{
.tag = switch (bool_info.value) {
true => Tag.bool_true,
false => Tag.bool_false,
},
.result_id = result_id,
.data = @intFromEnum(bool_info.ty),
},
};
try self.items.append(spv.gpa, item);
return @as(Ref, @enumFromInt(entry.index));
}
/// Turn a Ref back into a Key.
/// The Key is valid until the next call to resolve().
pub fn lookup(self: *const Self, ref: Ref) Key {
const item = self.items.get(@intFromEnum(ref));
const data = item.data;
return switch (item.tag) {
.type_simple => switch (@as(Tag.SimpleType, @enumFromInt(data))) {
.void => .void_type,
.bool => .bool_type,
},
.type_int_signed => .{ .int_type = .{
.signedness = .signed,
.bits = @as(u16, @intCast(data)),
} },
.type_int_unsigned => .{ .int_type = .{
.signedness = .unsigned,
.bits = @as(u16, @intCast(data)),
} },
.type_float => .{ .float_type = .{
.bits = @as(u16, @intCast(data)),
} },
.type_vector => .{ .vector_type = self.extraData(Tag.VectorType, data) },
.type_array => .{ .array_type = self.extraData(Tag.ArrayType, data) },
.type_function => {
const payload = self.extraDataTrail(Tag.FunctionType, data);
return .{
.function_type = .{
.return_type = payload.data.return_type,
.parameters = @as([]const Ref, @ptrCast(self.extra.items[payload.trail..][0..payload.data.param_len])),
},
};
},
.type_ptr_generic => .{
.ptr_type = .{
.storage_class = .Generic,
.child_type = @as(Ref, @enumFromInt(data)),
},
},
.type_ptr_crosswgp => .{
.ptr_type = .{
.storage_class = .CrossWorkgroup,
.child_type = @as(Ref, @enumFromInt(data)),
},
},
.type_ptr_function => .{
.ptr_type = .{
.storage_class = .Function,
.child_type = @as(Ref, @enumFromInt(data)),
},
},
.type_ptr_simple => {
const payload = self.extraData(Tag.SimplePointerType, data);
return .{
.ptr_type = .{
.storage_class = payload.storage_class,
.child_type = payload.child_type,
},
};
},
.type_struct_simple => {
const payload = self.extraDataTrail(Tag.SimpleStructType, data);
const member_types = @as([]const Ref, @ptrCast(self.extra.items[payload.trail..][0..payload.data.members_len]));
return .{
.struct_type = .{
.name = payload.data.name,
.member_types = member_types,
.member_names = null,
},
};
},
.type_struct_simple_with_member_names => {
const payload = self.extraDataTrail(Tag.SimpleStructType, data);
const trailing = self.extra.items[payload.trail..];
const member_types = @as([]const Ref, @ptrCast(trailing[0..payload.data.members_len]));
const member_names = @as([]const String, @ptrCast(trailing[payload.data.members_len..][0..payload.data.members_len]));
return .{
.struct_type = .{
.name = payload.data.name,
.member_types = member_types,
.member_names = member_names,
},
};
},
.type_opaque => .{
.opaque_type = .{
.name = @as(String, @enumFromInt(data)),
},
},
.float16 => .{ .float = .{
.ty = self.get(.{ .float_type = .{ .bits = 16 } }),
.value = .{ .float16 = @as(f16, @bitCast(@as(u16, @intCast(data)))) },
} },
.float32 => .{ .float = .{
.ty = self.get(.{ .float_type = .{ .bits = 32 } }),
.value = .{ .float32 = @as(f32, @bitCast(data)) },
} },
.float64 => .{ .float = .{
.ty = self.get(.{ .float_type = .{ .bits = 64 } }),
.value = .{ .float64 = self.extraData(Tag.Float64, data).decode() },
} },
.uint8 => .{ .int = .{
.ty = self.get(.{ .int_type = .{ .signedness = .unsigned, .bits = 8 } }),
.value = .{ .uint64 = data },
} },
.uint32 => .{ .int = .{
.ty = self.get(.{ .int_type = .{ .signedness = .unsigned, .bits = 32 } }),
.value = .{ .uint64 = data },
} },
.int_small => {
const payload = self.extraData(Tag.Int32, data);
return .{ .int = .{
.ty = payload.ty,
.value = .{ .int64 = payload.value },
} };
},
.uint_small => {
const payload = self.extraData(Tag.UInt32, data);
return .{ .int = .{
.ty = payload.ty,
.value = .{ .uint64 = payload.value },
} };
},
.int_large => {
const payload = self.extraData(Tag.Int64, data);
return .{ .int = .{
.ty = payload.ty,
.value = .{ .int64 = payload.decode() },
} };
},
.uint_large => {
const payload = self.extraData(Tag.UInt64, data);
return .{ .int = .{
.ty = payload.ty,
.value = .{ .uint64 = payload.decode() },
} };
},
.undef => .{ .undef = .{
.ty = @as(Ref, @enumFromInt(data)),
} },
.null => .{ .null = .{
.ty = @as(Ref, @enumFromInt(data)),
} },
.bool_true => .{ .bool = .{
.ty = @as(Ref, @enumFromInt(data)),
.value = true,
} },
.bool_false => .{ .bool = .{
.ty = @as(Ref, @enumFromInt(data)),
.value = false,
} },
};
}
/// Look op the result-id that corresponds to a particular
/// ref.
pub fn resultId(self: Self, ref: Ref) IdResult {
return self.items.items(.result_id)[@intFromEnum(ref)];
}
/// Get the ref for a key that has already been added to the cache.
fn get(self: *const Self, key: Key) Ref {
const adapter: Key.Adapter = .{ .self = self };
const index = self.map.getIndexAdapted(key, adapter).?;
return @as(Ref, @enumFromInt(index));
}
fn addExtra(self: *Self, spv: *Module, extra: anytype) !u32 {
const fields = @typeInfo(@TypeOf(extra)).Struct.fields;
try self.extra.ensureUnusedCapacity(spv.gpa, fields.len);
return try self.addExtraAssumeCapacity(extra);
}
fn addExtraAssumeCapacity(self: *Self, extra: anytype) !u32 {
const payload_offset = @as(u32, @intCast(self.extra.items.len));
inline for (@typeInfo(@TypeOf(extra)).Struct.fields) |field| {
const field_val = @field(extra, field.name);
const word = switch (field.type) {
u32 => field_val,
i32 => @as(u32, @bitCast(field_val)),
Ref => @intFromEnum(field_val),
StorageClass => @intFromEnum(field_val),
String => @intFromEnum(field_val),
else => @compileError("Invalid type: " ++ @typeName(field.type)),
};
self.extra.appendAssumeCapacity(word);
}
return payload_offset;
}
fn extraData(self: Self, comptime T: type, offset: u32) T {
return self.extraDataTrail(T, offset).data;
}
fn extraDataTrail(self: Self, comptime T: type, offset: u32) struct { data: T, trail: u32 } {
var result: T = undefined;
const fields = @typeInfo(T).Struct.fields;
inline for (fields, 0..) |field, i| {
const word = self.extra.items[offset + i];
@field(result, field.name) = switch (field.type) {
u32 => word,
i32 => @as(i32, @bitCast(word)),
Ref => @as(Ref, @enumFromInt(word)),
StorageClass => @as(StorageClass, @enumFromInt(word)),
String => @as(String, @enumFromInt(word)),
else => @compileError("Invalid type: " ++ @typeName(field.type)),
};
}
return .{
.data = result,
.trail = offset + @as(u32, @intCast(fields.len)),
};
}
/// Represents a reference to some null-terminated string.
pub const String = enum(u32) {
none = std.math.maxInt(u32),
_,
pub const Adapter = struct {
self: *const Self,
pub fn eql(ctx: @This(), a: []const u8, _: void, b_index: usize) bool {
const offset = ctx.self.strings.values()[b_index];
const b = std.mem.sliceTo(ctx.self.string_bytes.items[offset..], 0);
return std.mem.eql(u8, a, b);
}
pub fn hash(ctx: @This(), a: []const u8) u32 {
_ = ctx;
var hasher = std.hash.Wyhash.init(0);
hasher.update(a);
return @as(u32, @truncate(hasher.final()));
}
};
};
/// Add a string to the cache. Must not contain any 0 values.
pub fn addString(self: *Self, spv: *Module, str: []const u8) !String {
assert(std.mem.indexOfScalar(u8, str, 0) == null);
const adapter = String.Adapter{ .self = self };
const entry = try self.strings.getOrPutAdapted(spv.gpa, str, adapter);
if (!entry.found_existing) {
const offset = self.string_bytes.items.len;
try self.string_bytes.ensureUnusedCapacity(spv.gpa, 1 + str.len);
self.string_bytes.appendSliceAssumeCapacity(str);
self.string_bytes.appendAssumeCapacity(0);
entry.value_ptr.* = @as(u32, @intCast(offset));
}
return @as(String, @enumFromInt(entry.index));
}
pub fn getString(self: *const Self, ref: String) ?[]const u8 {
return switch (ref) {
.none => null,
else => std.mem.sliceTo(self.string_bytes.items[self.strings.values()[@intFromEnum(ref)]..], 0),
};
}