zig/lib/std/crypto/25519/curve25519.zig
Frank Denis 10f2d62789
std/crypto: use finer-grained error sets in function signatures (#8558)
std/crypto: use finer-grained error sets in function signatures

Returning the `crypto.Error` error set for all crypto operations
was very convenient to ensure that errors were used consistently,
and to avoid having multiple error names for the same thing.

The flipside is that callers were forced to always handle all
possible errors, even those that could never be returned by a
function.

This PR makes all functions return union sets of the actual errors
they can return.

The error sets themselves are all limited to a single error.

Larger sets are useful for platform-specific APIs, but we don't have
any of these in `std/crypto`, and I couldn't find any meaningful way
to build larger sets.
2021-04-20 19:57:27 +02:00

168 lines
7.4 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std");
const crypto = std.crypto;
const IdentityElementError = crypto.errors.IdentityElementError;
const NonCanonicalError = crypto.errors.NonCanonicalError;
const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;
/// Group operations over Curve25519.
pub const Curve25519 = struct {
/// The underlying prime field.
pub const Fe = @import("field.zig").Fe;
/// Field arithmetic mod the order of the main subgroup.
pub const scalar = @import("scalar.zig");
x: Fe,
/// Decode a Curve25519 point from its compressed (X) coordinates.
pub fn fromBytes(s: [32]u8) callconv(.Inline) Curve25519 {
return .{ .x = Fe.fromBytes(s) };
}
/// Encode a Curve25519 point.
pub fn toBytes(p: Curve25519) callconv(.Inline) [32]u8 {
return p.x.toBytes();
}
/// The Curve25519 base point.
pub const basePoint = Curve25519{ .x = Fe.curve25519BasePoint };
/// Check that the encoding of a Curve25519 point is canonical.
pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void {
return Fe.rejectNonCanonical(s, false);
}
/// Reject the neutral element.
pub fn rejectIdentity(p: Curve25519) IdentityElementError!void {
if (p.x.isZero()) {
return error.IdentityElement;
}
}
/// Multiply a point by the cofactor
pub fn clearCofactor(p: Edwards25519) Edwards25519 {
return p.dbl().dbl().dbl();
}
fn ladder(p: Curve25519, s: [32]u8, comptime bits: usize) IdentityElementError!Curve25519 {
var x1 = p.x;
var x2 = Fe.one;
var z2 = Fe.zero;
var x3 = x1;
var z3 = Fe.one;
var swap: u8 = 0;
var pos: usize = bits - 1;
while (true) : (pos -= 1) {
const bit = (s[pos >> 3] >> @truncate(u3, pos)) & 1;
swap ^= bit;
Fe.cSwap2(&x2, &x3, &z2, &z3, swap);
swap = bit;
const a = x2.add(z2);
const b = x2.sub(z2);
const aa = a.sq();
const bb = b.sq();
x2 = aa.mul(bb);
const e = aa.sub(bb);
const da = x3.sub(z3).mul(a);
const cb = x3.add(z3).mul(b);
x3 = da.add(cb).sq();
z3 = x1.mul(da.sub(cb).sq());
z2 = e.mul(bb.add(e.mul32(121666)));
if (pos == 0) break;
}
Fe.cSwap2(&x2, &x3, &z2, &z3, swap);
z2 = z2.invert();
x2 = x2.mul(z2);
if (x2.isZero()) {
return error.IdentityElement;
}
return Curve25519{ .x = x2 };
}
/// Multiply a Curve25519 point by a scalar after "clamping" it.
/// Clamping forces the scalar to be a multiple of the cofactor in
/// order to prevent small subgroups attacks. This is the standard
/// way to use Curve25519 for a DH operation.
/// Return error.IdentityElement if the resulting point is
/// the identity element.
pub fn clampedMul(p: Curve25519, s: [32]u8) IdentityElementError!Curve25519 {
var t: [32]u8 = s;
scalar.clamp(&t);
return try ladder(p, t, 255);
}
/// Multiply a Curve25519 point by a scalar without clamping it.
/// Return error.IdentityElement if the resulting point is
/// the identity element or error.WeakPublicKey if the public
/// key is a low-order point.
pub fn mul(p: Curve25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Curve25519 {
const cofactor = [_]u8{8} ++ [_]u8{0} ** 31;
_ = ladder(p, cofactor, 4) catch |_| return error.WeakPublicKey;
return try ladder(p, s, 256);
}
/// Compute the Curve25519 equivalent to an Edwards25519 point.
pub fn fromEdwards25519(p: crypto.ecc.Edwards25519) IdentityElementError!Curve25519 {
try p.clearCofactor().rejectIdentity();
const one = crypto.ecc.Edwards25519.Fe.one;
const x = one.add(p.y).mul(one.sub(p.y).invert()); // xMont=(1+yEd)/(1-yEd)
return Curve25519{ .x = x };
}
};
test "curve25519" {
var s = [32]u8{ 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8 };
const p = try Curve25519.basePoint.clampedMul(s);
try p.rejectIdentity();
var buf: [128]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&p.toBytes())}), "E6F2A4D1C28EE5C7AD0329268255A468AD407D2672824C0C0EB30EA6EF450145");
const q = try p.clampedMul(s);
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&q.toBytes())}), "3614E119FFE55EC55B87D6B19971A9F4CBC78EFE80BEC55B96392BABCC712537");
try Curve25519.rejectNonCanonical(s);
s[31] |= 0x80;
std.testing.expectError(error.NonCanonical, Curve25519.rejectNonCanonical(s));
}
test "curve25519 small order check" {
var s: [32]u8 = [_]u8{1} ++ [_]u8{0} ** 31;
const small_order_ss: [7][32]u8 = .{
.{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 (order 4)
},
.{
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 1 (order 1)
},
.{
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00, // 325606250916557431795983626356110631294008115727848805560023387167927233504 (order 8) */
},
.{
0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b, 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57, // 39382357235489614581723060781553021112529911719440698176882885853963445705823 (order 8)
},
.{
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p-1 (order 2)
},
.{
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p (=0, order 4)
},
.{
0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p+1 (=1, order 1)
},
};
for (small_order_ss) |small_order_s| {
std.testing.expectError(error.WeakPublicKey, Curve25519.fromBytes(small_order_s).mul(s));
var extra = small_order_s;
extra[31] ^= 0x80;
std.testing.expectError(error.WeakPublicKey, Curve25519.fromBytes(extra).mul(s));
var valid = small_order_s;
valid[31] = 0x40;
s[0] = 0;
std.testing.expectError(error.IdentityElement, Curve25519.fromBytes(valid).mul(s));
}
}