This commit changes how we represent comptime-mutable memory (`comptime var`) in the compiler in order to implement the intended behavior that references to such memory can only exist at comptime. It does *not* clean up the representation of mutable values, improve the representation of comptime-known pointers, or fix the many bugs in the comptime pointer access code. These will be future enhancements. Comptime memory lives for the duration of a single Sema, and is not permitted to escape that one analysis, either by becoming runtime-known or by becoming comptime-known to other analyses. These restrictions mean that we can represent comptime allocations not via Decl, but with state local to Sema - specifically, the new `Sema.comptime_allocs` field. All comptime-mutable allocations, as well as any comptime-known const allocs containing references to such memory, live in here. This allows for relatively fast checking of whether a value references any comptime-mtuable memory, since we need only traverse values up to pointers: pointers to Decls can never reference comptime-mutable memory, and pointers into `Sema.comptime_allocs` always do. This change exposed some faulty pointer access logic in `Value.zig`. I've fixed the important cases, but there are some TODOs I've put in which are definitely possible to hit with sufficiently esoteric code. I plan to resolve these by auditing all direct accesses to pointers (most of them ought to use Sema to perform the pointer access!), but for now this is sufficient for all realistic code and to get tests passing. This change eliminates `Zcu.tmp_hack_arena`, instead using the Sema arena for comptime memory mutations, which is possible since comptime memory is now local to the current Sema. This change should allow `Decl` to store only an `InternPool.Index` rather than a full-blown `ty: Type, val: Value`. This commit does not perform this refactor.
Test Case Quick Reference
Use comments at the end of the file to indicate metadata about the test case. Here are examples of different kinds of tests:
Compile Error Test
If you want it to be run with zig test and match expected error messages:
// error
// is_test=true
//
// :4:13: error: 'try' outside function scope
Execution
This will do zig run on the code and expect exit code 0.
// run
Translate-c
If you want to test translating C code to Zig use translate-c:
// translate-c
// c_frontend=aro,clang
// target=x86_64-linux
//
// pub const foo = 1;
// pub const immediately_after_foo = 2;
//
// pub const somewhere_else_in_the_file = 3:
Run Translated C
If you want to test translating C code to Zig and then executing it use run-translated-c:
// run-translated-c
// c_frontend=aro,clang
// target=x86_64-linux
//
// Hello world!
Incremental Compilation
Make multiple files that have ".", and then an integer, before the ".zig" extension, like this:
hello.0.zig
hello.1.zig
hello.2.zig
Each file can be a different kind of test, such as expecting compile errors, or expecting to be run and exit(0). The test harness will use these to simulate incremental compilation.
At the time of writing there is no way to specify multiple files being changed as part of an update.
Subdirectories
Subdirectories do not have any semantic meaning but they can be used for organization since the test harness will recurse into them. The full directory path will be prepended as a prefix on the test case name.
Limiting which Backends and Targets are Tested
// run
// backend=stage2,llvm
// target=x86_64-linux,x86_64-macos
Possible backends are:
stage1: equivalent to-fstage1.stage2: equivalent to passing-fno-stage1 -fno-LLVM.llvm: equivalent to-fLLVM -fno-stage1.