mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
The read function has been renamed to readAdvanced since it has slightly different semantics than typical read functions, specifically regarding the end-of-file. A higher level read function is implemented on top. Now, API users may pass small buffers to the read function and everything will work fine. This is done by re-decrypting the same ciphertext record with each call to read() until the record is finished being transmitted. If the buffer supplied to read() is large enough, then any given ciphertext record will only be decrypted once, since it decrypts directly to the read() buffer and therefore does not need any memcpy. On the other hand, if the buffer supplied to read() is small, then the ciphertext is decrypted into a stack buffer, a subset is copied to the read() buffer, and then the entire ciphertext record is saved for the next call to read().
1039 lines
54 KiB
Zig
1039 lines
54 KiB
Zig
const std = @import("../../std.zig");
|
|
const tls = std.crypto.tls;
|
|
const Client = @This();
|
|
const net = std.net;
|
|
const mem = std.mem;
|
|
const crypto = std.crypto;
|
|
const assert = std.debug.assert;
|
|
|
|
const ApplicationCipher = tls.ApplicationCipher;
|
|
const CipherSuite = tls.CipherSuite;
|
|
const ContentType = tls.ContentType;
|
|
const HandshakeCipher = tls.HandshakeCipher;
|
|
const max_ciphertext_len = tls.max_ciphertext_len;
|
|
const hkdfExpandLabel = tls.hkdfExpandLabel;
|
|
const int2 = tls.int2;
|
|
const int3 = tls.int3;
|
|
const array = tls.array;
|
|
const enum_array = tls.enum_array;
|
|
const Certificate = crypto.Certificate;
|
|
|
|
read_seq: u64,
|
|
write_seq: u64,
|
|
/// The number of partially read bytes inside `partially_read_buffer`.
|
|
partially_read_len: u15,
|
|
/// The number of cleartext bytes from decoding `partially_read_buffer` which
|
|
/// have already been transferred via read() calls. This implementation will
|
|
/// re-decrypt bytes from `partially_read_buffer` when the buffer supplied by
|
|
/// the read() API user is not large enough.
|
|
partial_cleartext_index: u15,
|
|
application_cipher: ApplicationCipher,
|
|
eof: bool,
|
|
/// The size is enough to contain exactly one TLSCiphertext record.
|
|
/// Contains encrypted bytes.
|
|
partially_read_buffer: [tls.max_ciphertext_record_len]u8,
|
|
|
|
/// `host` is only borrowed during this function call.
|
|
pub fn init(stream: net.Stream, ca_bundle: Certificate.Bundle, host: []const u8) !Client {
|
|
const host_len = @intCast(u16, host.len);
|
|
|
|
var random_buffer: [128]u8 = undefined;
|
|
crypto.random.bytes(&random_buffer);
|
|
const hello_rand = random_buffer[0..32].*;
|
|
const legacy_session_id = random_buffer[32..64].*;
|
|
const x25519_kp_seed = random_buffer[64..96].*;
|
|
const secp256r1_kp_seed = random_buffer[96..128].*;
|
|
|
|
const x25519_kp = crypto.dh.X25519.KeyPair.create(x25519_kp_seed) catch |err| switch (err) {
|
|
// Only possible to happen if the private key is all zeroes.
|
|
error.IdentityElement => return error.InsufficientEntropy,
|
|
};
|
|
const secp256r1_kp = crypto.sign.ecdsa.EcdsaP256Sha256.KeyPair.create(secp256r1_kp_seed) catch |err| switch (err) {
|
|
// Only possible to happen if the private key is all zeroes.
|
|
error.IdentityElement => return error.InsufficientEntropy,
|
|
};
|
|
|
|
const extensions_payload =
|
|
tls.extension(.supported_versions, [_]u8{
|
|
0x02, // byte length of supported versions
|
|
0x03, 0x04, // TLS 1.3
|
|
}) ++ tls.extension(.signature_algorithms, enum_array(tls.SignatureScheme, &.{
|
|
.ecdsa_secp256r1_sha256,
|
|
.ecdsa_secp384r1_sha384,
|
|
.ecdsa_secp521r1_sha512,
|
|
.rsa_pkcs1_sha256,
|
|
.rsa_pkcs1_sha384,
|
|
.rsa_pkcs1_sha512,
|
|
.ed25519,
|
|
})) ++ tls.extension(.supported_groups, enum_array(tls.NamedGroup, &.{
|
|
.secp256r1,
|
|
.x25519,
|
|
})) ++ tls.extension(
|
|
.key_share,
|
|
array(1, int2(@enumToInt(tls.NamedGroup.x25519)) ++
|
|
array(1, x25519_kp.public_key) ++
|
|
int2(@enumToInt(tls.NamedGroup.secp256r1)) ++
|
|
array(1, secp256r1_kp.public_key.toUncompressedSec1())),
|
|
) ++
|
|
int2(@enumToInt(tls.ExtensionType.server_name)) ++
|
|
int2(host_len + 5) ++ // byte length of this extension payload
|
|
int2(host_len + 3) ++ // server_name_list byte count
|
|
[1]u8{0x00} ++ // name_type
|
|
int2(host_len);
|
|
|
|
const extensions_header =
|
|
int2(@intCast(u16, extensions_payload.len + host_len)) ++
|
|
extensions_payload;
|
|
|
|
const legacy_compression_methods = 0x0100;
|
|
|
|
const client_hello =
|
|
int2(@enumToInt(tls.ProtocolVersion.tls_1_2)) ++
|
|
hello_rand ++
|
|
[1]u8{32} ++ legacy_session_id ++
|
|
cipher_suites ++
|
|
int2(legacy_compression_methods) ++
|
|
extensions_header;
|
|
|
|
const out_handshake =
|
|
[_]u8{@enumToInt(tls.HandshakeType.client_hello)} ++
|
|
int3(@intCast(u24, client_hello.len + host_len)) ++
|
|
client_hello;
|
|
|
|
const plaintext_header = [_]u8{
|
|
@enumToInt(ContentType.handshake),
|
|
0x03, 0x01, // legacy_record_version
|
|
} ++ int2(@intCast(u16, out_handshake.len + host_len)) ++ out_handshake;
|
|
|
|
{
|
|
var iovecs = [_]std.os.iovec_const{
|
|
.{
|
|
.iov_base = &plaintext_header,
|
|
.iov_len = plaintext_header.len,
|
|
},
|
|
.{
|
|
.iov_base = host.ptr,
|
|
.iov_len = host.len,
|
|
},
|
|
};
|
|
try stream.writevAll(&iovecs);
|
|
}
|
|
|
|
const client_hello_bytes1 = plaintext_header[5..];
|
|
|
|
var handshake_cipher: HandshakeCipher = undefined;
|
|
|
|
var handshake_buf: [8000]u8 = undefined;
|
|
var len: usize = 0;
|
|
var i: usize = i: {
|
|
const plaintext = handshake_buf[0..5];
|
|
len = try stream.readAtLeast(&handshake_buf, plaintext.len);
|
|
if (len < plaintext.len) return error.EndOfStream;
|
|
const ct = @intToEnum(ContentType, plaintext[0]);
|
|
const frag_len = mem.readIntBig(u16, plaintext[3..][0..2]);
|
|
const end = plaintext.len + frag_len;
|
|
if (end > handshake_buf.len) return error.TlsRecordOverflow;
|
|
if (end > len) {
|
|
len += try stream.readAtLeast(handshake_buf[len..], end - len);
|
|
if (end > len) return error.EndOfStream;
|
|
}
|
|
const frag = handshake_buf[plaintext.len..end];
|
|
|
|
switch (ct) {
|
|
.alert => {
|
|
const level = @intToEnum(tls.AlertLevel, frag[0]);
|
|
const desc = @intToEnum(tls.AlertDescription, frag[1]);
|
|
std.debug.print("alert: {s} {s}\n", .{ @tagName(level), @tagName(desc) });
|
|
return error.TlsAlert;
|
|
},
|
|
.handshake => {
|
|
if (frag[0] != @enumToInt(tls.HandshakeType.server_hello)) {
|
|
return error.TlsUnexpectedMessage;
|
|
}
|
|
const length = mem.readIntBig(u24, frag[1..4]);
|
|
if (4 + length != frag.len) return error.TlsBadLength;
|
|
var i: usize = 4;
|
|
const legacy_version = mem.readIntBig(u16, frag[i..][0..2]);
|
|
i += 2;
|
|
const random = frag[i..][0..32].*;
|
|
i += 32;
|
|
if (mem.eql(u8, &random, &tls.hello_retry_request_sequence)) {
|
|
@panic("TODO handle HelloRetryRequest");
|
|
}
|
|
const legacy_session_id_echo_len = frag[i];
|
|
i += 1;
|
|
if (legacy_session_id_echo_len != 32) return error.TlsIllegalParameter;
|
|
const legacy_session_id_echo = frag[i..][0..32];
|
|
if (!mem.eql(u8, legacy_session_id_echo, &legacy_session_id))
|
|
return error.TlsIllegalParameter;
|
|
i += 32;
|
|
const cipher_suite_int = mem.readIntBig(u16, frag[i..][0..2]);
|
|
i += 2;
|
|
const cipher_suite_tag = @intToEnum(CipherSuite, cipher_suite_int);
|
|
const legacy_compression_method = frag[i];
|
|
i += 1;
|
|
_ = legacy_compression_method;
|
|
const extensions_size = mem.readIntBig(u16, frag[i..][0..2]);
|
|
i += 2;
|
|
if (i + extensions_size != frag.len) return error.TlsBadLength;
|
|
var supported_version: u16 = 0;
|
|
var shared_key: [32]u8 = undefined;
|
|
var have_shared_key = false;
|
|
while (i < frag.len) {
|
|
const et = @intToEnum(tls.ExtensionType, mem.readIntBig(u16, frag[i..][0..2]));
|
|
i += 2;
|
|
const ext_size = mem.readIntBig(u16, frag[i..][0..2]);
|
|
i += 2;
|
|
const next_i = i + ext_size;
|
|
if (next_i > frag.len) return error.TlsBadLength;
|
|
switch (et) {
|
|
.supported_versions => {
|
|
if (supported_version != 0) return error.TlsIllegalParameter;
|
|
supported_version = mem.readIntBig(u16, frag[i..][0..2]);
|
|
},
|
|
.key_share => {
|
|
if (have_shared_key) return error.TlsIllegalParameter;
|
|
have_shared_key = true;
|
|
const named_group = @intToEnum(tls.NamedGroup, mem.readIntBig(u16, frag[i..][0..2]));
|
|
i += 2;
|
|
const key_size = mem.readIntBig(u16, frag[i..][0..2]);
|
|
i += 2;
|
|
|
|
switch (named_group) {
|
|
.x25519 => {
|
|
if (key_size != 32) return error.TlsBadLength;
|
|
const server_pub_key = frag[i..][0..32];
|
|
|
|
shared_key = crypto.dh.X25519.scalarmult(
|
|
x25519_kp.secret_key,
|
|
server_pub_key.*,
|
|
) catch return error.TlsDecryptFailure;
|
|
},
|
|
.secp256r1 => {
|
|
const server_pub_key = frag[i..][0..key_size];
|
|
|
|
const PublicKey = crypto.sign.ecdsa.EcdsaP256Sha256.PublicKey;
|
|
const pk = PublicKey.fromSec1(server_pub_key) catch {
|
|
return error.TlsDecryptFailure;
|
|
};
|
|
const mul = pk.p.mulPublic(secp256r1_kp.secret_key.bytes, .Big) catch {
|
|
return error.TlsDecryptFailure;
|
|
};
|
|
shared_key = mul.affineCoordinates().x.toBytes(.Big);
|
|
},
|
|
else => {
|
|
//std.debug.print("named group: {x}\n", .{named_group});
|
|
return error.TlsIllegalParameter;
|
|
},
|
|
}
|
|
},
|
|
else => {
|
|
std.debug.print("unexpected extension: {x}\n", .{et});
|
|
},
|
|
}
|
|
i = next_i;
|
|
}
|
|
if (!have_shared_key) return error.TlsIllegalParameter;
|
|
const tls_version = if (supported_version == 0) legacy_version else supported_version;
|
|
switch (tls_version) {
|
|
@enumToInt(tls.ProtocolVersion.tls_1_3) => {},
|
|
else => return error.TlsIllegalParameter,
|
|
}
|
|
|
|
switch (cipher_suite_tag) {
|
|
inline .AES_128_GCM_SHA256,
|
|
.AES_256_GCM_SHA384,
|
|
.CHACHA20_POLY1305_SHA256,
|
|
.AEGIS_256_SHA384,
|
|
.AEGIS_128L_SHA256,
|
|
=> |tag| {
|
|
const P = std.meta.TagPayloadByName(HandshakeCipher, @tagName(tag));
|
|
handshake_cipher = @unionInit(HandshakeCipher, @tagName(tag), .{
|
|
.handshake_secret = undefined,
|
|
.master_secret = undefined,
|
|
.client_handshake_key = undefined,
|
|
.server_handshake_key = undefined,
|
|
.client_finished_key = undefined,
|
|
.server_finished_key = undefined,
|
|
.client_handshake_iv = undefined,
|
|
.server_handshake_iv = undefined,
|
|
.transcript_hash = P.Hash.init(.{}),
|
|
});
|
|
const p = &@field(handshake_cipher, @tagName(tag));
|
|
p.transcript_hash.update(client_hello_bytes1); // Client Hello part 1
|
|
p.transcript_hash.update(host); // Client Hello part 2
|
|
p.transcript_hash.update(frag); // Server Hello
|
|
const hello_hash = p.transcript_hash.peek();
|
|
const zeroes = [1]u8{0} ** P.Hash.digest_length;
|
|
const early_secret = P.Hkdf.extract(&[1]u8{0}, &zeroes);
|
|
const empty_hash = tls.emptyHash(P.Hash);
|
|
const hs_derived_secret = hkdfExpandLabel(P.Hkdf, early_secret, "derived", &empty_hash, P.Hash.digest_length);
|
|
p.handshake_secret = P.Hkdf.extract(&hs_derived_secret, &shared_key);
|
|
const ap_derived_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "derived", &empty_hash, P.Hash.digest_length);
|
|
p.master_secret = P.Hkdf.extract(&ap_derived_secret, &zeroes);
|
|
const client_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "c hs traffic", &hello_hash, P.Hash.digest_length);
|
|
const server_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "s hs traffic", &hello_hash, P.Hash.digest_length);
|
|
p.client_finished_key = hkdfExpandLabel(P.Hkdf, client_secret, "finished", "", P.Hmac.key_length);
|
|
p.server_finished_key = hkdfExpandLabel(P.Hkdf, server_secret, "finished", "", P.Hmac.key_length);
|
|
p.client_handshake_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
|
|
p.server_handshake_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
|
|
p.client_handshake_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
|
|
p.server_handshake_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
|
|
//std.debug.print("shared_key: {}\nhello_hash: {}\nearly_secret: {}\nempty_hash: {}\nderived_secret: {}\nhandshake_secret: {}\n client_secret: {}\n server_secret: {}\nclient_handshake_iv: {}\nserver_handshake_iv: {}\n", .{
|
|
// std.fmt.fmtSliceHexLower(&shared_key),
|
|
// std.fmt.fmtSliceHexLower(&hello_hash),
|
|
// std.fmt.fmtSliceHexLower(&early_secret),
|
|
// std.fmt.fmtSliceHexLower(&empty_hash),
|
|
// std.fmt.fmtSliceHexLower(&hs_derived_secret),
|
|
// std.fmt.fmtSliceHexLower(&p.handshake_secret),
|
|
// std.fmt.fmtSliceHexLower(&client_secret),
|
|
// std.fmt.fmtSliceHexLower(&server_secret),
|
|
// std.fmt.fmtSliceHexLower(&p.client_handshake_iv),
|
|
// std.fmt.fmtSliceHexLower(&p.server_handshake_iv),
|
|
//});
|
|
},
|
|
else => {
|
|
return error.TlsIllegalParameter;
|
|
},
|
|
}
|
|
},
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
break :i end;
|
|
};
|
|
|
|
// This is used for two purposes:
|
|
// * Detect whether a certificate is the first one presented, in which case
|
|
// we need to verify the host name.
|
|
// * Flip back and forth between the two cleartext buffers in order to keep
|
|
// the previous certificate in memory so that it can be verified by the
|
|
// next one.
|
|
var cert_index: usize = 0;
|
|
var read_seq: u64 = 0;
|
|
var prev_cert: Certificate.Parsed = undefined;
|
|
// Set to true once a trust chain has been established from the first
|
|
// certificate to a root CA.
|
|
const HandshakeState = enum {
|
|
/// In this state we expect only an encrypted_extensions message.
|
|
encrypted_extensions,
|
|
/// In this state we expect certificate messages.
|
|
certificate,
|
|
/// In this state we expect certificate or certificate_verify messages.
|
|
/// certificate messages are ignored since the trust chain is already
|
|
/// established.
|
|
trust_chain_established,
|
|
/// In this state, we expect only the finished message.
|
|
finished,
|
|
};
|
|
var handshake_state: HandshakeState = .encrypted_extensions;
|
|
var cleartext_bufs: [2][8000]u8 = undefined;
|
|
var main_cert_pub_key_algo: Certificate.AlgorithmCategory = undefined;
|
|
var main_cert_pub_key_buf: [300]u8 = undefined;
|
|
var main_cert_pub_key_len: u16 = undefined;
|
|
|
|
while (true) {
|
|
const end_hdr = i + 5;
|
|
if (end_hdr > handshake_buf.len) return error.TlsRecordOverflow;
|
|
if (end_hdr > len) {
|
|
len += try stream.readAtLeast(handshake_buf[len..], end_hdr - len);
|
|
if (end_hdr > len) return error.EndOfStream;
|
|
}
|
|
const ct = @intToEnum(ContentType, handshake_buf[i]);
|
|
i += 1;
|
|
const legacy_version = mem.readIntBig(u16, handshake_buf[i..][0..2]);
|
|
i += 2;
|
|
_ = legacy_version;
|
|
const record_size = mem.readIntBig(u16, handshake_buf[i..][0..2]);
|
|
i += 2;
|
|
const end = i + record_size;
|
|
if (end > handshake_buf.len) return error.TlsRecordOverflow;
|
|
if (end > len) {
|
|
len += try stream.readAtLeast(handshake_buf[len..], end - len);
|
|
if (end > len) return error.EndOfStream;
|
|
}
|
|
switch (ct) {
|
|
.change_cipher_spec => {
|
|
if (record_size != 1) return error.TlsUnexpectedMessage;
|
|
if (handshake_buf[i] != 0x01) return error.TlsUnexpectedMessage;
|
|
},
|
|
.application_data => {
|
|
const cleartext_buf = &cleartext_bufs[cert_index % 2];
|
|
|
|
const cleartext = switch (handshake_cipher) {
|
|
inline else => |*p| c: {
|
|
const P = @TypeOf(p.*);
|
|
const ciphertext_len = record_size - P.AEAD.tag_length;
|
|
const ciphertext = handshake_buf[i..][0..ciphertext_len];
|
|
i += ciphertext.len;
|
|
if (ciphertext.len > cleartext_buf.len) return error.TlsRecordOverflow;
|
|
const cleartext = cleartext_buf[0..ciphertext.len];
|
|
const auth_tag = handshake_buf[i..][0..P.AEAD.tag_length].*;
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ @bitCast([8]u8, big(read_seq));
|
|
read_seq += 1;
|
|
const nonce = @as(V, p.server_handshake_iv) ^ operand;
|
|
const ad = handshake_buf[end_hdr - 5 ..][0..5];
|
|
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, p.server_handshake_key) catch
|
|
return error.TlsBadRecordMac;
|
|
break :c cleartext;
|
|
},
|
|
};
|
|
|
|
const inner_ct = @intToEnum(ContentType, cleartext[cleartext.len - 1]);
|
|
switch (inner_ct) {
|
|
.handshake => {
|
|
var ct_i: usize = 0;
|
|
while (true) {
|
|
const handshake_type = @intToEnum(tls.HandshakeType, cleartext[ct_i]);
|
|
ct_i += 1;
|
|
const handshake_len = mem.readIntBig(u24, cleartext[ct_i..][0..3]);
|
|
ct_i += 3;
|
|
const next_handshake_i = ct_i + handshake_len;
|
|
if (next_handshake_i > cleartext.len - 1)
|
|
return error.TlsBadLength;
|
|
const wrapped_handshake = cleartext[ct_i - 4 .. next_handshake_i];
|
|
const handshake = cleartext[ct_i..next_handshake_i];
|
|
switch (handshake_type) {
|
|
.encrypted_extensions => {
|
|
if (handshake_state != .encrypted_extensions) return error.TlsUnexpectedMessage;
|
|
handshake_state = .certificate;
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
|
|
}
|
|
const total_ext_size = mem.readIntBig(u16, handshake[0..2]);
|
|
var hs_i: usize = 2;
|
|
const end_ext_i = 2 + total_ext_size;
|
|
while (hs_i < end_ext_i) {
|
|
const et = @intToEnum(tls.ExtensionType, mem.readIntBig(u16, handshake[hs_i..][0..2]));
|
|
hs_i += 2;
|
|
const ext_size = mem.readIntBig(u16, handshake[hs_i..][0..2]);
|
|
hs_i += 2;
|
|
const next_ext_i = hs_i + ext_size;
|
|
switch (et) {
|
|
.server_name => {},
|
|
else => {
|
|
std.debug.print("encrypted extension: {any}\n", .{
|
|
et,
|
|
});
|
|
},
|
|
}
|
|
hs_i = next_ext_i;
|
|
}
|
|
},
|
|
.certificate => cert: {
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
|
|
}
|
|
switch (handshake_state) {
|
|
.certificate => {},
|
|
.trust_chain_established => break :cert,
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
var hs_i: u32 = 0;
|
|
const cert_req_ctx_len = handshake[hs_i];
|
|
hs_i += 1;
|
|
if (cert_req_ctx_len != 0) return error.TlsIllegalParameter;
|
|
const certs_size = mem.readIntBig(u24, handshake[hs_i..][0..3]);
|
|
hs_i += 3;
|
|
const end_certs = hs_i + certs_size;
|
|
while (hs_i < end_certs) {
|
|
const cert_size = mem.readIntBig(u24, handshake[hs_i..][0..3]);
|
|
hs_i += 3;
|
|
const end_cert = hs_i + cert_size;
|
|
|
|
const subject_cert: Certificate = .{
|
|
.buffer = handshake,
|
|
.index = hs_i,
|
|
};
|
|
const subject = try subject_cert.parse();
|
|
if (cert_index == 0) {
|
|
// Verify the host on the first certificate.
|
|
if (!hostMatchesCommonName(host, subject.commonName())) {
|
|
return error.TlsCertificateHostMismatch;
|
|
}
|
|
|
|
// Keep track of the public key for
|
|
// the certificate_verify message
|
|
// later.
|
|
main_cert_pub_key_algo = subject.pub_key_algo;
|
|
const pub_key = subject.pubKey();
|
|
if (pub_key.len > main_cert_pub_key_buf.len)
|
|
return error.CertificatePublicKeyInvalid;
|
|
@memcpy(&main_cert_pub_key_buf, pub_key.ptr, pub_key.len);
|
|
main_cert_pub_key_len = @intCast(@TypeOf(main_cert_pub_key_len), pub_key.len);
|
|
} else {
|
|
prev_cert.verify(subject) catch |err| {
|
|
std.debug.print("unable to validate previous cert: {s}\n", .{
|
|
@errorName(err),
|
|
});
|
|
return err;
|
|
};
|
|
}
|
|
|
|
if (ca_bundle.verify(subject)) |_| {
|
|
handshake_state = .trust_chain_established;
|
|
break :cert;
|
|
} else |err| switch (err) {
|
|
error.CertificateIssuerNotFound => {},
|
|
else => |e| {
|
|
std.debug.print("unable to validate cert against system root CAs: {s}\n", .{
|
|
@errorName(e),
|
|
});
|
|
return e;
|
|
},
|
|
}
|
|
|
|
prev_cert = subject;
|
|
cert_index += 1;
|
|
|
|
hs_i = end_cert;
|
|
const total_ext_size = mem.readIntBig(u16, handshake[hs_i..][0..2]);
|
|
hs_i += 2;
|
|
hs_i += total_ext_size;
|
|
}
|
|
},
|
|
.certificate_verify => {
|
|
switch (handshake_state) {
|
|
.trust_chain_established => handshake_state = .finished,
|
|
.certificate => return error.TlsCertificateNotVerified,
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
|
|
const algorithm = @intToEnum(tls.SignatureScheme, mem.readIntBig(u16, handshake[0..2]));
|
|
const sig_len = mem.readIntBig(u16, handshake[2..4]);
|
|
if (4 + sig_len > handshake.len) return error.TlsBadLength;
|
|
const encoded_sig = handshake[4..][0..sig_len];
|
|
const max_digest_len = 64;
|
|
var verify_buffer =
|
|
([1]u8{0x20} ** 64) ++
|
|
"TLS 1.3, server CertificateVerify\x00".* ++
|
|
@as([max_digest_len]u8, undefined);
|
|
|
|
const verify_bytes = switch (handshake_cipher) {
|
|
inline else => |*p| v: {
|
|
const transcript_digest = p.transcript_hash.peek();
|
|
verify_buffer[verify_buffer.len - max_digest_len ..][0..transcript_digest.len].* = transcript_digest;
|
|
p.transcript_hash.update(wrapped_handshake);
|
|
break :v verify_buffer[0 .. verify_buffer.len - max_digest_len + transcript_digest.len];
|
|
},
|
|
};
|
|
const main_cert_pub_key = main_cert_pub_key_buf[0..main_cert_pub_key_len];
|
|
|
|
switch (algorithm) {
|
|
.ecdsa_secp256r1_sha256 => {
|
|
if (main_cert_pub_key_algo != .X9_62_id_ecPublicKey)
|
|
return error.TlsBadSignatureAlgorithm;
|
|
const P256 = std.crypto.sign.ecdsa.EcdsaP256Sha256;
|
|
const sig = try P256.Signature.fromDer(encoded_sig);
|
|
const key = try P256.PublicKey.fromSec1(main_cert_pub_key);
|
|
try sig.verify(verify_bytes, key);
|
|
},
|
|
.rsa_pss_rsae_sha256 => {
|
|
@panic("TODO signature algorithm: rsa_pss_rsae_sha256");
|
|
},
|
|
else => {
|
|
//std.debug.print("signature algorithm: {any}\n", .{
|
|
// algorithm,
|
|
//});
|
|
return error.TlsBadSignatureAlgorithm;
|
|
},
|
|
}
|
|
},
|
|
.finished => {
|
|
if (handshake_state != .finished) return error.TlsUnexpectedMessage;
|
|
// This message is to trick buggy proxies into behaving correctly.
|
|
const client_change_cipher_spec_msg = [_]u8{
|
|
@enumToInt(ContentType.change_cipher_spec),
|
|
0x03, 0x03, // legacy protocol version
|
|
0x00, 0x01, // length
|
|
0x01,
|
|
};
|
|
const app_cipher = switch (handshake_cipher) {
|
|
inline else => |*p, tag| c: {
|
|
const P = @TypeOf(p.*);
|
|
const finished_digest = p.transcript_hash.peek();
|
|
p.transcript_hash.update(wrapped_handshake);
|
|
const expected_server_verify_data = tls.hmac(P.Hmac, &finished_digest, p.server_finished_key);
|
|
if (!mem.eql(u8, &expected_server_verify_data, handshake))
|
|
return error.TlsDecryptError;
|
|
const handshake_hash = p.transcript_hash.finalResult();
|
|
const verify_data = tls.hmac(P.Hmac, &handshake_hash, p.client_finished_key);
|
|
const out_cleartext = [_]u8{
|
|
@enumToInt(tls.HandshakeType.finished),
|
|
0, 0, verify_data.len, // length
|
|
} ++ verify_data ++ [1]u8{@enumToInt(ContentType.handshake)};
|
|
|
|
const wrapped_len = out_cleartext.len + P.AEAD.tag_length;
|
|
|
|
var finished_msg = [_]u8{
|
|
@enumToInt(ContentType.application_data),
|
|
0x03, 0x03, // legacy protocol version
|
|
0, wrapped_len, // byte length of encrypted record
|
|
} ++ @as([wrapped_len]u8, undefined);
|
|
|
|
const ad = finished_msg[0..5];
|
|
const ciphertext = finished_msg[5..][0..out_cleartext.len];
|
|
const auth_tag = finished_msg[finished_msg.len - P.AEAD.tag_length ..];
|
|
const nonce = p.client_handshake_iv;
|
|
P.AEAD.encrypt(ciphertext, auth_tag, &out_cleartext, ad, nonce, p.client_handshake_key);
|
|
|
|
const both_msgs = client_change_cipher_spec_msg ++ finished_msg;
|
|
try stream.writeAll(&both_msgs);
|
|
|
|
const client_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "c ap traffic", &handshake_hash, P.Hash.digest_length);
|
|
const server_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "s ap traffic", &handshake_hash, P.Hash.digest_length);
|
|
//std.debug.print("master_secret={}\nclient_secret={}\nserver_secret={}\n", .{
|
|
// std.fmt.fmtSliceHexLower(&p.master_secret),
|
|
// std.fmt.fmtSliceHexLower(&client_secret),
|
|
// std.fmt.fmtSliceHexLower(&server_secret),
|
|
//});
|
|
break :c @unionInit(ApplicationCipher, @tagName(tag), .{
|
|
.client_secret = client_secret,
|
|
.server_secret = server_secret,
|
|
.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length),
|
|
.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length),
|
|
.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length),
|
|
.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length),
|
|
});
|
|
},
|
|
};
|
|
var client: Client = .{
|
|
.application_cipher = app_cipher,
|
|
.read_seq = 0,
|
|
.write_seq = 0,
|
|
.partial_cleartext_index = 0,
|
|
.partially_read_buffer = undefined,
|
|
.partially_read_len = @intCast(u15, len - end),
|
|
.eof = false,
|
|
};
|
|
mem.copy(u8, &client.partially_read_buffer, handshake_buf[len..end]);
|
|
return client;
|
|
},
|
|
else => {
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
}
|
|
ct_i = next_handshake_i;
|
|
if (ct_i >= cleartext.len - 1) break;
|
|
}
|
|
},
|
|
else => {
|
|
std.debug.print("inner content type: {any}\n", .{inner_ct});
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
}
|
|
},
|
|
else => {
|
|
std.debug.print("content type: {s}\n", .{@tagName(ct)});
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
}
|
|
i = end;
|
|
}
|
|
|
|
return error.TlsHandshakeFailure;
|
|
}
|
|
|
|
pub fn write(c: *Client, stream: net.Stream, bytes: []const u8) !usize {
|
|
var ciphertext_buf: [tls.max_ciphertext_record_len * 4]u8 = undefined;
|
|
// Due to the trailing inner content type byte in the ciphertext, we need
|
|
// an additional buffer for storing the cleartext into before encrypting.
|
|
var cleartext_buf: [max_ciphertext_len]u8 = undefined;
|
|
var iovecs_buf: [5]std.os.iovec_const = undefined;
|
|
var ciphertext_end: usize = 0;
|
|
var iovec_end: usize = 0;
|
|
var bytes_i: usize = 0;
|
|
// How many bytes are taken up by overhead per record.
|
|
const overhead_len: usize = switch (c.application_cipher) {
|
|
inline else => |*p| l: {
|
|
const P = @TypeOf(p.*);
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const overhead_len = tls.ciphertext_record_header_len + P.AEAD.tag_length + 1;
|
|
while (true) {
|
|
const encrypted_content_len = @intCast(u16, @min(
|
|
@min(bytes.len - bytes_i, max_ciphertext_len - 1),
|
|
ciphertext_buf.len -
|
|
tls.ciphertext_record_header_len - P.AEAD.tag_length - ciphertext_end - 1,
|
|
));
|
|
if (encrypted_content_len == 0) break :l overhead_len;
|
|
|
|
mem.copy(u8, &cleartext_buf, bytes[bytes_i..][0..encrypted_content_len]);
|
|
cleartext_buf[encrypted_content_len] = @enumToInt(ContentType.application_data);
|
|
bytes_i += encrypted_content_len;
|
|
const ciphertext_len = encrypted_content_len + 1;
|
|
const cleartext = cleartext_buf[0..ciphertext_len];
|
|
|
|
const record_start = ciphertext_end;
|
|
const ad = ciphertext_buf[ciphertext_end..][0..5];
|
|
ad.* =
|
|
[_]u8{@enumToInt(ContentType.application_data)} ++
|
|
int2(@enumToInt(tls.ProtocolVersion.tls_1_2)) ++
|
|
int2(ciphertext_len + P.AEAD.tag_length);
|
|
ciphertext_end += ad.len;
|
|
const ciphertext = ciphertext_buf[ciphertext_end..][0..ciphertext_len];
|
|
ciphertext_end += ciphertext_len;
|
|
const auth_tag = ciphertext_buf[ciphertext_end..][0..P.AEAD.tag_length];
|
|
ciphertext_end += auth_tag.len;
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ @bitCast([8]u8, big(c.write_seq));
|
|
c.write_seq += 1; // TODO send key_update on overflow
|
|
const nonce = @as(V, p.client_iv) ^ operand;
|
|
P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, p.client_key);
|
|
//std.debug.print("seq: {d} nonce: {} client_key: {} client_iv: {} ad: {} auth_tag: {}\nserver_key: {} server_iv: {}\n", .{
|
|
// c.write_seq - 1,
|
|
// std.fmt.fmtSliceHexLower(&nonce),
|
|
// std.fmt.fmtSliceHexLower(&p.client_key),
|
|
// std.fmt.fmtSliceHexLower(&p.client_iv),
|
|
// std.fmt.fmtSliceHexLower(ad),
|
|
// std.fmt.fmtSliceHexLower(auth_tag),
|
|
// std.fmt.fmtSliceHexLower(&p.server_key),
|
|
// std.fmt.fmtSliceHexLower(&p.server_iv),
|
|
//});
|
|
|
|
const record = ciphertext_buf[record_start..ciphertext_end];
|
|
iovecs_buf[iovec_end] = .{
|
|
.iov_base = record.ptr,
|
|
.iov_len = record.len,
|
|
};
|
|
iovec_end += 1;
|
|
}
|
|
},
|
|
};
|
|
|
|
// Ideally we would call writev exactly once here, however, we must ensure
|
|
// that we don't return with a record partially written.
|
|
var i: usize = 0;
|
|
var total_amt: usize = 0;
|
|
while (true) {
|
|
var amt = try stream.writev(iovecs_buf[i..iovec_end]);
|
|
while (amt >= iovecs_buf[i].iov_len) {
|
|
const encrypted_amt = iovecs_buf[i].iov_len;
|
|
total_amt += encrypted_amt - overhead_len;
|
|
amt -= encrypted_amt;
|
|
i += 1;
|
|
// Rely on the property that iovecs delineate records, meaning that
|
|
// if amt equals zero here, we have fortunately found ourselves
|
|
// with a short read that aligns at the record boundary.
|
|
if (i >= iovec_end or amt == 0) return total_amt;
|
|
}
|
|
iovecs_buf[i].iov_base += amt;
|
|
iovecs_buf[i].iov_len -= amt;
|
|
}
|
|
}
|
|
|
|
pub fn writeAll(c: *Client, stream: net.Stream, bytes: []const u8) !void {
|
|
var index: usize = 0;
|
|
while (index < bytes.len) {
|
|
index += try c.write(stream, bytes[index..]);
|
|
}
|
|
}
|
|
|
|
/// Returns the number of bytes read, calling the underlying read function the
|
|
/// minimal number of times until the buffer has at least `len` bytes filled.
|
|
/// If the number read is less than `len` it means the stream reached the end.
|
|
/// Reaching the end of the stream is not an error condition.
|
|
pub fn readAtLeast(c: *Client, stream: anytype, buffer: []u8, len: usize) !usize {
|
|
assert(len <= buffer.len);
|
|
if (c.eof) return 0;
|
|
var index: usize = 0;
|
|
while (index < len) {
|
|
index += try c.readAdvanced(stream, buffer[index..]);
|
|
if (c.eof) break;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
pub fn read(c: *Client, stream: anytype, buffer: []u8) !usize {
|
|
return readAtLeast(c, stream, buffer, 1);
|
|
}
|
|
|
|
/// Returns the number of bytes read. If the number read is smaller than
|
|
/// `buffer.len`, it means the stream reached the end. Reaching the end of the
|
|
/// stream is not an error condition.
|
|
pub fn readAll(c: *Client, stream: anytype, buffer: []u8) !usize {
|
|
return readAtLeast(c, stream, buffer, buffer.len);
|
|
}
|
|
|
|
/// Returns number of bytes that have been read, populated inside `buffer`. A
|
|
/// return value of zero bytes does not mean end of stream. Instead, the `eof`
|
|
/// flag is set upon end of stream. The `eof` flag may be set after any call to
|
|
/// `read`, including when greater than zero bytes are returned, and this
|
|
/// function asserts that `eof` is `false`.
|
|
/// See `read` for a higher level function that has the same, familiar API
|
|
/// as other read functions, such as `std.fs.File.read`.
|
|
/// It is recommended to use a buffer size with length at least
|
|
/// `tls.max_ciphertext_len` bytes to avoid redundantly decrypting the same
|
|
/// encoded data.
|
|
pub fn readAdvanced(c: *Client, stream: net.Stream, buffer: []u8) !usize {
|
|
assert(!c.eof);
|
|
const prev_len = c.partially_read_len;
|
|
// Ideally, this buffer would never be used. It is needed when `buffer` is too small
|
|
// to fit the cleartext, which may be as large as `max_ciphertext_len`.
|
|
var cleartext_stack_buffer: [max_ciphertext_len]u8 = undefined;
|
|
// This buffer is typically used, except, as an optimization when a very large
|
|
// `buffer` is provided, we use half of it for buffering ciphertext and the
|
|
// other half for outputting cleartext.
|
|
var in_stack_buffer: [max_ciphertext_len * 4]u8 = undefined;
|
|
const half_buffer_len = buffer.len / 2;
|
|
const out_in: struct { []u8, []u8 } = if (half_buffer_len >= in_stack_buffer.len) .{
|
|
buffer[0..half_buffer_len],
|
|
buffer[half_buffer_len..],
|
|
} else .{
|
|
buffer,
|
|
&in_stack_buffer,
|
|
};
|
|
const out_buf = out_in[0];
|
|
const in_buf = out_in[1];
|
|
mem.copy(u8, in_buf, c.partially_read_buffer[0..prev_len]);
|
|
|
|
// Capacity of output buffer, in records, rounded up.
|
|
const buf_cap = (out_buf.len +| (max_ciphertext_len - 1)) / max_ciphertext_len;
|
|
const wanted_read_len = buf_cap * (max_ciphertext_len + tls.ciphertext_record_header_len);
|
|
const ask_len = @max(wanted_read_len, cleartext_stack_buffer.len);
|
|
const ask_slice = in_buf[prev_len..][0..@min(ask_len, in_buf.len - prev_len)];
|
|
assert(ask_slice.len > 0);
|
|
const frag = frag: {
|
|
if (prev_len >= 5) {
|
|
const record_size = mem.readIntBig(u16, in_buf[3..][0..2]);
|
|
if (prev_len >= 5 + record_size) {
|
|
// We can use our buffered data without calling read().
|
|
break :frag in_buf[0..prev_len];
|
|
}
|
|
}
|
|
const actual_read_len = try stream.read(ask_slice);
|
|
if (actual_read_len == 0) {
|
|
// This is either a truncation attack, or a bug in the server.
|
|
return error.TlsConnectionTruncated;
|
|
}
|
|
break :frag in_buf[0 .. prev_len + actual_read_len];
|
|
};
|
|
var in: usize = 0;
|
|
var out: usize = 0;
|
|
|
|
while (true) {
|
|
if (in + tls.ciphertext_record_header_len > frag.len) {
|
|
return finishRead(c, frag, in, out);
|
|
}
|
|
const record_start = in;
|
|
const ct = @intToEnum(ContentType, frag[in]);
|
|
in += 1;
|
|
const legacy_version = mem.readIntBig(u16, frag[in..][0..2]);
|
|
in += 2;
|
|
_ = legacy_version;
|
|
const record_size = mem.readIntBig(u16, frag[in..][0..2]);
|
|
in += 2;
|
|
const end = in + record_size;
|
|
if (end > frag.len) {
|
|
if (record_size > max_ciphertext_len) return error.TlsRecordOverflow;
|
|
return finishRead(c, frag, in, out);
|
|
}
|
|
switch (ct) {
|
|
.alert => {
|
|
@panic("TODO handle an alert here");
|
|
},
|
|
.application_data => {
|
|
const cleartext = switch (c.application_cipher) {
|
|
inline else => |*p| c: {
|
|
const P = @TypeOf(p.*);
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const ad = frag[in - 5 ..][0..5];
|
|
const ciphertext_len = record_size - P.AEAD.tag_length;
|
|
const ciphertext = frag[in..][0..ciphertext_len];
|
|
in += ciphertext_len;
|
|
const auth_tag = frag[in..][0..P.AEAD.tag_length].*;
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
// Here we use read_seq and then intentionally don't
|
|
// increment it until later when it is certain the same
|
|
// ciphertext does not need to be decrypted again.
|
|
const operand: V = pad ++ @bitCast([8]u8, big(c.read_seq));
|
|
const nonce: [P.AEAD.nonce_length]u8 = @as(V, p.server_iv) ^ operand;
|
|
const cleartext_buf = if (c.partial_cleartext_index == 0 and out + ciphertext.len <= out_buf.len)
|
|
out_buf[out..]
|
|
else
|
|
&cleartext_stack_buffer;
|
|
const cleartext = cleartext_buf[0..ciphertext.len];
|
|
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, p.server_key) catch
|
|
return error.TlsBadRecordMac;
|
|
break :c cleartext;
|
|
},
|
|
};
|
|
|
|
const inner_ct = @intToEnum(ContentType, cleartext[cleartext.len - 1]);
|
|
switch (inner_ct) {
|
|
.alert => {
|
|
c.read_seq += 1;
|
|
const level = @intToEnum(tls.AlertLevel, out_buf[out]);
|
|
const desc = @intToEnum(tls.AlertDescription, out_buf[out + 1]);
|
|
if (desc == .close_notify) {
|
|
c.eof = true;
|
|
return out;
|
|
}
|
|
std.debug.print("alert: {s} {s}\n", .{ @tagName(level), @tagName(desc) });
|
|
return error.TlsAlert;
|
|
},
|
|
.handshake => {
|
|
c.read_seq += 1;
|
|
var ct_i: usize = 0;
|
|
while (true) {
|
|
const handshake_type = @intToEnum(tls.HandshakeType, cleartext[ct_i]);
|
|
ct_i += 1;
|
|
const handshake_len = mem.readIntBig(u24, cleartext[ct_i..][0..3]);
|
|
ct_i += 3;
|
|
const next_handshake_i = ct_i + handshake_len;
|
|
if (next_handshake_i > cleartext.len - 1)
|
|
return error.TlsBadLength;
|
|
const handshake = cleartext[ct_i..next_handshake_i];
|
|
switch (handshake_type) {
|
|
.new_session_ticket => {
|
|
// This client implementation ignores new session tickets.
|
|
},
|
|
.key_update => {
|
|
switch (c.application_cipher) {
|
|
inline else => |*p| {
|
|
const P = @TypeOf(p.*);
|
|
const server_secret = hkdfExpandLabel(P.Hkdf, p.server_secret, "traffic upd", "", P.Hash.digest_length);
|
|
p.server_secret = server_secret;
|
|
p.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
|
|
p.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
|
|
},
|
|
}
|
|
c.read_seq = 0;
|
|
|
|
switch (@intToEnum(tls.KeyUpdateRequest, handshake[0])) {
|
|
.update_requested => {
|
|
switch (c.application_cipher) {
|
|
inline else => |*p| {
|
|
const P = @TypeOf(p.*);
|
|
const client_secret = hkdfExpandLabel(P.Hkdf, p.client_secret, "traffic upd", "", P.Hash.digest_length);
|
|
p.client_secret = client_secret;
|
|
p.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
|
|
p.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
|
|
},
|
|
}
|
|
c.write_seq = 0;
|
|
},
|
|
.update_not_requested => {},
|
|
_ => return error.TlsIllegalParameter,
|
|
}
|
|
},
|
|
else => {
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
}
|
|
ct_i = next_handshake_i;
|
|
if (ct_i >= cleartext.len - 1) break;
|
|
}
|
|
},
|
|
.application_data => {
|
|
// Determine whether the output buffer or a stack
|
|
// buffer was used for storing the cleartext.
|
|
if (c.partial_cleartext_index == 0 and
|
|
out + cleartext.len <= out_buf.len)
|
|
{
|
|
// Output buffer was used directly which means no
|
|
// memory copying needs to occur, and we can move
|
|
// on to the next ciphertext record.
|
|
out += cleartext.len - 1;
|
|
c.read_seq += 1;
|
|
} else {
|
|
// Stack buffer was used, so we must copy to the output buffer.
|
|
const dest = out_buf[out..];
|
|
const rest = cleartext[c.partial_cleartext_index..];
|
|
const src = rest[0..@min(rest.len, dest.len)];
|
|
mem.copy(u8, dest, src);
|
|
out += src.len;
|
|
c.partial_cleartext_index = @intCast(
|
|
@TypeOf(c.partial_cleartext_index),
|
|
c.partial_cleartext_index + src.len,
|
|
);
|
|
if (c.partial_cleartext_index >= cleartext.len) {
|
|
c.partial_cleartext_index = 0;
|
|
c.read_seq += 1;
|
|
} else {
|
|
in = record_start;
|
|
return finishRead(c, frag, in, out);
|
|
}
|
|
}
|
|
},
|
|
else => {
|
|
std.debug.print("inner content type: {d}\n", .{inner_ct});
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
}
|
|
},
|
|
else => {
|
|
std.debug.print("unexpected ct: {any}\n", .{ct});
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
}
|
|
in = end;
|
|
}
|
|
}
|
|
|
|
fn finishRead(c: *Client, frag: []const u8, in: usize, out: usize) usize {
|
|
const saved_buf = frag[in..];
|
|
mem.copy(u8, &c.partially_read_buffer, saved_buf);
|
|
c.partially_read_len = @intCast(u15, saved_buf.len);
|
|
return out;
|
|
}
|
|
|
|
fn hostMatchesCommonName(host: []const u8, common_name: []const u8) bool {
|
|
if (mem.eql(u8, common_name, host)) {
|
|
return true; // exact match
|
|
}
|
|
|
|
if (mem.startsWith(u8, common_name, "*.")) {
|
|
// wildcard certificate, matches any subdomain
|
|
if (mem.endsWith(u8, host, common_name[1..])) {
|
|
// The host has a subdomain, but the important part matches.
|
|
return true;
|
|
}
|
|
if (mem.eql(u8, common_name[2..], host)) {
|
|
// The host has no subdomain and matches exactly.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const builtin = @import("builtin");
|
|
const native_endian = builtin.cpu.arch.endian();
|
|
|
|
inline fn big(x: anytype) @TypeOf(x) {
|
|
return switch (native_endian) {
|
|
.Big => x,
|
|
.Little => @byteSwap(x),
|
|
};
|
|
}
|
|
|
|
/// The priority order here is chosen based on what crypto algorithms Zig has
|
|
/// available in the standard library as well as what is faster. Following are
|
|
/// a few data points on the relative performance of these algorithms.
|
|
///
|
|
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
|
|
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
|
|
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast
|
|
/// aegis-128l: 15382 MiB/s
|
|
/// aegis-256: 9553 MiB/s
|
|
/// aes128-gcm: 3721 MiB/s
|
|
/// aes256-gcm: 3010 MiB/s
|
|
/// chacha20Poly1305: 597 MiB/s
|
|
///
|
|
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
|
|
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
|
|
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast -mcpu=baseline
|
|
/// aegis-128l: 629 MiB/s
|
|
/// chacha20Poly1305: 529 MiB/s
|
|
/// aegis-256: 461 MiB/s
|
|
/// aes128-gcm: 138 MiB/s
|
|
/// aes256-gcm: 120 MiB/s
|
|
const cipher_suites = enum_array(tls.CipherSuite, &.{
|
|
.AEGIS_128L_SHA256,
|
|
.AEGIS_256_SHA384,
|
|
.AES_128_GCM_SHA256,
|
|
.AES_256_GCM_SHA384,
|
|
.CHACHA20_POLY1305_SHA256,
|
|
});
|