mirror of
https://github.com/ziglang/zig.git
synced 2026-01-21 06:45:24 +00:00
AIR: * `array_elem_val` is now allowed to be used with a vector as the array type. * New instructions: splat, vector_init AstGen: * The splat ZIR instruction uses coerced_ty for the ResultLoc, avoiding an unnecessary `as` instruction, since the coercion will be performed in Sema. * Builtins that accept vectors now ignore the type parameter. Comment from this commit reproduced here: The accepted proposal #6835 tells us to remove the type parameter from these builtins. To stay source-compatible with stage1, we still observe the parameter here, but we do not encode it into the ZIR. To implement this proposal in stage2, only AstGen code will need to be changed. Sema: * `clz` and `ctz` ZIR instructions are now handled by the same function which accept AIR tag and comptime eval function pointer to differentiate. * `@typeInfo` for vectors is implemented. * `@splat` is implemented. It takes advantage of `Value.Tag.repeated` 😎 * `elemValue` is implemented for vectors, when the index is a scalar. Handling a vector index is still TODO. * Element-wise coercion is implemented for vectors. It could probably be optimized a bit, but it is at least complete & correct. * `Type.intInfo` supports vectors, returning int info for the element. * `Value.ctz` initial implementation. Needs work. * `Value.eql` is implemented for arrays and vectors. LLVM backend: * Implement vector support when lowering `array_elem_val`. * Implement vector support when lowering `ctz` and `clz`. * Implement `splat` and `vector_init`.
3323 lines
128 KiB
Zig
3323 lines
128 KiB
Zig
const std = @import("std");
|
|
const Allocator = std.mem.Allocator;
|
|
const ArrayList = std.ArrayList;
|
|
const assert = std.debug.assert;
|
|
const testing = std.testing;
|
|
const leb = std.leb;
|
|
const mem = std.mem;
|
|
const wasm = std.wasm;
|
|
const log = std.log.scoped(.codegen);
|
|
|
|
const Module = @import("../../Module.zig");
|
|
const Decl = Module.Decl;
|
|
const Type = @import("../../type.zig").Type;
|
|
const Value = @import("../../value.zig").Value;
|
|
const Compilation = @import("../../Compilation.zig");
|
|
const LazySrcLoc = Module.LazySrcLoc;
|
|
const link = @import("../../link.zig");
|
|
const TypedValue = @import("../../TypedValue.zig");
|
|
const Air = @import("../../Air.zig");
|
|
const Liveness = @import("../../Liveness.zig");
|
|
const Mir = @import("Mir.zig");
|
|
const Emit = @import("Emit.zig");
|
|
|
|
/// Wasm Value, created when generating an instruction
|
|
const WValue = union(enum) {
|
|
/// May be referenced but is unused
|
|
none: void,
|
|
/// Index of the local variable
|
|
local: u32,
|
|
/// Holds a memoized typed value
|
|
constant: TypedValue,
|
|
/// Used for types that contains of multiple areas within
|
|
/// a memory region in the stack.
|
|
/// The local represents the position in the stack,
|
|
/// whereas the offset represents the offset from that position.
|
|
local_with_offset: struct {
|
|
/// Index of the local variable
|
|
local: u32,
|
|
/// The offset from the local's stack position
|
|
offset: u32,
|
|
},
|
|
};
|
|
|
|
/// Wasm ops, but without input/output/signedness information
|
|
/// Used for `buildOpcode`
|
|
const Op = enum {
|
|
@"unreachable",
|
|
nop,
|
|
block,
|
|
loop,
|
|
@"if",
|
|
@"else",
|
|
end,
|
|
br,
|
|
br_if,
|
|
br_table,
|
|
@"return",
|
|
call,
|
|
call_indirect,
|
|
drop,
|
|
select,
|
|
local_get,
|
|
local_set,
|
|
local_tee,
|
|
global_get,
|
|
global_set,
|
|
load,
|
|
store,
|
|
memory_size,
|
|
memory_grow,
|
|
@"const",
|
|
eqz,
|
|
eq,
|
|
ne,
|
|
lt,
|
|
gt,
|
|
le,
|
|
ge,
|
|
clz,
|
|
ctz,
|
|
popcnt,
|
|
add,
|
|
sub,
|
|
mul,
|
|
div,
|
|
rem,
|
|
@"and",
|
|
@"or",
|
|
xor,
|
|
shl,
|
|
shr,
|
|
rotl,
|
|
rotr,
|
|
abs,
|
|
neg,
|
|
ceil,
|
|
floor,
|
|
trunc,
|
|
nearest,
|
|
sqrt,
|
|
min,
|
|
max,
|
|
copysign,
|
|
wrap,
|
|
convert,
|
|
demote,
|
|
promote,
|
|
reinterpret,
|
|
extend,
|
|
};
|
|
|
|
/// Contains the settings needed to create an `Opcode` using `buildOpcode`.
|
|
///
|
|
/// The fields correspond to the opcode name. Here is an example
|
|
/// i32_trunc_f32_s
|
|
/// ^ ^ ^ ^
|
|
/// | | | |
|
|
/// valtype1 | | |
|
|
/// = .i32 | | |
|
|
/// | | |
|
|
/// op | |
|
|
/// = .trunc | |
|
|
/// | |
|
|
/// valtype2 |
|
|
/// = .f32 |
|
|
/// |
|
|
/// width |
|
|
/// = null |
|
|
/// |
|
|
/// signed
|
|
/// = true
|
|
///
|
|
/// There can be missing fields, here are some more examples:
|
|
/// i64_load8_u
|
|
/// --> .{ .valtype1 = .i64, .op = .load, .width = 8, signed = false }
|
|
/// i32_mul
|
|
/// --> .{ .valtype1 = .i32, .op = .trunc }
|
|
/// nop
|
|
/// --> .{ .op = .nop }
|
|
const OpcodeBuildArguments = struct {
|
|
/// First valtype in the opcode (usually represents the type of the output)
|
|
valtype1: ?wasm.Valtype = null,
|
|
/// The operation (e.g. call, unreachable, div, min, sqrt, etc.)
|
|
op: Op,
|
|
/// Width of the operation (e.g. 8 for i32_load8_s, 16 for i64_extend16_i32_s)
|
|
width: ?u8 = null,
|
|
/// Second valtype in the opcode name (usually represents the type of the input)
|
|
valtype2: ?wasm.Valtype = null,
|
|
/// Signedness of the op
|
|
signedness: ?std.builtin.Signedness = null,
|
|
};
|
|
|
|
/// Helper function that builds an Opcode given the arguments needed
|
|
fn buildOpcode(args: OpcodeBuildArguments) wasm.Opcode {
|
|
switch (args.op) {
|
|
.@"unreachable" => return .@"unreachable",
|
|
.nop => return .nop,
|
|
.block => return .block,
|
|
.loop => return .loop,
|
|
.@"if" => return .@"if",
|
|
.@"else" => return .@"else",
|
|
.end => return .end,
|
|
.br => return .br,
|
|
.br_if => return .br_if,
|
|
.br_table => return .br_table,
|
|
.@"return" => return .@"return",
|
|
.call => return .call,
|
|
.call_indirect => return .call_indirect,
|
|
.drop => return .drop,
|
|
.select => return .select,
|
|
.local_get => return .local_get,
|
|
.local_set => return .local_set,
|
|
.local_tee => return .local_tee,
|
|
.global_get => return .global_get,
|
|
.global_set => return .global_set,
|
|
|
|
.load => if (args.width) |width| switch (width) {
|
|
8 => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_load8_s else return .i32_load8_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_load8_s else return .i64_load8_u,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
16 => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_load16_s else return .i32_load16_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_load16_s else return .i64_load16_u,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
32 => switch (args.valtype1.?) {
|
|
.i64 => if (args.signedness.? == .signed) return .i64_load32_s else return .i64_load32_u,
|
|
.i32 => return .i32_load,
|
|
.f32 => return .f32_load,
|
|
.f64 => unreachable,
|
|
},
|
|
64 => switch (args.valtype1.?) {
|
|
.i64 => return .i64_load,
|
|
.f64 => return .f64_load,
|
|
else => unreachable,
|
|
},
|
|
else => unreachable,
|
|
} else switch (args.valtype1.?) {
|
|
.i32 => return .i32_load,
|
|
.i64 => return .i64_load,
|
|
.f32 => return .f32_load,
|
|
.f64 => return .f64_load,
|
|
},
|
|
.store => if (args.width) |width| {
|
|
switch (width) {
|
|
8 => switch (args.valtype1.?) {
|
|
.i32 => return .i32_store8,
|
|
.i64 => return .i64_store8,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
16 => switch (args.valtype1.?) {
|
|
.i32 => return .i32_store16,
|
|
.i64 => return .i64_store16,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
32 => switch (args.valtype1.?) {
|
|
.i64 => return .i64_store32,
|
|
.i32 => return .i32_store,
|
|
.f32 => return .f32_store,
|
|
.f64 => unreachable,
|
|
},
|
|
64 => switch (args.valtype1.?) {
|
|
.i64 => return .i64_store,
|
|
.f64 => return .f64_store,
|
|
else => unreachable,
|
|
},
|
|
else => unreachable,
|
|
}
|
|
} else {
|
|
switch (args.valtype1.?) {
|
|
.i32 => return .i32_store,
|
|
.i64 => return .i64_store,
|
|
.f32 => return .f32_store,
|
|
.f64 => return .f64_store,
|
|
}
|
|
},
|
|
|
|
.memory_size => return .memory_size,
|
|
.memory_grow => return .memory_grow,
|
|
|
|
.@"const" => switch (args.valtype1.?) {
|
|
.i32 => return .i32_const,
|
|
.i64 => return .i64_const,
|
|
.f32 => return .f32_const,
|
|
.f64 => return .f64_const,
|
|
},
|
|
|
|
.eqz => switch (args.valtype1.?) {
|
|
.i32 => return .i32_eqz,
|
|
.i64 => return .i64_eqz,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.eq => switch (args.valtype1.?) {
|
|
.i32 => return .i32_eq,
|
|
.i64 => return .i64_eq,
|
|
.f32 => return .f32_eq,
|
|
.f64 => return .f64_eq,
|
|
},
|
|
.ne => switch (args.valtype1.?) {
|
|
.i32 => return .i32_ne,
|
|
.i64 => return .i64_ne,
|
|
.f32 => return .f32_ne,
|
|
.f64 => return .f64_ne,
|
|
},
|
|
|
|
.lt => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_lt_s else return .i32_lt_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_lt_s else return .i64_lt_u,
|
|
.f32 => return .f32_lt,
|
|
.f64 => return .f64_lt,
|
|
},
|
|
.gt => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_gt_s else return .i32_gt_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_gt_s else return .i64_gt_u,
|
|
.f32 => return .f32_gt,
|
|
.f64 => return .f64_gt,
|
|
},
|
|
.le => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_le_s else return .i32_le_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_le_s else return .i64_le_u,
|
|
.f32 => return .f32_le,
|
|
.f64 => return .f64_le,
|
|
},
|
|
.ge => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_ge_s else return .i32_ge_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_ge_s else return .i64_ge_u,
|
|
.f32 => return .f32_ge,
|
|
.f64 => return .f64_ge,
|
|
},
|
|
|
|
.clz => switch (args.valtype1.?) {
|
|
.i32 => return .i32_clz,
|
|
.i64 => return .i64_clz,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.ctz => switch (args.valtype1.?) {
|
|
.i32 => return .i32_ctz,
|
|
.i64 => return .i64_ctz,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.popcnt => switch (args.valtype1.?) {
|
|
.i32 => return .i32_popcnt,
|
|
.i64 => return .i64_popcnt,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
|
|
.add => switch (args.valtype1.?) {
|
|
.i32 => return .i32_add,
|
|
.i64 => return .i64_add,
|
|
.f32 => return .f32_add,
|
|
.f64 => return .f64_add,
|
|
},
|
|
.sub => switch (args.valtype1.?) {
|
|
.i32 => return .i32_sub,
|
|
.i64 => return .i64_sub,
|
|
.f32 => return .f32_sub,
|
|
.f64 => return .f64_sub,
|
|
},
|
|
.mul => switch (args.valtype1.?) {
|
|
.i32 => return .i32_mul,
|
|
.i64 => return .i64_mul,
|
|
.f32 => return .f32_mul,
|
|
.f64 => return .f64_mul,
|
|
},
|
|
|
|
.div => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_div_s else return .i32_div_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_div_s else return .i64_div_u,
|
|
.f32 => return .f32_div,
|
|
.f64 => return .f64_div,
|
|
},
|
|
.rem => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_rem_s else return .i32_rem_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_rem_s else return .i64_rem_u,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
|
|
.@"and" => switch (args.valtype1.?) {
|
|
.i32 => return .i32_and,
|
|
.i64 => return .i64_and,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.@"or" => switch (args.valtype1.?) {
|
|
.i32 => return .i32_or,
|
|
.i64 => return .i64_or,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.xor => switch (args.valtype1.?) {
|
|
.i32 => return .i32_xor,
|
|
.i64 => return .i64_xor,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
|
|
.shl => switch (args.valtype1.?) {
|
|
.i32 => return .i32_shl,
|
|
.i64 => return .i64_shl,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.shr => switch (args.valtype1.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .i32_shr_s else return .i32_shr_u,
|
|
.i64 => if (args.signedness.? == .signed) return .i64_shr_s else return .i64_shr_u,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.rotl => switch (args.valtype1.?) {
|
|
.i32 => return .i32_rotl,
|
|
.i64 => return .i64_rotl,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.rotr => switch (args.valtype1.?) {
|
|
.i32 => return .i32_rotr,
|
|
.i64 => return .i64_rotr,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
|
|
.abs => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_abs,
|
|
.f64 => return .f64_abs,
|
|
},
|
|
.neg => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_neg,
|
|
.f64 => return .f64_neg,
|
|
},
|
|
.ceil => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_ceil,
|
|
.f64 => return .f64_ceil,
|
|
},
|
|
.floor => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_floor,
|
|
.f64 => return .f64_floor,
|
|
},
|
|
.trunc => switch (args.valtype1.?) {
|
|
.i32 => switch (args.valtype2.?) {
|
|
.i32 => unreachable,
|
|
.i64 => unreachable,
|
|
.f32 => if (args.signedness.? == .signed) return .i32_trunc_f32_s else return .i32_trunc_f32_u,
|
|
.f64 => if (args.signedness.? == .signed) return .i32_trunc_f64_s else return .i32_trunc_f64_u,
|
|
},
|
|
.i64 => unreachable,
|
|
.f32 => return .f32_trunc,
|
|
.f64 => return .f64_trunc,
|
|
},
|
|
.nearest => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_nearest,
|
|
.f64 => return .f64_nearest,
|
|
},
|
|
.sqrt => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_sqrt,
|
|
.f64 => return .f64_sqrt,
|
|
},
|
|
.min => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_min,
|
|
.f64 => return .f64_min,
|
|
},
|
|
.max => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_max,
|
|
.f64 => return .f64_max,
|
|
},
|
|
.copysign => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => return .f32_copysign,
|
|
.f64 => return .f64_copysign,
|
|
},
|
|
|
|
.wrap => switch (args.valtype1.?) {
|
|
.i32 => switch (args.valtype2.?) {
|
|
.i32 => unreachable,
|
|
.i64 => return .i32_wrap_i64,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.i64, .f32, .f64 => unreachable,
|
|
},
|
|
.convert => switch (args.valtype1.?) {
|
|
.i32, .i64 => unreachable,
|
|
.f32 => switch (args.valtype2.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .f32_convert_i32_s else return .f32_convert_i32_u,
|
|
.i64 => if (args.signedness.? == .signed) return .f32_convert_i64_s else return .f32_convert_i64_u,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
.f64 => switch (args.valtype2.?) {
|
|
.i32 => if (args.signedness.? == .signed) return .f64_convert_i32_s else return .f64_convert_i32_u,
|
|
.i64 => if (args.signedness.? == .signed) return .f64_convert_i64_s else return .f64_convert_i64_u,
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
},
|
|
.demote => if (args.valtype1.? == .f32 and args.valtype2.? == .f64) return .f32_demote_f64 else unreachable,
|
|
.promote => if (args.valtype1.? == .f64 and args.valtype2.? == .f32) return .f64_promote_f32 else unreachable,
|
|
.reinterpret => switch (args.valtype1.?) {
|
|
.i32 => if (args.valtype2.? == .f32) return .i32_reinterpret_f32 else unreachable,
|
|
.i64 => if (args.valtype2.? == .f64) return .i64_reinterpret_f64 else unreachable,
|
|
.f32 => if (args.valtype2.? == .i32) return .f32_reinterpret_i32 else unreachable,
|
|
.f64 => if (args.valtype2.? == .i64) return .f64_reinterpret_i64 else unreachable,
|
|
},
|
|
.extend => switch (args.valtype1.?) {
|
|
.i32 => switch (args.width.?) {
|
|
8 => if (args.signedness.? == .signed) return .i32_extend8_s else unreachable,
|
|
16 => if (args.signedness.? == .signed) return .i32_extend16_s else unreachable,
|
|
else => unreachable,
|
|
},
|
|
.i64 => switch (args.width.?) {
|
|
8 => if (args.signedness.? == .signed) return .i64_extend8_s else unreachable,
|
|
16 => if (args.signedness.? == .signed) return .i64_extend16_s else unreachable,
|
|
32 => if (args.signedness.? == .signed) return .i64_extend32_s else unreachable,
|
|
else => unreachable,
|
|
},
|
|
.f32, .f64 => unreachable,
|
|
},
|
|
}
|
|
}
|
|
|
|
test "Wasm - buildOpcode" {
|
|
// Make sure buildOpcode is referenced, and test some examples
|
|
const i32_const = buildOpcode(.{ .op = .@"const", .valtype1 = .i32 });
|
|
const end = buildOpcode(.{ .op = .end });
|
|
const local_get = buildOpcode(.{ .op = .local_get });
|
|
const i64_extend32_s = buildOpcode(.{ .op = .extend, .valtype1 = .i64, .width = 32, .signedness = .signed });
|
|
const f64_reinterpret_i64 = buildOpcode(.{ .op = .reinterpret, .valtype1 = .f64, .valtype2 = .i64 });
|
|
|
|
try testing.expectEqual(@as(wasm.Opcode, .i32_const), i32_const);
|
|
try testing.expectEqual(@as(wasm.Opcode, .end), end);
|
|
try testing.expectEqual(@as(wasm.Opcode, .local_get), local_get);
|
|
try testing.expectEqual(@as(wasm.Opcode, .i64_extend32_s), i64_extend32_s);
|
|
try testing.expectEqual(@as(wasm.Opcode, .f64_reinterpret_i64), f64_reinterpret_i64);
|
|
}
|
|
|
|
pub const Result = union(enum) {
|
|
/// The codegen bytes have been appended to `Context.code`
|
|
appended: void,
|
|
/// The data is managed externally and are part of the `Result`
|
|
externally_managed: []const u8,
|
|
};
|
|
|
|
/// Hashmap to store generated `WValue` for each `Air.Inst.Ref`
|
|
pub const ValueTable = std.AutoHashMapUnmanaged(Air.Inst.Index, WValue);
|
|
|
|
const Self = @This();
|
|
|
|
/// Reference to the function declaration the code
|
|
/// section belongs to
|
|
decl: *Decl,
|
|
air: Air,
|
|
liveness: Liveness,
|
|
gpa: mem.Allocator,
|
|
/// Table to save `WValue`'s generated by an `Air.Inst`
|
|
values: ValueTable,
|
|
/// Mapping from Air.Inst.Index to block ids
|
|
blocks: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, struct {
|
|
label: u32,
|
|
value: WValue,
|
|
}) = .{},
|
|
/// `bytes` contains the wasm bytecode belonging to the 'code' section.
|
|
code: ArrayList(u8),
|
|
/// The index the next local generated will have
|
|
/// NOTE: arguments share the index with locals therefore the first variable
|
|
/// will have the index that comes after the last argument's index
|
|
local_index: u32 = 0,
|
|
/// The index of the current argument.
|
|
/// Used to track which argument is being referenced in `airArg`.
|
|
arg_index: u32 = 0,
|
|
/// If codegen fails, an error messages will be allocated and saved in `err_msg`
|
|
err_msg: *Module.ErrorMsg,
|
|
/// Current block depth. Used to calculate the relative difference between a break
|
|
/// and block
|
|
block_depth: u32 = 0,
|
|
/// List of all locals' types generated throughout this declaration
|
|
/// used to emit locals count at start of 'code' section.
|
|
locals: std.ArrayListUnmanaged(u8),
|
|
/// The Target we're emitting (used to call intInfo)
|
|
target: std.Target,
|
|
/// Represents the wasm binary file that is being linked.
|
|
bin_file: *link.File.Wasm,
|
|
/// Table with the global error set. Consists of every error found in
|
|
/// the compiled code. Each error name maps to a `Module.ErrorInt` which is emitted
|
|
/// during codegen to determine the error value.
|
|
global_error_set: std.StringHashMapUnmanaged(Module.ErrorInt),
|
|
/// List of MIR Instructions
|
|
mir_instructions: std.MultiArrayList(Mir.Inst) = .{},
|
|
/// Contains extra data for MIR
|
|
mir_extra: std.ArrayListUnmanaged(u32) = .{},
|
|
/// When a function is executing, we store the the current stack pointer's value within this local.
|
|
/// This value is then used to restore the stack pointer to the original value at the return of the function.
|
|
initial_stack_value: WValue = .none,
|
|
/// Arguments of this function declaration
|
|
/// This will be set after `resolveCallingConventionValues`
|
|
args: []WValue = &.{},
|
|
/// This will only be `.none` if the function returns void, or returns an immediate.
|
|
/// When it returns a pointer to the stack, the `.local` tag will be active and must be populated
|
|
/// before this function returns its execution to the caller.
|
|
return_value: WValue = .none,
|
|
|
|
const InnerError = error{
|
|
OutOfMemory,
|
|
/// An error occured when trying to lower AIR to MIR.
|
|
CodegenFail,
|
|
/// Can occur when dereferencing a pointer that points to a `Decl` of which the analysis has failed
|
|
AnalysisFail,
|
|
/// Compiler implementation could not handle a large integer.
|
|
Overflow,
|
|
};
|
|
|
|
pub fn deinit(self: *Self) void {
|
|
self.values.deinit(self.gpa);
|
|
self.blocks.deinit(self.gpa);
|
|
self.locals.deinit(self.gpa);
|
|
self.mir_instructions.deinit(self.gpa);
|
|
self.mir_extra.deinit(self.gpa);
|
|
self.code.deinit();
|
|
self.* = undefined;
|
|
}
|
|
|
|
/// Sets `err_msg` on `Context` and returns `error.CodegemFail` which is caught in link/Wasm.zig
|
|
fn fail(self: *Self, comptime fmt: []const u8, args: anytype) InnerError {
|
|
const src: LazySrcLoc = .{ .node_offset = 0 };
|
|
const src_loc = src.toSrcLoc(self.decl);
|
|
self.err_msg = try Module.ErrorMsg.create(self.gpa, src_loc, fmt, args);
|
|
return error.CodegenFail;
|
|
}
|
|
|
|
/// Resolves the `WValue` for the given instruction `inst`
|
|
/// When the given instruction has a `Value`, it returns a constant instead
|
|
fn resolveInst(self: Self, ref: Air.Inst.Ref) WValue {
|
|
const inst_index = Air.refToIndex(ref) orelse {
|
|
const tv = Air.Inst.Ref.typed_value_map[@enumToInt(ref)];
|
|
if (!tv.ty.hasCodeGenBits()) {
|
|
return WValue.none;
|
|
}
|
|
return WValue{ .constant = tv };
|
|
};
|
|
|
|
const inst_type = self.air.typeOfIndex(inst_index);
|
|
// It's allowed to have 0-bit integers
|
|
if (!inst_type.hasCodeGenBits() and !inst_type.isInt()) return WValue{ .none = {} };
|
|
|
|
if (self.air.instructions.items(.tag)[inst_index] == .constant) {
|
|
const ty_pl = self.air.instructions.items(.data)[inst_index].ty_pl;
|
|
return WValue{ .constant = .{ .ty = inst_type, .val = self.air.values[ty_pl.payload] } };
|
|
}
|
|
|
|
return self.values.get(inst_index).?; // Instruction does not dominate all uses!
|
|
}
|
|
|
|
/// Appends a MIR instruction and returns its index within the list of instructions
|
|
fn addInst(self: *Self, inst: Mir.Inst) error{OutOfMemory}!void {
|
|
try self.mir_instructions.append(self.gpa, inst);
|
|
}
|
|
|
|
/// Inserts a Mir instruction at the given `offset`.
|
|
/// Asserts offset is within bound.
|
|
fn addInstAt(self: *Self, offset: usize, inst: Mir.Inst) error{OutOfMemory}!void {
|
|
try self.mir_instructions.ensureUnusedCapacity(self.gpa, 1);
|
|
self.mir_instructions.insertAssumeCapacity(offset, inst);
|
|
}
|
|
|
|
fn addTag(self: *Self, tag: Mir.Inst.Tag) error{OutOfMemory}!void {
|
|
try self.addInst(.{ .tag = tag, .data = .{ .tag = {} } });
|
|
}
|
|
|
|
fn addExtended(self: *Self, opcode: wasm.PrefixedOpcode) error{OutOfMemory}!void {
|
|
try self.addInst(.{ .tag = .extended, .secondary = @enumToInt(opcode), .data = .{ .tag = {} } });
|
|
}
|
|
|
|
fn addLabel(self: *Self, tag: Mir.Inst.Tag, label: u32) error{OutOfMemory}!void {
|
|
try self.addInst(.{ .tag = tag, .data = .{ .label = label } });
|
|
}
|
|
|
|
fn addImm32(self: *Self, imm: i32) error{OutOfMemory}!void {
|
|
try self.addInst(.{ .tag = .i32_const, .data = .{ .imm32 = imm } });
|
|
}
|
|
|
|
/// Accepts an unsigned 64bit integer rather than a signed integer to
|
|
/// prevent us from having to bitcast multiple times as most values
|
|
/// within codegen are represented as unsigned rather than signed.
|
|
fn addImm64(self: *Self, imm: u64) error{OutOfMemory}!void {
|
|
const extra_index = try self.addExtra(Mir.Imm64.fromU64(imm));
|
|
try self.addInst(.{ .tag = .i64_const, .data = .{ .payload = extra_index } });
|
|
}
|
|
|
|
fn addFloat64(self: *Self, float: f64) error{OutOfMemory}!void {
|
|
const extra_index = try self.addExtra(Mir.Float64.fromFloat64(float));
|
|
try self.addInst(.{ .tag = .f64_const, .data = .{ .payload = extra_index } });
|
|
}
|
|
|
|
/// Inserts an instruction to load/store from/to wasm's linear memory dependent on the given `tag`.
|
|
fn addMemArg(self: *Self, tag: Mir.Inst.Tag, mem_arg: Mir.MemArg) error{OutOfMemory}!void {
|
|
const extra_index = try self.addExtra(mem_arg);
|
|
try self.addInst(.{ .tag = tag, .data = .{ .payload = extra_index } });
|
|
}
|
|
|
|
/// Appends entries to `mir_extra` based on the type of `extra`.
|
|
/// Returns the index into `mir_extra`
|
|
fn addExtra(self: *Self, extra: anytype) error{OutOfMemory}!u32 {
|
|
const fields = std.meta.fields(@TypeOf(extra));
|
|
try self.mir_extra.ensureUnusedCapacity(self.gpa, fields.len);
|
|
return self.addExtraAssumeCapacity(extra);
|
|
}
|
|
|
|
/// Appends entries to `mir_extra` based on the type of `extra`.
|
|
/// Returns the index into `mir_extra`
|
|
fn addExtraAssumeCapacity(self: *Self, extra: anytype) error{OutOfMemory}!u32 {
|
|
const fields = std.meta.fields(@TypeOf(extra));
|
|
const result = @intCast(u32, self.mir_extra.items.len);
|
|
inline for (fields) |field| {
|
|
self.mir_extra.appendAssumeCapacity(switch (field.field_type) {
|
|
u32 => @field(extra, field.name),
|
|
else => |field_type| @compileError("Unsupported field type " ++ @typeName(field_type)),
|
|
});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Using a given `Type`, returns the corresponding wasm Valtype
|
|
fn typeToValtype(self: *Self, ty: Type) InnerError!wasm.Valtype {
|
|
return switch (ty.zigTypeTag()) {
|
|
.Float => blk: {
|
|
const bits = ty.floatBits(self.target);
|
|
if (bits == 16 or bits == 32) break :blk wasm.Valtype.f32;
|
|
if (bits == 64) break :blk wasm.Valtype.f64;
|
|
return self.fail("Float bit size not supported by wasm: '{d}'", .{bits});
|
|
},
|
|
.Int => blk: {
|
|
const info = ty.intInfo(self.target);
|
|
if (info.bits <= 32) break :blk wasm.Valtype.i32;
|
|
if (info.bits > 32 and info.bits <= 64) break :blk wasm.Valtype.i64;
|
|
break :blk wasm.Valtype.i32; // represented as pointer to stack
|
|
},
|
|
.Enum => switch (ty.tag()) {
|
|
.enum_simple => wasm.Valtype.i32,
|
|
else => self.typeToValtype(ty.cast(Type.Payload.EnumFull).?.data.tag_ty),
|
|
},
|
|
.Bool,
|
|
.Pointer,
|
|
.ErrorSet,
|
|
.Struct,
|
|
.ErrorUnion,
|
|
.Optional,
|
|
.Fn,
|
|
.Array,
|
|
=> wasm.Valtype.i32,
|
|
else => self.fail("TODO - Wasm typeToValtype for type '{}'", .{ty}),
|
|
};
|
|
}
|
|
|
|
/// Using a given `Type`, returns the byte representation of its wasm value type
|
|
fn genValtype(self: *Self, ty: Type) InnerError!u8 {
|
|
return wasm.valtype(try self.typeToValtype(ty));
|
|
}
|
|
|
|
/// Using a given `Type`, returns the corresponding wasm value type
|
|
/// Differently from `genValtype` this also allows `void` to create a block
|
|
/// with no return type
|
|
fn genBlockType(self: *Self, ty: Type) InnerError!u8 {
|
|
return switch (ty.tag()) {
|
|
.void, .noreturn => wasm.block_empty,
|
|
else => self.genValtype(ty),
|
|
};
|
|
}
|
|
|
|
/// Writes the bytecode depending on the given `WValue` in `val`
|
|
fn emitWValue(self: *Self, val: WValue) InnerError!void {
|
|
switch (val) {
|
|
.none => {}, // no-op
|
|
.local_with_offset => |with_off| try self.addLabel(.local_get, with_off.local),
|
|
.local => |idx| try self.addLabel(.local_get, idx),
|
|
.constant => |tv| try self.emitConstant(tv.val, tv.ty), // Creates a new constant on the stack
|
|
}
|
|
}
|
|
|
|
/// Creates one locals for a given `Type`.
|
|
/// Returns a corresponding `Wvalue` with `local` as active tag
|
|
fn allocLocal(self: *Self, ty: Type) InnerError!WValue {
|
|
const initial_index = self.local_index;
|
|
const valtype = try self.genValtype(ty);
|
|
try self.locals.append(self.gpa, valtype);
|
|
self.local_index += 1;
|
|
return WValue{ .local = initial_index };
|
|
}
|
|
|
|
/// Generates a `wasm.Type` from a given function type.
|
|
/// Memory is owned by the caller.
|
|
fn genFunctype(self: *Self, fn_ty: Type) !wasm.Type {
|
|
var params = std.ArrayList(wasm.Valtype).init(self.gpa);
|
|
defer params.deinit();
|
|
var returns = std.ArrayList(wasm.Valtype).init(self.gpa);
|
|
defer returns.deinit();
|
|
const return_type = fn_ty.fnReturnType();
|
|
|
|
const want_sret = self.isByRef(return_type);
|
|
|
|
if (want_sret) {
|
|
try params.append(try self.typeToValtype(Type.usize));
|
|
}
|
|
|
|
// param types
|
|
if (fn_ty.fnParamLen() != 0) {
|
|
const fn_params = try self.gpa.alloc(Type, fn_ty.fnParamLen());
|
|
defer self.gpa.free(fn_params);
|
|
fn_ty.fnParamTypes(fn_params);
|
|
for (fn_params) |param_type| {
|
|
if (!param_type.hasCodeGenBits()) continue;
|
|
try params.append(try self.typeToValtype(param_type));
|
|
}
|
|
}
|
|
|
|
// return type
|
|
if (!want_sret and return_type.hasCodeGenBits()) {
|
|
try returns.append(try self.typeToValtype(return_type));
|
|
}
|
|
|
|
return wasm.Type{
|
|
.params = params.toOwnedSlice(),
|
|
.returns = returns.toOwnedSlice(),
|
|
};
|
|
}
|
|
|
|
pub fn genFunc(self: *Self) InnerError!Result {
|
|
var func_type = try self.genFunctype(self.decl.ty);
|
|
defer func_type.deinit(self.gpa);
|
|
self.decl.fn_link.wasm.type_index = try self.bin_file.putOrGetFuncType(func_type);
|
|
|
|
var cc_result = try self.resolveCallingConventionValues(self.decl.ty);
|
|
defer cc_result.deinit(self.gpa);
|
|
|
|
self.args = cc_result.args;
|
|
self.return_value = cc_result.return_value;
|
|
|
|
// Generate MIR for function body
|
|
try self.genBody(self.air.getMainBody());
|
|
// In case we have a return value, but the last instruction is a noreturn (such as a while loop)
|
|
// we emit an unreachable instruction to tell the stack validator that part will never be reached.
|
|
if (func_type.returns.len != 0 and self.air.instructions.len > 0) {
|
|
const inst = @intCast(u32, self.air.instructions.len - 1);
|
|
if (self.air.typeOfIndex(inst).isNoReturn()) {
|
|
try self.addTag(.@"unreachable");
|
|
}
|
|
}
|
|
|
|
// End of function body
|
|
try self.addTag(.end);
|
|
|
|
var mir: Mir = .{
|
|
.instructions = self.mir_instructions.toOwnedSlice(),
|
|
.extra = self.mir_extra.toOwnedSlice(self.gpa),
|
|
};
|
|
defer mir.deinit(self.gpa);
|
|
|
|
var emit: Emit = .{
|
|
.mir = mir,
|
|
.bin_file = &self.bin_file.base,
|
|
.code = &self.code,
|
|
.locals = self.locals.items,
|
|
.decl = self.decl,
|
|
};
|
|
|
|
emit.emitMir() catch |err| switch (err) {
|
|
error.EmitFail => {
|
|
self.err_msg = emit.error_msg.?;
|
|
return error.CodegenFail;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
|
|
// codegen data has been appended to `code`
|
|
return Result.appended;
|
|
}
|
|
|
|
pub fn genDecl(self: *Self) InnerError!Result {
|
|
const decl = self.decl;
|
|
assert(decl.has_tv);
|
|
|
|
log.debug("gen: {s} type: {}, value: {}", .{ decl.name, decl.ty, decl.val });
|
|
|
|
if (decl.val.castTag(.function)) |func_payload| {
|
|
_ = func_payload;
|
|
return self.fail("TODO wasm backend genDecl function pointer", .{});
|
|
} else if (decl.val.castTag(.extern_fn)) |extern_fn| {
|
|
const ext_decl = extern_fn.data;
|
|
var func_type = try self.genFunctype(ext_decl.ty);
|
|
func_type.deinit(self.gpa);
|
|
ext_decl.fn_link.wasm.type_index = try self.bin_file.putOrGetFuncType(func_type);
|
|
return Result.appended;
|
|
} else {
|
|
const init_val = if (decl.val.castTag(.variable)) |payload| init_val: {
|
|
break :init_val payload.data.init;
|
|
} else decl.val;
|
|
if (init_val.tag() != .unreachable_value) {
|
|
return try self.genTypedValue(decl.ty, init_val);
|
|
}
|
|
return Result.appended;
|
|
}
|
|
}
|
|
|
|
/// Generates the wasm bytecode for the declaration belonging to `Context`
|
|
fn genTypedValue(self: *Self, ty: Type, val: Value) InnerError!Result {
|
|
if (val.isUndef()) {
|
|
try self.code.appendNTimes(0xaa, @intCast(usize, ty.abiSize(self.target)));
|
|
return Result.appended;
|
|
}
|
|
switch (ty.zigTypeTag()) {
|
|
.Fn => {
|
|
const fn_decl = switch (val.tag()) {
|
|
.extern_fn => val.castTag(.extern_fn).?.data,
|
|
.function => val.castTag(.function).?.data.owner_decl,
|
|
else => unreachable,
|
|
};
|
|
return try self.lowerDeclRef(ty, val, fn_decl);
|
|
},
|
|
.Optional => {
|
|
var opt_buf: Type.Payload.ElemType = undefined;
|
|
const payload_type = ty.optionalChild(&opt_buf);
|
|
if (ty.isPtrLikeOptional()) {
|
|
if (val.castTag(.opt_payload)) |payload| {
|
|
return try self.genTypedValue(payload_type, payload.data);
|
|
} else if (!val.isNull()) {
|
|
return try self.genTypedValue(payload_type, val);
|
|
} else {
|
|
try self.code.appendNTimes(0, @intCast(usize, ty.abiSize(self.target)));
|
|
return Result.appended;
|
|
}
|
|
}
|
|
// `null-tag` byte
|
|
try self.code.appendNTimes(@boolToInt(!val.isNull()), 4);
|
|
const pl_result = try self.genTypedValue(
|
|
payload_type,
|
|
if (val.castTag(.opt_payload)) |pl| pl.data else Value.initTag(.undef),
|
|
);
|
|
switch (pl_result) {
|
|
.appended => {},
|
|
.externally_managed => |payload| try self.code.appendSlice(payload),
|
|
}
|
|
return Result.appended;
|
|
},
|
|
.Array => switch (val.tag()) {
|
|
.bytes => {
|
|
const payload = val.castTag(.bytes).?;
|
|
return Result{ .externally_managed = payload.data };
|
|
},
|
|
.array => {
|
|
const elem_vals = val.castTag(.array).?.data;
|
|
const elem_ty = ty.childType();
|
|
for (elem_vals) |elem_val| {
|
|
switch (try self.genTypedValue(elem_ty, elem_val)) {
|
|
.appended => {},
|
|
.externally_managed => |data| try self.code.appendSlice(data),
|
|
}
|
|
}
|
|
return Result.appended;
|
|
},
|
|
else => return self.fail("TODO implement genTypedValue for array type value: {s}", .{@tagName(val.tag())}),
|
|
},
|
|
.Int => {
|
|
const info = ty.intInfo(self.target);
|
|
const abi_size = @intCast(usize, ty.abiSize(self.target));
|
|
// todo: Implement integer sizes larger than 64bits
|
|
if (info.bits > 64) return self.fail("TODO: Implement genTypedValue for integer bit size: {d}", .{info.bits});
|
|
var buf: [8]u8 = undefined;
|
|
if (info.signedness == .unsigned) {
|
|
std.mem.writeIntLittle(u64, &buf, val.toUnsignedInt());
|
|
} else std.mem.writeIntLittle(i64, &buf, val.toSignedInt());
|
|
try self.code.appendSlice(buf[0..abi_size]);
|
|
return Result.appended;
|
|
},
|
|
.Enum => {
|
|
try self.emitConstant(val, ty);
|
|
return Result.appended;
|
|
},
|
|
.Bool => {
|
|
const int_byte: u8 = @boolToInt(val.toBool());
|
|
try self.code.append(int_byte);
|
|
return Result.appended;
|
|
},
|
|
.Struct => {
|
|
const field_vals = val.castTag(.@"struct").?.data;
|
|
for (field_vals) |field_val, index| {
|
|
const field_ty = ty.structFieldType(index);
|
|
if (!field_ty.hasCodeGenBits()) continue;
|
|
switch (try self.genTypedValue(field_ty, field_val)) {
|
|
.appended => {},
|
|
.externally_managed => |payload| try self.code.appendSlice(payload),
|
|
}
|
|
}
|
|
return Result.appended;
|
|
},
|
|
.Union => {
|
|
// TODO: Implement Union declarations
|
|
const abi_size = @intCast(usize, ty.abiSize(self.target));
|
|
try self.code.appendNTimes(0xaa, abi_size);
|
|
return Result.appended;
|
|
},
|
|
.Pointer => switch (val.tag()) {
|
|
.variable => {
|
|
const decl = val.castTag(.variable).?.data.owner_decl;
|
|
return try self.lowerDeclRef(ty, val, decl);
|
|
},
|
|
.decl_ref => {
|
|
const decl = val.castTag(.decl_ref).?.data;
|
|
return try self.lowerDeclRef(ty, val, decl);
|
|
},
|
|
.slice => {
|
|
const slice = val.castTag(.slice).?.data;
|
|
var buf: Type.SlicePtrFieldTypeBuffer = undefined;
|
|
const ptr_ty = ty.slicePtrFieldType(&buf);
|
|
switch (try self.genTypedValue(ptr_ty, slice.ptr)) {
|
|
.externally_managed => |data| try self.code.appendSlice(data),
|
|
.appended => {},
|
|
}
|
|
switch (try self.genTypedValue(Type.usize, slice.len)) {
|
|
.externally_managed => |data| try self.code.appendSlice(data),
|
|
.appended => {},
|
|
}
|
|
return Result.appended;
|
|
},
|
|
else => return self.fail("TODO: Implement zig decl gen for pointer type value: '{s}'", .{@tagName(val.tag())}),
|
|
},
|
|
.ErrorUnion => {
|
|
const error_ty = ty.errorUnionSet();
|
|
const payload_ty = ty.errorUnionPayload();
|
|
const is_pl = val.errorUnionIsPayload();
|
|
|
|
const err_val = if (!is_pl) val else Value.initTag(.zero);
|
|
switch (try self.genTypedValue(error_ty, err_val)) {
|
|
.externally_managed => |data| try self.code.appendSlice(data),
|
|
.appended => {},
|
|
}
|
|
|
|
if (payload_ty.hasCodeGenBits()) {
|
|
const pl_val = if (val.castTag(.eu_payload)) |pl| pl.data else Value.initTag(.undef);
|
|
switch (try self.genTypedValue(payload_ty, pl_val)) {
|
|
.externally_managed => |data| try self.code.appendSlice(data),
|
|
.appended => {},
|
|
}
|
|
}
|
|
|
|
return Result.appended;
|
|
},
|
|
.ErrorSet => {
|
|
switch (val.tag()) {
|
|
.@"error" => {
|
|
const name = val.castTag(.@"error").?.data.name;
|
|
const value = self.global_error_set.get(name).?;
|
|
try self.code.writer().writeIntLittle(u32, value);
|
|
},
|
|
else => {
|
|
const abi_size = @intCast(usize, ty.abiSize(self.target));
|
|
try self.code.appendNTimes(0, abi_size);
|
|
},
|
|
}
|
|
return Result.appended;
|
|
},
|
|
else => |tag| return self.fail("TODO: Implement zig type codegen for type: '{s}'", .{tag}),
|
|
}
|
|
}
|
|
|
|
fn lowerDeclRef(self: *Self, ty: Type, val: Value, decl: *Module.Decl) InnerError!Result {
|
|
if (ty.isSlice()) {
|
|
var buf: Type.SlicePtrFieldTypeBuffer = undefined;
|
|
const slice_ty = ty.slicePtrFieldType(&buf);
|
|
switch (try self.genTypedValue(slice_ty, val)) {
|
|
.appended => {},
|
|
.externally_managed => |payload| try self.code.appendSlice(payload),
|
|
}
|
|
var slice_len: Value.Payload.U64 = .{
|
|
.base = .{ .tag = .int_u64 },
|
|
.data = val.sliceLen(),
|
|
};
|
|
return try self.genTypedValue(Type.usize, Value.initPayload(&slice_len.base));
|
|
}
|
|
|
|
const offset = @intCast(u32, self.code.items.len);
|
|
const atom = &self.decl.link.wasm;
|
|
const target_sym_index = decl.link.wasm.sym_index;
|
|
markDeclAlive(decl);
|
|
if (decl.ty.zigTypeTag() == .Fn) {
|
|
// We found a function pointer, so add it to our table,
|
|
// as function pointers are not allowed to be stored inside the data section,
|
|
// but rather in a function table which are called by index
|
|
try self.bin_file.addTableFunction(target_sym_index);
|
|
try atom.relocs.append(self.gpa, .{
|
|
.index = target_sym_index,
|
|
.offset = offset,
|
|
.relocation_type = .R_WASM_TABLE_INDEX_I32,
|
|
});
|
|
} else {
|
|
try atom.relocs.append(self.gpa, .{
|
|
.index = target_sym_index,
|
|
.offset = offset,
|
|
.relocation_type = .R_WASM_MEMORY_ADDR_I32,
|
|
});
|
|
}
|
|
const ptr_width = @intCast(usize, self.target.cpu.arch.ptrBitWidth() / 8);
|
|
try self.code.appendNTimes(0xaa, ptr_width);
|
|
|
|
return Result.appended;
|
|
}
|
|
|
|
const CallWValues = struct {
|
|
args: []WValue,
|
|
return_value: WValue,
|
|
|
|
fn deinit(self: *CallWValues, gpa: Allocator) void {
|
|
gpa.free(self.args);
|
|
self.* = undefined;
|
|
}
|
|
};
|
|
|
|
fn resolveCallingConventionValues(self: *Self, fn_ty: Type) InnerError!CallWValues {
|
|
const cc = fn_ty.fnCallingConvention();
|
|
const param_types = try self.gpa.alloc(Type, fn_ty.fnParamLen());
|
|
defer self.gpa.free(param_types);
|
|
fn_ty.fnParamTypes(param_types);
|
|
var result: CallWValues = .{
|
|
.args = try self.gpa.alloc(WValue, param_types.len),
|
|
.return_value = .none,
|
|
};
|
|
errdefer self.gpa.free(result.args);
|
|
const ret_ty = fn_ty.fnReturnType();
|
|
// Check if we store the result as a pointer to the stack rather than
|
|
// by value
|
|
if (self.isByRef(ret_ty)) {
|
|
// the sret arg will be passed as first argument, therefore we
|
|
// set the `return_value` before allocating locals for regular args.
|
|
result.return_value = .{ .local = self.local_index };
|
|
self.local_index += 1;
|
|
}
|
|
switch (cc) {
|
|
.Naked => return result,
|
|
.Unspecified, .C => {
|
|
for (param_types) |ty, ty_index| {
|
|
if (!ty.hasCodeGenBits()) {
|
|
result.args[ty_index] = .{ .none = {} };
|
|
continue;
|
|
}
|
|
|
|
result.args[ty_index] = .{ .local = self.local_index };
|
|
self.local_index += 1;
|
|
}
|
|
},
|
|
else => return self.fail("TODO implement function parameters for cc '{}' on wasm", .{cc}),
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Retrieves the stack pointer's value from the global variable and stores
|
|
/// it in a local
|
|
/// Asserts `initial_stack_value` is `.none`
|
|
fn initializeStack(self: *Self) !void {
|
|
assert(self.initial_stack_value == .none);
|
|
// reserve space for immediate value
|
|
// get stack pointer global
|
|
try self.addLabel(.global_get, 0);
|
|
|
|
// Reserve a local to store the current stack pointer
|
|
// We can later use this local to set the stack pointer back to the value
|
|
// we have stored here.
|
|
self.initial_stack_value = try self.allocLocal(Type.initTag(.i32));
|
|
|
|
// save the value to the local
|
|
try self.addLabel(.local_set, self.initial_stack_value.local);
|
|
}
|
|
|
|
/// Reads the stack pointer from `Context.initial_stack_value` and writes it
|
|
/// to the global stack pointer variable
|
|
fn restoreStackPointer(self: *Self) !void {
|
|
// only restore the pointer if it was initialized
|
|
if (self.initial_stack_value == .none) return;
|
|
// Get the original stack pointer's value
|
|
try self.emitWValue(self.initial_stack_value);
|
|
|
|
// save its value in the global stack pointer
|
|
try self.addLabel(.global_set, 0);
|
|
}
|
|
|
|
/// Moves the stack pointer by given `offset`
|
|
/// It does this by retrieving the stack pointer, subtracting `offset` and storing
|
|
/// the result back into the stack pointer.
|
|
fn moveStack(self: *Self, offset: u32, local: u32) !void {
|
|
if (offset == 0) return;
|
|
try self.addLabel(.global_get, 0);
|
|
try self.addImm32(@bitCast(i32, offset));
|
|
try self.addTag(.i32_sub);
|
|
try self.addLabel(.local_tee, local);
|
|
try self.addLabel(.global_set, 0);
|
|
}
|
|
|
|
/// From a given type, will create space on the virtual stack to store the value of such type.
|
|
/// This returns a `WValue` with its active tag set to `local`, containing the index to the local
|
|
/// that points to the position on the virtual stack. This function should be used instead of
|
|
/// moveStack unless a local was already created to store the point.
|
|
///
|
|
/// Asserts Type has codegenbits
|
|
fn allocStack(self: *Self, ty: Type) !WValue {
|
|
assert(ty.hasCodeGenBits());
|
|
|
|
// calculate needed stack space
|
|
var abi_size = std.math.cast(u32, ty.abiSize(self.target)) catch {
|
|
return self.fail("Given type '{}' too big to fit into stack frame", .{ty});
|
|
};
|
|
|
|
// We store slices as a struct with a pointer field and a length field
|
|
// both being 'usize' size.
|
|
if (ty.isSlice()) {
|
|
abi_size = self.ptrSize() * 2;
|
|
}
|
|
|
|
// allocate a local using wasm's pointer size
|
|
const local = try self.allocLocal(Type.@"usize");
|
|
try self.moveStack(abi_size, local.local);
|
|
return local;
|
|
}
|
|
|
|
/// From given zig bitsize, returns the wasm bitsize
|
|
fn toWasmIntBits(bits: u16) ?u16 {
|
|
return for ([_]u16{ 32, 64 }) |wasm_bits| {
|
|
if (bits <= wasm_bits) return wasm_bits;
|
|
} else null;
|
|
}
|
|
|
|
/// Performs a copy of bytes for a given type. Copying all bytes
|
|
/// from rhs to lhs.
|
|
/// Asserts `lhs` and `rhs` have their active tag set to `local`
|
|
///
|
|
/// TODO: Perform feature detection and when bulk_memory is available,
|
|
/// use wasm's mem.copy instruction.
|
|
fn memCopy(self: *Self, ty: Type, lhs: WValue, rhs: WValue) !void {
|
|
const abi_size = ty.abiSize(self.target);
|
|
var offset: u32 = 0;
|
|
while (offset < abi_size) : (offset += 1) {
|
|
// get lhs' address to store the result
|
|
try self.addLabel(.local_get, lhs.local);
|
|
// load byte from rhs' adress
|
|
try self.addLabel(.local_get, rhs.local);
|
|
try self.addMemArg(.i32_load8_u, .{ .offset = offset, .alignment = 1 });
|
|
// store the result in lhs (we already have its address on the stack)
|
|
try self.addMemArg(.i32_store8, .{ .offset = offset, .alignment = 1 });
|
|
}
|
|
}
|
|
|
|
fn ptrSize(self: *const Self) u16 {
|
|
return @divExact(self.target.cpu.arch.ptrBitWidth(), 8);
|
|
}
|
|
|
|
/// For a given `Type`, will return true when the type will be passed
|
|
/// by reference, rather than by value.
|
|
fn isByRef(self: Self, ty: Type) bool {
|
|
switch (ty.zigTypeTag()) {
|
|
.Type,
|
|
.ComptimeInt,
|
|
.ComptimeFloat,
|
|
.EnumLiteral,
|
|
.Undefined,
|
|
.Null,
|
|
.BoundFn,
|
|
.Opaque,
|
|
=> unreachable,
|
|
|
|
.NoReturn,
|
|
.Void,
|
|
.Bool,
|
|
.Float,
|
|
.ErrorSet,
|
|
.Fn,
|
|
.Enum,
|
|
.Vector,
|
|
.AnyFrame,
|
|
=> return false,
|
|
|
|
.Array,
|
|
.Struct,
|
|
.Frame,
|
|
.Union,
|
|
=> return ty.hasCodeGenBits(),
|
|
.Int => return if (ty.intInfo(self.target).bits > 64) true else false,
|
|
.ErrorUnion => {
|
|
const has_tag = ty.errorUnionSet().hasCodeGenBits();
|
|
const has_pl = ty.errorUnionPayload().hasCodeGenBits();
|
|
if (!has_tag or !has_pl) return false;
|
|
return ty.hasCodeGenBits();
|
|
},
|
|
.Optional => {
|
|
if (ty.isPtrLikeOptional()) return false;
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
return ty.optionalChild(&buf).hasCodeGenBits();
|
|
},
|
|
.Pointer => {
|
|
// Slices act like struct and will be passed by reference
|
|
if (ty.isSlice()) return ty.hasCodeGenBits();
|
|
return false;
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Creates a new local for a pointer that points to memory with given offset.
|
|
/// This can be used to get a pointer to a struct field, error payload, etc.
|
|
/// By providing `modify` as action, it will modify the given `ptr_value` instead of making a new
|
|
/// local value to store the pointer. This allows for local re-use and improves binary size.
|
|
fn buildPointerOffset(self: *Self, ptr_value: WValue, offset: u64, action: enum { modify, new }) InnerError!WValue {
|
|
// do not perform arithmetic when offset is 0.
|
|
if (offset == 0) return ptr_value;
|
|
const result_ptr: WValue = switch (action) {
|
|
.new => try self.allocLocal(Type.usize),
|
|
.modify => ptr_value,
|
|
};
|
|
try self.emitWValue(ptr_value);
|
|
switch (self.target.cpu.arch.ptrBitWidth()) {
|
|
32 => {
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, offset)));
|
|
try self.addTag(.i32_add);
|
|
},
|
|
64 => {
|
|
try self.addImm64(offset);
|
|
try self.addTag(.i64_add);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
try self.addLabel(.local_set, result_ptr.local);
|
|
return result_ptr;
|
|
}
|
|
|
|
/// Creates a new local and sets its value to the given `value` local.
|
|
/// User must ensure `ty` matches that of given `value`.
|
|
/// Asserts `value` is a `local`.
|
|
fn copyLocal(self: *Self, value: WValue, ty: Type) InnerError!WValue {
|
|
const copy = try self.allocLocal(ty);
|
|
try self.addLabel(.local_get, value.local);
|
|
try self.addLabel(.local_set, copy.local);
|
|
return copy;
|
|
}
|
|
|
|
fn genInst(self: *Self, inst: Air.Inst.Index) !WValue {
|
|
const air_tags = self.air.instructions.items(.tag);
|
|
return switch (air_tags[inst]) {
|
|
.add => self.airBinOp(inst, .add),
|
|
.addwrap => self.airWrapBinOp(inst, .add),
|
|
.sub => self.airBinOp(inst, .sub),
|
|
.subwrap => self.airWrapBinOp(inst, .sub),
|
|
.mul => self.airBinOp(inst, .mul),
|
|
.mulwrap => self.airWrapBinOp(inst, .mul),
|
|
.div_trunc => self.airBinOp(inst, .div),
|
|
.bit_and => self.airBinOp(inst, .@"and"),
|
|
.bit_or => self.airBinOp(inst, .@"or"),
|
|
.bool_and => self.airBinOp(inst, .@"and"),
|
|
.bool_or => self.airBinOp(inst, .@"or"),
|
|
.shl => self.airBinOp(inst, .shl),
|
|
.shr => self.airBinOp(inst, .shr),
|
|
.xor => self.airBinOp(inst, .xor),
|
|
|
|
.cmp_eq => self.airCmp(inst, .eq),
|
|
.cmp_gte => self.airCmp(inst, .gte),
|
|
.cmp_gt => self.airCmp(inst, .gt),
|
|
.cmp_lte => self.airCmp(inst, .lte),
|
|
.cmp_lt => self.airCmp(inst, .lt),
|
|
.cmp_neq => self.airCmp(inst, .neq),
|
|
|
|
.array_elem_val => self.airArrayElemVal(inst),
|
|
.array_to_slice => self.airArrayToSlice(inst),
|
|
.alloc => self.airAlloc(inst),
|
|
.arg => self.airArg(inst),
|
|
.bitcast => self.airBitcast(inst),
|
|
.block => self.airBlock(inst),
|
|
.breakpoint => self.airBreakpoint(inst),
|
|
.br => self.airBr(inst),
|
|
.bool_to_int => self.airBoolToInt(inst),
|
|
.call => self.airCall(inst),
|
|
.cond_br => self.airCondBr(inst),
|
|
.constant => unreachable,
|
|
.dbg_stmt => WValue.none,
|
|
.intcast => self.airIntcast(inst),
|
|
.float_to_int => self.airFloatToInt(inst),
|
|
|
|
.is_err => self.airIsErr(inst, .i32_ne),
|
|
.is_non_err => self.airIsErr(inst, .i32_eq),
|
|
|
|
.is_null => self.airIsNull(inst, .i32_eq, .value),
|
|
.is_non_null => self.airIsNull(inst, .i32_ne, .value),
|
|
.is_null_ptr => self.airIsNull(inst, .i32_eq, .ptr),
|
|
.is_non_null_ptr => self.airIsNull(inst, .i32_ne, .ptr),
|
|
|
|
.load => self.airLoad(inst),
|
|
.loop => self.airLoop(inst),
|
|
.memset => self.airMemset(inst),
|
|
.not => self.airNot(inst),
|
|
.optional_payload => self.airOptionalPayload(inst),
|
|
.optional_payload_ptr => self.airOptionalPayloadPtr(inst),
|
|
.optional_payload_ptr_set => self.airOptionalPayloadPtrSet(inst),
|
|
.ptr_add => self.airPtrBinOp(inst, .add),
|
|
.ptr_sub => self.airPtrBinOp(inst, .sub),
|
|
.ptr_elem_ptr => self.airPtrElemPtr(inst),
|
|
.ptr_elem_val => self.airPtrElemVal(inst),
|
|
.ptrtoint => self.airPtrToInt(inst),
|
|
.ret => self.airRet(inst),
|
|
.ret_ptr => self.airRetPtr(inst),
|
|
.ret_load => self.airRetLoad(inst),
|
|
|
|
.slice => self.airSlice(inst),
|
|
.slice_len => self.airSliceLen(inst),
|
|
.slice_elem_val => self.airSliceElemVal(inst),
|
|
.slice_elem_ptr => self.airSliceElemPtr(inst),
|
|
.slice_ptr => self.airSlicePtr(inst),
|
|
.store => self.airStore(inst),
|
|
|
|
.struct_field_ptr => self.airStructFieldPtr(inst),
|
|
.struct_field_ptr_index_0 => self.airStructFieldPtrIndex(inst, 0),
|
|
.struct_field_ptr_index_1 => self.airStructFieldPtrIndex(inst, 1),
|
|
.struct_field_ptr_index_2 => self.airStructFieldPtrIndex(inst, 2),
|
|
.struct_field_ptr_index_3 => self.airStructFieldPtrIndex(inst, 3),
|
|
.struct_field_val => self.airStructFieldVal(inst),
|
|
|
|
.switch_br => self.airSwitchBr(inst),
|
|
.trunc => self.airTrunc(inst),
|
|
.unreach => self.airUnreachable(inst),
|
|
|
|
.wrap_optional => self.airWrapOptional(inst),
|
|
.unwrap_errunion_payload => self.airUnwrapErrUnionPayload(inst),
|
|
.unwrap_errunion_err => self.airUnwrapErrUnionError(inst),
|
|
.wrap_errunion_payload => self.airWrapErrUnionPayload(inst),
|
|
.wrap_errunion_err => self.airWrapErrUnionErr(inst),
|
|
else => |tag| self.fail("TODO: Implement wasm inst: {s}", .{@tagName(tag)}),
|
|
};
|
|
}
|
|
|
|
fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
|
|
for (body) |inst| {
|
|
const result = try self.genInst(inst);
|
|
try self.values.putNoClobber(self.gpa, inst, result);
|
|
}
|
|
}
|
|
|
|
fn airRet(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = self.resolveInst(un_op);
|
|
// result must be stored in the stack and we return a pointer
|
|
// to the stack instead
|
|
if (self.return_value != .none) {
|
|
try self.store(self.return_value, operand, self.decl.ty.fnReturnType(), 0);
|
|
} else {
|
|
try self.emitWValue(operand);
|
|
}
|
|
try self.restoreStackPointer();
|
|
try self.addTag(.@"return");
|
|
return .none;
|
|
}
|
|
|
|
fn airRetPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const child_type = self.air.typeOfIndex(inst).childType();
|
|
if (child_type.abiSize(self.target) == 0) return WValue{ .none = {} };
|
|
|
|
if (self.isByRef(child_type)) {
|
|
return self.return_value;
|
|
}
|
|
|
|
// Initialize the stack
|
|
if (self.initial_stack_value == .none) {
|
|
try self.initializeStack();
|
|
}
|
|
return self.allocStack(child_type);
|
|
}
|
|
|
|
fn airRetLoad(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = self.resolveInst(un_op);
|
|
const ret_ty = self.air.typeOf(un_op).childType();
|
|
if (!ret_ty.hasCodeGenBits()) return WValue.none;
|
|
|
|
if (!self.isByRef(ret_ty)) {
|
|
const result = try self.load(operand, ret_ty, 0);
|
|
try self.emitWValue(result);
|
|
}
|
|
|
|
try self.restoreStackPointer();
|
|
try self.addTag(.@"return");
|
|
return .none;
|
|
}
|
|
|
|
fn airCall(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const extra = self.air.extraData(Air.Call, pl_op.payload);
|
|
const args = self.air.extra[extra.end..][0..extra.data.args_len];
|
|
const ty = self.air.typeOf(pl_op.operand);
|
|
|
|
const fn_ty = switch (ty.zigTypeTag()) {
|
|
.Fn => ty,
|
|
.Pointer => ty.childType(),
|
|
else => unreachable,
|
|
};
|
|
const ret_ty = fn_ty.fnReturnType();
|
|
const first_param_sret = self.isByRef(ret_ty);
|
|
|
|
const target: ?*Decl = blk: {
|
|
const func_val = self.air.value(pl_op.operand) orelse break :blk null;
|
|
|
|
if (func_val.castTag(.function)) |func| {
|
|
break :blk func.data.owner_decl;
|
|
} else if (func_val.castTag(.extern_fn)) |ext_fn| {
|
|
break :blk ext_fn.data;
|
|
}
|
|
return self.fail("Expected a function, but instead found type '{s}'", .{func_val.tag()});
|
|
};
|
|
|
|
const sret = if (first_param_sret) blk: {
|
|
const sret_local = try self.allocStack(ret_ty);
|
|
try self.emitWValue(sret_local);
|
|
break :blk sret_local;
|
|
} else WValue{ .none = {} };
|
|
|
|
for (args) |arg| {
|
|
const arg_ref = @intToEnum(Air.Inst.Ref, arg);
|
|
const arg_val = self.resolveInst(arg_ref);
|
|
|
|
const arg_ty = self.air.typeOf(arg_ref);
|
|
if (!arg_ty.hasCodeGenBits()) continue;
|
|
|
|
// If we need to pass by reference, but the argument is a constant,
|
|
// we must first lower it before passing it.
|
|
if (self.isByRef(arg_ty) and arg_val == .constant) {
|
|
const arg_local = try self.allocStack(arg_ty);
|
|
try self.store(arg_local, arg_val, arg_ty, 0);
|
|
try self.emitWValue(arg_local);
|
|
} else if (arg_val == .none) {
|
|
// TODO: Remove this branch when zero-sized pointers do not generate
|
|
// an argument.
|
|
try self.addImm32(0);
|
|
} else {
|
|
try self.emitWValue(arg_val);
|
|
}
|
|
}
|
|
|
|
if (target) |direct| {
|
|
try self.addLabel(.call, direct.link.wasm.sym_index);
|
|
} else {
|
|
// in this case we call a function pointer
|
|
// so load its value onto the stack
|
|
std.debug.assert(ty.zigTypeTag() == .Pointer);
|
|
const operand = self.resolveInst(pl_op.operand);
|
|
try self.emitWValue(operand);
|
|
|
|
var fn_type = try self.genFunctype(fn_ty);
|
|
defer fn_type.deinit(self.gpa);
|
|
|
|
const fn_type_index = try self.bin_file.putOrGetFuncType(fn_type);
|
|
try self.addLabel(.call_indirect, fn_type_index);
|
|
}
|
|
|
|
if (self.liveness.isUnused(inst) or !ret_ty.hasCodeGenBits()) {
|
|
return WValue.none;
|
|
} else if (ret_ty.isNoReturn()) {
|
|
try self.addTag(.@"unreachable");
|
|
return WValue.none;
|
|
} else if (first_param_sret) {
|
|
return sret;
|
|
} else {
|
|
const result_local = try self.allocLocal(ret_ty);
|
|
try self.addLabel(.local_set, result_local.local);
|
|
return result_local;
|
|
}
|
|
}
|
|
|
|
fn airAlloc(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const pointee_type = self.air.typeOfIndex(inst).childType();
|
|
|
|
// Initialize the stack
|
|
if (self.initial_stack_value == .none) {
|
|
try self.initializeStack();
|
|
}
|
|
|
|
if (!pointee_type.hasCodeGenBits()) {
|
|
// when the pointee is zero-sized, we still want to create a pointer.
|
|
// but instead use a default pointer type as storage.
|
|
const zero_ptr = try self.allocStack(Type.usize);
|
|
return zero_ptr;
|
|
}
|
|
return self.allocStack(pointee_type);
|
|
}
|
|
|
|
fn airStore(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
|
|
const lhs = self.resolveInst(bin_op.lhs);
|
|
const rhs = self.resolveInst(bin_op.rhs);
|
|
const ty = self.air.typeOf(bin_op.lhs).childType();
|
|
|
|
const offset: u32 = switch (lhs) {
|
|
.local_with_offset => |with_off| with_off.offset,
|
|
else => 0,
|
|
};
|
|
|
|
try self.store(lhs, rhs, ty, offset);
|
|
return .none;
|
|
}
|
|
|
|
fn store(self: *Self, lhs: WValue, rhs: WValue, ty: Type, offset: u32) InnerError!void {
|
|
switch (ty.zigTypeTag()) {
|
|
.ErrorUnion, .Optional => {
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
const payload_ty = if (ty.zigTypeTag() == .ErrorUnion) ty.errorUnionPayload() else ty.optionalChild(&buf);
|
|
const tag_ty = if (ty.zigTypeTag() == .ErrorUnion) ty.errorUnionSet() else Type.initTag(.u8);
|
|
const payload_offset = if (ty.zigTypeTag() == .ErrorUnion)
|
|
@intCast(u32, tag_ty.abiSize(self.target))
|
|
else if (ty.isPtrLikeOptional())
|
|
@as(u32, 0)
|
|
else
|
|
@intCast(u32, ty.abiSize(self.target) - payload_ty.abiSize(self.target));
|
|
|
|
switch (rhs) {
|
|
.constant => {
|
|
if (rhs.constant.val.castTag(.decl_ref)) |_| {
|
|
// retrieve values from memory instead
|
|
const mem_local = try self.allocLocal(Type.usize);
|
|
try self.emitWValue(rhs);
|
|
try self.addLabel(.local_set, mem_local.local);
|
|
try self.store(lhs, mem_local, ty, 0);
|
|
return;
|
|
} else if (ty.isPtrLikeOptional()) {
|
|
// set the address of rhs to lhs
|
|
try self.store(lhs, rhs, Type.usize, 0);
|
|
return;
|
|
}
|
|
// constant will contain both tag and payload,
|
|
// so save those in 2 temporary locals before storing them
|
|
// in memory
|
|
try self.emitWValue(rhs);
|
|
const tag_local = try self.allocLocal(tag_ty);
|
|
|
|
if (payload_ty.hasCodeGenBits()) {
|
|
const payload_local = try self.allocLocal(payload_ty);
|
|
try self.addLabel(.local_set, payload_local.local);
|
|
if (self.isByRef(payload_ty)) {
|
|
const ptr = try self.buildPointerOffset(lhs, payload_offset, .new);
|
|
try self.store(ptr, payload_local, payload_ty, 0);
|
|
} else {
|
|
try self.store(lhs, payload_local, payload_ty, payload_offset);
|
|
}
|
|
}
|
|
try self.addLabel(.local_set, tag_local.local);
|
|
|
|
try self.store(lhs, tag_local, tag_ty, 0);
|
|
return;
|
|
},
|
|
.local => {
|
|
// When the optional is pointer-like, we simply store the pointer
|
|
// instead.
|
|
if (ty.isPtrLikeOptional()) {
|
|
try self.store(lhs, rhs, Type.usize, 0);
|
|
return;
|
|
}
|
|
// Load values from `rhs` stack position and store in `lhs` instead
|
|
const tag_local = try self.load(rhs, tag_ty, 0);
|
|
if (payload_ty.hasCodeGenBits()) {
|
|
if (self.isByRef(payload_ty)) {
|
|
const payload_ptr = try self.buildPointerOffset(rhs, payload_offset, .new);
|
|
const lhs_payload_ptr = try self.buildPointerOffset(lhs, payload_offset, .new);
|
|
try self.store(lhs_payload_ptr, payload_ptr, payload_ty, 0);
|
|
} else {
|
|
const payload_local = try self.load(rhs, payload_ty, payload_offset);
|
|
try self.store(lhs, payload_local, payload_ty, payload_offset);
|
|
}
|
|
}
|
|
return try self.store(lhs, tag_local, tag_ty, 0);
|
|
},
|
|
.local_with_offset => |with_offset| {
|
|
// check if we're storing the payload, or the error
|
|
if (with_offset.offset == 0) {
|
|
try self.store(lhs, .{ .local = with_offset.local }, tag_ty, 0);
|
|
return;
|
|
}
|
|
const tag_local = try self.allocLocal(tag_ty);
|
|
try self.addImm32(0);
|
|
try self.addLabel(.local_set, tag_local.local);
|
|
try self.store(lhs, tag_local, tag_ty, 0);
|
|
|
|
return try self.store(
|
|
lhs,
|
|
.{ .local = with_offset.local },
|
|
payload_ty,
|
|
with_offset.offset,
|
|
);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
},
|
|
.Struct, .Array => {
|
|
const final_rhs = if (rhs == .constant) blk: {
|
|
const tmp = try self.allocLocal(Type.usize);
|
|
try self.emitWValue(rhs);
|
|
try self.addLabel(.local_set, tmp.local);
|
|
break :blk tmp;
|
|
} else rhs;
|
|
return try self.memCopy(ty, lhs, final_rhs);
|
|
},
|
|
.Pointer => {
|
|
if (ty.isSlice() and rhs == .constant) {
|
|
try self.emitWValue(rhs);
|
|
|
|
const val = rhs.constant.val;
|
|
const len_local = try self.allocLocal(Type.usize);
|
|
const ptr_local = try self.allocLocal(Type.usize);
|
|
const len_offset = self.ptrSize();
|
|
if (val.castTag(.decl_ref)) |decl| {
|
|
const decl_ty: Type = decl.data.ty;
|
|
if (decl_ty.isSlice()) {
|
|
// for decl references we also need to retrieve the length and the original decl's pointer
|
|
try self.addMemArg(.i32_load, .{ .offset = 0, .alignment = self.ptrSize() });
|
|
try self.addLabel(.memory_address, decl.data.link.wasm.sym_index);
|
|
try self.addMemArg(.i32_load, .{ .offset = len_offset, .alignment = self.ptrSize() });
|
|
} else if (decl_ty.zigTypeTag() == .Array) {
|
|
const len = decl_ty.arrayLen();
|
|
switch (self.ptrSize()) {
|
|
4 => try self.addImm32(@bitCast(i32, @intCast(u32, len))),
|
|
8 => try self.addImm64(len),
|
|
else => unreachable,
|
|
}
|
|
} else return self.fail("Wasm todo: Implement storing slices for decl_ref with type: {}", .{decl_ty});
|
|
}
|
|
try self.addLabel(.local_set, len_local.local);
|
|
try self.addLabel(.local_set, ptr_local.local);
|
|
try self.store(lhs, ptr_local, Type.usize, 0);
|
|
try self.store(lhs, len_local, Type.usize, len_offset);
|
|
return;
|
|
} else if (ty.isSlice()) {
|
|
// store pointer first
|
|
const ptr_local = try self.load(rhs, Type.usize, 0);
|
|
try self.store(lhs, ptr_local, Type.usize, 0);
|
|
|
|
// retrieve length from rhs, and store that alongside lhs as well
|
|
const len_local = try self.load(rhs, Type.usize, self.ptrSize());
|
|
try self.store(lhs, len_local, Type.usize, self.ptrSize());
|
|
return;
|
|
}
|
|
},
|
|
.Int => if (ty.intInfo(self.target).bits > 64) {
|
|
if (rhs == .constant) {
|
|
try self.emitWValue(rhs);
|
|
try self.addLabel(.local_set, lhs.local);
|
|
return;
|
|
}
|
|
return try self.memCopy(ty, lhs, rhs);
|
|
},
|
|
else => {},
|
|
}
|
|
try self.emitWValue(lhs);
|
|
try self.emitWValue(rhs);
|
|
const valtype = try self.typeToValtype(ty);
|
|
// check if we should pass by pointer or value based on ABI size
|
|
// TODO: Implement a way to get ABI values from a given type,
|
|
// that is portable across the backend, rather than copying logic.
|
|
const abi_size = switch (ty.zigTypeTag()) {
|
|
.Int,
|
|
.Float,
|
|
.ErrorSet,
|
|
.Enum,
|
|
.Bool,
|
|
=> @intCast(u8, ty.abiSize(self.target)),
|
|
else => @as(u8, 4),
|
|
};
|
|
const opcode = buildOpcode(.{
|
|
.valtype1 = valtype,
|
|
.width = abi_size * 8, // use bitsize instead of byte size
|
|
.op = .store,
|
|
});
|
|
|
|
// store rhs value at stack pointer's location in memory
|
|
try self.addMemArg(
|
|
Mir.Inst.Tag.fromOpcode(opcode),
|
|
.{ .offset = offset, .alignment = ty.abiAlignment(self.target) },
|
|
);
|
|
}
|
|
|
|
fn airLoad(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const ty = self.air.getRefType(ty_op.ty);
|
|
|
|
if (!ty.hasCodeGenBits()) return WValue{ .none = {} };
|
|
|
|
if (self.isByRef(ty)) {
|
|
const new_local = try self.allocStack(ty);
|
|
try self.store(new_local, operand, ty, 0);
|
|
return new_local;
|
|
}
|
|
|
|
return switch (operand) {
|
|
.local_with_offset => |with_offset| try self.load(operand, ty, with_offset.offset),
|
|
else => try self.load(operand, ty, 0),
|
|
};
|
|
}
|
|
|
|
fn load(self: *Self, operand: WValue, ty: Type, offset: u32) InnerError!WValue {
|
|
// load local's value from memory by its stack position
|
|
try self.emitWValue(operand);
|
|
// Build the opcode with the right bitsize
|
|
const signedness: std.builtin.Signedness = if (ty.isUnsignedInt() or
|
|
ty.zigTypeTag() == .ErrorSet or
|
|
ty.zigTypeTag() == .Bool)
|
|
.unsigned
|
|
else
|
|
.signed;
|
|
// TODO: Implement a way to get ABI values from a given type,
|
|
// that is portable across the backend, rather than copying logic.
|
|
const abi_size = switch (ty.zigTypeTag()) {
|
|
.Int,
|
|
.Float,
|
|
.ErrorSet,
|
|
.Enum,
|
|
.Bool,
|
|
.ErrorUnion,
|
|
=> @intCast(u8, ty.abiSize(self.target)),
|
|
.Optional => blk: {
|
|
if (ty.isPtrLikeOptional()) break :blk @intCast(u8, self.ptrSize());
|
|
break :blk @intCast(u8, ty.abiSize(self.target));
|
|
},
|
|
else => @as(u8, 4),
|
|
};
|
|
|
|
const opcode = buildOpcode(.{
|
|
.valtype1 = try self.typeToValtype(ty),
|
|
.width = abi_size * 8, // use bitsize instead of byte size
|
|
.op = .load,
|
|
.signedness = signedness,
|
|
});
|
|
|
|
try self.addMemArg(
|
|
Mir.Inst.Tag.fromOpcode(opcode),
|
|
.{ .offset = offset, .alignment = ty.abiAlignment(self.target) },
|
|
);
|
|
|
|
// store the result in a local
|
|
const result = try self.allocLocal(ty);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
fn airArg(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
_ = inst;
|
|
defer self.arg_index += 1;
|
|
return self.args[self.arg_index];
|
|
}
|
|
|
|
fn airBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs = self.resolveInst(bin_op.lhs);
|
|
const rhs = self.resolveInst(bin_op.rhs);
|
|
const operand_ty = self.air.typeOfIndex(inst);
|
|
|
|
if (self.isByRef(operand_ty)) {
|
|
return self.fail("TODO: Implement binary operation for type: {}", .{operand_ty});
|
|
}
|
|
|
|
try self.emitWValue(lhs);
|
|
try self.emitWValue(rhs);
|
|
|
|
const bin_ty = self.air.typeOf(bin_op.lhs);
|
|
const opcode: wasm.Opcode = buildOpcode(.{
|
|
.op = op,
|
|
.valtype1 = try self.typeToValtype(bin_ty),
|
|
.signedness = if (bin_ty.isSignedInt()) .signed else .unsigned,
|
|
});
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
|
|
// save the result in a temporary
|
|
const bin_local = try self.allocLocal(bin_ty);
|
|
try self.addLabel(.local_set, bin_local.local);
|
|
return bin_local;
|
|
}
|
|
|
|
fn airWrapBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs = self.resolveInst(bin_op.lhs);
|
|
const rhs = self.resolveInst(bin_op.rhs);
|
|
|
|
try self.emitWValue(lhs);
|
|
try self.emitWValue(rhs);
|
|
|
|
const bin_ty = self.air.typeOf(bin_op.lhs);
|
|
const opcode: wasm.Opcode = buildOpcode(.{
|
|
.op = op,
|
|
.valtype1 = try self.typeToValtype(bin_ty),
|
|
.signedness = if (bin_ty.isSignedInt()) .signed else .unsigned,
|
|
});
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
|
|
const int_info = bin_ty.intInfo(self.target);
|
|
const bitsize = int_info.bits;
|
|
const is_signed = int_info.signedness == .signed;
|
|
// if target type bitsize is x < 32 and 32 > x < 64, we perform
|
|
// result & ((1<<N)-1) where N = bitsize or bitsize -1 incase of signed.
|
|
if (bitsize != 32 and bitsize < 64) {
|
|
// first check if we can use a single instruction,
|
|
// wasm provides those if the integers are signed and 8/16-bit.
|
|
// For arbitrary integer sizes, we use the algorithm mentioned above.
|
|
if (is_signed and bitsize == 8) {
|
|
try self.addTag(.i32_extend8_s);
|
|
} else if (is_signed and bitsize == 16) {
|
|
try self.addTag(.i32_extend16_s);
|
|
} else {
|
|
const result = (@as(u64, 1) << @intCast(u6, bitsize - @boolToInt(is_signed))) - 1;
|
|
if (bitsize < 32) {
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, result)));
|
|
try self.addTag(.i32_and);
|
|
} else {
|
|
try self.addImm64(result);
|
|
try self.addTag(.i64_and);
|
|
}
|
|
}
|
|
} else if (int_info.bits > 64) {
|
|
return self.fail("TODO wasm: Integer wrapping for bitsizes larger than 64", .{});
|
|
}
|
|
|
|
// save the result in a temporary
|
|
const bin_local = try self.allocLocal(bin_ty);
|
|
try self.addLabel(.local_set, bin_local.local);
|
|
return bin_local;
|
|
}
|
|
|
|
fn emitConstant(self: *Self, val: Value, ty: Type) InnerError!void {
|
|
if (val.isUndefDeep()) return self.emitUndefined(ty);
|
|
switch (ty.zigTypeTag()) {
|
|
.Int => {
|
|
const int_info = ty.intInfo(self.target);
|
|
// write constant
|
|
switch (int_info.signedness) {
|
|
.signed => switch (int_info.bits) {
|
|
0...32 => return try self.addImm32(@intCast(i32, val.toSignedInt())),
|
|
33...64 => return try self.addImm64(@bitCast(u64, val.toSignedInt())),
|
|
65...128 => {},
|
|
else => |bits| return self.fail("Wasm todo: emitConstant for integer with {d} bits", .{bits}),
|
|
},
|
|
.unsigned => switch (int_info.bits) {
|
|
0...32 => return try self.addImm32(@bitCast(i32, @intCast(u32, val.toUnsignedInt()))),
|
|
33...64 => return try self.addImm64(val.toUnsignedInt()),
|
|
65...128 => {},
|
|
else => |bits| return self.fail("Wasm TODO: emitConstant for integer with {d} bits", .{bits}),
|
|
},
|
|
}
|
|
const result = try self.allocStack(ty);
|
|
var space: Value.BigIntSpace = undefined;
|
|
const bigint = val.toBigInt(&space);
|
|
if (bigint.limbs.len == 1 and bigint.limbs[0] == 0) {
|
|
try self.addLabel(.local_get, result.local);
|
|
return;
|
|
}
|
|
if (@sizeOf(usize) != @sizeOf(u64)) {
|
|
return self.fail("Wasm todo: Implement big integers for 32bit compiler", .{});
|
|
}
|
|
|
|
for (bigint.limbs) |_, index| {
|
|
const limb = bigint.limbs[bigint.limbs.len - index - 1];
|
|
try self.addLabel(.local_get, result.local);
|
|
try self.addImm64(limb);
|
|
try self.addMemArg(.i64_store, .{ .offset = @intCast(u32, index * 8), .alignment = 8 });
|
|
}
|
|
try self.addLabel(.local_get, result.local);
|
|
},
|
|
.Bool => try self.addImm32(@intCast(i32, val.toSignedInt())),
|
|
.Float => {
|
|
// write constant
|
|
switch (ty.floatBits(self.target)) {
|
|
0...32 => try self.addInst(.{ .tag = .f32_const, .data = .{ .float32 = val.toFloat(f32) } }),
|
|
64 => try self.addFloat64(val.toFloat(f64)),
|
|
else => |bits| return self.fail("Wasm TODO: emitConstant for float with {d} bits", .{bits}),
|
|
}
|
|
},
|
|
.Pointer => {
|
|
if (val.castTag(.slice)) |slice| {
|
|
var buf: Type.SlicePtrFieldTypeBuffer = undefined;
|
|
try self.emitConstant(slice.data.ptr, ty.slicePtrFieldType(&buf));
|
|
try self.emitConstant(slice.data.len, Type.usize);
|
|
} else if (val.castTag(.decl_ref)) |payload| {
|
|
const decl = payload.data;
|
|
markDeclAlive(decl);
|
|
// Function pointers use a table index, rather than a memory address
|
|
if (decl.ty.zigTypeTag() == .Fn) {
|
|
const target_sym_index = decl.link.wasm.sym_index;
|
|
try self.bin_file.addTableFunction(target_sym_index);
|
|
try self.addLabel(.function_index, target_sym_index);
|
|
} else {
|
|
try self.addLabel(.memory_address, decl.link.wasm.sym_index);
|
|
}
|
|
} else if (val.castTag(.int_u64)) |int_ptr| {
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, int_ptr.data)));
|
|
} else if (val.tag() == .zero or val.tag() == .null_value) {
|
|
try self.addImm32(0);
|
|
} else if (val.tag() == .one) {
|
|
try self.addImm32(1);
|
|
} else return self.fail("Wasm TODO: emitConstant for other const pointer tag {s}", .{val.tag()});
|
|
},
|
|
.Void => {},
|
|
.Enum => {
|
|
if (val.castTag(.enum_field_index)) |field_index| {
|
|
switch (ty.tag()) {
|
|
.enum_simple => try self.addImm32(@bitCast(i32, field_index.data)),
|
|
.enum_full, .enum_nonexhaustive => {
|
|
const enum_full = ty.cast(Type.Payload.EnumFull).?.data;
|
|
if (enum_full.values.count() != 0) {
|
|
const tag_val = enum_full.values.keys()[field_index.data];
|
|
try self.emitConstant(tag_val, enum_full.tag_ty);
|
|
} else {
|
|
try self.addImm32(@bitCast(i32, field_index.data));
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
} else {
|
|
var int_tag_buffer: Type.Payload.Bits = undefined;
|
|
const int_tag_ty = ty.intTagType(&int_tag_buffer);
|
|
try self.emitConstant(val, int_tag_ty);
|
|
}
|
|
},
|
|
.ErrorSet => {
|
|
const error_index = self.global_error_set.get(val.getError().?).?;
|
|
try self.addImm32(@bitCast(i32, error_index));
|
|
},
|
|
.ErrorUnion => {
|
|
const error_type = ty.errorUnionSet();
|
|
const payload_type = ty.errorUnionPayload();
|
|
if (val.castTag(.eu_payload)) |pl| {
|
|
const payload_val = pl.data;
|
|
// no error, so write a '0' const
|
|
try self.addImm32(0);
|
|
|
|
if (payload_type.hasCodeGenBits()) {
|
|
// after the error code, we emit the payload
|
|
try self.emitConstant(payload_val, payload_type);
|
|
}
|
|
} else {
|
|
// write the error val
|
|
try self.emitConstant(val, error_type);
|
|
|
|
if (payload_type.hasCodeGenBits()) {
|
|
// no payload, so write a '0' const
|
|
try self.addImm32(0);
|
|
}
|
|
}
|
|
},
|
|
.Optional => {
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
const payload_type = ty.optionalChild(&buf);
|
|
if (ty.isPtrLikeOptional()) {
|
|
try self.emitConstant(val, payload_type);
|
|
return;
|
|
}
|
|
|
|
// When constant has value 'null', set is_null local to '1'
|
|
// and payload to '0'
|
|
if (val.castTag(.opt_payload)) |payload| {
|
|
try self.addImm32(1);
|
|
if (payload_type.hasCodeGenBits())
|
|
try self.emitConstant(payload.data, payload_type);
|
|
} else {
|
|
// set null-tag
|
|
try self.addImm32(0);
|
|
// null-tag is set, so write a '0' const
|
|
try self.addImm32(0);
|
|
}
|
|
},
|
|
.Struct => {
|
|
const struct_data = val.castTag(.@"struct").?;
|
|
// in case of structs, we reserve stack space and store it there.
|
|
const result = try self.allocStack(ty);
|
|
|
|
const fields = ty.structFields();
|
|
const offset = try self.copyLocal(result, ty);
|
|
for (fields.values()) |field, index| {
|
|
const tmp = try self.allocLocal(field.ty);
|
|
try self.emitConstant(struct_data.data[index], field.ty);
|
|
try self.addLabel(.local_set, tmp.local);
|
|
try self.store(offset, tmp, field.ty, 0);
|
|
|
|
// this prevents us from emitting useless instructions when we reached the end of the loop
|
|
if (index != (fields.count() - 1)) {
|
|
_ = try self.buildPointerOffset(offset, field.ty.abiSize(self.target), .modify);
|
|
}
|
|
}
|
|
try self.addLabel(.local_get, result.local);
|
|
},
|
|
.Array => {
|
|
const result = try self.allocStack(ty);
|
|
if (val.castTag(.bytes)) |bytes| {
|
|
for (bytes.data) |byte, index| {
|
|
try self.addLabel(.local_get, result.local);
|
|
try self.addImm32(@intCast(i32, byte));
|
|
try self.addMemArg(.i32_store8, .{ .offset = @intCast(u32, index), .alignment = 1 });
|
|
}
|
|
} else if (val.castTag(.array)) |array| {
|
|
const elem_ty = ty.childType();
|
|
const elem_size = elem_ty.abiSize(self.target);
|
|
const tmp = try self.allocLocal(elem_ty);
|
|
const offset = try self.copyLocal(result, ty);
|
|
for (array.data) |value, index| {
|
|
try self.emitConstant(value, elem_ty);
|
|
try self.addLabel(.local_set, tmp.local);
|
|
try self.store(offset, tmp, elem_ty, 0);
|
|
|
|
if (index != (array.data.len - 1)) {
|
|
_ = try self.buildPointerOffset(offset, elem_size, .modify);
|
|
}
|
|
}
|
|
} else if (val.castTag(.repeated)) |repeated| {
|
|
const value = repeated.data;
|
|
const elem_ty = ty.childType();
|
|
const elem_size = elem_ty.abiSize(self.target);
|
|
const sentinel = ty.sentinel();
|
|
const len = ty.arrayLen();
|
|
const len_with_sent = len + @boolToInt(sentinel != null);
|
|
const tmp = try self.allocLocal(elem_ty);
|
|
const offset = try self.copyLocal(result, ty);
|
|
|
|
var index: u32 = 0;
|
|
while (index < len_with_sent) : (index += 1) {
|
|
if (sentinel != null and index == len) {
|
|
try self.emitConstant(sentinel.?, elem_ty);
|
|
} else {
|
|
try self.emitConstant(value, elem_ty);
|
|
}
|
|
try self.addLabel(.local_set, tmp.local);
|
|
try self.store(offset, tmp, elem_ty, 0);
|
|
|
|
if (index != (len_with_sent - 1)) {
|
|
_ = try self.buildPointerOffset(offset, elem_size, .modify);
|
|
}
|
|
}
|
|
} else if (val.tag() == .empty_array_sentinel) {
|
|
const elem_ty = ty.childType();
|
|
const sent_val = ty.sentinel().?;
|
|
const tmp = try self.allocLocal(elem_ty);
|
|
try self.emitConstant(sent_val, elem_ty);
|
|
try self.addLabel(.local_set, tmp.local);
|
|
try self.store(result, tmp, elem_ty, 0);
|
|
} else unreachable;
|
|
try self.addLabel(.local_get, result.local);
|
|
},
|
|
else => |zig_type| return self.fail("Wasm TODO: emitConstant for zigTypeTag {s}", .{zig_type}),
|
|
}
|
|
}
|
|
|
|
fn markDeclAlive(decl: *Decl) void {
|
|
if (decl.alive) return;
|
|
decl.alive = true;
|
|
|
|
// This is the first time we are marking this Decl alive. We must
|
|
// therefore recurse into its value and mark any Decl it references
|
|
// as also alive, so that any Decl referenced does not get garbage collected.
|
|
|
|
if (decl.val.pointerDecl()) |pointee| {
|
|
return markDeclAlive(pointee);
|
|
}
|
|
}
|
|
|
|
fn emitUndefined(self: *Self, ty: Type) InnerError!void {
|
|
switch (ty.zigTypeTag()) {
|
|
.Int => switch (ty.intInfo(self.target).bits) {
|
|
0...32 => try self.addImm32(@bitCast(i32, @as(u32, 0xaaaaaaaa))),
|
|
33...64 => try self.addImm64(0xaaaaaaaaaaaaaaaa),
|
|
else => |bits| return self.fail("Wasm TODO: emitUndefined for integer bitsize: {d}", .{bits}),
|
|
},
|
|
.Float => switch (ty.floatBits(self.target)) {
|
|
0...32 => try self.addInst(.{ .tag = .f32_const, .data = .{ .float32 = @bitCast(f32, @as(u32, 0xaaaaaaaa)) } }),
|
|
33...64 => try self.addFloat64(@bitCast(f64, @as(u64, 0xaaaaaaaaaaaaaaaa))),
|
|
else => |bits| return self.fail("Wasm TODO: emitUndefined for float bitsize: {d}", .{bits}),
|
|
},
|
|
.Array, .Struct => {
|
|
const result = try self.allocStack(ty);
|
|
const abi_size = ty.abiSize(self.target);
|
|
var offset: u32 = 0;
|
|
while (offset < abi_size) : (offset += 1) {
|
|
try self.emitWValue(result);
|
|
try self.addImm32(0xaa);
|
|
switch (self.ptrSize()) {
|
|
4 => try self.addMemArg(.i32_store8, .{ .offset = offset, .alignment = 1 }),
|
|
8 => try self.addMemArg(.i64_store8, .{ .offset = offset, .alignment = 1 }),
|
|
else => unreachable,
|
|
}
|
|
}
|
|
try self.addLabel(.local_get, result.local);
|
|
},
|
|
.Pointer => switch (self.ptrSize()) {
|
|
4 => try self.addImm32(@bitCast(i32, @as(u32, 0xaaaaaaaa))),
|
|
8 => try self.addImm64(0xaaaaaaaaaaaaaaaa),
|
|
else => unreachable,
|
|
},
|
|
else => return self.fail("Wasm TODO: emitUndefined for type: {}\n", .{ty}),
|
|
}
|
|
}
|
|
|
|
/// Returns a `Value` as a signed 32 bit value.
|
|
/// It's illegal to provide a value with a type that cannot be represented
|
|
/// as an integer value.
|
|
fn valueAsI32(self: Self, val: Value, ty: Type) i32 {
|
|
switch (ty.zigTypeTag()) {
|
|
.Enum => {
|
|
if (val.castTag(.enum_field_index)) |field_index| {
|
|
switch (ty.tag()) {
|
|
.enum_simple => return @bitCast(i32, field_index.data),
|
|
.enum_full, .enum_nonexhaustive => {
|
|
const enum_full = ty.cast(Type.Payload.EnumFull).?.data;
|
|
if (enum_full.values.count() != 0) {
|
|
const tag_val = enum_full.values.keys()[field_index.data];
|
|
return self.valueAsI32(tag_val, enum_full.tag_ty);
|
|
} else return @bitCast(i32, field_index.data);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
} else {
|
|
var int_tag_buffer: Type.Payload.Bits = undefined;
|
|
const int_tag_ty = ty.intTagType(&int_tag_buffer);
|
|
return self.valueAsI32(val, int_tag_ty);
|
|
}
|
|
},
|
|
.Int => switch (ty.intInfo(self.target).signedness) {
|
|
.signed => return @truncate(i32, val.toSignedInt()),
|
|
.unsigned => return @bitCast(i32, @truncate(u32, val.toUnsignedInt())),
|
|
},
|
|
.ErrorSet => {
|
|
const error_index = self.global_error_set.get(val.getError().?).?;
|
|
return @bitCast(i32, error_index);
|
|
},
|
|
else => unreachable, // Programmer called this function for an illegal type
|
|
}
|
|
}
|
|
|
|
fn airBlock(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const block_ty = try self.genBlockType(self.air.getRefType(ty_pl.ty));
|
|
const extra = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
|
|
// if block_ty is non-empty, we create a register to store the temporary value
|
|
const block_result: WValue = if (block_ty != wasm.block_empty)
|
|
try self.allocLocal(self.air.getRefType(ty_pl.ty))
|
|
else
|
|
WValue.none;
|
|
|
|
try self.startBlock(.block, wasm.block_empty);
|
|
// Here we set the current block idx, so breaks know the depth to jump
|
|
// to when breaking out.
|
|
try self.blocks.putNoClobber(self.gpa, inst, .{
|
|
.label = self.block_depth,
|
|
.value = block_result,
|
|
});
|
|
try self.genBody(body);
|
|
try self.endBlock();
|
|
|
|
return block_result;
|
|
}
|
|
|
|
/// appends a new wasm block to the code section and increases the `block_depth` by 1
|
|
fn startBlock(self: *Self, block_tag: wasm.Opcode, valtype: u8) !void {
|
|
self.block_depth += 1;
|
|
try self.addInst(.{
|
|
.tag = Mir.Inst.Tag.fromOpcode(block_tag),
|
|
.data = .{ .block_type = valtype },
|
|
});
|
|
}
|
|
|
|
/// Ends the current wasm block and decreases the `block_depth` by 1
|
|
fn endBlock(self: *Self) !void {
|
|
try self.addTag(.end);
|
|
self.block_depth -= 1;
|
|
}
|
|
|
|
fn airLoop(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const loop = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[loop.end..][0..loop.data.body_len];
|
|
|
|
// result type of loop is always 'noreturn', meaning we can always
|
|
// emit the wasm type 'block_empty'.
|
|
try self.startBlock(.loop, wasm.block_empty);
|
|
try self.genBody(body);
|
|
|
|
// breaking to the index of a loop block will continue the loop instead
|
|
try self.addLabel(.br, 0);
|
|
try self.endBlock();
|
|
|
|
return .none;
|
|
}
|
|
|
|
fn airCondBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const condition = self.resolveInst(pl_op.operand);
|
|
const extra = self.air.extraData(Air.CondBr, pl_op.payload);
|
|
const then_body = self.air.extra[extra.end..][0..extra.data.then_body_len];
|
|
const else_body = self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len];
|
|
// TODO: Handle death instructions for then and else body
|
|
|
|
// result type is always noreturn, so use `block_empty` as type.
|
|
try self.startBlock(.block, wasm.block_empty);
|
|
// emit the conditional value
|
|
try self.emitWValue(condition);
|
|
|
|
// we inserted the block in front of the condition
|
|
// so now check if condition matches. If not, break outside this block
|
|
// and continue with the then codepath
|
|
try self.addLabel(.br_if, 0);
|
|
|
|
try self.genBody(else_body);
|
|
try self.endBlock();
|
|
|
|
// Outer block that matches the condition
|
|
try self.genBody(then_body);
|
|
|
|
return .none;
|
|
}
|
|
|
|
fn airCmp(self: *Self, inst: Air.Inst.Index, op: std.math.CompareOperator) InnerError!WValue {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs = self.resolveInst(bin_op.lhs);
|
|
const rhs = self.resolveInst(bin_op.rhs);
|
|
const operand_ty = self.air.typeOf(bin_op.lhs);
|
|
|
|
if (operand_ty.zigTypeTag() == .Optional and !operand_ty.isPtrLikeOptional()) {
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
const payload_ty = operand_ty.optionalChild(&buf);
|
|
if (payload_ty.hasCodeGenBits()) {
|
|
// When we hit this case, we must check the value of optionals
|
|
// that are not pointers. This means first checking against non-null for
|
|
// both lhs and rhs, as well as checking the payload are matching of lhs and rhs
|
|
return self.cmpOptionals(lhs, rhs, operand_ty, op);
|
|
}
|
|
} else if (self.isByRef(operand_ty)) {
|
|
return self.cmpBigInt(lhs, rhs, operand_ty, op);
|
|
}
|
|
|
|
try self.emitWValue(lhs);
|
|
try self.emitWValue(rhs);
|
|
|
|
const signedness: std.builtin.Signedness = blk: {
|
|
// by default we tell the operand type is unsigned (i.e. bools and enum values)
|
|
if (operand_ty.zigTypeTag() != .Int) break :blk .unsigned;
|
|
|
|
// incase of an actual integer, we emit the correct signedness
|
|
break :blk operand_ty.intInfo(self.target).signedness;
|
|
};
|
|
const opcode: wasm.Opcode = buildOpcode(.{
|
|
.valtype1 = try self.typeToValtype(operand_ty),
|
|
.op = switch (op) {
|
|
.lt => .lt,
|
|
.lte => .le,
|
|
.eq => .eq,
|
|
.neq => .ne,
|
|
.gte => .ge,
|
|
.gt => .gt,
|
|
},
|
|
.signedness = signedness,
|
|
});
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
|
|
const cmp_tmp = try self.allocLocal(Type.initTag(.i32)); // bool is always i32
|
|
try self.addLabel(.local_set, cmp_tmp.local);
|
|
return cmp_tmp;
|
|
}
|
|
|
|
fn airBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const br = self.air.instructions.items(.data)[inst].br;
|
|
const block = self.blocks.get(br.block_inst).?;
|
|
|
|
// if operand has codegen bits we should break with a value
|
|
if (self.air.typeOf(br.operand).hasCodeGenBits()) {
|
|
try self.emitWValue(self.resolveInst(br.operand));
|
|
|
|
if (block.value != .none) {
|
|
try self.addLabel(.local_set, block.value.local);
|
|
}
|
|
}
|
|
|
|
// We map every block to its block index.
|
|
// We then determine how far we have to jump to it by subtracting it from current block depth
|
|
const idx: u32 = self.block_depth - block.label;
|
|
try self.addLabel(.br, idx);
|
|
|
|
return .none;
|
|
}
|
|
|
|
fn airNot(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
try self.emitWValue(operand);
|
|
|
|
// wasm does not have booleans nor the `not` instruction, therefore compare with 0
|
|
// to create the same logic
|
|
try self.addImm32(0);
|
|
try self.addTag(.i32_eq);
|
|
|
|
// save the result in the local
|
|
const not_tmp = try self.allocLocal(Type.initTag(.i32));
|
|
try self.addLabel(.local_set, not_tmp.local);
|
|
return not_tmp;
|
|
}
|
|
|
|
fn airBreakpoint(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
_ = self;
|
|
_ = inst;
|
|
// unsupported by wasm itself. Can be implemented once we support DWARF
|
|
// for wasm
|
|
return .none;
|
|
}
|
|
|
|
fn airUnreachable(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
_ = inst;
|
|
try self.addTag(.@"unreachable");
|
|
return .none;
|
|
}
|
|
|
|
fn airBitcast(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
if (operand == .constant) {
|
|
const result = try self.allocLocal(self.air.typeOfIndex(inst));
|
|
try self.emitWValue(operand);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
return operand;
|
|
}
|
|
|
|
fn airStructFieldPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.StructField, ty_pl.payload);
|
|
const struct_ptr = self.resolveInst(extra.data.struct_operand);
|
|
const struct_ty = self.air.typeOf(extra.data.struct_operand).childType();
|
|
const offset = std.math.cast(u32, struct_ty.structFieldOffset(extra.data.field_index, self.target)) catch {
|
|
return self.fail("Field type '{}' too big to fit into stack frame", .{
|
|
struct_ty.structFieldType(extra.data.field_index),
|
|
});
|
|
};
|
|
return self.structFieldPtr(struct_ptr, offset);
|
|
}
|
|
|
|
fn airStructFieldPtrIndex(self: *Self, inst: Air.Inst.Index, index: u32) InnerError!WValue {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const struct_ptr = self.resolveInst(ty_op.operand);
|
|
const struct_ty = self.air.typeOf(ty_op.operand).childType();
|
|
const field_ty = struct_ty.structFieldType(index);
|
|
const offset = std.math.cast(u32, struct_ty.structFieldOffset(index, self.target)) catch {
|
|
return self.fail("Field type '{}' too big to fit into stack frame", .{
|
|
field_ty,
|
|
});
|
|
};
|
|
return self.structFieldPtr(struct_ptr, offset);
|
|
}
|
|
|
|
fn structFieldPtr(self: *Self, struct_ptr: WValue, offset: u32) InnerError!WValue {
|
|
var final_offset = offset;
|
|
const local = switch (struct_ptr) {
|
|
.local => |local| local,
|
|
.local_with_offset => |with_offset| blk: {
|
|
final_offset += with_offset.offset;
|
|
break :blk with_offset.local;
|
|
},
|
|
else => unreachable,
|
|
};
|
|
return self.buildPointerOffset(.{ .local = local }, final_offset, .new);
|
|
}
|
|
|
|
fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
|
|
const struct_ty = self.air.typeOf(struct_field.struct_operand);
|
|
const operand = self.resolveInst(struct_field.struct_operand);
|
|
const field_index = struct_field.field_index;
|
|
const field_ty = struct_ty.structFieldType(field_index);
|
|
if (!field_ty.hasCodeGenBits()) return WValue.none;
|
|
const offset = std.math.cast(u32, struct_ty.structFieldOffset(field_index, self.target)) catch {
|
|
return self.fail("Field type '{}' too big to fit into stack frame", .{field_ty});
|
|
};
|
|
|
|
if (self.isByRef(field_ty)) {
|
|
return WValue{ .local_with_offset = .{ .local = operand.local, .offset = offset } };
|
|
}
|
|
|
|
switch (operand) {
|
|
.local_with_offset => |with_offset| return try self.load(operand, field_ty, offset + with_offset.offset),
|
|
else => return try self.load(operand, field_ty, offset),
|
|
}
|
|
}
|
|
|
|
fn airSwitchBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
// result type is always 'noreturn'
|
|
const blocktype = wasm.block_empty;
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const target = self.resolveInst(pl_op.operand);
|
|
const target_ty = self.air.typeOf(pl_op.operand);
|
|
const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload);
|
|
var extra_index: usize = switch_br.end;
|
|
var case_i: u32 = 0;
|
|
|
|
// a list that maps each value with its value and body based on the order inside the list.
|
|
const CaseValue = struct { integer: i32, value: Value };
|
|
var case_list = try std.ArrayList(struct {
|
|
values: []const CaseValue,
|
|
body: []const Air.Inst.Index,
|
|
}).initCapacity(self.gpa, switch_br.data.cases_len);
|
|
defer for (case_list.items) |case| {
|
|
self.gpa.free(case.values);
|
|
} else case_list.deinit();
|
|
|
|
var lowest: i32 = 0;
|
|
var highest: i32 = 0;
|
|
while (case_i < switch_br.data.cases_len) : (case_i += 1) {
|
|
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
|
|
const items = @bitCast([]const Air.Inst.Ref, self.air.extra[case.end..][0..case.data.items_len]);
|
|
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
|
|
extra_index = case.end + items.len + case_body.len;
|
|
const values = try self.gpa.alloc(CaseValue, items.len);
|
|
errdefer self.gpa.free(values);
|
|
|
|
for (items) |ref, i| {
|
|
const item_val = self.air.value(ref).?;
|
|
const int_val = self.valueAsI32(item_val, target_ty);
|
|
if (int_val < lowest) {
|
|
lowest = int_val;
|
|
}
|
|
if (int_val > highest) {
|
|
highest = int_val;
|
|
}
|
|
values[i] = .{ .integer = int_val, .value = item_val };
|
|
}
|
|
|
|
case_list.appendAssumeCapacity(.{ .values = values, .body = case_body });
|
|
try self.startBlock(.block, blocktype);
|
|
}
|
|
|
|
// When the highest and lowest values are seperated by '50',
|
|
// we define it as sparse and use an if/else-chain, rather than a jump table.
|
|
// When the target is an integer size larger than u32, we have no way to use the value
|
|
// as an index, therefore we also use an if/else-chain for those cases.
|
|
// TODO: Benchmark this to find a proper value, LLVM seems to draw the line at '40~45'.
|
|
const is_sparse = highest - lowest > 50 or target_ty.bitSize(self.target) > 32;
|
|
|
|
const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len];
|
|
const has_else_body = else_body.len != 0;
|
|
if (has_else_body) {
|
|
try self.startBlock(.block, blocktype);
|
|
}
|
|
|
|
if (!is_sparse) {
|
|
// Generate the jump table 'br_table' when the prongs are not sparse.
|
|
// The value 'target' represents the index into the table.
|
|
// Each index in the table represents a label to the branch
|
|
// to jump to.
|
|
try self.startBlock(.block, blocktype);
|
|
try self.emitWValue(target);
|
|
if (lowest < 0) {
|
|
// since br_table works using indexes, starting from '0', we must ensure all values
|
|
// we put inside, are atleast 0.
|
|
try self.addImm32(lowest * -1);
|
|
try self.addTag(.i32_add);
|
|
}
|
|
|
|
// Account for default branch so always add '1'
|
|
const depth = @intCast(u32, highest - lowest + @boolToInt(has_else_body)) + 1;
|
|
const jump_table: Mir.JumpTable = .{ .length = depth };
|
|
const table_extra_index = try self.addExtra(jump_table);
|
|
try self.addInst(.{ .tag = .br_table, .data = .{ .payload = table_extra_index } });
|
|
try self.mir_extra.ensureUnusedCapacity(self.gpa, depth);
|
|
while (lowest <= highest) : (lowest += 1) {
|
|
// idx represents the branch we jump to
|
|
const idx = blk: {
|
|
for (case_list.items) |case, idx| {
|
|
for (case.values) |case_value| {
|
|
if (case_value.integer == lowest) break :blk @intCast(u32, idx);
|
|
}
|
|
}
|
|
break :blk if (has_else_body) case_i else unreachable;
|
|
};
|
|
self.mir_extra.appendAssumeCapacity(idx);
|
|
} else if (has_else_body) {
|
|
self.mir_extra.appendAssumeCapacity(case_i); // default branch
|
|
}
|
|
try self.endBlock();
|
|
}
|
|
|
|
const signedness: std.builtin.Signedness = blk: {
|
|
// by default we tell the operand type is unsigned (i.e. bools and enum values)
|
|
if (target_ty.zigTypeTag() != .Int) break :blk .unsigned;
|
|
|
|
// incase of an actual integer, we emit the correct signedness
|
|
break :blk target_ty.intInfo(self.target).signedness;
|
|
};
|
|
|
|
for (case_list.items) |case| {
|
|
// when sparse, we use if/else-chain, so emit conditional checks
|
|
if (is_sparse) {
|
|
// for single value prong we can emit a simple if
|
|
if (case.values.len == 1) {
|
|
try self.emitWValue(target);
|
|
try self.emitConstant(case.values[0].value, target_ty);
|
|
const opcode = buildOpcode(.{
|
|
.valtype1 = try self.typeToValtype(target_ty),
|
|
.op = .ne, // not equal, because we want to jump out of this block if it does not match the condition.
|
|
.signedness = signedness,
|
|
});
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
try self.addLabel(.br_if, 0);
|
|
} else {
|
|
// in multi-value prongs we must check if any prongs match the target value.
|
|
try self.startBlock(.block, blocktype);
|
|
for (case.values) |value| {
|
|
try self.emitWValue(target);
|
|
try self.emitConstant(value.value, target_ty);
|
|
const opcode = buildOpcode(.{
|
|
.valtype1 = try self.typeToValtype(target_ty),
|
|
.op = .eq,
|
|
.signedness = signedness,
|
|
});
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
try self.addLabel(.br_if, 0);
|
|
}
|
|
// value did not match any of the prong values
|
|
try self.addLabel(.br, 1);
|
|
try self.endBlock();
|
|
}
|
|
}
|
|
try self.genBody(case.body);
|
|
try self.endBlock();
|
|
}
|
|
|
|
if (has_else_body) {
|
|
try self.genBody(else_body);
|
|
try self.endBlock();
|
|
}
|
|
return .none;
|
|
}
|
|
|
|
fn airIsErr(self: *Self, inst: Air.Inst.Index, opcode: wasm.Opcode) InnerError!WValue {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = self.resolveInst(un_op);
|
|
const err_ty = self.air.typeOf(un_op);
|
|
const pl_ty = err_ty.errorUnionPayload();
|
|
|
|
// load the error tag value
|
|
try self.emitWValue(operand);
|
|
if (pl_ty.hasCodeGenBits()) {
|
|
try self.addMemArg(.i32_load16_u, .{
|
|
.offset = 0,
|
|
.alignment = err_ty.errorUnionSet().abiAlignment(self.target),
|
|
});
|
|
}
|
|
|
|
// Compare the error value with '0'
|
|
try self.addImm32(0);
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
|
|
const is_err_tmp = try self.allocLocal(Type.initTag(.i32)); // result is always an i32
|
|
try self.addLabel(.local_set, is_err_tmp.local);
|
|
return is_err_tmp;
|
|
}
|
|
|
|
fn airUnwrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const err_ty = self.air.typeOf(ty_op.operand);
|
|
const payload_ty = err_ty.errorUnionPayload();
|
|
if (!payload_ty.hasCodeGenBits()) return WValue{ .none = {} };
|
|
const offset = @intCast(u32, err_ty.errorUnionSet().abiSize(self.target));
|
|
if (self.isByRef(payload_ty)) {
|
|
return self.buildPointerOffset(operand, offset, .new);
|
|
}
|
|
return try self.load(operand, payload_ty, offset);
|
|
}
|
|
|
|
fn airUnwrapErrUnionError(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const err_ty = self.air.typeOf(ty_op.operand);
|
|
const payload_ty = err_ty.errorUnionPayload();
|
|
if (!payload_ty.hasCodeGenBits()) {
|
|
return operand;
|
|
}
|
|
|
|
return try self.load(operand, err_ty.errorUnionSet(), 0);
|
|
}
|
|
|
|
fn airWrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
|
|
const op_ty = self.air.typeOf(ty_op.operand);
|
|
if (!op_ty.hasCodeGenBits()) return operand;
|
|
const err_ty = self.air.getRefType(ty_op.ty);
|
|
const offset = err_ty.errorUnionSet().abiSize(self.target);
|
|
|
|
const err_union = try self.allocStack(err_ty);
|
|
const payload_ptr = try self.buildPointerOffset(err_union, offset, .new);
|
|
try self.store(payload_ptr, operand, op_ty, 0);
|
|
|
|
// ensure we also write '0' to the error part, so any present stack value gets overwritten by it.
|
|
try self.addLabel(.local_get, err_union.local);
|
|
try self.addImm32(0);
|
|
try self.addMemArg(.i32_store16, .{ .offset = 0, .alignment = 2 });
|
|
|
|
return err_union;
|
|
}
|
|
|
|
fn airWrapErrUnionErr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const err_ty = self.air.getRefType(ty_op.ty);
|
|
|
|
const err_union = try self.allocStack(err_ty);
|
|
// TODO: Also write 'undefined' to the payload
|
|
try self.store(err_union, operand, err_ty.errorUnionSet(), 0);
|
|
return err_union;
|
|
}
|
|
|
|
fn airIntcast(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const ty = self.air.getRefType(ty_op.ty);
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const ref_ty = self.air.typeOf(ty_op.operand);
|
|
const ref_info = ref_ty.intInfo(self.target);
|
|
const wanted_info = ty.intInfo(self.target);
|
|
|
|
const op_bits = toWasmIntBits(ref_info.bits) orelse
|
|
return self.fail("TODO: Wasm intcast integer types of bitsize: {d}", .{ref_info.bits});
|
|
const wanted_bits = toWasmIntBits(wanted_info.bits) orelse
|
|
return self.fail("TODO: Wasm intcast integer types of bitsize: {d}", .{wanted_info.bits});
|
|
|
|
// hot path
|
|
if (op_bits == wanted_bits) return operand;
|
|
|
|
if (op_bits > 32 and wanted_bits == 32) {
|
|
try self.emitWValue(operand);
|
|
try self.addTag(.i32_wrap_i64);
|
|
} else if (op_bits == 32 and wanted_bits > 32) {
|
|
try self.emitWValue(operand);
|
|
try self.addTag(switch (ref_info.signedness) {
|
|
.signed => .i64_extend_i32_s,
|
|
.unsigned => .i64_extend_i32_u,
|
|
});
|
|
} else unreachable;
|
|
|
|
const result = try self.allocLocal(ty);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
fn airIsNull(self: *Self, inst: Air.Inst.Index, opcode: wasm.Opcode, op_kind: enum { value, ptr }) InnerError!WValue {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand = self.resolveInst(un_op);
|
|
|
|
const op_ty = self.air.typeOf(un_op);
|
|
const optional_ty = if (op_kind == .ptr) op_ty.childType() else op_ty;
|
|
return self.isNull(operand, optional_ty, opcode);
|
|
}
|
|
|
|
fn isNull(self: *Self, operand: WValue, optional_ty: Type, opcode: wasm.Opcode) InnerError!WValue {
|
|
try self.emitWValue(operand);
|
|
if (!optional_ty.isPtrLikeOptional()) {
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
const payload_ty = optional_ty.optionalChild(&buf);
|
|
// When payload is zero-bits, we can treat operand as a value, rather than
|
|
// a pointer to the stack value
|
|
if (payload_ty.hasCodeGenBits()) {
|
|
try self.addMemArg(.i32_load8_u, .{ .offset = 0, .alignment = 1 });
|
|
}
|
|
}
|
|
|
|
// Compare the null value with '0'
|
|
try self.addImm32(0);
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
|
|
const is_null_tmp = try self.allocLocal(Type.initTag(.i32));
|
|
try self.addLabel(.local_set, is_null_tmp.local);
|
|
return is_null_tmp;
|
|
}
|
|
|
|
fn airOptionalPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const opt_ty = self.air.typeOf(ty_op.operand);
|
|
const payload_ty = self.air.typeOfIndex(inst);
|
|
if (!payload_ty.hasCodeGenBits()) return WValue{ .none = {} };
|
|
if (opt_ty.isPtrLikeOptional()) return operand;
|
|
|
|
const offset = opt_ty.abiSize(self.target) - payload_ty.abiSize(self.target);
|
|
|
|
if (self.isByRef(payload_ty)) {
|
|
return self.buildPointerOffset(operand, offset, .new);
|
|
}
|
|
|
|
return self.load(operand, payload_ty, @intCast(u32, offset));
|
|
}
|
|
|
|
fn airOptionalPayloadPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const opt_ty = self.air.typeOf(ty_op.operand).childType();
|
|
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
const payload_ty = opt_ty.optionalChild(&buf);
|
|
if (!payload_ty.hasCodeGenBits() or opt_ty.isPtrLikeOptional()) {
|
|
return operand;
|
|
}
|
|
|
|
const offset = opt_ty.abiSize(self.target) - payload_ty.abiSize(self.target);
|
|
return self.buildPointerOffset(operand, offset, .new);
|
|
}
|
|
|
|
fn airOptionalPayloadPtrSet(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const opt_ty = self.air.typeOf(ty_op.operand).childType();
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
const payload_ty = opt_ty.optionalChild(&buf);
|
|
if (!payload_ty.hasCodeGenBits()) {
|
|
return self.fail("TODO: Implement OptionalPayloadPtrSet for optional with zero-sized type {}", .{payload_ty});
|
|
}
|
|
|
|
if (opt_ty.isPtrLikeOptional()) {
|
|
return operand;
|
|
}
|
|
|
|
const offset = std.math.cast(u32, opt_ty.abiSize(self.target) - payload_ty.abiSize(self.target)) catch {
|
|
return self.fail("Optional type {} too big to fit into stack frame", .{opt_ty});
|
|
};
|
|
|
|
try self.emitWValue(operand);
|
|
try self.addImm32(1);
|
|
try self.addMemArg(.i32_store8, .{ .offset = 0, .alignment = 1 });
|
|
|
|
return self.buildPointerOffset(operand, offset, .new);
|
|
}
|
|
|
|
fn airWrapOptional(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const payload_ty = self.air.typeOf(ty_op.operand);
|
|
if (!payload_ty.hasCodeGenBits()) {
|
|
const non_null_bit = try self.allocStack(Type.initTag(.u1));
|
|
try self.addLabel(.local_get, non_null_bit.local);
|
|
try self.addImm32(1);
|
|
try self.addMemArg(.i32_store8, .{ .offset = 0, .alignment = 1 });
|
|
return non_null_bit;
|
|
}
|
|
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const op_ty = self.air.typeOfIndex(inst);
|
|
if (op_ty.isPtrLikeOptional()) {
|
|
return operand;
|
|
}
|
|
const offset = std.math.cast(u32, op_ty.abiSize(self.target) - payload_ty.abiSize(self.target)) catch {
|
|
return self.fail("Optional type {} too big to fit into stack frame", .{op_ty});
|
|
};
|
|
|
|
// Create optional type, set the non-null bit, and store the operand inside the optional type
|
|
const result = try self.allocStack(op_ty);
|
|
try self.addLabel(.local_get, result.local);
|
|
try self.addImm32(1);
|
|
try self.addMemArg(.i32_store8, .{ .offset = 0, .alignment = 1 });
|
|
|
|
const payload_ptr = try self.buildPointerOffset(result, offset, .new);
|
|
try self.store(payload_ptr, operand, payload_ty, 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
fn airSlice(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const lhs = self.resolveInst(bin_op.lhs);
|
|
const rhs = self.resolveInst(bin_op.rhs);
|
|
const slice_ty = self.air.typeOfIndex(inst);
|
|
|
|
const slice = try self.allocStack(slice_ty);
|
|
try self.store(slice, lhs, Type.usize, 0);
|
|
try self.store(slice, rhs, Type.usize, self.ptrSize());
|
|
|
|
return slice;
|
|
}
|
|
|
|
fn airSliceLen(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
|
|
return try self.load(operand, Type.usize, self.ptrSize());
|
|
}
|
|
|
|
fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const slice_ty = self.air.typeOf(bin_op.lhs);
|
|
const slice = self.resolveInst(bin_op.lhs);
|
|
const index = self.resolveInst(bin_op.rhs);
|
|
const elem_ty = slice_ty.childType();
|
|
const elem_size = elem_ty.abiSize(self.target);
|
|
|
|
// load pointer onto stack
|
|
const slice_ptr = try self.load(slice, slice_ty, 0);
|
|
try self.addLabel(.local_get, slice_ptr.local);
|
|
|
|
// calculate index into slice
|
|
try self.emitWValue(index);
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, elem_size)));
|
|
try self.addTag(.i32_mul);
|
|
try self.addTag(.i32_add);
|
|
|
|
const result = try self.allocLocal(elem_ty);
|
|
try self.addLabel(.local_set, result.local);
|
|
|
|
if (self.isByRef(elem_ty)) {
|
|
return result;
|
|
}
|
|
return try self.load(result, elem_ty, 0);
|
|
}
|
|
|
|
fn airSliceElemPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const slice_ty = self.air.typeOf(bin_op.lhs);
|
|
const elem_ty = self.air.getRefType(ty_pl.ty).childType();
|
|
const elem_size = elem_ty.abiSize(self.target);
|
|
|
|
const slice = self.resolveInst(bin_op.lhs);
|
|
const index = self.resolveInst(bin_op.rhs);
|
|
|
|
const slice_ptr = try self.load(slice, slice_ty, 0);
|
|
try self.addLabel(.local_get, slice_ptr.local);
|
|
|
|
// calculate index into slice
|
|
try self.emitWValue(index);
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, elem_size)));
|
|
try self.addTag(.i32_mul);
|
|
try self.addTag(.i32_add);
|
|
|
|
const result = try self.allocLocal(Type.initTag(.i32));
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
fn airSlicePtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
return try self.load(operand, Type.usize, 0);
|
|
}
|
|
|
|
fn airTrunc(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue.none;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const op_ty = self.air.typeOf(ty_op.operand);
|
|
const int_info = self.air.getRefType(ty_op.ty).intInfo(self.target);
|
|
const wanted_bits = int_info.bits;
|
|
const result = try self.allocLocal(self.air.getRefType(ty_op.ty));
|
|
const op_bits = op_ty.intInfo(self.target).bits;
|
|
|
|
const wasm_bits = toWasmIntBits(wanted_bits) orelse
|
|
return self.fail("TODO: Implement wasm integer truncation for integer bitsize: {d}", .{wanted_bits});
|
|
|
|
// Use wasm's instruction to wrap from 64bit to 32bit integer when possible
|
|
if (op_bits == 64 and wanted_bits == 32) {
|
|
try self.emitWValue(operand);
|
|
try self.addTag(.i32_wrap_i64);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
// Any other truncation must be done manually
|
|
if (int_info.signedness == .unsigned) {
|
|
const mask = (@as(u65, 1) << @intCast(u7, wanted_bits)) - 1;
|
|
try self.emitWValue(operand);
|
|
switch (wasm_bits) {
|
|
32 => {
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, mask)));
|
|
try self.addTag(.i32_and);
|
|
},
|
|
64 => {
|
|
try self.addImm64(@intCast(u64, mask));
|
|
try self.addTag(.i64_and);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
} else {
|
|
const shift_bits = wasm_bits - wanted_bits;
|
|
try self.emitWValue(operand);
|
|
switch (wasm_bits) {
|
|
32 => {
|
|
try self.addImm32(@bitCast(i16, shift_bits));
|
|
try self.addTag(.i32_shl);
|
|
try self.addImm32(@bitCast(i16, shift_bits));
|
|
try self.addTag(.i32_shr_s);
|
|
},
|
|
64 => {
|
|
try self.addImm64(shift_bits);
|
|
try self.addTag(.i64_shl);
|
|
try self.addImm64(shift_bits);
|
|
try self.addTag(.i64_shr_s);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
fn airBoolToInt(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
return self.resolveInst(un_op);
|
|
}
|
|
|
|
fn airArrayToSlice(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const array_ty = self.air.typeOf(ty_op.operand).childType();
|
|
const ty = Type.@"usize";
|
|
const ptr_width = @intCast(u32, ty.abiSize(self.target));
|
|
const slice_ty = self.air.getRefType(ty_op.ty);
|
|
|
|
// create a slice on the stack
|
|
const slice_local = try self.allocStack(slice_ty);
|
|
|
|
// store the array ptr in the slice
|
|
if (array_ty.hasCodeGenBits()) {
|
|
try self.store(slice_local, operand, ty, 0);
|
|
}
|
|
|
|
// store the length of the array in the slice
|
|
const len = array_ty.arrayLen();
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, len)));
|
|
const len_local = try self.allocLocal(ty);
|
|
try self.addLabel(.local_set, len_local.local);
|
|
try self.store(slice_local, len_local, ty, ptr_width);
|
|
|
|
return slice_local;
|
|
}
|
|
|
|
fn airPtrToInt(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
return self.resolveInst(un_op);
|
|
}
|
|
|
|
fn airPtrElemVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const ptr_ty = self.air.typeOf(bin_op.lhs);
|
|
const pointer = self.resolveInst(bin_op.lhs);
|
|
const index = self.resolveInst(bin_op.rhs);
|
|
const elem_ty = ptr_ty.childType();
|
|
const elem_size = elem_ty.abiSize(self.target);
|
|
|
|
// load pointer onto the stack
|
|
if (ptr_ty.isSlice()) {
|
|
const ptr_local = try self.load(pointer, ptr_ty, 0);
|
|
try self.addLabel(.local_get, ptr_local.local);
|
|
} else {
|
|
try self.emitWValue(pointer);
|
|
}
|
|
|
|
// calculate index into slice
|
|
try self.emitWValue(index);
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, elem_size)));
|
|
try self.addTag(.i32_mul);
|
|
try self.addTag(.i32_add);
|
|
|
|
const result = try self.allocLocal(elem_ty);
|
|
try self.addLabel(.local_set, result.local);
|
|
if (self.isByRef(elem_ty)) {
|
|
return result;
|
|
}
|
|
return try self.load(result, elem_ty, 0);
|
|
}
|
|
|
|
fn airPtrElemPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const ptr_ty = self.air.typeOf(bin_op.lhs);
|
|
const elem_ty = self.air.getRefType(ty_pl.ty).childType();
|
|
const elem_size = elem_ty.abiSize(self.target);
|
|
|
|
const ptr = self.resolveInst(bin_op.lhs);
|
|
const index = self.resolveInst(bin_op.rhs);
|
|
|
|
// load pointer onto the stack
|
|
if (ptr_ty.isSlice()) {
|
|
const ptr_local = try self.load(ptr, ptr_ty, 0);
|
|
try self.addLabel(.local_get, ptr_local.local);
|
|
} else {
|
|
try self.emitWValue(ptr);
|
|
}
|
|
|
|
// calculate index into ptr
|
|
try self.emitWValue(index);
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, elem_size)));
|
|
try self.addTag(.i32_mul);
|
|
try self.addTag(.i32_add);
|
|
|
|
const result = try self.allocLocal(Type.initTag(.i32));
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
fn airPtrBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const ptr = self.resolveInst(bin_op.lhs);
|
|
const offset = self.resolveInst(bin_op.rhs);
|
|
const ptr_ty = self.air.typeOf(bin_op.lhs);
|
|
const pointee_ty = switch (ptr_ty.ptrSize()) {
|
|
.One => ptr_ty.childType().childType(), // ptr to array, so get array element type
|
|
else => ptr_ty.childType(),
|
|
};
|
|
|
|
const valtype = try self.typeToValtype(Type.usize);
|
|
const mul_opcode = buildOpcode(.{ .valtype1 = valtype, .op = .mul });
|
|
const bin_opcode = buildOpcode(.{ .valtype1 = valtype, .op = op });
|
|
|
|
try self.emitWValue(ptr);
|
|
try self.emitWValue(offset);
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, pointee_ty.abiSize(self.target))));
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(mul_opcode));
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(bin_opcode));
|
|
|
|
const result = try self.allocLocal(Type.usize);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
fn airMemset(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const bin_op = self.air.extraData(Air.Bin, pl_op.payload).data;
|
|
|
|
const ptr = self.resolveInst(pl_op.operand);
|
|
const value = self.resolveInst(bin_op.lhs);
|
|
const len = self.resolveInst(bin_op.rhs);
|
|
try self.memSet(ptr, len, value);
|
|
|
|
return WValue.none;
|
|
}
|
|
|
|
/// Sets a region of memory at `ptr` to the value of `value`
|
|
/// When the user has enabled the bulk_memory feature, we lower
|
|
/// this to wasm's memset instruction. When the feature is not present,
|
|
/// we implement it manually.
|
|
fn memSet(self: *Self, ptr: WValue, len: WValue, value: WValue) InnerError!void {
|
|
// When bulk_memory is enabled, we lower it to wasm's memset instruction.
|
|
// If not, we lower it ourselves
|
|
if (std.Target.wasm.featureSetHas(self.target.cpu.features, .bulk_memory)) {
|
|
try self.emitWValue(ptr);
|
|
try self.emitWValue(value);
|
|
try self.emitWValue(len);
|
|
try self.addExtended(.memory_fill);
|
|
return;
|
|
}
|
|
|
|
// TODO: We should probably lower this to a call to compiler_rt
|
|
// But for now, we implement it manually
|
|
const offset = try self.allocLocal(Type.usize); // local for counter
|
|
// outer block to jump to when loop is done
|
|
try self.startBlock(.block, wasm.block_empty);
|
|
try self.startBlock(.loop, wasm.block_empty);
|
|
try self.emitWValue(offset);
|
|
try self.emitWValue(len);
|
|
switch (self.ptrSize()) {
|
|
4 => try self.addTag(.i32_eq),
|
|
8 => try self.addTag(.i64_eq),
|
|
else => unreachable,
|
|
}
|
|
try self.addLabel(.br_if, 1); // jump out of loop into outer block (finished)
|
|
try self.emitWValue(ptr);
|
|
try self.emitWValue(offset);
|
|
switch (self.ptrSize()) {
|
|
4 => try self.addTag(.i32_add),
|
|
8 => try self.addTag(.i64_add),
|
|
else => unreachable,
|
|
}
|
|
try self.emitWValue(value);
|
|
const mem_store_op: Mir.Inst.Tag = switch (self.ptrSize()) {
|
|
4 => .i32_store8,
|
|
8 => .i64_store8,
|
|
else => unreachable,
|
|
};
|
|
try self.addMemArg(mem_store_op, .{ .offset = 0, .alignment = 1 });
|
|
try self.emitWValue(offset);
|
|
try self.addImm32(1);
|
|
switch (self.ptrSize()) {
|
|
4 => try self.addTag(.i32_add),
|
|
8 => try self.addTag(.i64_add),
|
|
else => unreachable,
|
|
}
|
|
try self.addLabel(.local_set, offset.local);
|
|
try self.addLabel(.br, 0); // jump to start of loop
|
|
try self.endBlock();
|
|
try self.endBlock();
|
|
}
|
|
|
|
fn airArrayElemVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const array_ty = self.air.typeOf(bin_op.lhs);
|
|
const array = self.resolveInst(bin_op.lhs);
|
|
const index = self.resolveInst(bin_op.rhs);
|
|
const elem_ty = array_ty.childType();
|
|
const elem_size = elem_ty.abiSize(self.target);
|
|
|
|
// calculate index into slice
|
|
try self.emitWValue(array);
|
|
try self.emitWValue(index);
|
|
try self.addImm32(@bitCast(i32, @intCast(u32, elem_size)));
|
|
try self.addTag(.i32_mul);
|
|
try self.addTag(.i32_add);
|
|
|
|
const result = try self.allocLocal(elem_ty);
|
|
try self.addLabel(.local_set, result.local);
|
|
|
|
if (self.isByRef(elem_ty)) {
|
|
return result;
|
|
}
|
|
return try self.load(result, elem_ty, 0);
|
|
}
|
|
|
|
fn airFloatToInt(self: *Self, inst: Air.Inst.Index) InnerError!WValue {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
const dest_ty = self.air.typeOfIndex(inst);
|
|
const op_ty = self.air.typeOf(ty_op.operand);
|
|
|
|
try self.emitWValue(operand);
|
|
const op = buildOpcode(.{
|
|
.op = .trunc,
|
|
.valtype1 = try self.typeToValtype(dest_ty),
|
|
.valtype2 = try self.typeToValtype(op_ty),
|
|
.signedness = if (dest_ty.isSignedInt()) .signed else .unsigned,
|
|
});
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(op));
|
|
|
|
const result = try self.allocLocal(dest_ty);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
fn airSplat(self: *Self, inst: Air.Inst.Index) !void {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand = self.resolveInst(ty_op.operand);
|
|
|
|
_ = ty_op;
|
|
_ = operand;
|
|
return self.fail("TODO: Implement wasm airSplat", .{});
|
|
}
|
|
|
|
fn airVectorInit(self: *Self, inst: Air.Inst.Index) !void {
|
|
if (self.liveness.isUnused(inst)) return WValue{ .none = {} };
|
|
|
|
const vector_ty = self.air.typeOfIndex(inst);
|
|
const len = @intCast(u32, vector_ty.arrayLen());
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const elements = @bitCast([]const Air.Inst.Ref, self.air.extra[ty_pl.payload..][0..len]);
|
|
|
|
_ = elements;
|
|
return self.fail("TODO: Wasm backend: implement airVectorInit", .{});
|
|
}
|
|
|
|
fn cmpOptionals(self: *Self, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue {
|
|
assert(operand_ty.hasCodeGenBits());
|
|
assert(op == .eq or op == .neq);
|
|
var buf: Type.Payload.ElemType = undefined;
|
|
const payload_ty = operand_ty.optionalChild(&buf);
|
|
const offset = @intCast(u32, operand_ty.abiSize(self.target) - payload_ty.abiSize(self.target));
|
|
|
|
const lhs_is_null = try self.isNull(lhs, operand_ty, .i32_eq);
|
|
const rhs_is_null = try self.isNull(rhs, operand_ty, .i32_eq);
|
|
|
|
// We store the final result in here that will be validated
|
|
// if the optional is truly equal.
|
|
const result = try self.allocLocal(Type.initTag(.i32));
|
|
|
|
try self.startBlock(.block, wasm.block_empty);
|
|
try self.emitWValue(lhs_is_null);
|
|
try self.emitWValue(rhs_is_null);
|
|
try self.addTag(.i32_ne); // inverse so we can exit early
|
|
try self.addLabel(.br_if, 0);
|
|
|
|
const lhs_pl = try self.load(lhs, payload_ty, offset);
|
|
const rhs_pl = try self.load(rhs, payload_ty, offset);
|
|
|
|
try self.emitWValue(lhs_pl);
|
|
try self.emitWValue(rhs_pl);
|
|
const opcode = buildOpcode(.{ .op = .ne, .valtype1 = try self.typeToValtype(payload_ty) });
|
|
try self.addTag(Mir.Inst.Tag.fromOpcode(opcode));
|
|
try self.addLabel(.br_if, 0);
|
|
|
|
try self.addImm32(1);
|
|
try self.addLabel(.local_set, result.local);
|
|
try self.endBlock();
|
|
|
|
try self.emitWValue(result);
|
|
try self.addImm32(0);
|
|
try self.addTag(if (op == .eq) .i32_ne else .i32_eq);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|
|
|
|
/// Compares big integers by checking both its high bits and low bits.
|
|
/// TODO: Lower this to compiler_rt call
|
|
fn cmpBigInt(self: *Self, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue {
|
|
if (operand_ty.intInfo(self.target).bits > 128) {
|
|
return self.fail("TODO: Support cmpBigInt for integer bitsize: '{d}'", .{operand_ty.intInfo(self.target).bits});
|
|
}
|
|
|
|
const result = try self.allocLocal(Type.initTag(.i32));
|
|
{
|
|
try self.startBlock(.block, wasm.block_empty);
|
|
const lhs_high_bit = try self.load(lhs, Type.initTag(.u64), 0);
|
|
const lhs_low_bit = try self.load(lhs, Type.initTag(.u64), 8);
|
|
const rhs_high_bit = try self.load(rhs, Type.initTag(.u64), 0);
|
|
const rhs_low_bit = try self.load(rhs, Type.initTag(.u64), 8);
|
|
try self.emitWValue(lhs_high_bit);
|
|
try self.emitWValue(rhs_high_bit);
|
|
try self.addTag(.i64_ne);
|
|
try self.addLabel(.br_if, 0);
|
|
try self.emitWValue(lhs_low_bit);
|
|
try self.emitWValue(rhs_low_bit);
|
|
try self.addTag(.i64_ne);
|
|
try self.addLabel(.br_if, 0);
|
|
try self.addImm32(1);
|
|
try self.addLabel(.local_set, result.local);
|
|
try self.endBlock();
|
|
}
|
|
|
|
try self.emitWValue(result);
|
|
try self.addImm32(0);
|
|
try self.addTag(if (op == .eq) .i32_ne else .i32_eq);
|
|
try self.addLabel(.local_set, result.local);
|
|
return result;
|
|
}
|