mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
37816 lines
1.5 MiB
37816 lines
1.5 MiB
//! Semantic analysis of ZIR instructions.
|
|
//! Shared to every Block. Stored on the stack.
|
|
//! State used for compiling a ZIR into AIR.
|
|
//! Transforms untyped ZIR instructions into semantically-analyzed AIR instructions.
|
|
//! Does type checking, comptime control flow, and safety-check generation.
|
|
//! This is the the heart of the Zig compiler.
|
|
|
|
const std = @import("std");
|
|
const math = std.math;
|
|
const mem = std.mem;
|
|
const Allocator = mem.Allocator;
|
|
const assert = std.debug.assert;
|
|
const log = std.log.scoped(.sema);
|
|
|
|
const Sema = @This();
|
|
const Value = @import("Value.zig");
|
|
const MutableValue = @import("mutable_value.zig").MutableValue;
|
|
const Type = @import("Type.zig");
|
|
const Air = @import("Air.zig");
|
|
const Zir = std.zig.Zir;
|
|
const Zcu = @import("Zcu.zig");
|
|
const trace = @import("tracy.zig").trace;
|
|
const Namespace = Zcu.Namespace;
|
|
const CompileError = Zcu.CompileError;
|
|
const SemaError = Zcu.SemaError;
|
|
const LazySrcLoc = Zcu.LazySrcLoc;
|
|
const RangeSet = @import("RangeSet.zig");
|
|
const target_util = @import("target.zig");
|
|
const Package = @import("Package.zig");
|
|
const crash_report = @import("crash_report.zig");
|
|
const build_options = @import("build_options");
|
|
const Compilation = @import("Compilation.zig");
|
|
const InternPool = @import("InternPool.zig");
|
|
const Alignment = InternPool.Alignment;
|
|
const AnalUnit = InternPool.AnalUnit;
|
|
const ComptimeAllocIndex = InternPool.ComptimeAllocIndex;
|
|
const Cache = std.Build.Cache;
|
|
const LowerZon = @import("Sema/LowerZon.zig");
|
|
const arith = @import("Sema/arith.zig");
|
|
|
|
pt: Zcu.PerThread,
|
|
/// Alias to `zcu.gpa`.
|
|
gpa: Allocator,
|
|
/// Points to the temporary arena allocator of the Sema.
|
|
/// This arena will be cleared when the sema is destroyed.
|
|
arena: Allocator,
|
|
code: Zir,
|
|
air_instructions: std.MultiArrayList(Air.Inst) = .{},
|
|
air_extra: std.ArrayListUnmanaged(u32) = .empty,
|
|
/// Maps ZIR to AIR.
|
|
inst_map: InstMap = .{},
|
|
/// The "owner" of a `Sema` represents the root "thing" that is being analyzed.
|
|
/// This does not change throughout the entire lifetime of a `Sema`. For instance,
|
|
/// when analyzing a runtime function body, this is always `func` of that function,
|
|
/// even if an inline/comptime function call is being analyzed.
|
|
owner: AnalUnit,
|
|
/// The function this ZIR code is the body of, according to the source code.
|
|
/// This starts out the same as `sema.owner.func` if applicable, and then diverges
|
|
/// in the case of an inline or comptime function call.
|
|
/// This could be `none`, a `func_decl`, or a `func_instance`.
|
|
func_index: InternPool.Index,
|
|
/// Whether the type of func_index has a calling convention of `.naked`.
|
|
func_is_naked: bool,
|
|
/// Used to restore the error return trace when returning a non-error from a function.
|
|
error_return_trace_index_on_fn_entry: Air.Inst.Ref = .none,
|
|
comptime_err_ret_trace: *std.array_list.Managed(LazySrcLoc),
|
|
/// When semantic analysis needs to know the return type of the function whose body
|
|
/// is being analyzed, this `Type` should be used instead of going through `func`.
|
|
/// This will correctly handle the case of a comptime/inline function call of a
|
|
/// generic function which uses a type expression for the return type.
|
|
/// The type will be `void` in the case that `func` is `null`.
|
|
fn_ret_ty: Type,
|
|
/// In case of the return type being an error union with an inferred error
|
|
/// set, this is the inferred error set. `null` otherwise. Allocated with
|
|
/// `Sema.arena`.
|
|
fn_ret_ty_ies: ?*InferredErrorSet,
|
|
branch_quota: u32 = default_branch_quota,
|
|
branch_count: u32 = 0,
|
|
/// Populated when returning `error.ComptimeBreak`. Used to communicate the
|
|
/// break instruction up the stack to find the corresponding Block.
|
|
comptime_break_inst: Zir.Inst.Index = undefined,
|
|
/// These are lazily created runtime blocks from block_inline instructions.
|
|
/// They are created when an break_inline passes through a runtime condition, because
|
|
/// Sema must convert comptime control flow to runtime control flow, which means
|
|
/// breaking from a block.
|
|
post_hoc_blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *LabeledBlock) = .empty,
|
|
/// Populated with the last compile error created.
|
|
err: ?*Zcu.ErrorMsg = null,
|
|
|
|
/// The temporary arena is used for the memory of the `InferredAlloc` values
|
|
/// here so the values can be dropped without any cleanup.
|
|
unresolved_inferred_allocs: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, InferredAlloc) = .empty,
|
|
|
|
/// Links every pointer derived from a base `alloc` back to that `alloc`. Used
|
|
/// to detect comptime-known `const`s.
|
|
/// TODO: ZIR liveness analysis would allow us to remove elements from this map.
|
|
base_allocs: std.AutoHashMapUnmanaged(Air.Inst.Index, Air.Inst.Index) = .empty,
|
|
|
|
/// Runtime `alloc`s are placed in this map to track all comptime-known writes
|
|
/// before the corresponding `make_ptr_const` instruction.
|
|
/// If any store to the alloc depends on a runtime condition or stores a runtime
|
|
/// value, the corresponding element in this map is erased, to indicate that the
|
|
/// alloc is not comptime-known.
|
|
/// If the alloc remains in this map when `make_ptr_const` is reached, its value
|
|
/// is comptime-known, and all stores to the pointer must be applied at comptime
|
|
/// to determine the comptime value.
|
|
/// Backed by gpa.
|
|
maybe_comptime_allocs: std.AutoHashMapUnmanaged(Air.Inst.Index, MaybeComptimeAlloc) = .empty,
|
|
|
|
/// Comptime-mutable allocs, and any comptime allocs which reference it, are
|
|
/// stored as elements of this array.
|
|
/// Pointers to such memory are represented via an index into this array.
|
|
/// Backed by gpa.
|
|
comptime_allocs: std.ArrayListUnmanaged(ComptimeAlloc) = .empty,
|
|
|
|
/// A list of exports performed by this analysis. After this `Sema` terminates,
|
|
/// these are flushed to `Zcu.single_exports` or `Zcu.multi_exports`.
|
|
exports: std.ArrayListUnmanaged(Zcu.Export) = .empty,
|
|
|
|
/// All references registered so far by this `Sema`. This is a temporary duplicate
|
|
/// of data stored in `Zcu.all_references`. It exists to avoid adding references to
|
|
/// a given `AnalUnit` multiple times.
|
|
references: std.AutoArrayHashMapUnmanaged(AnalUnit, void) = .empty,
|
|
type_references: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .empty,
|
|
|
|
/// All dependencies registered so far by this `Sema`. This is a temporary duplicate
|
|
/// of the main dependency data. It exists to avoid adding dependencies to a given
|
|
/// `AnalUnit` multiple times.
|
|
dependencies: std.AutoArrayHashMapUnmanaged(InternPool.Dependee, void) = .empty,
|
|
|
|
/// Whether memoization of this call is permitted. Operations with side effects global
|
|
/// to the `Sema`, such as `@setEvalBranchQuota`, set this to `false`. It is observed
|
|
/// by `analyzeCall`.
|
|
allow_memoize: bool = true,
|
|
|
|
/// The `BranchHint` for the current branch of runtime control flow.
|
|
/// This state is on `Sema` so that `cold` hints can be propagated up through blocks with less special handling.
|
|
branch_hint: ?std.builtin.BranchHint = null,
|
|
|
|
const RuntimeIndex = enum(u32) {
|
|
zero = 0,
|
|
comptime_field_ptr = std.math.maxInt(u32),
|
|
_,
|
|
|
|
pub fn increment(ri: *RuntimeIndex) void {
|
|
ri.* = @enumFromInt(@intFromEnum(ri.*) + 1);
|
|
}
|
|
};
|
|
|
|
const MaybeComptimeAlloc = struct {
|
|
/// The runtime index of the `alloc` instruction.
|
|
runtime_index: RuntimeIndex,
|
|
/// Backed by sema.arena. Tracks all comptime-known stores to this `alloc`. Due to
|
|
/// RLS, a single comptime-known allocation may have arbitrarily many stores.
|
|
/// This list also contains `set_union_tag`, `optional_payload_ptr_set`, and
|
|
/// `errunion_payload_ptr_set` instructions.
|
|
/// If the instruction is one of these three tags, `src` may be `.unneeded`.
|
|
stores: std.MultiArrayList(struct {
|
|
inst: Air.Inst.Index,
|
|
src: LazySrcLoc,
|
|
}) = .{},
|
|
};
|
|
|
|
const ComptimeAlloc = struct {
|
|
val: MutableValue,
|
|
is_const: bool,
|
|
src: LazySrcLoc,
|
|
/// `.none` indicates that the alignment is the natural alignment of `val`.
|
|
alignment: Alignment,
|
|
/// This is the `runtime_index` at the point of this allocation. If an store
|
|
/// to this alloc ever occurs with a runtime index greater than this one, it
|
|
/// is behind a runtime condition, so a compile error will be emitted.
|
|
runtime_index: RuntimeIndex,
|
|
};
|
|
|
|
/// `src` may be `null` if `is_const` will be set.
|
|
fn newComptimeAlloc(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type, alignment: Alignment) !ComptimeAllocIndex {
|
|
const idx = sema.comptime_allocs.items.len;
|
|
try sema.comptime_allocs.append(sema.gpa, .{
|
|
.val = .{ .interned = try sema.pt.intern(.{ .undef = ty.toIntern() }) },
|
|
.is_const = false,
|
|
.src = src,
|
|
.alignment = alignment,
|
|
.runtime_index = block.runtime_index,
|
|
});
|
|
return @enumFromInt(idx);
|
|
}
|
|
|
|
pub fn getComptimeAlloc(sema: *Sema, idx: ComptimeAllocIndex) *ComptimeAlloc {
|
|
return &sema.comptime_allocs.items[@intFromEnum(idx)];
|
|
}
|
|
|
|
pub const default_branch_quota = 1000;
|
|
|
|
pub const InferredErrorSet = struct {
|
|
/// The function body from which this error set originates.
|
|
/// This is `none` in the case of a comptime/inline function call, corresponding to
|
|
/// `InternPool.Index.adhoc_inferred_error_set_type`.
|
|
/// The function's resolved error set is not set until analysis of the
|
|
/// function body completes.
|
|
func: InternPool.Index,
|
|
/// All currently known errors that this error set contains. This includes
|
|
/// direct additions via `return error.Foo;`, and possibly also errors that
|
|
/// are returned from any dependent functions.
|
|
errors: NameMap = .{},
|
|
/// Other inferred error sets which this inferred error set should include.
|
|
inferred_error_sets: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .empty,
|
|
/// The regular error set created by resolving this inferred error set.
|
|
resolved: InternPool.Index = .none,
|
|
|
|
pub const NameMap = std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, void);
|
|
|
|
pub fn addErrorSet(
|
|
self: *InferredErrorSet,
|
|
err_set_ty: Type,
|
|
ip: *InternPool,
|
|
arena: Allocator,
|
|
) !void {
|
|
switch (err_set_ty.toIntern()) {
|
|
.anyerror_type => self.resolved = .anyerror_type,
|
|
.adhoc_inferred_error_set_type => {}, // Adding an inferred error set to itself.
|
|
|
|
else => switch (ip.indexToKey(err_set_ty.toIntern())) {
|
|
.error_set_type => |error_set_type| {
|
|
for (error_set_type.names.get(ip)) |name| {
|
|
try self.errors.put(arena, name, {});
|
|
}
|
|
},
|
|
.inferred_error_set_type => {
|
|
try self.inferred_error_sets.put(arena, err_set_ty.toIntern(), {});
|
|
},
|
|
else => unreachable,
|
|
},
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Stores the mapping from `Zir.Inst.Index -> Air.Inst.Ref`, which is used by sema to resolve
|
|
/// instructions during analysis.
|
|
/// Instead of a hash table approach, InstMap is simply a slice that is indexed into using the
|
|
/// zir instruction index and a start offset. An index is not present in the map if the value
|
|
/// at the index is `Air.Inst.Ref.none`.
|
|
/// `ensureSpaceForInstructions` can be called to force InstMap to have a mapped range that
|
|
/// includes all instructions in a slice. After calling this function, `putAssumeCapacity*` can
|
|
/// be called safely for any of the instructions passed in.
|
|
pub const InstMap = struct {
|
|
items: []Air.Inst.Ref = &[_]Air.Inst.Ref{},
|
|
start: Zir.Inst.Index = @enumFromInt(0),
|
|
|
|
pub fn deinit(map: InstMap, allocator: mem.Allocator) void {
|
|
allocator.free(map.items);
|
|
}
|
|
|
|
pub fn get(map: InstMap, key: Zir.Inst.Index) ?Air.Inst.Ref {
|
|
if (!map.contains(key)) return null;
|
|
return map.items[@intFromEnum(key) - @intFromEnum(map.start)];
|
|
}
|
|
|
|
pub fn putAssumeCapacity(
|
|
map: *InstMap,
|
|
key: Zir.Inst.Index,
|
|
ref: Air.Inst.Ref,
|
|
) void {
|
|
map.items[@intFromEnum(key) - @intFromEnum(map.start)] = ref;
|
|
}
|
|
|
|
pub fn putAssumeCapacityNoClobber(
|
|
map: *InstMap,
|
|
key: Zir.Inst.Index,
|
|
ref: Air.Inst.Ref,
|
|
) void {
|
|
assert(!map.contains(key));
|
|
map.putAssumeCapacity(key, ref);
|
|
}
|
|
|
|
pub const GetOrPutResult = struct {
|
|
value_ptr: *Air.Inst.Ref,
|
|
found_existing: bool,
|
|
};
|
|
|
|
pub fn getOrPutAssumeCapacity(
|
|
map: *InstMap,
|
|
key: Zir.Inst.Index,
|
|
) GetOrPutResult {
|
|
const index = @intFromEnum(key) - @intFromEnum(map.start);
|
|
return GetOrPutResult{
|
|
.value_ptr = &map.items[index],
|
|
.found_existing = map.items[index] != .none,
|
|
};
|
|
}
|
|
|
|
pub fn remove(map: InstMap, key: Zir.Inst.Index) bool {
|
|
if (!map.contains(key)) return false;
|
|
map.items[@intFromEnum(key) - @intFromEnum(map.start)] = .none;
|
|
return true;
|
|
}
|
|
|
|
pub fn contains(map: InstMap, key: Zir.Inst.Index) bool {
|
|
return map.items[@intFromEnum(key) - @intFromEnum(map.start)] != .none;
|
|
}
|
|
|
|
pub fn ensureSpaceForInstructions(
|
|
map: *InstMap,
|
|
allocator: mem.Allocator,
|
|
insts: []const Zir.Inst.Index,
|
|
) !void {
|
|
const start, const end = mem.minMax(u32, @ptrCast(insts));
|
|
const map_start = @intFromEnum(map.start);
|
|
if (map_start <= start and end < map.items.len + map_start)
|
|
return;
|
|
|
|
const old_start = if (map.items.len == 0) start else map_start;
|
|
var better_capacity = map.items.len;
|
|
var better_start = old_start;
|
|
while (true) {
|
|
const extra_capacity = better_capacity / 2 + 16;
|
|
better_capacity += extra_capacity;
|
|
better_start -|= @intCast(extra_capacity / 2);
|
|
if (better_start <= start and end < better_capacity + better_start)
|
|
break;
|
|
}
|
|
|
|
const start_diff = old_start - better_start;
|
|
const new_items = try allocator.alloc(Air.Inst.Ref, better_capacity);
|
|
@memset(new_items[0..start_diff], .none);
|
|
@memcpy(new_items[start_diff..][0..map.items.len], map.items);
|
|
@memset(new_items[start_diff + map.items.len ..], .none);
|
|
|
|
allocator.free(map.items);
|
|
map.items = new_items;
|
|
map.start = @enumFromInt(better_start);
|
|
}
|
|
};
|
|
|
|
/// This is the context needed to semantically analyze ZIR instructions and
|
|
/// produce AIR instructions.
|
|
/// This is a temporary structure stored on the stack; references to it are valid only
|
|
/// during semantic analysis of the block.
|
|
pub const Block = struct {
|
|
parent: ?*Block,
|
|
/// Shared among all child blocks.
|
|
sema: *Sema,
|
|
/// The namespace to use for lookups from this source block
|
|
namespace: InternPool.NamespaceIndex,
|
|
/// The AIR instructions generated for this block.
|
|
instructions: std.ArrayListUnmanaged(Air.Inst.Index),
|
|
// `param` instructions are collected here to be used by the `func` instruction.
|
|
/// When doing a generic function instantiation, this array collects a type
|
|
/// for each *runtime-known* parameter. This array corresponds to the instance
|
|
/// function type, while `Sema.comptime_args` corresponds to the generic owner
|
|
/// function type.
|
|
/// This memory is allocated by a parent `Sema` in the temporary arena, and is
|
|
/// used to add a `func_instance` into the `InternPool`.
|
|
params: std.MultiArrayList(Param) = .{},
|
|
|
|
label: ?*Label = null,
|
|
inlining: ?*Inlining,
|
|
/// If runtime_index is not 0 then one of these is guaranteed to be non null.
|
|
runtime_cond: ?LazySrcLoc = null,
|
|
runtime_loop: ?LazySrcLoc = null,
|
|
/// Non zero if a non-inline loop or a runtime conditional have been encountered.
|
|
/// Stores to comptime variables are only allowed when var.runtime_index <= runtime_index.
|
|
runtime_index: RuntimeIndex = .zero,
|
|
inline_block: Zir.Inst.OptionalIndex = .none,
|
|
|
|
comptime_reason: ?BlockComptimeReason = null,
|
|
is_typeof: bool = false,
|
|
|
|
/// Keep track of the active error return trace index around blocks so that we can correctly
|
|
/// pop the error trace upon block exit.
|
|
error_return_trace_index: Air.Inst.Ref = .none,
|
|
|
|
/// when null, it is determined by build mode, changed by @setRuntimeSafety
|
|
want_safety: ?bool = null,
|
|
|
|
/// What mode to generate float operations in, set by @setFloatMode
|
|
float_mode: std.builtin.FloatMode = .strict,
|
|
|
|
c_import_buf: ?*std.array_list.Managed(u8) = null,
|
|
|
|
/// If not `null`, this boolean is set when a `dbg_var_ptr`, `dbg_var_val`, or `dbg_arg_inline`.
|
|
/// instruction is emitted. It signals that the innermost lexically
|
|
/// enclosing `block`/`block_inline` should be translated into a real AIR
|
|
/// `block` in order for codegen to match lexical scoping for debug vars.
|
|
need_debug_scope: ?*bool = null,
|
|
|
|
/// Relative source locations encountered while traversing this block should be
|
|
/// treated as relative to the AST node of this ZIR instruction.
|
|
src_base_inst: InternPool.TrackedInst.Index,
|
|
|
|
/// The name of the current "context" for naming namespace types.
|
|
/// The interpretation of this depends on the name strategy in ZIR, but the name
|
|
/// is always incorporated into the type name somehow.
|
|
/// See `Sema.createTypeName`.
|
|
type_name_ctx: InternPool.NullTerminatedString,
|
|
|
|
/// Create a `LazySrcLoc` based on an `Offset` from the code being analyzed in this block.
|
|
/// Specifically, the given `Offset` is treated as relative to `block.src_base_inst`.
|
|
pub fn src(block: Block, offset: LazySrcLoc.Offset) LazySrcLoc {
|
|
return .{
|
|
.base_node_inst = block.src_base_inst,
|
|
.offset = offset,
|
|
};
|
|
}
|
|
|
|
fn isComptime(block: Block) bool {
|
|
return block.comptime_reason != null;
|
|
}
|
|
|
|
fn builtinCallArgSrc(block: *Block, builtin_call_node: std.zig.Ast.Node.Offset, arg_index: u32) LazySrcLoc {
|
|
return block.src(.{ .node_offset_builtin_call_arg = .{
|
|
.builtin_call_node = builtin_call_node,
|
|
.arg_index = arg_index,
|
|
} });
|
|
}
|
|
|
|
pub fn nodeOffset(block: Block, node_offset: std.zig.Ast.Node.Offset) LazySrcLoc {
|
|
return block.src(LazySrcLoc.Offset.nodeOffset(node_offset));
|
|
}
|
|
|
|
fn tokenOffset(block: Block, tok_offset: std.zig.Ast.TokenOffset) LazySrcLoc {
|
|
return block.src(.{ .token_offset = tok_offset });
|
|
}
|
|
|
|
const Param = struct {
|
|
/// `none` means `anytype`.
|
|
ty: InternPool.Index,
|
|
is_comptime: bool,
|
|
name: Zir.NullTerminatedString,
|
|
};
|
|
|
|
/// This `Block` maps a block ZIR instruction to the corresponding
|
|
/// AIR instruction for break instruction analysis.
|
|
pub const Label = struct {
|
|
zir_block: Zir.Inst.Index,
|
|
merges: Merges,
|
|
};
|
|
|
|
/// This `Block` indicates that an inline function call is happening
|
|
/// and return instructions should be analyzed as a break instruction
|
|
/// to this AIR block instruction.
|
|
/// It is shared among all the blocks in an inline or comptime called
|
|
/// function.
|
|
pub const Inlining = struct {
|
|
call_block: *Block,
|
|
call_src: LazySrcLoc,
|
|
func: InternPool.Index,
|
|
|
|
/// Populated lazily by `refFrame`.
|
|
ref_frame: Zcu.InlineReferenceFrame.Index.Optional = .none,
|
|
|
|
/// If `true`, the following fields are `undefined`. This doesn't represent a true inline
|
|
/// call, but rather a generic call analyzing the instantiation's generic type bodies.
|
|
is_generic_instantiation: bool,
|
|
|
|
has_comptime_args: bool,
|
|
comptime_result: Air.Inst.Ref,
|
|
merges: Merges,
|
|
|
|
fn refFrame(inlining: *Inlining, zcu: *Zcu) Allocator.Error!Zcu.InlineReferenceFrame.Index {
|
|
if (inlining.ref_frame == .none) {
|
|
inlining.ref_frame = (try zcu.addInlineReferenceFrame(.{
|
|
.callee = inlining.func,
|
|
.call_src = inlining.call_src,
|
|
.parent = if (inlining.call_block.inlining) |parent_inlining| p: {
|
|
break :p (try parent_inlining.refFrame(zcu)).toOptional();
|
|
} else .none,
|
|
})).toOptional();
|
|
}
|
|
return inlining.ref_frame.unwrap().?;
|
|
}
|
|
};
|
|
|
|
pub const Merges = struct {
|
|
block_inst: Air.Inst.Index,
|
|
/// Separate array list from break_inst_list so that it can be passed directly
|
|
/// to resolvePeerTypes.
|
|
results: std.ArrayListUnmanaged(Air.Inst.Ref),
|
|
/// Keeps track of the break instructions so that the operand can be replaced
|
|
/// if we need to add type coercion at the end of block analysis.
|
|
/// Same indexes, capacity, length as `results`.
|
|
br_list: std.ArrayListUnmanaged(Air.Inst.Index),
|
|
/// Keeps the source location of the rhs operand of the break instruction,
|
|
/// to enable more precise compile errors.
|
|
/// Same indexes, capacity, length as `results`.
|
|
src_locs: std.ArrayListUnmanaged(?LazySrcLoc),
|
|
/// Most blocks do not utilize this field. When it is used, its use is
|
|
/// contextual. The possible uses are as follows:
|
|
/// * for a `switch_block[_ref]`, this refers to dummy `br` instructions
|
|
/// which correspond to `switch_continue` ZIR. The switch logic will
|
|
/// rewrite these to appropriate AIR switch dispatches.
|
|
extra_insts: std.ArrayListUnmanaged(Air.Inst.Index) = .empty,
|
|
/// Same indexes, capacity, length as `extra_insts`.
|
|
extra_src_locs: std.ArrayListUnmanaged(LazySrcLoc) = .empty,
|
|
|
|
pub fn deinit(merges: *@This(), allocator: Allocator) void {
|
|
merges.results.deinit(allocator);
|
|
merges.br_list.deinit(allocator);
|
|
merges.src_locs.deinit(allocator);
|
|
merges.extra_insts.deinit(allocator);
|
|
merges.extra_src_locs.deinit(allocator);
|
|
}
|
|
};
|
|
|
|
pub fn makeSubBlock(parent: *Block) Block {
|
|
return .{
|
|
.parent = parent,
|
|
.sema = parent.sema,
|
|
.namespace = parent.namespace,
|
|
.instructions = .{},
|
|
.label = null,
|
|
.inlining = parent.inlining,
|
|
.comptime_reason = parent.comptime_reason,
|
|
.is_typeof = parent.is_typeof,
|
|
.runtime_cond = parent.runtime_cond,
|
|
.runtime_loop = parent.runtime_loop,
|
|
.runtime_index = parent.runtime_index,
|
|
.want_safety = parent.want_safety,
|
|
.float_mode = parent.float_mode,
|
|
.c_import_buf = parent.c_import_buf,
|
|
.error_return_trace_index = parent.error_return_trace_index,
|
|
.need_debug_scope = parent.need_debug_scope,
|
|
.src_base_inst = parent.src_base_inst,
|
|
.type_name_ctx = parent.type_name_ctx,
|
|
};
|
|
}
|
|
|
|
fn wantSafeTypes(block: *const Block) bool {
|
|
return block.want_safety orelse switch (block.sema.pt.zcu.optimizeMode()) {
|
|
.Debug => true,
|
|
.ReleaseSafe => true,
|
|
.ReleaseFast => false,
|
|
.ReleaseSmall => false,
|
|
};
|
|
}
|
|
|
|
fn wantSafety(block: *const Block) bool {
|
|
if (block.isComptime()) return false; // runtime safety checks are pointless in comptime blocks
|
|
return block.want_safety orelse switch (block.sema.pt.zcu.optimizeMode()) {
|
|
.Debug => true,
|
|
.ReleaseSafe => true,
|
|
.ReleaseFast => false,
|
|
.ReleaseSmall => false,
|
|
};
|
|
}
|
|
|
|
pub fn getFileScope(block: *Block, zcu: *Zcu) *Zcu.File {
|
|
return zcu.fileByIndex(getFileScopeIndex(block, zcu));
|
|
}
|
|
|
|
pub fn getFileScopeIndex(block: *Block, zcu: *Zcu) Zcu.File.Index {
|
|
return zcu.namespacePtr(block.namespace).file_scope;
|
|
}
|
|
|
|
fn addTy(
|
|
block: *Block,
|
|
tag: Air.Inst.Tag,
|
|
ty: Type,
|
|
) error{OutOfMemory}!Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = tag,
|
|
.data = .{ .ty = ty },
|
|
});
|
|
}
|
|
|
|
fn addTyOp(
|
|
block: *Block,
|
|
tag: Air.Inst.Tag,
|
|
ty: Type,
|
|
operand: Air.Inst.Ref,
|
|
) error{OutOfMemory}!Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = tag,
|
|
.data = .{ .ty_op = .{
|
|
.ty = Air.internedToRef(ty.toIntern()),
|
|
.operand = operand,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addBitCast(block: *Block, ty: Type, operand: Air.Inst.Ref) Allocator.Error!Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = .bitcast,
|
|
.data = .{ .ty_op = .{
|
|
.ty = Air.internedToRef(ty.toIntern()),
|
|
.operand = operand,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addNoOp(block: *Block, tag: Air.Inst.Tag) error{OutOfMemory}!Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = tag,
|
|
.data = .{ .no_op = {} },
|
|
});
|
|
}
|
|
|
|
fn addUnOp(
|
|
block: *Block,
|
|
tag: Air.Inst.Tag,
|
|
operand: Air.Inst.Ref,
|
|
) error{OutOfMemory}!Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = tag,
|
|
.data = .{ .un_op = operand },
|
|
});
|
|
}
|
|
|
|
fn addBr(
|
|
block: *Block,
|
|
target_block: Air.Inst.Index,
|
|
operand: Air.Inst.Ref,
|
|
) error{OutOfMemory}!Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = .br,
|
|
.data = .{ .br = .{
|
|
.block_inst = target_block,
|
|
.operand = operand,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addBinOp(
|
|
block: *Block,
|
|
tag: Air.Inst.Tag,
|
|
lhs: Air.Inst.Ref,
|
|
rhs: Air.Inst.Ref,
|
|
) error{OutOfMemory}!Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = tag,
|
|
.data = .{ .bin_op = .{
|
|
.lhs = lhs,
|
|
.rhs = rhs,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addStructFieldPtr(
|
|
block: *Block,
|
|
struct_ptr: Air.Inst.Ref,
|
|
field_index: u32,
|
|
ptr_field_ty: Type,
|
|
) !Air.Inst.Ref {
|
|
const ty = Air.internedToRef(ptr_field_ty.toIntern());
|
|
const tag: Air.Inst.Tag = switch (field_index) {
|
|
0 => .struct_field_ptr_index_0,
|
|
1 => .struct_field_ptr_index_1,
|
|
2 => .struct_field_ptr_index_2,
|
|
3 => .struct_field_ptr_index_3,
|
|
else => {
|
|
return block.addInst(.{
|
|
.tag = .struct_field_ptr,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = ty,
|
|
.payload = try block.sema.addExtra(Air.StructField{
|
|
.struct_operand = struct_ptr,
|
|
.field_index = field_index,
|
|
}),
|
|
} },
|
|
});
|
|
},
|
|
};
|
|
return block.addInst(.{
|
|
.tag = tag,
|
|
.data = .{ .ty_op = .{
|
|
.ty = ty,
|
|
.operand = struct_ptr,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addStructFieldVal(
|
|
block: *Block,
|
|
struct_val: Air.Inst.Ref,
|
|
field_index: u32,
|
|
field_ty: Type,
|
|
) !Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = .struct_field_val,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(field_ty.toIntern()),
|
|
.payload = try block.sema.addExtra(Air.StructField{
|
|
.struct_operand = struct_val,
|
|
.field_index = field_index,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addSliceElemPtr(
|
|
block: *Block,
|
|
slice: Air.Inst.Ref,
|
|
elem_index: Air.Inst.Ref,
|
|
elem_ptr_ty: Type,
|
|
) !Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = .slice_elem_ptr,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(elem_ptr_ty.toIntern()),
|
|
.payload = try block.sema.addExtra(Air.Bin{
|
|
.lhs = slice,
|
|
.rhs = elem_index,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addPtrElemPtr(
|
|
block: *Block,
|
|
array_ptr: Air.Inst.Ref,
|
|
elem_index: Air.Inst.Ref,
|
|
elem_ptr_ty: Type,
|
|
) !Air.Inst.Ref {
|
|
const ty_ref = Air.internedToRef(elem_ptr_ty.toIntern());
|
|
return block.addPtrElemPtrTypeRef(array_ptr, elem_index, ty_ref);
|
|
}
|
|
|
|
fn addPtrElemPtrTypeRef(
|
|
block: *Block,
|
|
array_ptr: Air.Inst.Ref,
|
|
elem_index: Air.Inst.Ref,
|
|
elem_ptr_ty: Air.Inst.Ref,
|
|
) !Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = .ptr_elem_ptr,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = elem_ptr_ty,
|
|
.payload = try block.sema.addExtra(Air.Bin{
|
|
.lhs = array_ptr,
|
|
.rhs = elem_index,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addCmpVector(block: *Block, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, cmp_op: std.math.CompareOperator) !Air.Inst.Ref {
|
|
const sema = block.sema;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
return block.addInst(.{
|
|
.tag = if (block.float_mode == .optimized) .cmp_vector_optimized else .cmp_vector,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef((try pt.vectorType(.{
|
|
.len = sema.typeOf(lhs).vectorLen(zcu),
|
|
.child = .bool_type,
|
|
})).toIntern()),
|
|
.payload = try sema.addExtra(Air.VectorCmp{
|
|
.lhs = lhs,
|
|
.rhs = rhs,
|
|
.op = Air.VectorCmp.encodeOp(cmp_op),
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addReduce(block: *Block, operand: Air.Inst.Ref, operation: std.builtin.ReduceOp) !Air.Inst.Ref {
|
|
const sema = block.sema;
|
|
const zcu = sema.pt.zcu;
|
|
const allow_optimized = switch (sema.typeOf(operand).childType(zcu).zigTypeTag(zcu)) {
|
|
.float => true,
|
|
.bool, .int => false,
|
|
else => unreachable,
|
|
};
|
|
return block.addInst(.{
|
|
.tag = if (allow_optimized and block.float_mode == .optimized) .reduce_optimized else .reduce,
|
|
.data = .{ .reduce = .{
|
|
.operand = operand,
|
|
.operation = operation,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addAggregateInit(
|
|
block: *Block,
|
|
aggregate_ty: Type,
|
|
elements: []const Air.Inst.Ref,
|
|
) !Air.Inst.Ref {
|
|
const sema = block.sema;
|
|
const ty_ref = Air.internedToRef(aggregate_ty.toIntern());
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, elements.len);
|
|
const extra_index: u32 = @intCast(sema.air_extra.items.len);
|
|
sema.appendRefsAssumeCapacity(elements);
|
|
|
|
return block.addInst(.{
|
|
.tag = .aggregate_init,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = ty_ref,
|
|
.payload = extra_index,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn addUnionInit(
|
|
block: *Block,
|
|
union_ty: Type,
|
|
field_index: u32,
|
|
init: Air.Inst.Ref,
|
|
) !Air.Inst.Ref {
|
|
return block.addInst(.{
|
|
.tag = .union_init,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(union_ty.toIntern()),
|
|
.payload = try block.sema.addExtra(Air.UnionInit{
|
|
.field_index = field_index,
|
|
.init = init,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
pub fn addInst(block: *Block, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Ref {
|
|
return (try block.addInstAsIndex(inst)).toRef();
|
|
}
|
|
|
|
pub fn addInstAsIndex(block: *Block, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Index {
|
|
const sema = block.sema;
|
|
const gpa = sema.gpa;
|
|
|
|
try sema.air_instructions.ensureUnusedCapacity(gpa, 1);
|
|
try block.instructions.ensureUnusedCapacity(gpa, 1);
|
|
|
|
const result_index: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
sema.air_instructions.appendAssumeCapacity(inst);
|
|
block.instructions.appendAssumeCapacity(result_index);
|
|
return result_index;
|
|
}
|
|
|
|
/// Insert an instruction into the block at `index`. Moves all following
|
|
/// instructions forward in the block to make room. Operation is O(N).
|
|
pub fn insertInst(block: *Block, index: Air.Inst.Index, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Ref {
|
|
return (try block.insertInstAsIndex(index, inst)).toRef();
|
|
}
|
|
|
|
pub fn insertInstAsIndex(block: *Block, index: Air.Inst.Index, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Index {
|
|
const sema = block.sema;
|
|
const gpa = sema.gpa;
|
|
|
|
try sema.air_instructions.ensureUnusedCapacity(gpa, 1);
|
|
|
|
const result_index: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
sema.air_instructions.appendAssumeCapacity(inst);
|
|
|
|
try block.instructions.insert(gpa, @intFromEnum(index), result_index);
|
|
return result_index;
|
|
}
|
|
|
|
pub fn ownerModule(block: Block) *Package.Module {
|
|
const zcu = block.sema.pt.zcu;
|
|
return zcu.namespacePtr(block.namespace).fileScope(zcu).mod.?;
|
|
}
|
|
|
|
fn trackZir(block: *Block, inst: Zir.Inst.Index) Allocator.Error!InternPool.TrackedInst.Index {
|
|
const pt = block.sema.pt;
|
|
block.sema.code.assertTrackable(inst);
|
|
return pt.zcu.intern_pool.trackZir(pt.zcu.gpa, pt.tid, .{
|
|
.file = block.getFileScopeIndex(pt.zcu),
|
|
.inst = inst,
|
|
});
|
|
}
|
|
|
|
/// Returns the `*Block` that should be passed to `Sema.failWithOwnedErrorMsg`, because all inline
|
|
/// calls below it have already been reported with "called at comptime from here" notes.
|
|
fn explainWhyBlockIsComptime(start_block: *Block, err_msg: *Zcu.ErrorMsg) !*Block {
|
|
const sema = start_block.sema;
|
|
var block = start_block;
|
|
while (true) {
|
|
switch (block.comptime_reason.?) {
|
|
.inlining_parent => {
|
|
const inlining = block.inlining.?;
|
|
try sema.errNote(inlining.call_src, err_msg, "called at comptime from here", .{});
|
|
block = inlining.call_block;
|
|
},
|
|
.reason => |r| {
|
|
try r.r.explain(sema, r.src, err_msg);
|
|
return block;
|
|
},
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Represents the reason we are resolving a value or evaluating code at comptime.
|
|
/// Most reasons are represented by a `std.zig.SimpleComptimeReason`, which provides a plain message.
|
|
const ComptimeReason = union(enum) {
|
|
/// Evaluating at comptime for a reason in the `std.zig.SimpleComptimeReason` enum.
|
|
simple: std.zig.SimpleComptimeReason,
|
|
|
|
/// Evaluating at comptime because of a comptime-only type. This field is separate so that
|
|
/// the type in question can be included in the error message. AstGen could never emit this
|
|
/// reason, because it knows nothing of types.
|
|
/// The format string looks like "foo '{f}' bar", where "{f}" is the comptime-only type.
|
|
/// We will then explain why this type is comptime-only.
|
|
comptime_only: struct {
|
|
ty: Type,
|
|
msg: enum {
|
|
union_init,
|
|
struct_init,
|
|
tuple_init,
|
|
},
|
|
},
|
|
|
|
/// Like `comptime_only`, but for a parameter type.
|
|
/// Includes a "parameter type declared here" note.
|
|
comptime_only_param_ty: struct {
|
|
ty: Type,
|
|
param_ty_src: LazySrcLoc,
|
|
},
|
|
|
|
/// Like `comptime_only`, but for a return type.
|
|
/// Includes a "return type declared here" note.
|
|
comptime_only_ret_ty: struct {
|
|
ty: Type,
|
|
is_generic_inst: bool,
|
|
ret_ty_src: LazySrcLoc,
|
|
},
|
|
|
|
/// Evaluating at comptime because we're evaluating an argument to a parameter marked `comptime`.
|
|
comptime_param: struct {
|
|
comptime_src: LazySrcLoc,
|
|
},
|
|
|
|
fn explain(reason: ComptimeReason, sema: *Sema, src: LazySrcLoc, err_msg: *Zcu.ErrorMsg) !void {
|
|
switch (reason) {
|
|
.simple => |simple| {
|
|
try sema.errNote(src, err_msg, "{s}", .{simple.message()});
|
|
},
|
|
.comptime_only => |co| {
|
|
const pre, const post = switch (co.msg) {
|
|
.union_init => .{ "initializer of comptime-only union", "must be comptime-known" },
|
|
.struct_init => .{ "initializer of comptime-only struct", "must be comptime-known" },
|
|
.tuple_init => .{ "initializer of comptime-only tuple", "must be comptime-known" },
|
|
};
|
|
try sema.errNote(src, err_msg, "{s} '{f}' {s}", .{ pre, co.ty.fmt(sema.pt), post });
|
|
try sema.explainWhyTypeIsComptime(err_msg, src, co.ty);
|
|
},
|
|
.comptime_only_param_ty => |co| {
|
|
try sema.errNote(src, err_msg, "argument to parameter with comptime-only type '{f}' must be comptime-known", .{co.ty.fmt(sema.pt)});
|
|
try sema.errNote(co.param_ty_src, err_msg, "parameter type declared here", .{});
|
|
try sema.explainWhyTypeIsComptime(err_msg, src, co.ty);
|
|
},
|
|
.comptime_only_ret_ty => |co| {
|
|
const function_with: []const u8 = if (co.is_generic_inst) "generic function instantiated with" else "function with";
|
|
try sema.errNote(src, err_msg, "call to {s} comptime-only return type '{f}' is evaluated at comptime", .{ function_with, co.ty.fmt(sema.pt) });
|
|
try sema.errNote(co.ret_ty_src, err_msg, "return type declared here", .{});
|
|
try sema.explainWhyTypeIsComptime(err_msg, src, co.ty);
|
|
},
|
|
.comptime_param => |cp| {
|
|
try sema.errNote(src, err_msg, "argument to comptime parameter must be comptime-known", .{});
|
|
try sema.errNote(cp.comptime_src, err_msg, "parameter declared comptime here", .{});
|
|
},
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Represents the reason a `Block` is being evaluated at comptime.
|
|
const BlockComptimeReason = union(enum) {
|
|
/// This block inherits being comptime-only from the `inlining` call site.
|
|
inlining_parent,
|
|
|
|
/// Comptime evaluation began somewhere in the current function for a given `ComptimeReason`.
|
|
reason: struct {
|
|
/// The source location which this reason originates from. `r` is reported here.
|
|
src: LazySrcLoc,
|
|
r: ComptimeReason,
|
|
},
|
|
};
|
|
|
|
const LabeledBlock = struct {
|
|
block: Block,
|
|
label: Block.Label,
|
|
|
|
fn destroy(lb: *LabeledBlock, gpa: Allocator) void {
|
|
lb.block.instructions.deinit(gpa);
|
|
lb.label.merges.deinit(gpa);
|
|
gpa.destroy(lb);
|
|
}
|
|
};
|
|
|
|
/// The value stored in the inferred allocation. This will go into
|
|
/// peer type resolution. This is stored in a separate list so that
|
|
/// the items are contiguous in memory and thus can be passed to
|
|
/// `Zcu.resolvePeerTypes`.
|
|
const InferredAlloc = struct {
|
|
/// The placeholder `store` instructions used before the result pointer type
|
|
/// is known. These should be rewritten to perform any required coercions
|
|
/// when the type is resolved.
|
|
/// Allocated from `sema.arena`.
|
|
prongs: std.ArrayListUnmanaged(Air.Inst.Index) = .empty,
|
|
};
|
|
|
|
pub fn deinit(sema: *Sema) void {
|
|
const gpa = sema.gpa;
|
|
sema.air_instructions.deinit(gpa);
|
|
sema.air_extra.deinit(gpa);
|
|
sema.inst_map.deinit(gpa);
|
|
{
|
|
var it = sema.post_hoc_blocks.iterator();
|
|
while (it.next()) |entry| {
|
|
const labeled_block = entry.value_ptr.*;
|
|
labeled_block.destroy(gpa);
|
|
}
|
|
sema.post_hoc_blocks.deinit(gpa);
|
|
}
|
|
sema.unresolved_inferred_allocs.deinit(gpa);
|
|
sema.base_allocs.deinit(gpa);
|
|
sema.maybe_comptime_allocs.deinit(gpa);
|
|
sema.comptime_allocs.deinit(gpa);
|
|
sema.exports.deinit(gpa);
|
|
sema.references.deinit(gpa);
|
|
sema.type_references.deinit(gpa);
|
|
sema.dependencies.deinit(gpa);
|
|
sema.* = undefined;
|
|
}
|
|
|
|
/// Performs semantic analysis of a ZIR body which is behind a runtime condition. If comptime
|
|
/// control flow happens here, Sema will convert it to runtime control flow by introducing post-hoc
|
|
/// blocks where necessary.
|
|
/// Returns the branch hint for this branch.
|
|
fn analyzeBodyRuntimeBreak(sema: *Sema, block: *Block, body: []const Zir.Inst.Index) !std.builtin.BranchHint {
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint;
|
|
sema.branch_hint = null;
|
|
|
|
sema.analyzeBodyInner(block, body) catch |err| switch (err) {
|
|
error.ComptimeBreak => {
|
|
const zir_datas = sema.code.instructions.items(.data);
|
|
const break_data = zir_datas[@intFromEnum(sema.comptime_break_inst)].@"break";
|
|
const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data;
|
|
try sema.addRuntimeBreak(block, extra.block_inst, break_data.operand);
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
|
|
return sema.branch_hint orelse .none;
|
|
}
|
|
|
|
/// Semantically analyze a ZIR function body. It is guranteed by AstGen that such a body cannot
|
|
/// trigger comptime control flow to move above the function body.
|
|
pub fn analyzeFnBody(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
body: []const Zir.Inst.Index,
|
|
) !void {
|
|
sema.analyzeBodyInner(block, body) catch |err| switch (err) {
|
|
error.ComptimeBreak => unreachable, // unexpected comptime control flow
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
|
|
/// Given a ZIR body which can be exited via a `break_inline` instruction, or a non-inline body which
|
|
/// we are evaluating at comptime, semantically analyze the body and return the result from it.
|
|
/// Returns `null` if control flow did not break from this block, but instead terminated with some
|
|
/// other runtime noreturn instruction. Compile-time breaks to blocks further up the stack still
|
|
/// return `error.ComptimeBreak`. If `block.isComptime()`, this function will never return `null`.
|
|
fn analyzeInlineBody(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
body: []const Zir.Inst.Index,
|
|
/// The index which a break instruction can target to break from this body.
|
|
break_target: Zir.Inst.Index,
|
|
) CompileError!?Air.Inst.Ref {
|
|
if (sema.analyzeBodyInner(block, body)) |_| {
|
|
return null;
|
|
} else |err| switch (err) {
|
|
error.ComptimeBreak => {},
|
|
else => |e| return e,
|
|
}
|
|
const break_inst = sema.code.instructions.get(@intFromEnum(sema.comptime_break_inst));
|
|
switch (break_inst.tag) {
|
|
.switch_continue => {
|
|
// This is handled by separate logic.
|
|
return error.ComptimeBreak;
|
|
},
|
|
.break_inline, .@"break" => {},
|
|
else => unreachable,
|
|
}
|
|
const extra = sema.code.extraData(Zir.Inst.Break, break_inst.data.@"break".payload_index).data;
|
|
if (extra.block_inst != break_target) {
|
|
// This control flow goes further up the stack.
|
|
return error.ComptimeBreak;
|
|
}
|
|
return try sema.resolveInst(break_inst.data.@"break".operand);
|
|
}
|
|
|
|
/// Like `analyzeInlineBody`, but if the body does not break with a value, returns
|
|
/// `.unreachable_value` instead of `null`. Notably, use this to evaluate an arbitrary
|
|
/// body at comptime to a single result value.
|
|
pub fn resolveInlineBody(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
body: []const Zir.Inst.Index,
|
|
/// The index which a break instruction can target to break from this body.
|
|
break_target: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
return (try sema.analyzeInlineBody(block, body, break_target)) orelse .unreachable_value;
|
|
}
|
|
|
|
/// This function is the main loop of `Sema`. It analyzes a single body of ZIR instructions.
|
|
///
|
|
/// If this function returns normally, the merges of `block` were populated with all possible
|
|
/// (runtime) results of this block. Peer type resolution should be performed on the result,
|
|
/// and relevant runtime instructions written to perform necessary coercions and breaks. See
|
|
/// `resolveAnalyzedBlock`. This form of return is impossible if `block.isComptime()`.
|
|
///
|
|
/// Alternatively, this function may return `error.ComptimeBreak`. This indicates that comptime
|
|
/// control flow is happening, and we are breaking at comptime from a block indicated by the
|
|
/// break instruction in `sema.comptime_break_inst`. This occurs for any `break_inline`, or for a
|
|
/// standard `break` at comptime. This error is pushed up the stack until the target block is
|
|
/// reached, at which point the break operand will be fetched.
|
|
///
|
|
/// It is rare to call this function directly. Usually, you want one of the following wrappers:
|
|
/// * If the body is exited via a `break_inline`, or is being evaluated at comptime,
|
|
/// use `Sema.analyzeInlineBody` or `Sema.resolveInlineBody`.
|
|
/// * If the body is behind a fresh runtime condition, use `Sema.analyzeBodyRuntimeBreak`.
|
|
/// * If the body is an entire function body, use `Sema.analyzeFnBody`.
|
|
/// * If the body is to be generated into an AIR `block`, use `Sema.resolveBlockBody`.
|
|
/// * Otherwise, direct usage of `Sema.analyzeBodyInner` may be necessary.
|
|
fn analyzeBodyInner(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
body: []const Zir.Inst.Index,
|
|
) CompileError!void {
|
|
// No tracy calls here, to avoid interfering with the tail call mechanism.
|
|
|
|
try sema.inst_map.ensureSpaceForInstructions(sema.gpa, body);
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const map = &sema.inst_map;
|
|
const tags = sema.code.instructions.items(.tag);
|
|
const datas = sema.code.instructions.items(.data);
|
|
|
|
var crash_info: crash_report.AnalyzeBody = undefined;
|
|
crash_info.push(sema, block, body);
|
|
defer crash_info.pop();
|
|
|
|
// We use a while (true) loop here to avoid a redundant way of breaking out of
|
|
// the loop. The only way to break out of the loop is with a `noreturn`
|
|
// instruction.
|
|
var i: u32 = 0;
|
|
while (true) {
|
|
crash_info.setBodyIndex(i);
|
|
const inst = body[i];
|
|
|
|
// The hashmap lookup in here is a little expensive, and LLVM fails to optimize it away.
|
|
if (build_options.enable_logging) {
|
|
std.log.scoped(.sema_zir).debug("sema ZIR {f} %{d}", .{ path: {
|
|
const file_index = block.src_base_inst.resolveFile(&zcu.intern_pool);
|
|
const file = zcu.fileByIndex(file_index);
|
|
break :path file.path.fmt(zcu.comp);
|
|
}, inst });
|
|
}
|
|
|
|
const air_inst: Air.Inst.Ref = inst: switch (tags[@intFromEnum(inst)]) {
|
|
// zig fmt: off
|
|
.alloc => try sema.zirAlloc(block, inst),
|
|
.alloc_inferred => try sema.zirAllocInferred(block, true),
|
|
.alloc_inferred_mut => try sema.zirAllocInferred(block, false),
|
|
.alloc_inferred_comptime => try sema.zirAllocInferredComptime(true),
|
|
.alloc_inferred_comptime_mut => try sema.zirAllocInferredComptime(false),
|
|
.resolve_inferred_alloc => try sema.zirResolveInferredAlloc(block, inst),
|
|
.alloc_mut => try sema.zirAllocMut(block, inst),
|
|
.alloc_comptime_mut => try sema.zirAllocComptime(block, inst),
|
|
.make_ptr_const => try sema.zirMakePtrConst(block, inst),
|
|
.anyframe_type => try sema.zirAnyframeType(block, inst),
|
|
.array_cat => try sema.zirArrayCat(block, inst),
|
|
.array_mul => try sema.zirArrayMul(block, inst),
|
|
.array_type => try sema.zirArrayType(block, inst),
|
|
.array_type_sentinel => try sema.zirArrayTypeSentinel(block, inst),
|
|
.vector_type => try sema.zirVectorType(block, inst),
|
|
.as_node => try sema.zirAsNode(block, inst),
|
|
.as_shift_operand => try sema.zirAsShiftOperand(block, inst),
|
|
.bit_and => try sema.zirBitwise(block, inst, .bit_and),
|
|
.bit_not => try sema.zirBitNot(block, inst),
|
|
.bit_or => try sema.zirBitwise(block, inst, .bit_or),
|
|
.bitcast => try sema.zirBitcast(block, inst),
|
|
.suspend_block => try sema.zirSuspendBlock(block, inst),
|
|
.bool_not => try sema.zirBoolNot(block, inst),
|
|
.bool_br_and => try sema.zirBoolBr(block, inst, false),
|
|
.bool_br_or => try sema.zirBoolBr(block, inst, true),
|
|
.c_import => try sema.zirCImport(block, inst),
|
|
.call => try sema.zirCall(block, inst, .direct),
|
|
.field_call => try sema.zirCall(block, inst, .field),
|
|
.cmp_lt => try sema.zirCmp(block, inst, .lt),
|
|
.cmp_lte => try sema.zirCmp(block, inst, .lte),
|
|
.cmp_eq => try sema.zirCmpEq(block, inst, .eq, Air.Inst.Tag.fromCmpOp(.eq, block.float_mode == .optimized)),
|
|
.cmp_gte => try sema.zirCmp(block, inst, .gte),
|
|
.cmp_gt => try sema.zirCmp(block, inst, .gt),
|
|
.cmp_neq => try sema.zirCmpEq(block, inst, .neq, Air.Inst.Tag.fromCmpOp(.neq, block.float_mode == .optimized)),
|
|
.decl_ref => try sema.zirDeclRef(block, inst),
|
|
.decl_val => try sema.zirDeclVal(block, inst),
|
|
.load => try sema.zirLoad(block, inst),
|
|
.elem_ptr => try sema.zirElemPtr(block, inst),
|
|
.elem_ptr_node => try sema.zirElemPtrNode(block, inst),
|
|
.elem_val => try sema.zirElemVal(block, inst),
|
|
.elem_ptr_load => try sema.zirElemPtrLoad(block, inst),
|
|
.elem_val_imm => try sema.zirElemValImm(block, inst),
|
|
.elem_type => try sema.zirElemType(block, inst),
|
|
.indexable_ptr_elem_type => try sema.zirIndexablePtrElemType(block, inst),
|
|
.splat_op_result_ty => try sema.zirSplatOpResultType(block, inst),
|
|
.enum_literal => try sema.zirEnumLiteral(block, inst),
|
|
.decl_literal => try sema.zirDeclLiteral(block, inst, true),
|
|
.decl_literal_no_coerce => try sema.zirDeclLiteral(block, inst, false),
|
|
.int_from_enum => try sema.zirIntFromEnum(block, inst),
|
|
.enum_from_int => try sema.zirEnumFromInt(block, inst),
|
|
.err_union_code => try sema.zirErrUnionCode(block, inst),
|
|
.err_union_code_ptr => try sema.zirErrUnionCodePtr(block, inst),
|
|
.err_union_payload_unsafe => try sema.zirErrUnionPayload(block, inst),
|
|
.err_union_payload_unsafe_ptr => try sema.zirErrUnionPayloadPtr(block, inst),
|
|
.error_union_type => try sema.zirErrorUnionType(block, inst),
|
|
.error_value => try sema.zirErrorValue(block, inst),
|
|
.field_ptr => try sema.zirFieldPtr(block, inst),
|
|
.field_ptr_named => try sema.zirFieldPtrNamed(block, inst),
|
|
.field_ptr_load => try sema.zirFieldPtrLoad(block, inst),
|
|
.field_ptr_named_load => try sema.zirFieldPtrNamedLoad(block, inst),
|
|
.func => try sema.zirFunc(block, inst, false),
|
|
.func_inferred => try sema.zirFunc(block, inst, true),
|
|
.func_fancy => try sema.zirFuncFancy(block, inst),
|
|
.import => try sema.zirImport(block, inst),
|
|
.indexable_ptr_len => try sema.zirIndexablePtrLen(block, inst),
|
|
.int => try sema.zirInt(block, inst),
|
|
.int_big => try sema.zirIntBig(block, inst),
|
|
.float => try sema.zirFloat(block, inst),
|
|
.float128 => try sema.zirFloat128(block, inst),
|
|
.int_type => try sema.zirIntType(inst),
|
|
.is_non_err => try sema.zirIsNonErr(block, inst),
|
|
.is_non_err_ptr => try sema.zirIsNonErrPtr(block, inst),
|
|
.ret_is_non_err => try sema.zirRetIsNonErr(block, inst),
|
|
.is_non_null => try sema.zirIsNonNull(block, inst),
|
|
.is_non_null_ptr => try sema.zirIsNonNullPtr(block, inst),
|
|
.merge_error_sets => try sema.zirMergeErrorSets(block, inst),
|
|
.negate => try sema.zirNegate(block, inst),
|
|
.negate_wrap => try sema.zirNegateWrap(block, inst),
|
|
.optional_payload_safe => try sema.zirOptionalPayload(block, inst, true),
|
|
.optional_payload_safe_ptr => try sema.zirOptionalPayloadPtr(block, inst, true),
|
|
.optional_payload_unsafe => try sema.zirOptionalPayload(block, inst, false),
|
|
.optional_payload_unsafe_ptr => try sema.zirOptionalPayloadPtr(block, inst, false),
|
|
.optional_type => try sema.zirOptionalType(block, inst),
|
|
.ptr_type => try sema.zirPtrType(block, inst),
|
|
.ref => try sema.zirRef(block, inst),
|
|
.ret_err_value_code => try sema.zirRetErrValueCode(inst),
|
|
.shr => try sema.zirShr(block, inst, .shr),
|
|
.shr_exact => try sema.zirShr(block, inst, .shr_exact),
|
|
.slice_end => try sema.zirSliceEnd(block, inst),
|
|
.slice_sentinel => try sema.zirSliceSentinel(block, inst),
|
|
.slice_start => try sema.zirSliceStart(block, inst),
|
|
.slice_length => try sema.zirSliceLength(block, inst),
|
|
.slice_sentinel_ty => try sema.zirSliceSentinelTy(block, inst),
|
|
.str => try sema.zirStr(inst),
|
|
.switch_block => try sema.zirSwitchBlock(block, inst, false),
|
|
.switch_block_ref => try sema.zirSwitchBlock(block, inst, true),
|
|
.switch_block_err_union => try sema.zirSwitchBlockErrUnion(block, inst),
|
|
.type_info => try sema.zirTypeInfo(block, inst),
|
|
.size_of => try sema.zirSizeOf(block, inst),
|
|
.bit_size_of => try sema.zirBitSizeOf(block, inst),
|
|
.typeof => try sema.zirTypeof(block, inst),
|
|
.typeof_builtin => try sema.zirTypeofBuiltin(block, inst),
|
|
.typeof_log2_int_type => try sema.zirTypeofLog2IntType(block, inst),
|
|
.xor => try sema.zirBitwise(block, inst, .xor),
|
|
.struct_init_empty => try sema.zirStructInitEmpty(block, inst),
|
|
.struct_init_empty_result => try sema.zirStructInitEmptyResult(block, inst, false),
|
|
.struct_init_empty_ref_result => try sema.zirStructInitEmptyResult(block, inst, true),
|
|
.struct_init_anon => try sema.zirStructInitAnon(block, inst),
|
|
.struct_init => try sema.zirStructInit(block, inst, false),
|
|
.struct_init_ref => try sema.zirStructInit(block, inst, true),
|
|
.struct_init_field_type => try sema.zirStructInitFieldType(block, inst),
|
|
.struct_init_field_ptr => try sema.zirStructInitFieldPtr(block, inst),
|
|
.array_init_anon => try sema.zirArrayInitAnon(block, inst),
|
|
.array_init => try sema.zirArrayInit(block, inst, false),
|
|
.array_init_ref => try sema.zirArrayInit(block, inst, true),
|
|
.array_init_elem_type => try sema.zirArrayInitElemType(block, inst),
|
|
.array_init_elem_ptr => try sema.zirArrayInitElemPtr(block, inst),
|
|
.union_init => try sema.zirUnionInit(block, inst),
|
|
.field_type_ref => try sema.zirFieldTypeRef(block, inst),
|
|
.int_from_ptr => try sema.zirIntFromPtr(block, inst),
|
|
.align_of => try sema.zirAlignOf(block, inst),
|
|
.int_from_bool => try sema.zirIntFromBool(block, inst),
|
|
.embed_file => try sema.zirEmbedFile(block, inst),
|
|
.error_name => try sema.zirErrorName(block, inst),
|
|
.tag_name => try sema.zirTagName(block, inst),
|
|
.type_name => try sema.zirTypeName(block, inst),
|
|
.frame_type => try sema.zirFrameType(block, inst),
|
|
.int_from_float => try sema.zirIntFromFloat(block, inst),
|
|
.float_from_int => try sema.zirFloatFromInt(block, inst),
|
|
.ptr_from_int => try sema.zirPtrFromInt(block, inst),
|
|
.float_cast => try sema.zirFloatCast(block, inst),
|
|
.int_cast => try sema.zirIntCast(block, inst),
|
|
.ptr_cast => try sema.zirPtrCast(block, inst),
|
|
.truncate => try sema.zirTruncate(block, inst),
|
|
.has_decl => try sema.zirHasDecl(block, inst),
|
|
.has_field => try sema.zirHasField(block, inst),
|
|
.byte_swap => try sema.zirByteSwap(block, inst),
|
|
.bit_reverse => try sema.zirBitReverse(block, inst),
|
|
.bit_offset_of => try sema.zirBitOffsetOf(block, inst),
|
|
.offset_of => try sema.zirOffsetOf(block, inst),
|
|
.splat => try sema.zirSplat(block, inst),
|
|
.reduce => try sema.zirReduce(block, inst),
|
|
.shuffle => try sema.zirShuffle(block, inst),
|
|
.atomic_load => try sema.zirAtomicLoad(block, inst),
|
|
.atomic_rmw => try sema.zirAtomicRmw(block, inst),
|
|
.mul_add => try sema.zirMulAdd(block, inst),
|
|
.builtin_call => try sema.zirBuiltinCall(block, inst),
|
|
.@"resume" => try sema.zirResume(block, inst),
|
|
.for_len => try sema.zirForLen(block, inst),
|
|
.validate_array_init_ref_ty => try sema.zirValidateArrayInitRefTy(block, inst),
|
|
.opt_eu_base_ptr_init => try sema.zirOptEuBasePtrInit(block, inst),
|
|
.coerce_ptr_elem_ty => try sema.zirCoercePtrElemTy(block, inst),
|
|
|
|
.clz => try sema.zirBitCount(block, inst, .clz, Value.clz),
|
|
.ctz => try sema.zirBitCount(block, inst, .ctz, Value.ctz),
|
|
.pop_count => try sema.zirBitCount(block, inst, .popcount, Value.popCount),
|
|
.abs => try sema.zirAbs(block, inst),
|
|
|
|
.sqrt => try sema.zirUnaryMath(block, inst, .sqrt, Value.sqrt),
|
|
.sin => try sema.zirUnaryMath(block, inst, .sin, Value.sin),
|
|
.cos => try sema.zirUnaryMath(block, inst, .cos, Value.cos),
|
|
.tan => try sema.zirUnaryMath(block, inst, .tan, Value.tan),
|
|
.exp => try sema.zirUnaryMath(block, inst, .exp, Value.exp),
|
|
.exp2 => try sema.zirUnaryMath(block, inst, .exp2, Value.exp2),
|
|
.log => try sema.zirUnaryMath(block, inst, .log, Value.log),
|
|
.log2 => try sema.zirUnaryMath(block, inst, .log2, Value.log2),
|
|
.log10 => try sema.zirUnaryMath(block, inst, .log10, Value.log10),
|
|
.floor => try sema.zirUnaryMath(block, inst, .floor, Value.floor),
|
|
.ceil => try sema.zirUnaryMath(block, inst, .ceil, Value.ceil),
|
|
.round => try sema.zirUnaryMath(block, inst, .round, Value.round),
|
|
.trunc => try sema.zirUnaryMath(block, inst, .trunc_float, Value.trunc),
|
|
|
|
.error_set_decl => try sema.zirErrorSetDecl(inst),
|
|
|
|
.add => try sema.zirArithmetic(block, inst, .add, true),
|
|
.addwrap => try sema.zirArithmetic(block, inst, .addwrap, true),
|
|
.add_sat => try sema.zirArithmetic(block, inst, .add_sat, true),
|
|
.add_unsafe => try sema.zirArithmetic(block, inst, .add_unsafe, false),
|
|
.mul => try sema.zirArithmetic(block, inst, .mul, true),
|
|
.mulwrap => try sema.zirArithmetic(block, inst, .mulwrap, true),
|
|
.mul_sat => try sema.zirArithmetic(block, inst, .mul_sat, true),
|
|
.sub => try sema.zirArithmetic(block, inst, .sub, true),
|
|
.subwrap => try sema.zirArithmetic(block, inst, .subwrap, true),
|
|
.sub_sat => try sema.zirArithmetic(block, inst, .sub_sat, true),
|
|
|
|
.div => try sema.zirDiv(block, inst),
|
|
.div_exact => try sema.zirDivExact(block, inst),
|
|
.div_floor => try sema.zirDivFloor(block, inst),
|
|
.div_trunc => try sema.zirDivTrunc(block, inst),
|
|
|
|
.mod_rem => try sema.zirModRem(block, inst),
|
|
.mod => try sema.zirMod(block, inst),
|
|
.rem => try sema.zirRem(block, inst),
|
|
|
|
.max => try sema.zirMinMax(block, inst, .max),
|
|
.min => try sema.zirMinMax(block, inst, .min),
|
|
|
|
.shl => try sema.zirShl(block, inst, .shl),
|
|
.shl_exact => try sema.zirShl(block, inst, .shl_exact),
|
|
.shl_sat => try sema.zirShl(block, inst, .shl_sat),
|
|
|
|
.ret_ptr => try sema.zirRetPtr(block, inst),
|
|
.ret_type => Air.internedToRef(sema.fn_ret_ty.toIntern()),
|
|
|
|
// Instructions that we know to *always* be noreturn based solely on their tag.
|
|
// These functions match the return type of analyzeBody so that we can
|
|
// tail call them here.
|
|
.compile_error => break try sema.zirCompileError(block, inst),
|
|
.ret_implicit => break try sema.zirRetImplicit(block, inst),
|
|
.ret_node => break try sema.zirRetNode(block, inst),
|
|
.ret_load => break try sema.zirRetLoad(block, inst),
|
|
.ret_err_value => break try sema.zirRetErrValue(block, inst),
|
|
.@"unreachable" => break try sema.zirUnreachable(block, inst),
|
|
.panic => break try sema.zirPanic(block, inst),
|
|
.trap => break try sema.zirTrap(block, inst),
|
|
// zig fmt: on
|
|
|
|
// This instruction never exists in an analyzed body. It exists only in the declaration
|
|
// list for a container type.
|
|
.declaration => unreachable,
|
|
|
|
.extended => ext: {
|
|
const extended = datas[@intFromEnum(inst)].extended;
|
|
break :ext switch (extended.opcode) {
|
|
// zig fmt: off
|
|
.struct_decl => try sema.zirStructDecl( block, extended, inst),
|
|
.enum_decl => try sema.zirEnumDecl( block, extended, inst),
|
|
.union_decl => try sema.zirUnionDecl( block, extended, inst),
|
|
.opaque_decl => try sema.zirOpaqueDecl( block, extended, inst),
|
|
.tuple_decl => try sema.zirTupleDecl( block, extended),
|
|
.this => try sema.zirThis( block, extended),
|
|
.ret_addr => try sema.zirRetAddr( block, extended),
|
|
.builtin_src => try sema.zirBuiltinSrc( block, extended),
|
|
.error_return_trace => try sema.zirErrorReturnTrace( block),
|
|
.frame => try sema.zirFrame( block, extended),
|
|
.frame_address => try sema.zirFrameAddress( block, extended),
|
|
.alloc => try sema.zirAllocExtended( block, extended),
|
|
.builtin_extern => try sema.zirBuiltinExtern( block, extended),
|
|
.@"asm" => try sema.zirAsm( block, extended, false),
|
|
.asm_expr => try sema.zirAsm( block, extended, true),
|
|
.typeof_peer => try sema.zirTypeofPeer( block, extended, inst),
|
|
.compile_log => try sema.zirCompileLog( block, extended),
|
|
.min_multi => try sema.zirMinMaxMulti( block, extended, .min),
|
|
.max_multi => try sema.zirMinMaxMulti( block, extended, .max),
|
|
.add_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
|
|
.sub_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
|
|
.mul_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
|
|
.shl_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode),
|
|
.c_undef => try sema.zirCUndef( block, extended),
|
|
.c_include => try sema.zirCInclude( block, extended),
|
|
.c_define => try sema.zirCDefine( block, extended),
|
|
.wasm_memory_size => try sema.zirWasmMemorySize( block, extended),
|
|
.wasm_memory_grow => try sema.zirWasmMemoryGrow( block, extended),
|
|
.prefetch => try sema.zirPrefetch( block, extended),
|
|
.error_cast => try sema.zirErrorCast( block, extended),
|
|
.select => try sema.zirSelect( block, extended),
|
|
.int_from_error => try sema.zirIntFromError( block, extended),
|
|
.error_from_int => try sema.zirErrorFromInt( block, extended),
|
|
.reify => try sema.zirReify( block, extended, inst),
|
|
.cmpxchg => try sema.zirCmpxchg( block, extended),
|
|
.c_va_arg => try sema.zirCVaArg( block, extended),
|
|
.c_va_copy => try sema.zirCVaCopy( block, extended),
|
|
.c_va_end => try sema.zirCVaEnd( block, extended),
|
|
.c_va_start => try sema.zirCVaStart( block, extended),
|
|
.ptr_cast_full => try sema.zirPtrCastFull( block, extended),
|
|
.ptr_cast_no_dest => try sema.zirPtrCastNoDest( block, extended),
|
|
.work_item_id => try sema.zirWorkItem( block, extended, extended.opcode),
|
|
.work_group_size => try sema.zirWorkItem( block, extended, extended.opcode),
|
|
.work_group_id => try sema.zirWorkItem( block, extended, extended.opcode),
|
|
.in_comptime => try sema.zirInComptime( block),
|
|
.closure_get => try sema.zirClosureGet( block, extended),
|
|
// zig fmt: on
|
|
|
|
.set_float_mode => {
|
|
try sema.zirSetFloatMode(block, extended);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.breakpoint => {
|
|
if (!block.isComptime()) {
|
|
_ = try block.addNoOp(.breakpoint);
|
|
}
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.disable_instrumentation => {
|
|
try sema.zirDisableInstrumentation();
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.disable_intrinsics => {
|
|
try sema.zirDisableIntrinsics();
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.restore_err_ret_index => {
|
|
try sema.zirRestoreErrRetIndex(block, extended);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.branch_hint => {
|
|
try sema.zirBranchHint(block, extended);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.value_placeholder => unreachable, // never appears in a body
|
|
.field_parent_ptr => try sema.zirFieldParentPtr(block, extended),
|
|
.builtin_value => try sema.zirBuiltinValue(block, extended),
|
|
.inplace_arith_result_ty => try sema.zirInplaceArithResultTy(extended),
|
|
.dbg_empty_stmt => {
|
|
try sema.zirDbgEmptyStmt(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.astgen_error => return error.AnalysisFail,
|
|
.float_op_result_ty => try sema.zirFloatOpResultType(block, extended),
|
|
};
|
|
},
|
|
|
|
// Instructions that we know can *never* be noreturn based solely on
|
|
// their tag. We avoid needlessly checking if they are noreturn and
|
|
// continue the loop.
|
|
// We also know that they cannot be referenced later, so we avoid
|
|
// putting them into the map.
|
|
.dbg_stmt => {
|
|
try sema.zirDbgStmt(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.dbg_var_ptr => {
|
|
try sema.zirDbgVar(block, inst, .dbg_var_ptr);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.dbg_var_val => {
|
|
try sema.zirDbgVar(block, inst, .dbg_var_val);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.ensure_err_union_payload_void => {
|
|
try sema.zirEnsureErrUnionPayloadVoid(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.ensure_result_non_error => {
|
|
try sema.zirEnsureResultNonError(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.ensure_result_used => {
|
|
try sema.zirEnsureResultUsed(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.set_eval_branch_quota => {
|
|
try sema.zirSetEvalBranchQuota(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.atomic_store => {
|
|
try sema.zirAtomicStore(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.store_node => {
|
|
try sema.zirStoreNode(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.store_to_inferred_ptr => {
|
|
try sema.zirStoreToInferredPtr(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_struct_init_ty => {
|
|
try sema.zirValidateStructInitTy(block, inst, false);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_struct_init_result_ty => {
|
|
try sema.zirValidateStructInitTy(block, inst, true);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_array_init_ty => {
|
|
try sema.zirValidateArrayInitTy(block, inst, false);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_array_init_result_ty => {
|
|
try sema.zirValidateArrayInitTy(block, inst, true);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_ptr_struct_init => {
|
|
try sema.zirValidatePtrStructInit(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_ptr_array_init => {
|
|
try sema.zirValidatePtrArrayInit(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_deref => {
|
|
try sema.zirValidateDeref(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_destructure => {
|
|
try sema.zirValidateDestructure(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_ref_ty => {
|
|
try sema.zirValidateRefTy(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.validate_const => {
|
|
try sema.zirValidateConst(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.@"export" => {
|
|
try sema.zirExport(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.set_runtime_safety => {
|
|
try sema.zirSetRuntimeSafety(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.param => {
|
|
try sema.zirParam(block, inst, false);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.param_comptime => {
|
|
try sema.zirParam(block, inst, true);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.param_anytype => {
|
|
try sema.zirParamAnytype(block, inst, false);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.param_anytype_comptime => {
|
|
try sema.zirParamAnytype(block, inst, true);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.memcpy => {
|
|
try sema.zirMemcpy(block, inst, .memcpy, true);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.memmove => {
|
|
try sema.zirMemcpy(block, inst, .memmove, false);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.memset => {
|
|
try sema.zirMemset(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.check_comptime_control_flow => {
|
|
if (!block.isComptime()) {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const inline_block = inst_data.operand.toIndex().?;
|
|
|
|
var check_block = block;
|
|
const target_runtime_index = while (true) {
|
|
if (check_block.inline_block == inline_block.toOptional()) {
|
|
break check_block.runtime_index;
|
|
}
|
|
check_block = check_block.parent.?;
|
|
};
|
|
|
|
if (@intFromEnum(target_runtime_index) < @intFromEnum(block.runtime_index)) {
|
|
const runtime_src = block.runtime_cond orelse block.runtime_loop.?;
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "comptime control flow inside runtime block", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(runtime_src, msg, "runtime control flow here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.save_err_ret_index => {
|
|
try sema.zirSaveErrRetIndex(block, inst);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.restore_err_ret_index_unconditional => {
|
|
const un_node = datas[@intFromEnum(inst)].un_node;
|
|
try sema.restoreErrRetIndex(block, block.nodeOffset(un_node.src_node), un_node.operand, .none);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
.restore_err_ret_index_fn_entry => {
|
|
const un_node = datas[@intFromEnum(inst)].un_node;
|
|
try sema.restoreErrRetIndex(block, block.nodeOffset(un_node.src_node), .none, un_node.operand);
|
|
i += 1;
|
|
continue;
|
|
},
|
|
|
|
// Special case instructions to handle comptime control flow.
|
|
.@"break" => {
|
|
if (block.isComptime()) {
|
|
sema.comptime_break_inst = inst;
|
|
return error.ComptimeBreak;
|
|
} else {
|
|
try sema.zirBreak(block, inst);
|
|
break;
|
|
}
|
|
},
|
|
.break_inline => {
|
|
sema.comptime_break_inst = inst;
|
|
return error.ComptimeBreak;
|
|
},
|
|
.repeat => {
|
|
if (block.isComptime()) {
|
|
// Send comptime control flow back to the beginning of this block.
|
|
const src = block.nodeOffset(datas[@intFromEnum(inst)].node);
|
|
try sema.emitBackwardBranch(block, src);
|
|
i = 0;
|
|
continue;
|
|
} else {
|
|
// We are definitely called by `zirLoop`, which will treat the
|
|
// fact that this body does not terminate `noreturn` as an
|
|
// implicit repeat.
|
|
// TODO: since AIR has `repeat` now, we could change ZIR to generate
|
|
// more optimal code utilizing `repeat` instructions across blocks!
|
|
break;
|
|
}
|
|
},
|
|
.repeat_inline => {
|
|
// Send comptime control flow back to the beginning of this block.
|
|
const src = block.nodeOffset(datas[@intFromEnum(inst)].node);
|
|
try sema.emitBackwardBranch(block, src);
|
|
i = 0;
|
|
continue;
|
|
},
|
|
.switch_continue => if (block.isComptime()) {
|
|
sema.comptime_break_inst = inst;
|
|
return error.ComptimeBreak;
|
|
} else {
|
|
try sema.zirSwitchContinue(block, inst);
|
|
break;
|
|
},
|
|
|
|
.loop => if (block.isComptime()) {
|
|
continue :inst .block_inline;
|
|
} else try sema.zirLoop(block, inst),
|
|
|
|
.block => if (block.isComptime()) {
|
|
continue :inst .block_inline;
|
|
} else try sema.zirBlock(block, inst),
|
|
|
|
.block_comptime => {
|
|
const pl_node = datas[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(pl_node.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.BlockComptime, pl_node.payload_index);
|
|
const block_body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
|
|
var child_block = block.makeSubBlock();
|
|
defer child_block.instructions.deinit(sema.gpa);
|
|
|
|
// We won't have any merges, but we must ensure this block is properly labeled for
|
|
// any `.restore_err_ret_index_*` instructions.
|
|
var label: Block.Label = .{
|
|
.zir_block = inst,
|
|
.merges = undefined,
|
|
};
|
|
child_block.label = &label;
|
|
|
|
child_block.comptime_reason = .{ .reason = .{
|
|
.src = src,
|
|
.r = .{ .simple = extra.data.reason },
|
|
} };
|
|
|
|
const result = try sema.resolveInlineBody(&child_block, block_body, inst);
|
|
|
|
// Only check for the result being comptime-known in the outermost `block_comptime`.
|
|
// That way, AstGen can safely elide redundant `block_comptime` without affecting semantics.
|
|
if (!block.isComptime() and !try sema.isComptimeKnown(result)) {
|
|
return sema.failWithNeededComptime(&child_block, src, null);
|
|
}
|
|
|
|
break :inst result;
|
|
},
|
|
|
|
.block_inline => blk: {
|
|
// Directly analyze the block body without introducing a new block.
|
|
// However, in the case of a corresponding break_inline which reaches
|
|
// through a runtime conditional branch, we must retroactively emit
|
|
// a block, so we remember the block index here just in case.
|
|
const block_index = block.instructions.items.len;
|
|
const inst_data = datas[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index);
|
|
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const gpa = sema.gpa;
|
|
|
|
const BreakResult = struct {
|
|
block_inst: Zir.Inst.Index,
|
|
operand: Zir.Inst.Ref,
|
|
};
|
|
|
|
const opt_break_data: ?BreakResult, const need_debug_scope = b: {
|
|
// Create a temporary child block so that this inline block is properly
|
|
// labeled for any .restore_err_ret_index instructions
|
|
var child_block = block.makeSubBlock();
|
|
var need_debug_scope = false;
|
|
child_block.need_debug_scope = &need_debug_scope;
|
|
|
|
// If this block contains a function prototype, we need to reset the
|
|
// current list of parameters and restore it later.
|
|
// Note: this probably needs to be resolved in a more general manner.
|
|
const tag_index = @intFromEnum(inline_body[inline_body.len - 1]);
|
|
child_block.inline_block = (if (tags[tag_index] == .repeat_inline)
|
|
inline_body[0]
|
|
else
|
|
inst).toOptional();
|
|
|
|
var label: Block.Label = .{
|
|
.zir_block = inst,
|
|
.merges = undefined,
|
|
};
|
|
child_block.label = &label;
|
|
|
|
// Write these instructions directly into the parent block
|
|
child_block.instructions = block.instructions;
|
|
defer block.instructions = child_block.instructions;
|
|
|
|
const break_result: ?BreakResult = if (sema.analyzeBodyInner(&child_block, inline_body)) |_| r: {
|
|
break :r null;
|
|
} else |err| switch (err) {
|
|
error.ComptimeBreak => brk_res: {
|
|
const break_inst = sema.comptime_break_inst;
|
|
const break_data = sema.code.instructions.items(.data)[@intFromEnum(break_inst)].@"break";
|
|
const break_extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data;
|
|
break :brk_res .{
|
|
.block_inst = break_extra.block_inst,
|
|
.operand = break_data.operand,
|
|
};
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
|
|
if (need_debug_scope) {
|
|
_ = try sema.ensurePostHoc(block, inst);
|
|
}
|
|
|
|
break :b .{ break_result, need_debug_scope };
|
|
};
|
|
|
|
// A runtime conditional branch that needs a post-hoc block to be
|
|
// emitted communicates this by mapping the block index into the inst map.
|
|
if (map.get(inst)) |new_block_ref| ph: {
|
|
// Comptime control flow populates the map, so we don't actually know
|
|
// if this is a post-hoc runtime block until we check the
|
|
// post_hoc_block map.
|
|
const new_block_inst = new_block_ref.toIndex() orelse break :ph;
|
|
const labeled_block = sema.post_hoc_blocks.get(new_block_inst) orelse
|
|
break :ph;
|
|
|
|
// In this case we need to move all the instructions starting at
|
|
// block_index from the current block into this new one.
|
|
|
|
if (opt_break_data) |break_data| {
|
|
// This is a comptime break which we now change to a runtime break
|
|
// since it crosses a runtime branch.
|
|
// It may pass through our currently being analyzed block_inline or it
|
|
// may point directly to it. In the latter case, this modifies the
|
|
// block that we looked up in the post_hoc_blocks map above.
|
|
try sema.addRuntimeBreak(block, break_data.block_inst, break_data.operand);
|
|
}
|
|
|
|
try labeled_block.block.instructions.appendSlice(gpa, block.instructions.items[block_index..]);
|
|
block.instructions.items.len = block_index;
|
|
|
|
const block_result = try sema.resolveAnalyzedBlock(block, block.nodeOffset(inst_data.src_node), &labeled_block.block, &labeled_block.label.merges, need_debug_scope);
|
|
{
|
|
// Destroy the ad-hoc block entry so that it does not interfere with
|
|
// the next iteration of comptime control flow, if any.
|
|
labeled_block.destroy(gpa);
|
|
assert(sema.post_hoc_blocks.remove(new_block_inst));
|
|
}
|
|
|
|
break :blk block_result;
|
|
}
|
|
|
|
const break_data = opt_break_data orelse break;
|
|
if (inst == break_data.block_inst) {
|
|
break :blk try sema.resolveInst(break_data.operand);
|
|
} else {
|
|
// `comptime_break_inst` preserved from `analyzeBodyInner` above.
|
|
return error.ComptimeBreak;
|
|
}
|
|
},
|
|
.condbr => if (block.isComptime()) {
|
|
continue :inst .condbr_inline;
|
|
} else {
|
|
try sema.zirCondbr(block, inst);
|
|
break;
|
|
},
|
|
.condbr_inline => {
|
|
const inst_data = datas[@intFromEnum(inst)].pl_node;
|
|
const cond_src = block.src(.{ .node_offset_if_cond = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index);
|
|
const then_body = sema.code.bodySlice(extra.end, extra.data.then_body_len);
|
|
const else_body = sema.code.bodySlice(
|
|
extra.end + then_body.len,
|
|
extra.data.else_body_len,
|
|
);
|
|
const uncasted_cond = try sema.resolveInst(extra.data.condition);
|
|
const cond = try sema.coerce(block, .bool, uncasted_cond, cond_src);
|
|
const cond_val = try sema.resolveConstDefinedValue(
|
|
block,
|
|
cond_src,
|
|
cond,
|
|
// If this block is comptime, it's more helpful to just give the outer message.
|
|
// This is particularly true if this came from a comptime `condbr` above.
|
|
if (block.isComptime()) null else .{ .simple = .inline_loop_operand },
|
|
);
|
|
const inline_body = if (cond_val.toBool()) then_body else else_body;
|
|
|
|
try sema.maybeErrorUnwrapCondbr(block, inline_body, extra.data.condition, cond_src);
|
|
const old_runtime_index = block.runtime_index;
|
|
defer block.runtime_index = old_runtime_index;
|
|
|
|
const result = try sema.analyzeInlineBody(block, inline_body, inst) orelse break;
|
|
break :inst result;
|
|
},
|
|
.@"try" => blk: {
|
|
if (!block.isComptime()) break :blk try sema.zirTry(block, inst);
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.src(.{ .node_offset_try_operand = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
|
|
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const err_union = try sema.resolveInst(extra.data.operand);
|
|
const err_union_ty = sema.typeOf(err_union);
|
|
if (err_union_ty.zigTypeTag(zcu) != .error_union) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(operand_src, "expected error union type, found '{f}'", .{err_union_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.addDeclaredHereNote(msg, err_union_ty);
|
|
try sema.errNote(operand_src, msg, "consider omitting 'try'", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(block, operand_src, err_union);
|
|
assert(is_non_err != .none);
|
|
const is_non_err_val = try sema.resolveConstDefinedValue(block, operand_src, is_non_err, null);
|
|
if (is_non_err_val.toBool()) {
|
|
break :blk try sema.analyzeErrUnionPayload(block, src, err_union_ty, err_union, operand_src, false);
|
|
}
|
|
const result = try sema.analyzeInlineBody(block, inline_body, inst) orelse break;
|
|
break :blk result;
|
|
},
|
|
.try_ptr => blk: {
|
|
if (!block.isComptime()) break :blk try sema.zirTryPtr(block, inst);
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.src(.{ .node_offset_try_operand = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
|
|
const inline_body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const operand = try sema.resolveInst(extra.data.operand);
|
|
const err_union = try sema.analyzeLoad(block, src, operand, operand_src);
|
|
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(block, operand_src, err_union);
|
|
assert(is_non_err != .none);
|
|
const is_non_err_val = try sema.resolveConstDefinedValue(block, operand_src, is_non_err, null);
|
|
if (is_non_err_val.toBool()) {
|
|
break :blk try sema.analyzeErrUnionPayloadPtr(block, src, operand, false, false);
|
|
}
|
|
const result = try sema.analyzeInlineBody(block, inline_body, inst) orelse break;
|
|
break :blk result;
|
|
},
|
|
.@"defer" => blk: {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"defer";
|
|
const defer_body = sema.code.bodySlice(inst_data.index, inst_data.len);
|
|
if (sema.analyzeBodyInner(block, defer_body)) |_| {
|
|
// The defer terminated noreturn - no more analysis needed.
|
|
break;
|
|
} else |err| switch (err) {
|
|
error.ComptimeBreak => {},
|
|
else => |e| return e,
|
|
}
|
|
if (sema.comptime_break_inst != defer_body[defer_body.len - 1]) {
|
|
return error.ComptimeBreak;
|
|
}
|
|
break :blk .void_value;
|
|
},
|
|
.defer_err_code => blk: {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].defer_err_code;
|
|
const extra = sema.code.extraData(Zir.Inst.DeferErrCode, inst_data.payload_index).data;
|
|
const defer_body = sema.code.bodySlice(extra.index, extra.len);
|
|
const err_code = try sema.resolveInst(inst_data.err_code);
|
|
try map.ensureSpaceForInstructions(sema.gpa, defer_body);
|
|
map.putAssumeCapacity(extra.remapped_err_code, err_code);
|
|
if (sema.analyzeBodyInner(block, defer_body)) |_| {
|
|
// The defer terminated noreturn - no more analysis needed.
|
|
break;
|
|
} else |err| switch (err) {
|
|
error.ComptimeBreak => {},
|
|
else => |e| return e,
|
|
}
|
|
if (sema.comptime_break_inst != defer_body[defer_body.len - 1]) {
|
|
return error.ComptimeBreak;
|
|
}
|
|
break :blk .void_value;
|
|
},
|
|
};
|
|
if (sema.isNoReturn(air_inst)) {
|
|
// We're going to assume that the body itself is noreturn, so let's ensure that now
|
|
assert(block.instructions.items.len > 0);
|
|
assert(sema.isNoReturn(block.instructions.items[block.instructions.items.len - 1].toRef()));
|
|
break;
|
|
}
|
|
map.putAssumeCapacity(inst, air_inst);
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
pub fn resolveInstAllowNone(sema: *Sema, zir_ref: Zir.Inst.Ref) !Air.Inst.Ref {
|
|
if (zir_ref == .none) {
|
|
return .none;
|
|
} else {
|
|
return resolveInst(sema, zir_ref);
|
|
}
|
|
}
|
|
|
|
pub fn resolveInst(sema: *Sema, zir_ref: Zir.Inst.Ref) !Air.Inst.Ref {
|
|
assert(zir_ref != .none);
|
|
if (zir_ref.toIndex()) |i| {
|
|
return sema.inst_map.get(i).?;
|
|
}
|
|
// First section of indexes correspond to a set number of constant values.
|
|
// We intentionally map the same indexes to the same values between ZIR and AIR.
|
|
return @enumFromInt(@intFromEnum(zir_ref));
|
|
}
|
|
|
|
fn resolveConstBool(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
reason: ComptimeReason,
|
|
) !bool {
|
|
const air_inst = try sema.resolveInst(zir_ref);
|
|
const wanted_type: Type = .bool;
|
|
const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src);
|
|
const val = try sema.resolveConstDefinedValue(block, src, coerced_inst, reason);
|
|
return val.toBool();
|
|
}
|
|
|
|
fn resolveConstString(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
reason: ComptimeReason,
|
|
) ![]u8 {
|
|
const air_inst = try sema.resolveInst(zir_ref);
|
|
return sema.toConstString(block, src, air_inst, reason);
|
|
}
|
|
|
|
pub fn toConstString(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_inst: Air.Inst.Ref,
|
|
reason: ComptimeReason,
|
|
) ![]u8 {
|
|
const pt = sema.pt;
|
|
const coerced_inst = try sema.coerce(block, .slice_const_u8, air_inst, src);
|
|
const slice_val = try sema.resolveConstDefinedValue(block, src, coerced_inst, reason);
|
|
const arr_val = try sema.derefSliceAsArray(block, src, slice_val, reason);
|
|
return arr_val.toAllocatedBytes(arr_val.typeOf(pt.zcu), sema.arena, pt);
|
|
}
|
|
|
|
pub fn resolveConstStringIntern(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
reason: ComptimeReason,
|
|
) !InternPool.NullTerminatedString {
|
|
const air_inst = try sema.resolveInst(zir_ref);
|
|
const wanted_type: Type = .slice_const_u8;
|
|
const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src);
|
|
const val = try sema.resolveConstDefinedValue(block, src, coerced_inst, reason);
|
|
return sema.sliceToIpString(block, src, val, reason);
|
|
}
|
|
|
|
fn resolveTypeOrPoison(sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref) !?Type {
|
|
const air_inst = try sema.resolveInst(zir_ref);
|
|
const ty = try sema.analyzeAsType(block, src, air_inst);
|
|
if (ty.isGenericPoison()) return null;
|
|
return ty;
|
|
}
|
|
|
|
pub fn resolveType(sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref) !Type {
|
|
return (try sema.resolveTypeOrPoison(block, src, zir_ref)).?;
|
|
}
|
|
|
|
fn resolveDestType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
strat: enum { remove_eu_opt, remove_eu, remove_opt },
|
|
builtin_name: []const u8,
|
|
) !Type {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const remove_eu = switch (strat) {
|
|
.remove_eu_opt, .remove_eu => true,
|
|
.remove_opt => false,
|
|
};
|
|
const remove_opt = switch (strat) {
|
|
.remove_eu_opt, .remove_opt => true,
|
|
.remove_eu => false,
|
|
};
|
|
|
|
const raw_ty = try sema.resolveTypeOrPoison(block, src, zir_ref) orelse {
|
|
// Cast builtins use their result type as the destination type, but
|
|
// it could be an anytype argument, which we can't catch in AstGen.
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "{s} must have a known result type", .{builtin_name});
|
|
errdefer msg.destroy(sema.gpa);
|
|
switch (sema.genericPoisonReason(block, zir_ref)) {
|
|
.anytype_param => |call_src| try sema.errNote(call_src, msg, "result type is unknown due to anytype parameter", .{}),
|
|
.anyopaque_ptr => |ptr_src| try sema.errNote(ptr_src, msg, "result type is unknown due to opaque pointer type", .{}),
|
|
.unknown => {},
|
|
}
|
|
try sema.errNote(src, msg, "use @as to provide explicit result type", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
};
|
|
|
|
if (remove_eu and raw_ty.zigTypeTag(zcu) == .error_union) {
|
|
const eu_child = raw_ty.errorUnionPayload(zcu);
|
|
if (remove_opt and eu_child.zigTypeTag(zcu) == .optional) {
|
|
return eu_child.childType(zcu);
|
|
}
|
|
return eu_child;
|
|
}
|
|
if (remove_opt and raw_ty.zigTypeTag(zcu) == .optional) {
|
|
return raw_ty.childType(zcu);
|
|
}
|
|
return raw_ty;
|
|
}
|
|
|
|
const GenericPoisonReason = union(enum) {
|
|
anytype_param: LazySrcLoc,
|
|
anyopaque_ptr: LazySrcLoc,
|
|
unknown,
|
|
};
|
|
|
|
/// Backtracks through ZIR instructions to determine the reason a generic poison
|
|
/// type was created. Used for error reporting.
|
|
fn genericPoisonReason(sema: *Sema, block: *Block, ref: Zir.Inst.Ref) GenericPoisonReason {
|
|
var cur = ref;
|
|
while (true) {
|
|
const inst = cur.toIndex() orelse return .unknown;
|
|
switch (sema.code.instructions.items(.tag)[@intFromEnum(inst)]) {
|
|
.validate_array_init_ref_ty => {
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.ArrayInitRefTy, pl_node.payload_index).data;
|
|
cur = extra.ptr_ty;
|
|
},
|
|
.array_init_elem_type => {
|
|
const bin = sema.code.instructions.items(.data)[@intFromEnum(inst)].bin;
|
|
cur = bin.lhs;
|
|
},
|
|
.indexable_ptr_elem_type, .splat_op_result_ty => {
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
cur = un_node.operand;
|
|
},
|
|
.struct_init_field_type => {
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.FieldType, pl_node.payload_index).data;
|
|
cur = extra.container_type;
|
|
},
|
|
.elem_type => {
|
|
// There are two cases here: the pointer type may already have been
|
|
// generic poison, or it may have been an anyopaque pointer.
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_ref = try sema.resolveInst(un_node.operand);
|
|
const operand_val = operand_ref.toInterned() orelse return .unknown;
|
|
if (operand_val == .generic_poison_type) {
|
|
// The pointer was generic poison - keep looking.
|
|
cur = un_node.operand;
|
|
} else {
|
|
// This must be an anyopaque pointer!
|
|
return .{ .anyopaque_ptr = block.nodeOffset(un_node.src_node) };
|
|
}
|
|
},
|
|
.call, .field_call => {
|
|
// A function call can never return generic poison, so we must be
|
|
// evaluating an `anytype` function parameter.
|
|
// TODO: better source location - function decl rather than call
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
return .{ .anytype_param = block.nodeOffset(pl_node.src_node) };
|
|
},
|
|
else => return .unknown,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn analyzeAsType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_inst: Air.Inst.Ref,
|
|
) !Type {
|
|
const wanted_type: Type = .type;
|
|
const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src);
|
|
const val = try sema.resolveConstDefinedValue(block, src, coerced_inst, .{ .simple = .type });
|
|
return val.toType();
|
|
}
|
|
|
|
pub fn setupErrorReturnTrace(sema: *Sema, block: *Block, last_arg_index: usize) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const comp = zcu.comp;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
if (!comp.config.any_error_tracing) return;
|
|
|
|
assert(!block.isComptime());
|
|
var err_trace_block = block.makeSubBlock();
|
|
defer err_trace_block.instructions.deinit(gpa);
|
|
|
|
const src: LazySrcLoc = LazySrcLoc.unneeded;
|
|
|
|
// var addrs: [err_return_trace_addr_count]usize = undefined;
|
|
const err_return_trace_addr_count = 32;
|
|
const addr_arr_ty = try pt.arrayType(.{
|
|
.len = err_return_trace_addr_count,
|
|
.child = .usize_type,
|
|
});
|
|
const addrs_ptr = try err_trace_block.addTy(.alloc, try pt.singleMutPtrType(addr_arr_ty));
|
|
|
|
// var st: StackTrace = undefined;
|
|
const stack_trace_ty = try sema.getBuiltinType(block.nodeOffset(.zero), .StackTrace);
|
|
try stack_trace_ty.resolveFields(pt);
|
|
const st_ptr = try err_trace_block.addTy(.alloc, try pt.singleMutPtrType(stack_trace_ty));
|
|
|
|
// st.instruction_addresses = &addrs;
|
|
const instruction_addresses_field_name = try ip.getOrPutString(gpa, pt.tid, "instruction_addresses", .no_embedded_nulls);
|
|
const addr_field_ptr = try sema.fieldPtr(&err_trace_block, src, st_ptr, instruction_addresses_field_name, src, true);
|
|
try sema.storePtr2(&err_trace_block, src, addr_field_ptr, src, addrs_ptr, src, .store);
|
|
|
|
// st.index = 0;
|
|
const index_field_name = try ip.getOrPutString(gpa, pt.tid, "index", .no_embedded_nulls);
|
|
const index_field_ptr = try sema.fieldPtr(&err_trace_block, src, st_ptr, index_field_name, src, true);
|
|
try sema.storePtr2(&err_trace_block, src, index_field_ptr, src, .zero_usize, src, .store);
|
|
|
|
// @errorReturnTrace() = &st;
|
|
_ = try err_trace_block.addUnOp(.set_err_return_trace, st_ptr);
|
|
|
|
try block.instructions.insertSlice(gpa, last_arg_index, err_trace_block.instructions.items);
|
|
}
|
|
|
|
/// Return the Value corresponding to a given AIR ref, or `null` if it refers to a runtime value.
|
|
fn resolveValue(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value {
|
|
const zcu = sema.pt.zcu;
|
|
assert(inst != .none);
|
|
|
|
if (try sema.typeHasOnePossibleValue(sema.typeOf(inst))) |opv| {
|
|
return opv;
|
|
}
|
|
|
|
if (inst.toInterned()) |ip_index| {
|
|
const val: Value = .fromInterned(ip_index);
|
|
assert(val.getVariable(zcu) == null);
|
|
return val;
|
|
} else {
|
|
// Runtime-known value.
|
|
const air_tags = sema.air_instructions.items(.tag);
|
|
switch (air_tags[@intFromEnum(inst.toIndex().?)]) {
|
|
.inferred_alloc => unreachable, // assertion failure
|
|
.inferred_alloc_comptime => unreachable, // assertion failure
|
|
else => {},
|
|
}
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/// Like `resolveValue`, but emits an error if the value is not comptime-known.
|
|
fn resolveConstValue(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
inst: Air.Inst.Ref,
|
|
reason: ?ComptimeReason,
|
|
) CompileError!Value {
|
|
return try sema.resolveValue(inst) orelse {
|
|
return sema.failWithNeededComptime(block, src, reason);
|
|
};
|
|
}
|
|
|
|
/// Like `resolveValue`, but emits an error if the value is comptime-known to be undefined.
|
|
fn resolveDefinedValue(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_ref: Air.Inst.Ref,
|
|
) CompileError!?Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const val = try sema.resolveValue(air_ref) orelse return null;
|
|
if (val.isUndef(zcu)) return sema.failWithUseOfUndef(block, src, null);
|
|
return val;
|
|
}
|
|
|
|
/// Like `resolveValue`, but emits an error if the value is not comptime-known or is undefined.
|
|
fn resolveConstDefinedValue(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_ref: Air.Inst.Ref,
|
|
reason: ?ComptimeReason,
|
|
) CompileError!Value {
|
|
const val = try sema.resolveConstValue(block, src, air_ref, reason);
|
|
if (val.isUndef(sema.pt.zcu)) return sema.failWithUseOfUndef(block, src, null);
|
|
return val;
|
|
}
|
|
|
|
/// Like `resolveValue`, but recursively resolves lazy values before returning.
|
|
fn resolveValueResolveLazy(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value {
|
|
return try sema.resolveLazyValue((try sema.resolveValue(inst)) orelse return null);
|
|
}
|
|
|
|
/// Value Tag may be `undef` or `variable`.
|
|
pub fn resolveFinalDeclValue(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_ref: Air.Inst.Ref,
|
|
) CompileError!Value {
|
|
const zcu = sema.pt.zcu;
|
|
const val = try sema.resolveConstValue(block, src, air_ref, .{ .simple = .container_var_init });
|
|
if (val.canMutateComptimeVarState(zcu)) {
|
|
const ip = &zcu.intern_pool;
|
|
const nav = ip.getNav(sema.owner.unwrap().nav_val);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, src, nav.name, "global variable", val);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
fn failWithNeededComptime(sema: *Sema, block: *Block, src: LazySrcLoc, reason: ?ComptimeReason) CompileError {
|
|
const msg, const fail_block = msg: {
|
|
const msg = try sema.errMsg(src, "unable to resolve comptime value", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
const fail_block = if (reason) |r| b: {
|
|
try r.explain(sema, src, msg);
|
|
break :b block;
|
|
} else b: {
|
|
break :b try block.explainWhyBlockIsComptime(msg);
|
|
};
|
|
break :msg .{ msg, fail_block };
|
|
};
|
|
return sema.failWithOwnedErrorMsg(fail_block, msg);
|
|
}
|
|
|
|
pub fn failWithUseOfUndef(sema: *Sema, block: *Block, src: LazySrcLoc, vector_index: ?usize) CompileError {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "use of undefined value here causes illegal behavior", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (vector_index) |i| try sema.errNote(src, msg, "when computing vector element at index '{d}'", .{i});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
pub fn failWithDivideByZero(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError {
|
|
return sema.fail(block, src, "division by zero here causes illegal behavior", .{});
|
|
}
|
|
|
|
pub fn failWithTooLargeShiftAmount(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
operand_ty: Type,
|
|
shift_amt: Value,
|
|
shift_src: LazySrcLoc,
|
|
vector_index: ?usize,
|
|
) CompileError {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(
|
|
shift_src,
|
|
"shift amount '{f}' is too large for operand type '{f}'",
|
|
.{ shift_amt.fmtValueSema(sema.pt, sema), operand_ty.fmt(sema.pt) },
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (vector_index) |i| try sema.errNote(shift_src, msg, "when computing vector element at index '{d}'", .{i});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
pub fn failWithNegativeShiftAmount(sema: *Sema, block: *Block, src: LazySrcLoc, shift_amt: Value, vector_index: ?usize) CompileError {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "shift by negative amount '{f}'", .{shift_amt.fmtValueSema(sema.pt, sema)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (vector_index) |i| try sema.errNote(src, msg, "when computing vector element at index '{d}'", .{i});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
pub fn failWithUnsupportedComptimeShiftAmount(sema: *Sema, block: *Block, src: LazySrcLoc, vector_index: ?usize) CompileError {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(
|
|
src,
|
|
"this implementation only supports comptime shift amounts of up to 2^{d} - 1 bits",
|
|
.{@min(@bitSizeOf(usize), 64)},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (vector_index) |i| try sema.errNote(src, msg, "when computing vector element at index '{d}'", .{i});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
fn failWithModRemNegative(sema: *Sema, block: *Block, src: LazySrcLoc, lhs_ty: Type, rhs_ty: Type) CompileError {
|
|
const pt = sema.pt;
|
|
return sema.fail(block, src, "remainder division with '{f}' and '{f}': signed integers and floats must use @rem or @mod", .{
|
|
lhs_ty.fmt(pt), rhs_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
fn failWithExpectedOptionalType(sema: *Sema, block: *Block, src: LazySrcLoc, non_optional_ty: Type) CompileError {
|
|
const pt = sema.pt;
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "expected optional type, found '{f}'", .{
|
|
non_optional_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (non_optional_ty.zigTypeTag(pt.zcu) == .error_union) {
|
|
try sema.errNote(src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
}
|
|
try addDeclaredHereNote(sema, msg, non_optional_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn failWithArrayInitNotSupported(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError {
|
|
const pt = sema.pt;
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "type '{f}' does not support array initialization syntax", .{
|
|
ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (ty.isSlice(pt.zcu)) {
|
|
try sema.errNote(src, msg, "inferred array length is specified with an underscore: '[_]{f}'", .{ty.elemType2(pt.zcu).fmt(pt)});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn failWithStructInitNotSupported(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError {
|
|
const pt = sema.pt;
|
|
return sema.fail(block, src, "type '{f}' does not support struct initialization syntax", .{
|
|
ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
fn failWithErrorSetCodeMissing(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
dest_err_set_ty: Type,
|
|
src_err_set_ty: Type,
|
|
) CompileError {
|
|
const pt = sema.pt;
|
|
return sema.fail(block, src, "expected type '{f}', found type '{f}'", .{
|
|
dest_err_set_ty.fmt(pt), src_err_set_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
pub fn failWithIntegerOverflow(sema: *Sema, block: *Block, src: LazySrcLoc, int_ty: Type, val: Value, vector_index: ?usize) CompileError {
|
|
const pt = sema.pt;
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "overflow of integer type '{f}' with value '{f}'", .{
|
|
int_ty.fmt(pt), val.fmtValueSema(pt, sema),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (vector_index) |i| try sema.errNote(src, msg, "when computing vector element at index '{d}'", .{i});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
fn failWithInvalidComptimeFieldStore(sema: *Sema, block: *Block, init_src: LazySrcLoc, container_ty: Type, field_index: usize) CompileError {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(init_src, "value stored in comptime field does not match the default value of the field", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
const struct_type = zcu.typeToStruct(container_ty) orelse break :msg msg;
|
|
try sema.errNote(.{
|
|
.base_node_inst = struct_type.zir_index,
|
|
.offset = .{ .container_field_value = @intCast(field_index) },
|
|
}, msg, "default value set here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn failWithUseOfAsync(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "async has not been implemented in the self-hosted compiler yet", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn failWithInvalidFieldAccess(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
object_ty: Type,
|
|
field_name: InternPool.NullTerminatedString,
|
|
) CompileError {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inner_ty = if (object_ty.isSinglePointer(zcu)) object_ty.childType(zcu) else object_ty;
|
|
|
|
if (inner_ty.zigTypeTag(zcu) == .optional) opt: {
|
|
const child_ty = inner_ty.optionalChild(zcu);
|
|
if (!typeSupportsFieldAccess(zcu, child_ty, field_name)) break :opt;
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "optional type '{f}' does not support field access", .{object_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "consider using '.?', 'orelse', or 'if'", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
} else if (inner_ty.zigTypeTag(zcu) == .error_union) err: {
|
|
const child_ty = inner_ty.errorUnionPayload(zcu);
|
|
if (!typeSupportsFieldAccess(zcu, child_ty, field_name)) break :err;
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "error union type '{f}' does not support field access", .{object_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
return sema.fail(block, src, "type '{f}' does not support field access", .{object_ty.fmt(pt)});
|
|
}
|
|
|
|
fn typeSupportsFieldAccess(zcu: *const Zcu, ty: Type, field_name: InternPool.NullTerminatedString) bool {
|
|
const ip = &zcu.intern_pool;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.array => return field_name.eqlSlice("len", ip),
|
|
.pointer => {
|
|
const ptr_info = ty.ptrInfo(zcu);
|
|
if (ptr_info.flags.size == .slice) {
|
|
return field_name.eqlSlice("ptr", ip) or field_name.eqlSlice("len", ip);
|
|
} else if (Type.fromInterned(ptr_info.child).zigTypeTag(zcu) == .array) {
|
|
return field_name.eqlSlice("len", ip);
|
|
} else return false;
|
|
},
|
|
.type, .@"struct", .@"union" => return true,
|
|
else => return false,
|
|
}
|
|
}
|
|
|
|
fn failWithComptimeErrorRetTrace(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
name: InternPool.NullTerminatedString,
|
|
) CompileError {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "caught unexpected error '{f}'", .{name.fmt(&zcu.intern_pool)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
for (sema.comptime_err_ret_trace.items) |src_loc| {
|
|
try sema.errNote(src_loc, msg, "error returned here", .{});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn failWithInvalidPtrArithmetic(sema: *Sema, block: *Block, src: LazySrcLoc, arithmetic: []const u8, supports: []const u8) CompileError {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "invalid {s} arithmetic operator", .{arithmetic});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "{s} arithmetic only supports {s}", .{ arithmetic, supports });
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
/// We don't return a pointer to the new error note because the pointer
|
|
/// becomes invalid when you add another one.
|
|
pub fn errNote(
|
|
sema: *Sema,
|
|
src: LazySrcLoc,
|
|
parent: *Zcu.ErrorMsg,
|
|
comptime format: []const u8,
|
|
args: anytype,
|
|
) error{OutOfMemory}!void {
|
|
return sema.pt.zcu.errNote(src, parent, format, args);
|
|
}
|
|
|
|
fn addFieldErrNote(
|
|
sema: *Sema,
|
|
container_ty: Type,
|
|
field_index: usize,
|
|
parent: *Zcu.ErrorMsg,
|
|
comptime format: []const u8,
|
|
args: anytype,
|
|
) !void {
|
|
@branchHint(.cold);
|
|
const type_src = container_ty.srcLocOrNull(sema.pt.zcu) orelse return;
|
|
const field_src: LazySrcLoc = .{
|
|
.base_node_inst = type_src.base_node_inst,
|
|
.offset = .{ .container_field_name = @intCast(field_index) },
|
|
};
|
|
try sema.errNote(field_src, parent, format, args);
|
|
}
|
|
|
|
pub fn errMsg(
|
|
sema: *Sema,
|
|
src: LazySrcLoc,
|
|
comptime format: []const u8,
|
|
args: anytype,
|
|
) Allocator.Error!*Zcu.ErrorMsg {
|
|
assert(src.offset != .unneeded);
|
|
return Zcu.ErrorMsg.create(sema.gpa, src, format, args);
|
|
}
|
|
|
|
pub fn fail(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
comptime format: []const u8,
|
|
args: anytype,
|
|
) CompileError {
|
|
const err_msg = try sema.errMsg(src, format, args);
|
|
inline for (args) |arg| {
|
|
if (@TypeOf(arg) == Type.Formatter) {
|
|
try addDeclaredHereNote(sema, err_msg, arg.data.ty);
|
|
}
|
|
}
|
|
return sema.failWithOwnedErrorMsg(block, err_msg);
|
|
}
|
|
|
|
pub fn failWithOwnedErrorMsg(sema: *Sema, block: ?*Block, err_msg: *Zcu.ErrorMsg) error{ AnalysisFail, OutOfMemory } {
|
|
@branchHint(.cold);
|
|
const gpa = sema.gpa;
|
|
const zcu = sema.pt.zcu;
|
|
|
|
if (build_options.enable_debug_extensions and zcu.comp.debug_compile_errors) {
|
|
var wip_errors: std.zig.ErrorBundle.Wip = undefined;
|
|
wip_errors.init(gpa) catch @panic("out of memory");
|
|
Compilation.addModuleErrorMsg(zcu, &wip_errors, err_msg.*, false) catch @panic("out of memory");
|
|
std.debug.print("compile error during Sema:\n", .{});
|
|
var error_bundle = wip_errors.toOwnedBundle("") catch @panic("out of memory");
|
|
error_bundle.renderToStdErr(.{}, .auto);
|
|
std.debug.panicExtra(@returnAddress(), "unexpected compile error occurred", .{});
|
|
}
|
|
|
|
if (block) |start_block| {
|
|
var block_it = start_block;
|
|
while (block_it.inlining) |inlining| {
|
|
const note_str = note: {
|
|
if (inlining.is_generic_instantiation) break :note "generic function instantiated here";
|
|
if (inlining.call_block.isComptime()) break :note "called at comptime here";
|
|
break :note "called inline here";
|
|
};
|
|
try sema.errNote(inlining.call_src, err_msg, "{s}", .{note_str});
|
|
block_it = inlining.call_block;
|
|
}
|
|
}
|
|
|
|
err_msg.reference_trace_root = sema.owner.toOptional();
|
|
|
|
const gop = try zcu.failed_analysis.getOrPut(gpa, sema.owner);
|
|
if (gop.found_existing) {
|
|
// If there are multiple errors for the same Decl, prefer the first one added.
|
|
sema.err = null;
|
|
err_msg.destroy(gpa);
|
|
} else {
|
|
sema.err = err_msg;
|
|
gop.value_ptr.* = err_msg;
|
|
}
|
|
|
|
return error.AnalysisFail;
|
|
}
|
|
|
|
/// Given an ErrorMsg, modify its message and source location to the given values, turning the
|
|
/// original message into a note. Notes on the original message are preserved as further notes.
|
|
/// Reference trace is preserved.
|
|
fn reparentOwnedErrorMsg(
|
|
sema: *Sema,
|
|
src: LazySrcLoc,
|
|
msg: *Zcu.ErrorMsg,
|
|
comptime format: []const u8,
|
|
args: anytype,
|
|
) !void {
|
|
const msg_str = try std.fmt.allocPrint(sema.gpa, format, args);
|
|
|
|
const orig_notes = msg.notes.len;
|
|
msg.notes = try sema.gpa.realloc(msg.notes, orig_notes + 1);
|
|
@memmove(msg.notes[1..][0..orig_notes], msg.notes[0..orig_notes]);
|
|
msg.notes[0] = .{
|
|
.src_loc = msg.src_loc,
|
|
.msg = msg.msg,
|
|
};
|
|
|
|
msg.src_loc = src;
|
|
msg.msg = msg_str;
|
|
}
|
|
|
|
const align_ty: Type = .u29;
|
|
|
|
pub fn analyzeAsAlign(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_ref: Air.Inst.Ref,
|
|
) !Alignment {
|
|
const alignment_big = try sema.analyzeAsInt(
|
|
block,
|
|
src,
|
|
air_ref,
|
|
align_ty,
|
|
.{ .simple = .@"align" },
|
|
);
|
|
return sema.validateAlign(block, src, alignment_big);
|
|
}
|
|
|
|
fn validateAlign(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
alignment: u64,
|
|
) !Alignment {
|
|
if (alignment == 0) return sema.fail(block, src, "alignment must be >= 1", .{});
|
|
if (!std.math.isPowerOfTwo(alignment)) {
|
|
return sema.fail(block, src, "alignment value '{d}' is not a power of two", .{
|
|
alignment,
|
|
});
|
|
}
|
|
return Alignment.fromNonzeroByteUnits(alignment);
|
|
}
|
|
|
|
fn resolveAlign(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
) !Alignment {
|
|
const air_ref = try sema.resolveInst(zir_ref);
|
|
return sema.analyzeAsAlign(block, src, air_ref);
|
|
}
|
|
|
|
fn resolveInt(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
dest_ty: Type,
|
|
reason: ComptimeReason,
|
|
) !u64 {
|
|
const air_ref = try sema.resolveInst(zir_ref);
|
|
return sema.analyzeAsInt(block, src, air_ref, dest_ty, reason);
|
|
}
|
|
|
|
fn analyzeAsInt(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_ref: Air.Inst.Ref,
|
|
dest_ty: Type,
|
|
reason: ComptimeReason,
|
|
) !u64 {
|
|
const coerced = try sema.coerce(block, dest_ty, air_ref, src);
|
|
const val = try sema.resolveConstDefinedValue(block, src, coerced, reason);
|
|
return try val.toUnsignedIntSema(sema.pt);
|
|
}
|
|
|
|
fn analyzeValueAsCallconv(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
unresolved_val: Value,
|
|
) !std.builtin.CallingConvention {
|
|
return interpretBuiltinType(sema, block, src, unresolved_val, std.builtin.CallingConvention);
|
|
}
|
|
|
|
fn interpretBuiltinType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
unresolved_val: Value,
|
|
comptime T: type,
|
|
) !T {
|
|
const resolved_val = try sema.resolveLazyValue(unresolved_val);
|
|
return resolved_val.interpret(T, sema.pt) catch |err| switch (err) {
|
|
error.OutOfMemory => |e| return e,
|
|
error.UndefinedValue => return sema.failWithUseOfUndef(block, src, null),
|
|
error.TypeMismatch => @panic("std.builtin is corrupt"),
|
|
};
|
|
}
|
|
|
|
fn zirTupleDecl(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const gpa = sema.gpa;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const fields_len = extended.small;
|
|
const extra = sema.code.extraData(Zir.Inst.TupleDecl, extended.operand);
|
|
var extra_index = extra.end;
|
|
|
|
const types = try sema.arena.alloc(InternPool.Index, fields_len);
|
|
const inits = try sema.arena.alloc(InternPool.Index, fields_len);
|
|
|
|
const extra_as_refs: []const Zir.Inst.Ref = @ptrCast(sema.code.extra);
|
|
|
|
for (types, inits, 0..) |*field_ty, *field_init, field_index| {
|
|
const zir_field_ty, const zir_field_init = extra_as_refs[extra_index..][0..2].*;
|
|
extra_index += 2;
|
|
|
|
const type_src = block.src(.{ .tuple_field_type = .{
|
|
.tuple_decl_node_offset = extra.data.src_node,
|
|
.elem_index = @intCast(field_index),
|
|
} });
|
|
const init_src = block.src(.{ .tuple_field_init = .{
|
|
.tuple_decl_node_offset = extra.data.src_node,
|
|
.elem_index = @intCast(field_index),
|
|
} });
|
|
|
|
const field_type = try sema.resolveType(block, type_src, zir_field_ty);
|
|
try sema.validateTupleFieldType(block, field_type, type_src);
|
|
|
|
field_ty.* = field_type.toIntern();
|
|
field_init.* = init: {
|
|
if (zir_field_init != .none) {
|
|
const uncoerced_field_init = try sema.resolveInst(zir_field_init);
|
|
const coerced_field_init = try sema.coerce(block, field_type, uncoerced_field_init, init_src);
|
|
const field_init_val = try sema.resolveConstDefinedValue(block, init_src, coerced_field_init, .{ .simple = .tuple_field_default_value });
|
|
if (field_init_val.canMutateComptimeVarState(zcu)) {
|
|
const field_name = try zcu.intern_pool.getOrPutStringFmt(gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, init_src, field_name, "field default value", field_init_val);
|
|
}
|
|
break :init field_init_val.toIntern();
|
|
}
|
|
break :init .none;
|
|
};
|
|
}
|
|
|
|
return Air.internedToRef(try zcu.intern_pool.getTupleType(gpa, pt.tid, .{
|
|
.types = types,
|
|
.values = inits,
|
|
}));
|
|
}
|
|
|
|
fn validateTupleFieldType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
field_ty: Type,
|
|
field_ty_src: LazySrcLoc,
|
|
) CompileError!void {
|
|
const gpa = sema.gpa;
|
|
const zcu = sema.pt.zcu;
|
|
if (field_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(field_ty_src, "opaque types have unknown size and therefore cannot be directly embedded in tuples", .{});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(field_ty_src, "tuple fields cannot be 'noreturn'", .{});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Given a ZIR extra index which points to a list of `Zir.Inst.Capture`,
|
|
/// resolves this into a list of `InternPool.CaptureValue` allocated by `arena`.
|
|
fn getCaptures(sema: *Sema, block: *Block, type_src: LazySrcLoc, extra_index: usize, captures_len: u32) ![]InternPool.CaptureValue {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const parent_ty: Type = .fromInterned(zcu.namespacePtr(block.namespace).owner_type);
|
|
const parent_captures: InternPool.CaptureValue.Slice = parent_ty.getCaptures(zcu);
|
|
|
|
const captures = try sema.arena.alloc(InternPool.CaptureValue, captures_len);
|
|
|
|
for (sema.code.extra[extra_index..][0..captures_len], sema.code.extra[extra_index + captures_len ..][0..captures_len], captures) |raw, raw_name, *capture| {
|
|
const zir_capture: Zir.Inst.Capture = @bitCast(raw);
|
|
const zir_name: Zir.NullTerminatedString = @enumFromInt(raw_name);
|
|
const zir_name_slice = sema.code.nullTerminatedString(zir_name);
|
|
capture.* = switch (zir_capture.unwrap()) {
|
|
.nested => |parent_idx| parent_captures.get(ip)[parent_idx],
|
|
.instruction_load => |ptr_inst| InternPool.CaptureValue.wrap(capture: {
|
|
const ptr_ref = try sema.resolveInst(ptr_inst.toRef());
|
|
const ptr_val = try sema.resolveValue(ptr_ref) orelse {
|
|
break :capture .{ .runtime = sema.typeOf(ptr_ref).childType(zcu).toIntern() };
|
|
};
|
|
// TODO: better source location
|
|
const unresolved_loaded_val = try sema.pointerDeref(block, type_src, ptr_val, sema.typeOf(ptr_ref)) orelse {
|
|
break :capture .{ .runtime = sema.typeOf(ptr_ref).childType(zcu).toIntern() };
|
|
};
|
|
const loaded_val = try sema.resolveLazyValue(unresolved_loaded_val);
|
|
if (loaded_val.canMutateComptimeVarState(zcu)) {
|
|
const field_name = try ip.getOrPutString(zcu.gpa, pt.tid, zir_name_slice, .no_embedded_nulls);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, type_src, field_name, "captured value", loaded_val);
|
|
}
|
|
break :capture .{ .@"comptime" = loaded_val.toIntern() };
|
|
}),
|
|
.instruction => |inst| InternPool.CaptureValue.wrap(capture: {
|
|
const air_ref = try sema.resolveInst(inst.toRef());
|
|
if (try sema.resolveValueResolveLazy(air_ref)) |val| {
|
|
if (val.canMutateComptimeVarState(zcu)) {
|
|
const field_name = try ip.getOrPutString(zcu.gpa, pt.tid, zir_name_slice, .no_embedded_nulls);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, type_src, field_name, "captured value", val);
|
|
}
|
|
break :capture .{ .@"comptime" = val.toIntern() };
|
|
}
|
|
break :capture .{ .runtime = sema.typeOf(air_ref).toIntern() };
|
|
}),
|
|
.decl_val => |str| capture: {
|
|
const decl_name = try ip.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(str),
|
|
.no_embedded_nulls,
|
|
);
|
|
const nav = try sema.lookupIdentifier(block, decl_name);
|
|
break :capture InternPool.CaptureValue.wrap(.{ .nav_val = nav });
|
|
},
|
|
.decl_ref => |str| capture: {
|
|
const decl_name = try ip.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(str),
|
|
.no_embedded_nulls,
|
|
);
|
|
const nav = try sema.lookupIdentifier(block, decl_name);
|
|
break :capture InternPool.CaptureValue.wrap(.{ .nav_ref = nav });
|
|
},
|
|
};
|
|
}
|
|
|
|
return captures;
|
|
}
|
|
|
|
fn zirStructDecl(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
|
|
const extra = sema.code.extraData(Zir.Inst.StructDecl, extended.operand);
|
|
|
|
const tracked_inst = try block.trackZir(inst);
|
|
const src: LazySrcLoc = .{
|
|
.base_node_inst = tracked_inst,
|
|
.offset = LazySrcLoc.Offset.nodeOffset(.zero),
|
|
};
|
|
|
|
var extra_index = extra.end;
|
|
|
|
const captures_len = if (small.has_captures_len) blk: {
|
|
const captures_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk captures_len;
|
|
} else 0;
|
|
const fields_len = if (small.has_fields_len) blk: {
|
|
const fields_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk fields_len;
|
|
} else 0;
|
|
const decls_len = if (small.has_decls_len) blk: {
|
|
const decls_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk decls_len;
|
|
} else 0;
|
|
|
|
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
|
|
extra_index += captures_len * 2;
|
|
|
|
if (small.has_backing_int) {
|
|
const backing_int_body_len = sema.code.extra[extra_index];
|
|
extra_index += 1; // backing_int_body_len
|
|
if (backing_int_body_len == 0) {
|
|
extra_index += 1; // backing_int_ref
|
|
} else {
|
|
extra_index += backing_int_body_len; // backing_int_body_inst
|
|
}
|
|
}
|
|
|
|
const struct_init: InternPool.StructTypeInit = .{
|
|
.layout = small.layout,
|
|
.fields_len = fields_len,
|
|
.known_non_opv = small.known_non_opv,
|
|
.requires_comptime = if (small.known_comptime_only) .yes else .unknown,
|
|
.any_comptime_fields = small.any_comptime_fields,
|
|
.any_default_inits = small.any_default_inits,
|
|
.inits_resolved = false,
|
|
.any_aligned_fields = small.any_aligned_fields,
|
|
.key = .{ .declared = .{
|
|
.zir_index = tracked_inst,
|
|
.captures = captures,
|
|
} },
|
|
};
|
|
const wip_ty = switch (try ip.getStructType(gpa, pt.tid, struct_init, false)) {
|
|
.existing => |ty| {
|
|
const new_ty = try pt.ensureTypeUpToDate(ty);
|
|
|
|
// Make sure we update the namespace if the declaration is re-analyzed, to pick
|
|
// up on e.g. changed comptime decls.
|
|
try pt.ensureNamespaceUpToDate(Type.fromInterned(new_ty).getNamespaceIndex(zcu));
|
|
|
|
try sema.declareDependency(.{ .interned = new_ty });
|
|
try sema.addTypeReferenceEntry(src, new_ty);
|
|
return Air.internedToRef(new_ty);
|
|
},
|
|
.wip => |wip| wip,
|
|
};
|
|
errdefer wip_ty.cancel(ip, pt.tid);
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
small.name_strategy,
|
|
"struct",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const new_namespace_index: InternPool.NamespaceIndex = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
errdefer pt.destroyNamespace(new_namespace_index);
|
|
|
|
if (pt.zcu.comp.config.incremental) {
|
|
try pt.addDependency(.wrap(.{ .type = wip_ty.index }), .{ .src_hash = tracked_inst });
|
|
}
|
|
|
|
const decls = sema.code.bodySlice(extra_index, decls_len);
|
|
try pt.scanNamespace(new_namespace_index, decls);
|
|
|
|
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
// This job depends on any resolve_type_fully jobs queued up before it.
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
|
|
}
|
|
try sema.declareDependency(.{ .interned = wip_ty.index });
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
return Air.internedToRef(wip_ty.finish(ip, new_namespace_index));
|
|
}
|
|
|
|
pub fn createTypeName(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
name_strategy: Zir.Inst.NameStrategy,
|
|
anon_prefix: []const u8,
|
|
inst: ?Zir.Inst.Index,
|
|
/// This is used purely to give the type a unique name in the `anon` case.
|
|
type_index: InternPool.Index,
|
|
) CompileError!struct {
|
|
name: InternPool.NullTerminatedString,
|
|
nav: InternPool.Nav.Index.Optional,
|
|
} {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
switch (name_strategy) {
|
|
.anon => {}, // handled after switch
|
|
.parent => return .{
|
|
.name = block.type_name_ctx,
|
|
.nav = sema.owner.unwrap().nav_val.toOptional(),
|
|
},
|
|
.func => func_strat: {
|
|
const fn_info = sema.code.getFnInfo(ip.funcZirBodyInst(sema.func_index).resolve(ip) orelse return error.AnalysisFail);
|
|
const zir_tags = sema.code.instructions.items(.tag);
|
|
|
|
var aw: std.Io.Writer.Allocating = .init(gpa);
|
|
defer aw.deinit();
|
|
const w = &aw.writer;
|
|
w.print("{f}(", .{block.type_name_ctx.fmt(ip)}) catch return error.OutOfMemory;
|
|
|
|
var arg_i: usize = 0;
|
|
for (fn_info.param_body) |zir_inst| switch (zir_tags[@intFromEnum(zir_inst)]) {
|
|
.param, .param_comptime, .param_anytype, .param_anytype_comptime => {
|
|
const arg = sema.inst_map.get(zir_inst).?;
|
|
// If this is being called in a generic function then analyzeCall will
|
|
// have already resolved the args and this will work.
|
|
// If not then this is a struct type being returned from a non-generic
|
|
// function and the name doesn't matter since it will later
|
|
// result in a compile error.
|
|
const arg_val = try sema.resolveValue(arg) orelse break :func_strat; // fall through to anon strat
|
|
|
|
if (arg_i != 0) w.writeByte(',') catch return error.OutOfMemory;
|
|
|
|
// Limiting the depth here helps avoid type names getting too long, which
|
|
// in turn helps to avoid unreasonably long symbol names for namespaced
|
|
// symbols. Such names should ideally be human-readable, and additionally,
|
|
// some tooling may not support very long symbol names.
|
|
w.print("{f}", .{Value.fmtValueSemaFull(.{
|
|
.val = arg_val,
|
|
.pt = pt,
|
|
.opt_sema = sema,
|
|
.depth = 1,
|
|
})}) catch return error.OutOfMemory;
|
|
|
|
arg_i += 1;
|
|
continue;
|
|
},
|
|
else => continue,
|
|
};
|
|
|
|
w.writeByte(')') catch return error.OutOfMemory;
|
|
return .{
|
|
.name = try ip.getOrPutString(gpa, pt.tid, aw.written(), .no_embedded_nulls),
|
|
.nav = .none,
|
|
};
|
|
},
|
|
.dbg_var => {
|
|
// TODO: this logic is questionable. We ideally should be traversing the `Block` rather than relying on the order of AstGen instructions.
|
|
const ref = inst.?.toRef();
|
|
const zir_tags = sema.code.instructions.items(.tag);
|
|
const zir_data = sema.code.instructions.items(.data);
|
|
for (@intFromEnum(inst.?)..zir_tags.len) |i| switch (zir_tags[i]) {
|
|
.dbg_var_ptr, .dbg_var_val => if (zir_data[i].str_op.operand == ref) {
|
|
return .{
|
|
.name = try ip.getOrPutStringFmt(gpa, pt.tid, "{f}.{s}", .{
|
|
block.type_name_ctx.fmt(ip), zir_data[i].str_op.getStr(sema.code),
|
|
}, .no_embedded_nulls),
|
|
.nav = .none,
|
|
};
|
|
},
|
|
else => {},
|
|
};
|
|
// fall through to anon strat
|
|
},
|
|
}
|
|
|
|
// anon strat handling
|
|
|
|
// It would be neat to have "struct:line:column" but this name has
|
|
// to survive incremental updates, where it may have been shifted down
|
|
// or up to a different line, but unchanged, and thus not unnecessarily
|
|
// semantically analyzed.
|
|
// TODO: that would be possible, by detecting line number changes and renaming
|
|
// types appropriately. However, `@typeName` becomes a problem then. If we remove
|
|
// that builtin from the language, we can consider this.
|
|
|
|
return .{
|
|
.name = try ip.getOrPutStringFmt(gpa, pt.tid, "{f}__{s}_{d}", .{
|
|
block.type_name_ctx.fmt(ip), anon_prefix, @intFromEnum(type_index),
|
|
}, .no_embedded_nulls),
|
|
.nav = .none,
|
|
};
|
|
}
|
|
|
|
fn zirEnumDecl(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const small: Zir.Inst.EnumDecl.Small = @bitCast(extended.small);
|
|
const extra = sema.code.extraData(Zir.Inst.EnumDecl, extended.operand);
|
|
var extra_index: usize = extra.end;
|
|
|
|
const tracked_inst = try block.trackZir(inst);
|
|
const src: LazySrcLoc = .{ .base_node_inst = tracked_inst, .offset = LazySrcLoc.Offset.nodeOffset(.zero) };
|
|
|
|
const tag_type_ref = if (small.has_tag_type) blk: {
|
|
const tag_type_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk tag_type_ref;
|
|
} else .none;
|
|
|
|
const captures_len = if (small.has_captures_len) blk: {
|
|
const captures_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk captures_len;
|
|
} else 0;
|
|
|
|
const body_len = if (small.has_body_len) blk: {
|
|
const body_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk body_len;
|
|
} else 0;
|
|
|
|
const fields_len = if (small.has_fields_len) blk: {
|
|
const fields_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk fields_len;
|
|
} else 0;
|
|
|
|
const decls_len = if (small.has_decls_len) blk: {
|
|
const decls_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk decls_len;
|
|
} else 0;
|
|
|
|
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
|
|
extra_index += captures_len * 2;
|
|
|
|
const decls = sema.code.bodySlice(extra_index, decls_len);
|
|
extra_index += decls_len;
|
|
|
|
const body = sema.code.bodySlice(extra_index, body_len);
|
|
extra_index += body.len;
|
|
|
|
const bit_bags_count = std.math.divCeil(usize, fields_len, 32) catch unreachable;
|
|
const body_end = extra_index;
|
|
extra_index += bit_bags_count;
|
|
|
|
const any_values = for (sema.code.extra[body_end..][0..bit_bags_count]) |bag| {
|
|
if (bag != 0) break true;
|
|
} else false;
|
|
|
|
const enum_init: InternPool.EnumTypeInit = .{
|
|
.has_values = any_values,
|
|
.tag_mode = if (small.nonexhaustive)
|
|
.nonexhaustive
|
|
else if (tag_type_ref == .none)
|
|
.auto
|
|
else
|
|
.explicit,
|
|
.fields_len = fields_len,
|
|
.key = .{ .declared = .{
|
|
.zir_index = tracked_inst,
|
|
.captures = captures,
|
|
} },
|
|
};
|
|
const wip_ty = switch (try ip.getEnumType(gpa, pt.tid, enum_init, false)) {
|
|
.existing => |ty| {
|
|
const new_ty = try pt.ensureTypeUpToDate(ty);
|
|
|
|
// Make sure we update the namespace if the declaration is re-analyzed, to pick
|
|
// up on e.g. changed comptime decls.
|
|
try pt.ensureNamespaceUpToDate(Type.fromInterned(new_ty).getNamespaceIndex(zcu));
|
|
|
|
try sema.declareDependency(.{ .interned = new_ty });
|
|
try sema.addTypeReferenceEntry(src, new_ty);
|
|
|
|
// Since this is an enum, it has to be resolved immediately.
|
|
// `ensureTypeUpToDate` has resolved the new type if necessary.
|
|
// We just need to check for resolution failures.
|
|
const ty_unit: AnalUnit = .wrap(.{ .type = new_ty });
|
|
if (zcu.failed_analysis.contains(ty_unit) or zcu.transitive_failed_analysis.contains(ty_unit)) {
|
|
return error.AnalysisFail;
|
|
}
|
|
|
|
return Air.internedToRef(new_ty);
|
|
},
|
|
.wip => |wip| wip,
|
|
};
|
|
|
|
// Once this is `true`, we will not delete the decl or type even upon failure, since we
|
|
// have finished constructing the type and are in the process of analyzing it.
|
|
var done = false;
|
|
|
|
errdefer if (!done) wip_ty.cancel(ip, pt.tid);
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
small.name_strategy,
|
|
"enum",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const new_namespace_index: InternPool.NamespaceIndex = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
errdefer if (!done) pt.destroyNamespace(new_namespace_index);
|
|
|
|
try pt.scanNamespace(new_namespace_index, decls);
|
|
|
|
try sema.declareDependency(.{ .interned = wip_ty.index });
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
|
|
// We've finished the initial construction of this type, and are about to perform analysis.
|
|
// Set the namespace appropriately, and don't destroy anything on failure.
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
wip_ty.prepare(ip, new_namespace_index);
|
|
done = true;
|
|
|
|
{
|
|
const tracked_unit = zcu.trackUnitSema(type_name.name.toSlice(ip), null);
|
|
defer tracked_unit.end(zcu);
|
|
try Sema.resolveDeclaredEnum(
|
|
pt,
|
|
wip_ty,
|
|
inst,
|
|
tracked_inst,
|
|
new_namespace_index,
|
|
type_name.name,
|
|
small,
|
|
body,
|
|
tag_type_ref,
|
|
any_values,
|
|
fields_len,
|
|
sema.code,
|
|
body_end,
|
|
);
|
|
}
|
|
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
// This job depends on any resolve_type_fully jobs queued up before it.
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
|
|
}
|
|
return Air.internedToRef(wip_ty.index);
|
|
}
|
|
|
|
fn zirUnionDecl(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const small: Zir.Inst.UnionDecl.Small = @bitCast(extended.small);
|
|
const extra = sema.code.extraData(Zir.Inst.UnionDecl, extended.operand);
|
|
var extra_index: usize = extra.end;
|
|
|
|
const tracked_inst = try block.trackZir(inst);
|
|
const src: LazySrcLoc = .{ .base_node_inst = tracked_inst, .offset = LazySrcLoc.Offset.nodeOffset(.zero) };
|
|
|
|
extra_index += @intFromBool(small.has_tag_type);
|
|
const captures_len = if (small.has_captures_len) blk: {
|
|
const captures_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk captures_len;
|
|
} else 0;
|
|
extra_index += @intFromBool(small.has_body_len);
|
|
const fields_len = if (small.has_fields_len) blk: {
|
|
const fields_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk fields_len;
|
|
} else 0;
|
|
|
|
const decls_len = if (small.has_decls_len) blk: {
|
|
const decls_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk decls_len;
|
|
} else 0;
|
|
|
|
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
|
|
extra_index += captures_len * 2;
|
|
|
|
const union_init: InternPool.UnionTypeInit = .{
|
|
.flags = .{
|
|
.layout = small.layout,
|
|
.status = .none,
|
|
.runtime_tag = if (small.has_tag_type or small.auto_enum_tag)
|
|
.tagged
|
|
else if (small.layout != .auto)
|
|
.none
|
|
else switch (block.wantSafeTypes()) {
|
|
true => .safety,
|
|
false => .none,
|
|
},
|
|
.any_aligned_fields = small.any_aligned_fields,
|
|
.requires_comptime = .unknown,
|
|
.assumed_runtime_bits = false,
|
|
.assumed_pointer_aligned = false,
|
|
.alignment = .none,
|
|
},
|
|
.fields_len = fields_len,
|
|
.enum_tag_ty = .none, // set later
|
|
.field_types = &.{}, // set later
|
|
.field_aligns = &.{}, // set later
|
|
.key = .{ .declared = .{
|
|
.zir_index = tracked_inst,
|
|
.captures = captures,
|
|
} },
|
|
};
|
|
const wip_ty = switch (try ip.getUnionType(gpa, pt.tid, union_init, false)) {
|
|
.existing => |ty| {
|
|
const new_ty = try pt.ensureTypeUpToDate(ty);
|
|
|
|
// Make sure we update the namespace if the declaration is re-analyzed, to pick
|
|
// up on e.g. changed comptime decls.
|
|
try pt.ensureNamespaceUpToDate(Type.fromInterned(new_ty).getNamespaceIndex(zcu));
|
|
|
|
try sema.declareDependency(.{ .interned = new_ty });
|
|
try sema.addTypeReferenceEntry(src, new_ty);
|
|
return Air.internedToRef(new_ty);
|
|
},
|
|
.wip => |wip| wip,
|
|
};
|
|
errdefer wip_ty.cancel(ip, pt.tid);
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
small.name_strategy,
|
|
"union",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const new_namespace_index: InternPool.NamespaceIndex = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
errdefer pt.destroyNamespace(new_namespace_index);
|
|
|
|
if (pt.zcu.comp.config.incremental) {
|
|
try pt.addDependency(.wrap(.{ .type = wip_ty.index }), .{ .src_hash = tracked_inst });
|
|
}
|
|
|
|
const decls = sema.code.bodySlice(extra_index, decls_len);
|
|
try pt.scanNamespace(new_namespace_index, decls);
|
|
|
|
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
// This job depends on any resolve_type_fully jobs queued up before it.
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
|
|
}
|
|
try sema.declareDependency(.{ .interned = wip_ty.index });
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
return Air.internedToRef(wip_ty.finish(ip, new_namespace_index));
|
|
}
|
|
|
|
fn zirOpaqueDecl(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const small: Zir.Inst.OpaqueDecl.Small = @bitCast(extended.small);
|
|
const extra = sema.code.extraData(Zir.Inst.OpaqueDecl, extended.operand);
|
|
var extra_index: usize = extra.end;
|
|
|
|
const tracked_inst = try block.trackZir(inst);
|
|
const src: LazySrcLoc = .{ .base_node_inst = tracked_inst, .offset = LazySrcLoc.Offset.nodeOffset(.zero) };
|
|
|
|
const captures_len = if (small.has_captures_len) blk: {
|
|
const captures_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk captures_len;
|
|
} else 0;
|
|
|
|
const decls_len = if (small.has_decls_len) blk: {
|
|
const decls_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk decls_len;
|
|
} else 0;
|
|
|
|
const captures = try sema.getCaptures(block, src, extra_index, captures_len);
|
|
extra_index += captures_len * 2;
|
|
|
|
const opaque_init: InternPool.OpaqueTypeInit = .{
|
|
.key = .{ .declared = .{
|
|
.zir_index = tracked_inst,
|
|
.captures = captures,
|
|
} },
|
|
};
|
|
const wip_ty = switch (try ip.getOpaqueType(gpa, pt.tid, opaque_init)) {
|
|
.existing => |ty| {
|
|
// Make sure we update the namespace if the declaration is re-analyzed, to pick
|
|
// up on e.g. changed comptime decls.
|
|
try pt.ensureNamespaceUpToDate(Type.fromInterned(ty).getNamespaceIndex(zcu));
|
|
|
|
try sema.declareDependency(.{ .interned = ty });
|
|
try sema.addTypeReferenceEntry(src, ty);
|
|
return Air.internedToRef(ty);
|
|
},
|
|
.wip => |wip| wip,
|
|
};
|
|
errdefer wip_ty.cancel(ip, pt.tid);
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
small.name_strategy,
|
|
"opaque",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const new_namespace_index: InternPool.NamespaceIndex = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
errdefer pt.destroyNamespace(new_namespace_index);
|
|
|
|
const decls = sema.code.bodySlice(extra_index, decls_len);
|
|
try pt.scanNamespace(new_namespace_index, decls);
|
|
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
// This job depends on any resolve_type_fully jobs queued up before it.
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
|
|
}
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
return Air.internedToRef(wip_ty.finish(ip, new_namespace_index));
|
|
}
|
|
|
|
fn zirErrorSetDecl(
|
|
sema: *Sema,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.ErrorSetDecl, inst_data.payload_index);
|
|
|
|
var names: InferredErrorSet.NameMap = .{};
|
|
try names.ensureUnusedCapacity(sema.arena, extra.data.fields_len);
|
|
|
|
var extra_index: u32 = @intCast(extra.end);
|
|
const extra_index_end = extra_index + extra.data.fields_len;
|
|
while (extra_index < extra_index_end) : (extra_index += 1) {
|
|
const name_index: Zir.NullTerminatedString = @enumFromInt(sema.code.extra[extra_index]);
|
|
const name = sema.code.nullTerminatedString(name_index);
|
|
const name_ip = try zcu.intern_pool.getOrPutString(gpa, pt.tid, name, .no_embedded_nulls);
|
|
_ = try pt.getErrorValue(name_ip);
|
|
const result = names.getOrPutAssumeCapacity(name_ip);
|
|
assert(!result.found_existing); // verified in AstGen
|
|
}
|
|
|
|
return Air.internedToRef((try pt.errorSetFromUnsortedNames(names.keys())).toIntern());
|
|
}
|
|
|
|
fn zirRetPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
|
|
const src = block.nodeOffset(sema.code.instructions.items(.data)[@intFromEnum(inst)].node);
|
|
|
|
if (block.isComptime() or try sema.fn_ret_ty.comptimeOnlySema(pt)) {
|
|
try sema.fn_ret_ty.resolveFields(pt);
|
|
return sema.analyzeComptimeAlloc(block, src, sema.fn_ret_ty, .none);
|
|
}
|
|
|
|
const target = pt.zcu.getTarget();
|
|
const ptr_type = try pt.ptrTypeSema(.{
|
|
.child = sema.fn_ret_ty.toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
|
|
if (block.inlining != null) {
|
|
// We are inlining a function call; this should be emitted as an alloc, not a ret_ptr.
|
|
// TODO when functions gain result location support, the inlining struct in
|
|
// Block should contain the return pointer, and we would pass that through here.
|
|
return block.addTy(.alloc, ptr_type);
|
|
}
|
|
|
|
return block.addTy(.ret_ptr, ptr_type);
|
|
}
|
|
|
|
fn zirRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_tok;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
return sema.analyzeRef(block, block.tokenOffset(inst_data.src_tok), operand);
|
|
}
|
|
|
|
fn zirEnsureResultUsed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
return sema.ensureResultUsed(block, sema.typeOf(operand), src);
|
|
}
|
|
|
|
fn ensureResultUsed(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ty: Type,
|
|
src: LazySrcLoc,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.void, .noreturn => return,
|
|
.error_set => return sema.fail(block, src, "error set is ignored", .{}),
|
|
.error_union => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "error union is ignored", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
else => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "value of type '{f}' ignored", .{ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "all non-void values must be used", .{});
|
|
try sema.errNote(src, msg, "to discard the value, assign it to '_'", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn zirEnsureResultNonError(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_ty = sema.typeOf(operand);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.error_set => return sema.fail(block, src, "error set is discarded", .{}),
|
|
.error_union => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "error union is discarded", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
else => return,
|
|
}
|
|
}
|
|
|
|
fn zirEnsureErrUnionPayloadVoid(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const err_union_ty = if (operand_ty.zigTypeTag(zcu) == .pointer)
|
|
operand_ty.childType(zcu)
|
|
else
|
|
operand_ty;
|
|
if (err_union_ty.zigTypeTag(zcu) != .error_union) return;
|
|
const payload_ty = err_union_ty.errorUnionPayload(zcu).zigTypeTag(zcu);
|
|
if (payload_ty != .void and payload_ty != .noreturn) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "error union payload is ignored", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "payload value can be explicitly ignored with '|_|'", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
fn zirIndexablePtrLen(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const object = try sema.resolveInst(inst_data.operand);
|
|
|
|
return indexablePtrLen(sema, block, src, object);
|
|
}
|
|
|
|
fn indexablePtrLen(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
object: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const object_ty = sema.typeOf(object);
|
|
const is_pointer_to = object_ty.isSinglePointer(zcu);
|
|
const indexable_ty = if (is_pointer_to) object_ty.childType(zcu) else object_ty;
|
|
try sema.checkIndexable(block, src, indexable_ty);
|
|
const field_name = try zcu.intern_pool.getOrPutString(sema.gpa, pt.tid, "len", .no_embedded_nulls);
|
|
return sema.fieldVal(block, src, object, field_name, src);
|
|
}
|
|
|
|
fn indexablePtrLenOrNone(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
try checkMemOperand(sema, block, src, operand_ty);
|
|
switch (operand_ty.ptrSize(zcu)) {
|
|
.many, .c => return .none,
|
|
.one, .slice => {},
|
|
}
|
|
const field_name = try zcu.intern_pool.getOrPutString(sema.gpa, pt.tid, "len", .no_embedded_nulls);
|
|
return sema.fieldVal(block, src, operand, field_name, src);
|
|
}
|
|
|
|
fn zirAllocExtended(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const gpa = sema.gpa;
|
|
const extra = sema.code.extraData(Zir.Inst.AllocExtended, extended.operand);
|
|
const var_src = block.nodeOffset(extra.data.src_node);
|
|
const ty_src = block.src(.{ .node_offset_var_decl_ty = extra.data.src_node });
|
|
const align_src = block.src(.{ .node_offset_var_decl_align = extra.data.src_node });
|
|
const small: Zir.Inst.AllocExtended.Small = @bitCast(extended.small);
|
|
|
|
var extra_index: usize = extra.end;
|
|
|
|
const var_ty: Type = if (small.has_type) blk: {
|
|
const type_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk try sema.resolveType(block, ty_src, type_ref);
|
|
} else undefined;
|
|
|
|
const alignment = if (small.has_align) blk: {
|
|
const align_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk try sema.resolveAlign(block, align_src, align_ref);
|
|
} else .none;
|
|
|
|
if (block.isComptime() or small.is_comptime) {
|
|
if (small.has_type) {
|
|
return sema.analyzeComptimeAlloc(block, var_src, var_ty, alignment);
|
|
} else {
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .inferred_alloc_comptime,
|
|
.data = .{ .inferred_alloc_comptime = .{
|
|
.alignment = alignment,
|
|
.is_const = small.is_const,
|
|
.ptr = undefined,
|
|
} },
|
|
});
|
|
return @as(Air.Inst.Index, @enumFromInt(sema.air_instructions.len - 1)).toRef();
|
|
}
|
|
}
|
|
|
|
if (small.has_type and try var_ty.comptimeOnlySema(pt)) {
|
|
return sema.analyzeComptimeAlloc(block, var_src, var_ty, alignment);
|
|
}
|
|
|
|
if (small.has_type) {
|
|
if (!small.is_const) {
|
|
try sema.validateVarType(block, ty_src, var_ty, false);
|
|
}
|
|
const target = pt.zcu.getTarget();
|
|
try var_ty.resolveLayout(pt);
|
|
if (sema.func_is_naked and try var_ty.hasRuntimeBitsSema(pt)) {
|
|
const store_src = block.src(.{ .node_offset_store_ptr = extra.data.src_node });
|
|
return sema.fail(block, store_src, "local variable in naked function", .{});
|
|
}
|
|
const ptr_type = try sema.pt.ptrTypeSema(.{
|
|
.child = var_ty.toIntern(),
|
|
.flags = .{
|
|
.alignment = alignment,
|
|
.address_space = target_util.defaultAddressSpace(target, .local),
|
|
},
|
|
});
|
|
const ptr = try block.addTy(.alloc, ptr_type);
|
|
if (small.is_const) {
|
|
const ptr_inst = ptr.toIndex().?;
|
|
try sema.maybe_comptime_allocs.put(gpa, ptr_inst, .{ .runtime_index = block.runtime_index });
|
|
try sema.base_allocs.put(gpa, ptr_inst, ptr_inst);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
const result_index = try block.addInstAsIndex(.{
|
|
.tag = .inferred_alloc,
|
|
.data = .{ .inferred_alloc = .{
|
|
.alignment = alignment,
|
|
.is_const = small.is_const,
|
|
} },
|
|
});
|
|
try sema.unresolved_inferred_allocs.putNoClobber(gpa, result_index, .{});
|
|
if (small.is_const) {
|
|
try sema.maybe_comptime_allocs.put(gpa, result_index, .{ .runtime_index = block.runtime_index });
|
|
try sema.base_allocs.put(gpa, result_index, result_index);
|
|
}
|
|
return result_index.toRef();
|
|
}
|
|
|
|
fn zirAllocComptime(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const ty_src = block.src(.{ .node_offset_var_decl_ty = inst_data.src_node });
|
|
const var_src = block.nodeOffset(inst_data.src_node);
|
|
const var_ty = try sema.resolveType(block, ty_src, inst_data.operand);
|
|
return sema.analyzeComptimeAlloc(block, var_src, var_ty, .none);
|
|
}
|
|
|
|
fn zirMakePtrConst(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const alloc = try sema.resolveInst(inst_data.operand);
|
|
const alloc_ty = sema.typeOf(alloc);
|
|
const ptr_info = alloc_ty.ptrInfo(zcu);
|
|
const elem_ty: Type = .fromInterned(ptr_info.child);
|
|
|
|
// If the alloc was created in a comptime scope, we already created a comptime alloc for it.
|
|
// However, if the final constructed value does not reference comptime-mutable memory, we wish
|
|
// to promote it to an anon decl.
|
|
already_ct: {
|
|
const ptr_val = try sema.resolveValue(alloc) orelse break :already_ct;
|
|
|
|
// If this was a comptime inferred alloc, then `storeToInferredAllocComptime`
|
|
// might have already done our job and created an anon decl ref.
|
|
switch (zcu.intern_pool.indexToKey(ptr_val.toIntern())) {
|
|
.ptr => |ptr| switch (ptr.base_addr) {
|
|
.uav => {
|
|
// The comptime-ification was already done for us.
|
|
// Just make sure the pointer is const.
|
|
return sema.makePtrConst(block, alloc);
|
|
},
|
|
else => {},
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
if (!sema.isComptimeMutablePtr(ptr_val)) break :already_ct;
|
|
const ptr = zcu.intern_pool.indexToKey(ptr_val.toIntern()).ptr;
|
|
assert(ptr.byte_offset == 0);
|
|
const alloc_index = ptr.base_addr.comptime_alloc;
|
|
const ct_alloc = sema.getComptimeAlloc(alloc_index);
|
|
const interned = try ct_alloc.val.intern(pt, sema.arena);
|
|
if (interned.canMutateComptimeVarState(zcu)) {
|
|
// Preserve the comptime alloc, just make the pointer const.
|
|
ct_alloc.val = .{ .interned = interned.toIntern() };
|
|
ct_alloc.is_const = true;
|
|
return sema.makePtrConst(block, alloc);
|
|
} else {
|
|
// Promote the constant to an anon decl.
|
|
const new_mut_ptr = Air.internedToRef(try pt.intern(.{ .ptr = .{
|
|
.ty = alloc_ty.toIntern(),
|
|
.base_addr = .{ .uav = .{
|
|
.val = interned.toIntern(),
|
|
.orig_ty = alloc_ty.toIntern(),
|
|
} },
|
|
.byte_offset = 0,
|
|
} }));
|
|
return sema.makePtrConst(block, new_mut_ptr);
|
|
}
|
|
}
|
|
|
|
// Otherwise, check if the alloc is comptime-known despite being in a runtime scope.
|
|
if (try sema.resolveComptimeKnownAllocPtr(block, alloc, null)) |ptr_val| {
|
|
return sema.makePtrConst(block, Air.internedToRef(ptr_val));
|
|
}
|
|
|
|
if (try elem_ty.comptimeOnlySema(pt)) {
|
|
// The value was initialized through RLS, so we didn't detect the runtime condition earlier.
|
|
// TODO: source location of runtime control flow
|
|
const init_src = block.src(.{ .node_offset_var_decl_init = inst_data.src_node });
|
|
return sema.fail(block, init_src, "value with comptime-only type '{f}' depends on runtime control flow", .{elem_ty.fmt(pt)});
|
|
}
|
|
|
|
// This is a runtime value.
|
|
return sema.makePtrConst(block, alloc);
|
|
}
|
|
|
|
/// If `alloc` is an inferred allocation, `resolved_inferred_ty` is taken to be its resolved
|
|
/// type. Otherwise, it may be `null`, and the type will be inferred from `alloc`.
|
|
fn resolveComptimeKnownAllocPtr(sema: *Sema, block: *Block, alloc: Air.Inst.Ref, resolved_alloc_ty: ?Type) CompileError!?InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const alloc_ty = resolved_alloc_ty orelse sema.typeOf(alloc);
|
|
const ptr_info = alloc_ty.ptrInfo(zcu);
|
|
const elem_ty: Type = .fromInterned(ptr_info.child);
|
|
|
|
const alloc_inst = alloc.toIndex() orelse return null;
|
|
const comptime_info = sema.maybe_comptime_allocs.fetchRemove(alloc_inst) orelse return null;
|
|
const stores = comptime_info.value.stores.items(.inst);
|
|
|
|
// Since the entry existed in `maybe_comptime_allocs`, the allocation is comptime-known.
|
|
// We will resolve and return its value.
|
|
|
|
// We expect to have emitted at least one store, unless the elem type is OPV.
|
|
if (stores.len == 0) {
|
|
const val = (try sema.typeHasOnePossibleValue(elem_ty)).?.toIntern();
|
|
return sema.finishResolveComptimeKnownAllocPtr(block, alloc_ty, val, null, alloc_inst, comptime_info.value);
|
|
}
|
|
|
|
// In general, we want to create a comptime alloc of the correct type and
|
|
// apply the stores to that alloc in order. However, before going to all
|
|
// that effort, let's optimize for the common case of a single store.
|
|
|
|
simple: {
|
|
if (stores.len != 1) break :simple;
|
|
const store_inst = sema.air_instructions.get(@intFromEnum(stores[0]));
|
|
switch (store_inst.tag) {
|
|
.store, .store_safe => {},
|
|
.set_union_tag, .optional_payload_ptr_set, .errunion_payload_ptr_set => break :simple, // there's OPV stuff going on!
|
|
else => unreachable,
|
|
}
|
|
if (store_inst.data.bin_op.lhs != alloc) break :simple;
|
|
|
|
const val = store_inst.data.bin_op.rhs.toInterned().?;
|
|
assert(zcu.intern_pool.typeOf(val) == elem_ty.toIntern());
|
|
return sema.finishResolveComptimeKnownAllocPtr(block, alloc_ty, val, null, alloc_inst, comptime_info.value);
|
|
}
|
|
|
|
// The simple strategy failed: we must create a mutable comptime alloc and
|
|
// perform all of the runtime store operations at comptime.
|
|
|
|
const ct_alloc = try sema.newComptimeAlloc(block, .unneeded, elem_ty, ptr_info.flags.alignment);
|
|
|
|
const alloc_ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = alloc_ty.toIntern(),
|
|
.base_addr = .{ .comptime_alloc = ct_alloc },
|
|
.byte_offset = 0,
|
|
} });
|
|
|
|
// Maps from pointers into the runtime allocs, to comptime-mutable pointers into the comptime alloc
|
|
var ptr_mapping = std.AutoHashMap(Air.Inst.Index, InternPool.Index).init(sema.arena);
|
|
try ptr_mapping.ensureTotalCapacity(@intCast(stores.len));
|
|
ptr_mapping.putAssumeCapacity(alloc_inst, alloc_ptr);
|
|
|
|
// Whilst constructing our mapping, we will also initialize optional and error union payloads when
|
|
// we encounter the corresponding pointers. For this reason, the ordering of `to_map` matters.
|
|
var to_map = try std.array_list.Managed(Air.Inst.Index).initCapacity(sema.arena, stores.len);
|
|
|
|
for (stores) |store_inst_idx| {
|
|
const store_inst = sema.air_instructions.get(@intFromEnum(store_inst_idx));
|
|
const ptr_to_map = switch (store_inst.tag) {
|
|
.store, .store_safe => store_inst.data.bin_op.lhs.toIndex().?, // Map the pointer being stored to.
|
|
.set_union_tag => store_inst.data.bin_op.lhs.toIndex().?, // Map the union pointer.
|
|
.optional_payload_ptr_set, .errunion_payload_ptr_set => store_inst_idx, // Map the generated pointer itself.
|
|
else => unreachable,
|
|
};
|
|
to_map.appendAssumeCapacity(ptr_to_map);
|
|
}
|
|
|
|
const tmp_air = sema.getTmpAir();
|
|
|
|
while (to_map.pop()) |air_ptr| {
|
|
if (ptr_mapping.contains(air_ptr)) continue;
|
|
const PointerMethod = union(enum) {
|
|
same_addr,
|
|
opt_payload,
|
|
eu_payload,
|
|
field: u32,
|
|
elem: u64,
|
|
};
|
|
const inst_tag = tmp_air.instructions.items(.tag)[@intFromEnum(air_ptr)];
|
|
const air_parent_ptr: Air.Inst.Ref, const method: PointerMethod = switch (inst_tag) {
|
|
.struct_field_ptr => blk: {
|
|
const data = tmp_air.extraData(
|
|
Air.StructField,
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_pl.payload,
|
|
).data;
|
|
break :blk .{
|
|
data.struct_operand,
|
|
.{ .field = data.field_index },
|
|
};
|
|
},
|
|
.struct_field_ptr_index_0,
|
|
.struct_field_ptr_index_1,
|
|
.struct_field_ptr_index_2,
|
|
.struct_field_ptr_index_3,
|
|
=> .{
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
|
|
.{ .field = switch (inst_tag) {
|
|
.struct_field_ptr_index_0 => 0,
|
|
.struct_field_ptr_index_1 => 1,
|
|
.struct_field_ptr_index_2 => 2,
|
|
.struct_field_ptr_index_3 => 3,
|
|
else => unreachable,
|
|
} },
|
|
},
|
|
.ptr_slice_ptr_ptr => .{
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
|
|
.{ .field = Value.slice_ptr_index },
|
|
},
|
|
.ptr_slice_len_ptr => .{
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
|
|
.{ .field = Value.slice_len_index },
|
|
},
|
|
.ptr_elem_ptr => blk: {
|
|
const data = tmp_air.extraData(
|
|
Air.Bin,
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_pl.payload,
|
|
).data;
|
|
const idx_val = (try sema.resolveValue(data.rhs)).?;
|
|
break :blk .{
|
|
data.lhs,
|
|
.{ .elem = try idx_val.toUnsignedIntSema(pt) },
|
|
};
|
|
},
|
|
.bitcast => .{
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
|
|
.same_addr,
|
|
},
|
|
.optional_payload_ptr_set => .{
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
|
|
.opt_payload,
|
|
},
|
|
.errunion_payload_ptr_set => .{
|
|
tmp_air.instructions.items(.data)[@intFromEnum(air_ptr)].ty_op.operand,
|
|
.eu_payload,
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
const decl_parent_ptr = ptr_mapping.get(air_parent_ptr.toIndex().?) orelse {
|
|
// Resolve the parent pointer first.
|
|
// Note that we add in what seems like the wrong order, because we're popping from the end of this array.
|
|
try to_map.appendSlice(&.{ air_ptr, air_parent_ptr.toIndex().? });
|
|
continue;
|
|
};
|
|
const new_ptr_ty = tmp_air.typeOfIndex(air_ptr, &zcu.intern_pool).toIntern();
|
|
const new_ptr = switch (method) {
|
|
.same_addr => try zcu.intern_pool.getCoerced(sema.gpa, pt.tid, decl_parent_ptr, new_ptr_ty),
|
|
.opt_payload => ptr: {
|
|
// Set the optional to non-null at comptime.
|
|
// If the payload is OPV, we must use that value instead of undef.
|
|
const opt_ty = Value.fromInterned(decl_parent_ptr).typeOf(zcu).childType(zcu);
|
|
const payload_ty = opt_ty.optionalChild(zcu);
|
|
const payload_val = try sema.typeHasOnePossibleValue(payload_ty) orelse try pt.undefValue(payload_ty);
|
|
const opt_val = try pt.intern(.{ .opt = .{
|
|
.ty = opt_ty.toIntern(),
|
|
.val = payload_val.toIntern(),
|
|
} });
|
|
try sema.storePtrVal(block, LazySrcLoc.unneeded, Value.fromInterned(decl_parent_ptr), Value.fromInterned(opt_val), opt_ty);
|
|
break :ptr (try Value.fromInterned(decl_parent_ptr).ptrOptPayload(pt)).toIntern();
|
|
},
|
|
.eu_payload => ptr: {
|
|
// Set the error union to non-error at comptime.
|
|
// If the payload is OPV, we must use that value instead of undef.
|
|
const eu_ty = Value.fromInterned(decl_parent_ptr).typeOf(zcu).childType(zcu);
|
|
const payload_ty = eu_ty.errorUnionPayload(zcu);
|
|
const payload_val = try sema.typeHasOnePossibleValue(payload_ty) orelse try pt.undefValue(payload_ty);
|
|
const eu_val = try pt.intern(.{ .error_union = .{
|
|
.ty = eu_ty.toIntern(),
|
|
.val = .{ .payload = payload_val.toIntern() },
|
|
} });
|
|
try sema.storePtrVal(block, LazySrcLoc.unneeded, Value.fromInterned(decl_parent_ptr), Value.fromInterned(eu_val), eu_ty);
|
|
break :ptr (try Value.fromInterned(decl_parent_ptr).ptrEuPayload(pt)).toIntern();
|
|
},
|
|
.field => |idx| ptr: {
|
|
const maybe_union_ty = Value.fromInterned(decl_parent_ptr).typeOf(zcu).childType(zcu);
|
|
if (zcu.typeToUnion(maybe_union_ty)) |union_obj| {
|
|
// As this is a union field, we must store to the pointer now to set the tag.
|
|
// The payload value will be stored later, so undef is a sufficent payload for now.
|
|
const payload_ty: Type = .fromInterned(union_obj.field_types.get(&zcu.intern_pool)[idx]);
|
|
const payload_val = try pt.undefValue(payload_ty);
|
|
const tag_val = try pt.enumValueFieldIndex(.fromInterned(union_obj.enum_tag_ty), idx);
|
|
const store_val = try pt.unionValue(maybe_union_ty, tag_val, payload_val);
|
|
try sema.storePtrVal(block, .unneeded, .fromInterned(decl_parent_ptr), store_val, maybe_union_ty);
|
|
}
|
|
break :ptr (try Value.fromInterned(decl_parent_ptr).ptrField(idx, pt)).toIntern();
|
|
},
|
|
.elem => |idx| (try Value.fromInterned(decl_parent_ptr).ptrElem(idx, pt)).toIntern(),
|
|
};
|
|
try ptr_mapping.put(air_ptr, new_ptr);
|
|
}
|
|
|
|
// We have a correlation between AIR pointers and decl pointers. Perform all stores at comptime.
|
|
// Any implicit stores performed by `optional_payload_ptr_set` or `errunion_payload_ptr_set`
|
|
// instructions were already done above.
|
|
|
|
for (stores) |store_inst_idx| {
|
|
const store_inst = sema.air_instructions.get(@intFromEnum(store_inst_idx));
|
|
switch (store_inst.tag) {
|
|
.optional_payload_ptr_set, .errunion_payload_ptr_set => {}, // Handled explicitly above
|
|
.set_union_tag => {
|
|
// Usually, we can ignore these, because the creation of the field pointer above
|
|
// already did it for us. However, if the field is OPV, this is relevant, because
|
|
// there is not going to be a store to the field. So we must initialize the union
|
|
// tag if the field is OPV.
|
|
const union_ptr_inst = store_inst.data.bin_op.lhs.toIndex().?;
|
|
const union_ptr_val: Value = .fromInterned(ptr_mapping.get(union_ptr_inst).?);
|
|
const tag_val: Value = .fromInterned(store_inst.data.bin_op.rhs.toInterned().?);
|
|
const union_ty = union_ptr_val.typeOf(zcu).childType(zcu);
|
|
const field_ty = union_ty.unionFieldType(tag_val, zcu).?;
|
|
if (try sema.typeHasOnePossibleValue(field_ty)) |payload_val| {
|
|
const new_union_val = try pt.unionValue(union_ty, tag_val, payload_val);
|
|
try sema.storePtrVal(block, .unneeded, union_ptr_val, new_union_val, union_ty);
|
|
}
|
|
},
|
|
.store, .store_safe => {
|
|
const air_ptr_inst = store_inst.data.bin_op.lhs.toIndex().?;
|
|
const store_val = (try sema.resolveValue(store_inst.data.bin_op.rhs)).?;
|
|
const new_ptr = ptr_mapping.get(air_ptr_inst).?;
|
|
try sema.storePtrVal(block, .unneeded, .fromInterned(new_ptr), store_val, store_val.typeOf(zcu));
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
// The value is finalized - load it!
|
|
const val = (try sema.pointerDeref(block, LazySrcLoc.unneeded, Value.fromInterned(alloc_ptr), alloc_ty)).?.toIntern();
|
|
return sema.finishResolveComptimeKnownAllocPtr(block, alloc_ty, val, ct_alloc, alloc_inst, comptime_info.value);
|
|
}
|
|
|
|
/// Given the resolved comptime-known value, rewrites the dead AIR to not
|
|
/// create a runtime stack allocation. Also places the resulting value into
|
|
/// either an anon decl ref or a comptime alloc depending on whether it
|
|
/// references comptime-mutable memory. If `existing_comptime_alloc` is
|
|
/// passed, it is a scratch allocation which already contains `result_val`.
|
|
/// Same return type as `resolveComptimeKnownAllocPtr` so we can tail call.
|
|
fn finishResolveComptimeKnownAllocPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
alloc_ty: Type,
|
|
result_val: InternPool.Index,
|
|
existing_comptime_alloc: ?ComptimeAllocIndex,
|
|
alloc_inst: Air.Inst.Index,
|
|
comptime_info: MaybeComptimeAlloc,
|
|
) CompileError!?InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
// We're almost done - we have the resolved comptime value. We just need to
|
|
// eliminate the now-dead runtime instructions.
|
|
|
|
// This instruction has type `alloc_ty`, meaning we can rewrite the `alloc` AIR instruction to
|
|
// this one to drop the side effect. We also need to rewrite the stores; we'll turn them to this
|
|
// too because it doesn't really matter what they become.
|
|
const nop_inst: Air.Inst = .{ .tag = .bitcast, .data = .{ .ty_op = .{
|
|
.ty = .fromIntern(alloc_ty.toIntern()),
|
|
.operand = .zero_usize,
|
|
} } };
|
|
|
|
sema.air_instructions.set(@intFromEnum(alloc_inst), nop_inst);
|
|
for (comptime_info.stores.items(.inst)) |store_inst| {
|
|
sema.air_instructions.set(@intFromEnum(store_inst), nop_inst);
|
|
}
|
|
|
|
if (Value.fromInterned(result_val).canMutateComptimeVarState(zcu)) {
|
|
const alloc_index = existing_comptime_alloc orelse a: {
|
|
const idx = try sema.newComptimeAlloc(block, .unneeded, alloc_ty.childType(zcu), alloc_ty.ptrAlignment(zcu));
|
|
const alloc = sema.getComptimeAlloc(idx);
|
|
alloc.val = .{ .interned = result_val };
|
|
break :a idx;
|
|
};
|
|
sema.getComptimeAlloc(alloc_index).is_const = true;
|
|
return try pt.intern(.{ .ptr = .{
|
|
.ty = alloc_ty.toIntern(),
|
|
.base_addr = .{ .comptime_alloc = alloc_index },
|
|
.byte_offset = 0,
|
|
} });
|
|
} else {
|
|
return try pt.intern(.{ .ptr = .{
|
|
.ty = alloc_ty.toIntern(),
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = alloc_ty.toIntern(),
|
|
.val = result_val,
|
|
} },
|
|
.byte_offset = 0,
|
|
} });
|
|
}
|
|
}
|
|
|
|
fn makePtrTyConst(sema: *Sema, ptr_ty: Type) CompileError!Type {
|
|
var ptr_info = ptr_ty.ptrInfo(sema.pt.zcu);
|
|
ptr_info.flags.is_const = true;
|
|
return sema.pt.ptrTypeSema(ptr_info);
|
|
}
|
|
|
|
fn makePtrConst(sema: *Sema, block: *Block, alloc: Air.Inst.Ref) CompileError!Air.Inst.Ref {
|
|
const alloc_ty = sema.typeOf(alloc);
|
|
const const_ptr_ty = try sema.makePtrTyConst(alloc_ty);
|
|
|
|
// Detect if a comptime value simply needs to have its type changed.
|
|
if (try sema.resolveValue(alloc)) |val| {
|
|
return Air.internedToRef((try sema.pt.getCoerced(val, const_ptr_ty)).toIntern());
|
|
}
|
|
|
|
return block.addBitCast(const_ptr_ty, alloc);
|
|
}
|
|
|
|
fn zirAllocInferredComptime(
|
|
sema: *Sema,
|
|
is_const: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const gpa = sema.gpa;
|
|
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .inferred_alloc_comptime,
|
|
.data = .{ .inferred_alloc_comptime = .{
|
|
.alignment = .none,
|
|
.is_const = is_const,
|
|
.ptr = undefined,
|
|
} },
|
|
});
|
|
return @as(Air.Inst.Index, @enumFromInt(sema.air_instructions.len - 1)).toRef();
|
|
}
|
|
|
|
fn zirAlloc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const ty_src = block.src(.{ .node_offset_var_decl_ty = inst_data.src_node });
|
|
const var_src = block.nodeOffset(inst_data.src_node);
|
|
|
|
const var_ty = try sema.resolveType(block, ty_src, inst_data.operand);
|
|
if (block.isComptime() or try var_ty.comptimeOnlySema(pt)) {
|
|
return sema.analyzeComptimeAlloc(block, var_src, var_ty, .none);
|
|
}
|
|
if (sema.func_is_naked and try var_ty.hasRuntimeBitsSema(pt)) {
|
|
const mut_src = block.src(.{ .node_offset_store_ptr = inst_data.src_node });
|
|
return sema.fail(block, mut_src, "local variable in naked function", .{});
|
|
}
|
|
const target = pt.zcu.getTarget();
|
|
const ptr_type = try pt.ptrTypeSema(.{
|
|
.child = var_ty.toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const ptr = try block.addTy(.alloc, ptr_type);
|
|
const ptr_inst = ptr.toIndex().?;
|
|
try sema.maybe_comptime_allocs.put(sema.gpa, ptr_inst, .{ .runtime_index = block.runtime_index });
|
|
try sema.base_allocs.put(sema.gpa, ptr_inst, ptr_inst);
|
|
return ptr;
|
|
}
|
|
|
|
fn zirAllocMut(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const ty_src = block.src(.{ .node_offset_var_decl_ty = inst_data.src_node });
|
|
const var_src = block.nodeOffset(inst_data.src_node);
|
|
const var_ty = try sema.resolveType(block, ty_src, inst_data.operand);
|
|
if (block.isComptime()) {
|
|
return sema.analyzeComptimeAlloc(block, var_src, var_ty, .none);
|
|
}
|
|
if (sema.func_is_naked and try var_ty.hasRuntimeBitsSema(pt)) {
|
|
const store_src = block.src(.{ .node_offset_store_ptr = inst_data.src_node });
|
|
return sema.fail(block, store_src, "local variable in naked function", .{});
|
|
}
|
|
try sema.validateVarType(block, ty_src, var_ty, false);
|
|
const target = pt.zcu.getTarget();
|
|
const ptr_type = try pt.ptrTypeSema(.{
|
|
.child = var_ty.toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
return block.addTy(.alloc, ptr_type);
|
|
}
|
|
|
|
fn zirAllocInferred(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
is_const: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const gpa = sema.gpa;
|
|
|
|
if (block.isComptime()) {
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .inferred_alloc_comptime,
|
|
.data = .{ .inferred_alloc_comptime = .{
|
|
.alignment = .none,
|
|
.is_const = is_const,
|
|
.ptr = undefined,
|
|
} },
|
|
});
|
|
return @as(Air.Inst.Index, @enumFromInt(sema.air_instructions.len - 1)).toRef();
|
|
}
|
|
|
|
const result_index = try block.addInstAsIndex(.{
|
|
.tag = .inferred_alloc,
|
|
.data = .{ .inferred_alloc = .{
|
|
.alignment = .none,
|
|
.is_const = is_const,
|
|
} },
|
|
});
|
|
try sema.unresolved_inferred_allocs.putNoClobber(gpa, result_index, .{});
|
|
if (is_const) {
|
|
try sema.maybe_comptime_allocs.put(gpa, result_index, .{ .runtime_index = block.runtime_index });
|
|
try sema.base_allocs.put(sema.gpa, result_index, result_index);
|
|
}
|
|
return result_index.toRef();
|
|
}
|
|
|
|
fn zirResolveInferredAlloc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ty_src = block.src(.{ .node_offset_var_decl_ty = inst_data.src_node });
|
|
const ptr = try sema.resolveInst(inst_data.operand);
|
|
const ptr_inst = ptr.toIndex().?;
|
|
const target = zcu.getTarget();
|
|
|
|
switch (sema.air_instructions.items(.tag)[@intFromEnum(ptr_inst)]) {
|
|
.inferred_alloc_comptime => {
|
|
// The work was already done for us by `Sema.storeToInferredAllocComptime`.
|
|
// All we need to do is return the pointer.
|
|
const iac = sema.air_instructions.items(.data)[@intFromEnum(ptr_inst)].inferred_alloc_comptime;
|
|
const resolved_ptr = iac.ptr;
|
|
|
|
if (std.debug.runtime_safety) {
|
|
// The inferred_alloc_comptime should never be referenced again
|
|
sema.air_instructions.set(@intFromEnum(ptr_inst), .{ .tag = undefined, .data = undefined });
|
|
}
|
|
|
|
const val = switch (zcu.intern_pool.indexToKey(resolved_ptr).ptr.base_addr) {
|
|
.uav => |a| a.val,
|
|
.comptime_alloc => |i| val: {
|
|
const alloc = sema.getComptimeAlloc(i);
|
|
break :val (try alloc.val.intern(pt, sema.arena)).toIntern();
|
|
},
|
|
else => unreachable,
|
|
};
|
|
if (zcu.intern_pool.isFuncBody(val)) {
|
|
const ty: Type = .fromInterned(zcu.intern_pool.typeOf(val));
|
|
if (try ty.fnHasRuntimeBitsSema(pt)) {
|
|
const orig_fn_index = zcu.intern_pool.unwrapCoercedFunc(val);
|
|
try sema.addReferenceEntry(block, src, .wrap(.{ .func = orig_fn_index }));
|
|
try zcu.ensureFuncBodyAnalysisQueued(orig_fn_index);
|
|
}
|
|
}
|
|
|
|
return Air.internedToRef(resolved_ptr);
|
|
},
|
|
.inferred_alloc => {
|
|
const ia1 = sema.air_instructions.items(.data)[@intFromEnum(ptr_inst)].inferred_alloc;
|
|
const ia2 = sema.unresolved_inferred_allocs.fetchSwapRemove(ptr_inst).?.value;
|
|
const peer_vals = try sema.arena.alloc(Air.Inst.Ref, ia2.prongs.items.len);
|
|
for (peer_vals, ia2.prongs.items) |*peer_val, store_inst| {
|
|
assert(sema.air_instructions.items(.tag)[@intFromEnum(store_inst)] == .store);
|
|
const bin_op = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
|
|
peer_val.* = bin_op.rhs;
|
|
}
|
|
const final_elem_ty = try sema.resolvePeerTypes(block, ty_src, peer_vals, .none);
|
|
|
|
const final_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = final_elem_ty.toIntern(),
|
|
.flags = .{
|
|
.alignment = ia1.alignment,
|
|
.address_space = target_util.defaultAddressSpace(target, .local),
|
|
},
|
|
});
|
|
|
|
if (!ia1.is_const) {
|
|
try sema.validateVarType(block, ty_src, final_elem_ty, false);
|
|
} else if (try sema.resolveComptimeKnownAllocPtr(block, ptr, final_ptr_ty)) |ptr_val| {
|
|
const const_ptr_ty = try sema.makePtrTyConst(final_ptr_ty);
|
|
const new_const_ptr = try pt.getCoerced(Value.fromInterned(ptr_val), const_ptr_ty);
|
|
|
|
// Unless the block is comptime, `alloc_inferred` always produces
|
|
// a runtime constant. The final inferred type needs to be
|
|
// fully resolved so it can be lowered in codegen.
|
|
try final_elem_ty.resolveFully(pt);
|
|
|
|
return Air.internedToRef(new_const_ptr.toIntern());
|
|
}
|
|
|
|
if (try final_elem_ty.comptimeOnlySema(pt)) {
|
|
// The alloc wasn't comptime-known per the above logic, so the
|
|
// type cannot be comptime-only.
|
|
// TODO: source location of runtime control flow
|
|
return sema.fail(block, src, "value with comptime-only type '{f}' depends on runtime control flow", .{final_elem_ty.fmt(pt)});
|
|
}
|
|
if (sema.func_is_naked and try final_elem_ty.hasRuntimeBitsSema(pt)) {
|
|
const mut_src = block.src(.{ .node_offset_store_ptr = inst_data.src_node });
|
|
return sema.fail(block, mut_src, "local variable in naked function", .{});
|
|
}
|
|
// Change it to a normal alloc.
|
|
sema.air_instructions.set(@intFromEnum(ptr_inst), .{
|
|
.tag = .alloc,
|
|
.data = .{ .ty = final_ptr_ty },
|
|
});
|
|
|
|
// Now we need to go back over all the store instructions, and do the logic as if
|
|
// the new result ptr type was available.
|
|
|
|
for (ia2.prongs.items) |placeholder_inst| {
|
|
var replacement_block = block.makeSubBlock();
|
|
defer replacement_block.instructions.deinit(gpa);
|
|
|
|
assert(sema.air_instructions.items(.tag)[@intFromEnum(placeholder_inst)] == .store);
|
|
const bin_op = sema.air_instructions.items(.data)[@intFromEnum(placeholder_inst)].bin_op;
|
|
try sema.storePtr2(&replacement_block, src, bin_op.lhs, src, bin_op.rhs, src, .store);
|
|
|
|
// If only one instruction is produced then we can replace the store
|
|
// placeholder instruction with this instruction; no need for an entire block.
|
|
if (replacement_block.instructions.items.len == 1) {
|
|
const only_inst = replacement_block.instructions.items[0];
|
|
sema.air_instructions.set(@intFromEnum(placeholder_inst), sema.air_instructions.get(@intFromEnum(only_inst)));
|
|
continue;
|
|
}
|
|
|
|
// Here we replace the placeholder store instruction with a block
|
|
// that does the actual store logic.
|
|
_ = try replacement_block.addBr(placeholder_inst, .void_value);
|
|
try sema.air_extra.ensureUnusedCapacity(
|
|
gpa,
|
|
@typeInfo(Air.Block).@"struct".fields.len + replacement_block.instructions.items.len,
|
|
);
|
|
sema.air_instructions.set(@intFromEnum(placeholder_inst), .{
|
|
.tag = .block,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = .void_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = @intCast(replacement_block.instructions.items.len),
|
|
}),
|
|
} },
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(replacement_block.instructions.items));
|
|
}
|
|
|
|
if (ia1.is_const) {
|
|
return sema.makePtrConst(block, ptr);
|
|
} else {
|
|
return ptr;
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn zirForLen(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index);
|
|
const all_args = sema.code.refSlice(extra.end, extra.data.operands_len);
|
|
const arg_pairs: []const [2]Zir.Inst.Ref = @as([*]const [2]Zir.Inst.Ref, @ptrCast(all_args))[0..@divExact(all_args.len, 2)];
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
var len: Air.Inst.Ref = .none;
|
|
var len_val: ?Value = null;
|
|
var len_idx: u32 = undefined;
|
|
var any_runtime = false;
|
|
|
|
const runtime_arg_lens = try gpa.alloc(Air.Inst.Ref, arg_pairs.len);
|
|
defer gpa.free(runtime_arg_lens);
|
|
|
|
// First pass to look for comptime values.
|
|
for (arg_pairs, 0..) |zir_arg_pair, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
runtime_arg_lens[i] = .none;
|
|
if (zir_arg_pair[0] == .none) continue;
|
|
|
|
const arg_src = block.src(.{ .for_input = .{
|
|
.for_node_offset = inst_data.src_node,
|
|
.input_index = i,
|
|
} });
|
|
|
|
const arg_len_uncoerced = if (zir_arg_pair[1] == .none) l: {
|
|
// This argument is an indexable.
|
|
const object = try sema.resolveInst(zir_arg_pair[0]);
|
|
const object_ty = sema.typeOf(object);
|
|
if (!object_ty.isIndexable(zcu)) {
|
|
// Instead of using checkIndexable we customize this error.
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(arg_src, "type '{f}' is not indexable and not a range", .{object_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(arg_src, msg, "for loop operand must be a range, array, slice, tuple, or vector", .{});
|
|
|
|
if (object_ty.zigTypeTag(zcu) == .error_union) {
|
|
try sema.errNote(arg_src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
}
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
if (!object_ty.indexableHasLen(zcu)) continue;
|
|
break :l try sema.fieldVal(block, arg_src, object, try ip.getOrPutString(gpa, pt.tid, "len", .no_embedded_nulls), arg_src);
|
|
} else l: {
|
|
// This argument is a range.
|
|
const range_start = try sema.resolveInst(zir_arg_pair[0]);
|
|
const range_end = try sema.resolveInst(zir_arg_pair[1]);
|
|
break :l try sema.analyzeArithmetic(block, .sub, range_end, range_start, arg_src, arg_src, arg_src, true);
|
|
};
|
|
const arg_len = try sema.coerce(block, .usize, arg_len_uncoerced, arg_src);
|
|
if (len == .none) {
|
|
len = arg_len;
|
|
len_idx = i;
|
|
}
|
|
if (try sema.resolveDefinedValue(block, src, arg_len)) |arg_val| {
|
|
if (len_val) |v| {
|
|
if (!(try sema.valuesEqual(arg_val, v, .usize))) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "non-matching for loop lengths", .{});
|
|
errdefer msg.destroy(gpa);
|
|
const a_src = block.src(.{ .for_input = .{
|
|
.for_node_offset = inst_data.src_node,
|
|
.input_index = len_idx,
|
|
} });
|
|
try sema.errNote(a_src, msg, "length {f} here", .{
|
|
v.fmtValueSema(pt, sema),
|
|
});
|
|
try sema.errNote(arg_src, msg, "length {f} here", .{
|
|
arg_val.fmtValueSema(pt, sema),
|
|
});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
} else {
|
|
len = arg_len;
|
|
len_val = arg_val;
|
|
len_idx = i;
|
|
}
|
|
continue;
|
|
}
|
|
runtime_arg_lens[i] = arg_len;
|
|
any_runtime = true;
|
|
}
|
|
|
|
if (len == .none) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "unbounded for loop", .{});
|
|
errdefer msg.destroy(gpa);
|
|
for (arg_pairs, 0..) |zir_arg_pair, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
if (zir_arg_pair[0] == .none) continue;
|
|
if (zir_arg_pair[1] != .none) continue;
|
|
const object = try sema.resolveInst(zir_arg_pair[0]);
|
|
const object_ty = sema.typeOf(object);
|
|
const arg_src = block.src(.{ .for_input = .{
|
|
.for_node_offset = inst_data.src_node,
|
|
.input_index = i,
|
|
} });
|
|
try sema.errNote(arg_src, msg, "type '{f}' has no upper bound", .{
|
|
object_ty.fmt(pt),
|
|
});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
// Now for the runtime checks.
|
|
if (any_runtime and block.wantSafety()) {
|
|
for (runtime_arg_lens, 0..) |arg_len, i| {
|
|
if (arg_len == .none) continue;
|
|
if (i == len_idx) continue;
|
|
const ok = try block.addBinOp(.cmp_eq, len, arg_len);
|
|
try sema.addSafetyCheck(block, src, ok, .for_len_mismatch);
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/// Given any single pointer, retrieve a pointer to the payload of any optional
|
|
/// or error union pointed to, initializing these pointers along the way.
|
|
/// Given a `*E!?T`, returns a (valid) `*T`.
|
|
/// May invalidate already-stored payload data.
|
|
fn optEuBasePtrInit(sema: *Sema, block: *Block, ptr: Air.Inst.Ref, src: LazySrcLoc) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
var base_ptr = ptr;
|
|
while (true) switch (sema.typeOf(base_ptr).childType(zcu).zigTypeTag(zcu)) {
|
|
.error_union => base_ptr = try sema.analyzeErrUnionPayloadPtr(block, src, base_ptr, false, true),
|
|
.optional => base_ptr = try sema.analyzeOptionalPayloadPtr(block, src, base_ptr, false, true),
|
|
else => break,
|
|
};
|
|
try sema.checkKnownAllocPtr(block, ptr, base_ptr);
|
|
return base_ptr;
|
|
}
|
|
|
|
fn zirOptEuBasePtrInit(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const ptr = try sema.resolveInst(un_node.operand);
|
|
return sema.optEuBasePtrInit(block, ptr, block.nodeOffset(un_node.src_node));
|
|
}
|
|
|
|
fn zirCoercePtrElemTy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(pl_node.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, pl_node.payload_index).data;
|
|
const uncoerced_val = try sema.resolveInst(extra.rhs);
|
|
const maybe_wrapped_ptr_ty = try sema.resolveTypeOrPoison(block, LazySrcLoc.unneeded, extra.lhs) orelse return uncoerced_val;
|
|
const ptr_ty = maybe_wrapped_ptr_ty.optEuBaseType(zcu);
|
|
assert(ptr_ty.zigTypeTag(zcu) == .pointer); // validated by a previous instruction
|
|
const elem_ty = ptr_ty.childType(zcu);
|
|
switch (ptr_ty.ptrSize(zcu)) {
|
|
.one => {
|
|
const uncoerced_ty = sema.typeOf(uncoerced_val);
|
|
if (elem_ty.zigTypeTag(zcu) == .array and elem_ty.childType(zcu).toIntern() == uncoerced_ty.toIntern()) {
|
|
// We're trying to initialize a *[1]T with a reference to a T - don't perform any coercion.
|
|
return uncoerced_val;
|
|
}
|
|
// If the destination type is anyopaque, don't coerce - the pointer will coerce instead.
|
|
if (elem_ty.toIntern() == .anyopaque_type) {
|
|
return uncoerced_val;
|
|
} else {
|
|
return sema.coerce(block, elem_ty, uncoerced_val, src);
|
|
}
|
|
},
|
|
.slice, .many => {
|
|
// Our goal is to coerce `uncoerced_val` to an array of `elem_ty`.
|
|
const val_ty = sema.typeOf(uncoerced_val);
|
|
switch (val_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => {},
|
|
else => if (!val_ty.isTuple(zcu)) {
|
|
return sema.fail(block, src, "expected array of '{f}', found '{f}'", .{ elem_ty.fmt(pt), val_ty.fmt(pt) });
|
|
},
|
|
}
|
|
const want_ty = try pt.arrayType(.{
|
|
.len = val_ty.arrayLen(zcu),
|
|
.child = elem_ty.toIntern(),
|
|
.sentinel = if (ptr_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
});
|
|
return sema.coerce(block, want_ty, uncoerced_val, src);
|
|
},
|
|
.c => {
|
|
// There's nothing meaningful to do here, because we don't know if this is meant to be a
|
|
// single-pointer or a many-pointer.
|
|
return uncoerced_val;
|
|
},
|
|
}
|
|
}
|
|
|
|
fn zirTryOperandTy(sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_ref: bool) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(un_node.src_node);
|
|
|
|
const operand_ty = try sema.resolveTypeOrPoison(block, src, un_node.operand) orelse return .generic_poison_type;
|
|
|
|
const payload_ty = if (is_ref) ty: {
|
|
if (!operand_ty.isSinglePointer(zcu)) {
|
|
return .generic_poison_type; // we can't get a meaningful result type here, since it will be `*E![n]T`, and we don't know `n`.
|
|
}
|
|
break :ty operand_ty.childType(zcu);
|
|
} else operand_ty;
|
|
|
|
const err_set_ty: Type = err_set: {
|
|
// There are awkward cases, like `?E`. Our strategy is to repeatedly unwrap optionals
|
|
// until we hit an error union or set.
|
|
var cur_ty = sema.fn_ret_ty;
|
|
while (true) {
|
|
switch (cur_ty.zigTypeTag(zcu)) {
|
|
.error_set => break :err_set cur_ty,
|
|
.error_union => break :err_set cur_ty.errorUnionSet(zcu),
|
|
.optional => cur_ty = cur_ty.optionalChild(zcu),
|
|
else => {
|
|
// This function cannot return an error.
|
|
// `try` is still valid if the error case is impossible, i.e. no error is returned.
|
|
// So, the result type has an error set of `error{}`.
|
|
break :err_set .fromInterned(try zcu.intern_pool.getErrorSetType(zcu.gpa, pt.tid, &.{}));
|
|
},
|
|
}
|
|
}
|
|
};
|
|
|
|
const eu_ty = try pt.errorUnionType(err_set_ty, payload_ty);
|
|
|
|
if (is_ref) {
|
|
var ptr_info = operand_ty.ptrInfo(zcu);
|
|
ptr_info.child = eu_ty.toIntern();
|
|
const eu_ptr_ty = try pt.ptrTypeSema(ptr_info);
|
|
return Air.internedToRef(eu_ptr_ty.toIntern());
|
|
} else {
|
|
return Air.internedToRef(eu_ty.toIntern());
|
|
}
|
|
}
|
|
|
|
fn zirValidateRefTy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const un_tok = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_tok;
|
|
const src = block.tokenOffset(un_tok.src_tok);
|
|
// In case of GenericPoison, we don't actually have a type, so this will be
|
|
// treated as an untyped address-of operator.
|
|
const ty_operand = try sema.resolveTypeOrPoison(block, src, un_tok.operand) orelse return;
|
|
if (ty_operand.optEuBaseType(zcu).zigTypeTag(zcu) != .pointer) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "expected type '{f}', found pointer", .{ty_operand.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "address-of operator always returns a pointer", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
fn zirValidateConst(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
if (!block.isComptime()) return;
|
|
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(un_node.src_node);
|
|
const init_ref = try sema.resolveInst(un_node.operand);
|
|
if (!try sema.isComptimeKnown(init_ref)) {
|
|
return sema.failWithNeededComptime(block, src, null);
|
|
}
|
|
}
|
|
|
|
fn zirValidateArrayInitRefTy(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(pl_node.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.ArrayInitRefTy, pl_node.payload_index).data;
|
|
const maybe_wrapped_ptr_ty = try sema.resolveTypeOrPoison(block, LazySrcLoc.unneeded, extra.ptr_ty) orelse return .generic_poison_type;
|
|
const ptr_ty = maybe_wrapped_ptr_ty.optEuBaseType(zcu);
|
|
assert(ptr_ty.zigTypeTag(zcu) == .pointer); // validated by a previous instruction
|
|
switch (zcu.intern_pool.indexToKey(ptr_ty.toIntern())) {
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.slice, .many => {
|
|
// Use array of correct length
|
|
const arr_ty = try pt.arrayType(.{
|
|
.len = extra.elem_count,
|
|
.child = ptr_ty.childType(zcu).toIntern(),
|
|
.sentinel = if (ptr_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
});
|
|
return Air.internedToRef(arr_ty.toIntern());
|
|
},
|
|
else => {},
|
|
},
|
|
else => {},
|
|
}
|
|
// Otherwise, we just want the pointer child type
|
|
const ret_ty = ptr_ty.childType(zcu);
|
|
if (ret_ty.toIntern() == .anyopaque_type) {
|
|
// The actual array type is unknown, which we represent with a generic poison.
|
|
return .generic_poison_type;
|
|
}
|
|
const arr_ty = ret_ty.optEuBaseType(zcu);
|
|
try sema.validateArrayInitTy(block, src, src, extra.elem_count, arr_ty);
|
|
return Air.internedToRef(ret_ty.toIntern());
|
|
}
|
|
|
|
fn zirValidateArrayInitTy(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
is_result_ty: bool,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ty_src: LazySrcLoc = if (is_result_ty) src else block.src(.{ .node_offset_init_ty = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.ArrayInit, inst_data.payload_index).data;
|
|
// It's okay for the type to be poison: this will result in an anonymous array init.
|
|
const ty = try sema.resolveTypeOrPoison(block, ty_src, extra.ty) orelse return;
|
|
const arr_ty = if (is_result_ty) ty.optEuBaseType(zcu) else ty;
|
|
return sema.validateArrayInitTy(block, src, ty_src, extra.init_count, arr_ty);
|
|
}
|
|
|
|
fn validateArrayInitTy(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ty_src: LazySrcLoc,
|
|
init_count: u32,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.array => {
|
|
const array_len = ty.arrayLen(zcu);
|
|
if (init_count != array_len) {
|
|
return sema.fail(block, src, "expected {d} array elements; found {d}", .{
|
|
array_len, init_count,
|
|
});
|
|
}
|
|
return;
|
|
},
|
|
.vector => {
|
|
const array_len = ty.arrayLen(zcu);
|
|
if (init_count != array_len) {
|
|
return sema.fail(block, src, "expected {d} vector elements; found {d}", .{
|
|
array_len, init_count,
|
|
});
|
|
}
|
|
return;
|
|
},
|
|
.@"struct" => if (ty.isTuple(zcu)) {
|
|
try ty.resolveFields(pt);
|
|
const array_len = ty.arrayLen(zcu);
|
|
if (init_count > array_len) {
|
|
return sema.fail(block, src, "expected at most {d} tuple fields; found {d}", .{
|
|
array_len, init_count,
|
|
});
|
|
}
|
|
return;
|
|
},
|
|
else => {},
|
|
}
|
|
return sema.failWithArrayInitNotSupported(block, ty_src, ty);
|
|
}
|
|
|
|
fn zirValidateStructInitTy(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
is_result_ty: bool,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
// It's okay for the type to be poison: this will result in an anonymous struct init.
|
|
const ty = try sema.resolveTypeOrPoison(block, src, inst_data.operand) orelse return;
|
|
const struct_ty = if (is_result_ty) ty.optEuBaseType(zcu) else ty;
|
|
|
|
switch (struct_ty.zigTypeTag(zcu)) {
|
|
.@"struct", .@"union" => return,
|
|
else => {},
|
|
}
|
|
return sema.failWithStructInitNotSupported(block, src, struct_ty);
|
|
}
|
|
|
|
fn zirValidatePtrStructInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const validate_inst = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const init_src = block.nodeOffset(validate_inst.src_node);
|
|
const validate_extra = sema.code.extraData(Zir.Inst.Block, validate_inst.payload_index);
|
|
const instrs = sema.code.bodySlice(validate_extra.end, validate_extra.data.body_len);
|
|
const field_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(instrs[0])].pl_node;
|
|
const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data;
|
|
const object_ptr = try sema.resolveInst(field_ptr_extra.lhs);
|
|
const agg_ty = sema.typeOf(object_ptr).childType(zcu).optEuBaseType(zcu);
|
|
switch (agg_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => return sema.validateStructInit(
|
|
block,
|
|
agg_ty,
|
|
init_src,
|
|
instrs,
|
|
object_ptr,
|
|
),
|
|
.@"union" => return sema.validateUnionInit(
|
|
block,
|
|
agg_ty,
|
|
init_src,
|
|
instrs,
|
|
),
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn validateUnionInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
union_ty: Type,
|
|
init_src: LazySrcLoc,
|
|
instrs: []const Zir.Inst.Index,
|
|
) CompileError!void {
|
|
if (instrs.len == 1) {
|
|
// Trvial validation done, and the union tag was already set by machinery in `unionFieldPtr`.
|
|
return;
|
|
}
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
init_src,
|
|
"cannot initialize multiple union fields at once; unions can only have one active field",
|
|
.{},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
for (instrs[1..]) |inst| {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const inst_src = block.src(.{ .node_offset_initializer = inst_data.src_node });
|
|
try sema.errNote(inst_src, msg, "additional initializer here", .{});
|
|
}
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn validateStructInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
struct_ty: Type,
|
|
init_src: LazySrcLoc,
|
|
instrs: []const Zir.Inst.Index,
|
|
struct_ptr: Air.Inst.Ref,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
// Tracks whether each field was explicitly initialized.
|
|
const found_fields = try gpa.alloc(bool, struct_ty.structFieldCount(zcu));
|
|
defer gpa.free(found_fields);
|
|
@memset(found_fields, false);
|
|
|
|
for (instrs) |field_ptr| {
|
|
const field_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(field_ptr)].pl_node;
|
|
const field_src = block.src(.{ .node_offset_initializer = field_ptr_data.src_node });
|
|
const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data;
|
|
const field_name = try ip.getOrPutString(
|
|
gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(field_ptr_extra.field_name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
const field_index = if (struct_ty.isTuple(zcu))
|
|
try sema.tupleFieldIndex(block, struct_ty, field_name, field_src)
|
|
else
|
|
try sema.structFieldIndex(block, struct_ty, field_name, field_src);
|
|
assert(found_fields[field_index] == false);
|
|
found_fields[field_index] = true;
|
|
}
|
|
|
|
// Our job is simply to deal with default field values. Specifically, any field which was not
|
|
// explicitly initialized must have its default value stored to the field pointer, or, if the
|
|
// field has no default value, a compile error must be emitted instead.
|
|
|
|
// In the past, this code had other responsibilities, which involved some nasty AIR rewrites. However,
|
|
// that work was actually all redundant:
|
|
//
|
|
// * If the struct value is comptime-known, field stores remain a perfectly valid way of initializing
|
|
// the struct through RLS; there is no need to turn the field stores into one store. Comptime-known
|
|
// consts are handled correctly either way thanks to `maybe_comptime_allocs` and friends.
|
|
//
|
|
// * If the struct type is comptime-only, we need to make sure all of the fields were comptime-known.
|
|
// But the comptime-only type means that `struct_ptr` must be a comptime-mutable pointer, so the
|
|
// field stores were to comptime-mutable pointers, so have already errored if not comptime-known.
|
|
//
|
|
// * If the value is runtime-known, then comptime-known fields must be validated as runtime values.
|
|
// But this was already handled for every field store by the machinery in `checkComptimeKnownStore`.
|
|
|
|
var root_msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
|
|
|
|
for (found_fields, 0..) |explicit, i_usize| {
|
|
if (explicit) continue;
|
|
const i: u32 = @intCast(i_usize);
|
|
|
|
try struct_ty.resolveStructFieldInits(pt);
|
|
const default_val = struct_ty.structFieldDefaultValue(i, zcu);
|
|
if (default_val.toIntern() == .unreachable_value) {
|
|
const field_name = struct_ty.structFieldName(i, zcu).unwrap() orelse {
|
|
const template = "missing tuple field with index {d}";
|
|
if (root_msg) |msg| {
|
|
try sema.errNote(init_src, msg, template, .{i});
|
|
} else {
|
|
root_msg = try sema.errMsg(init_src, template, .{i});
|
|
}
|
|
continue;
|
|
};
|
|
const template = "missing struct field: {f}";
|
|
const args = .{field_name.fmt(ip)};
|
|
if (root_msg) |msg| {
|
|
try sema.errNote(init_src, msg, template, args);
|
|
} else {
|
|
root_msg = try sema.errMsg(init_src, template, args);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const field_src = init_src; // TODO better source location
|
|
const default_field_ptr = if (struct_ty.isTuple(zcu))
|
|
try sema.tupleFieldPtr(block, init_src, struct_ptr, field_src, @intCast(i), true)
|
|
else
|
|
try sema.structFieldPtrByIndex(block, init_src, struct_ptr, @intCast(i), struct_ty);
|
|
try sema.checkKnownAllocPtr(block, struct_ptr, default_field_ptr);
|
|
try sema.storePtr2(block, init_src, default_field_ptr, init_src, .fromValue(default_val), field_src, .store);
|
|
}
|
|
|
|
if (root_msg) |msg| {
|
|
try sema.addDeclaredHereNote(msg, struct_ty);
|
|
root_msg = null;
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
fn zirValidatePtrArrayInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const validate_inst = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const init_src = block.nodeOffset(validate_inst.src_node);
|
|
const validate_extra = sema.code.extraData(Zir.Inst.Block, validate_inst.payload_index);
|
|
const instrs = sema.code.bodySlice(validate_extra.end, validate_extra.data.body_len);
|
|
const first_elem_ptr_data = sema.code.instructions.items(.data)[@intFromEnum(instrs[0])].pl_node;
|
|
const elem_ptr_extra = sema.code.extraData(Zir.Inst.ElemPtrImm, first_elem_ptr_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(elem_ptr_extra.ptr);
|
|
const array_ty = sema.typeOf(array_ptr).childType(zcu).optEuBaseType(zcu);
|
|
const array_len = array_ty.arrayLen(zcu);
|
|
|
|
// Analagously to `validateStructInit`, our job is to handle default fields; either emitting AIR
|
|
// to initialize them, or emitting a compile error if an unspecified field has no default. For
|
|
// tuples, there are literally default field values, although they're guaranteed to be comptime
|
|
// fields so we don't need to initialize them. For arrays, we may have a sentinel, which is never
|
|
// specified so we always need to initialize here. For vectors, there's no such thing.
|
|
|
|
switch (array_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => if (instrs.len != array_len) {
|
|
var root_msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
|
|
|
|
try array_ty.resolveStructFieldInits(pt);
|
|
var i = instrs.len;
|
|
while (i < array_len) : (i += 1) {
|
|
const default_val = array_ty.structFieldDefaultValue(i, zcu).toIntern();
|
|
if (default_val == .unreachable_value) {
|
|
const template = "missing tuple field with index {d}";
|
|
if (root_msg) |msg| {
|
|
try sema.errNote(init_src, msg, template, .{i});
|
|
} else {
|
|
root_msg = try sema.errMsg(init_src, template, .{i});
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (root_msg) |msg| {
|
|
root_msg = null;
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
},
|
|
|
|
.array => if (instrs.len != array_len) {
|
|
return sema.fail(block, init_src, "expected {d} array elements; found {d}", .{
|
|
array_len, instrs.len,
|
|
});
|
|
} else if (array_ty.sentinel(zcu)) |sentinel| {
|
|
const array_len_ref = try pt.intRef(.usize, array_len);
|
|
const sentinel_ptr = try sema.elemPtrArray(block, init_src, init_src, array_ptr, init_src, array_len_ref, true, true);
|
|
try sema.checkKnownAllocPtr(block, array_ptr, sentinel_ptr);
|
|
try sema.storePtr2(block, init_src, sentinel_ptr, init_src, .fromValue(sentinel), init_src, .store);
|
|
},
|
|
|
|
.vector => if (instrs.len != array_len) {
|
|
return sema.fail(block, init_src, "expected {d} vector elements; found {d}", .{
|
|
array_len, instrs.len,
|
|
});
|
|
},
|
|
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn zirValidateDeref(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
if (operand_ty.zigTypeTag(zcu) != .pointer) {
|
|
return sema.fail(block, src, "cannot dereference non-pointer type '{f}'", .{operand_ty.fmt(pt)});
|
|
} else switch (operand_ty.ptrSize(zcu)) {
|
|
.one, .c => {},
|
|
.many => return sema.fail(block, src, "index syntax required for unknown-length pointer type '{f}'", .{operand_ty.fmt(pt)}),
|
|
.slice => return sema.fail(block, src, "index syntax required for slice type '{f}'", .{operand_ty.fmt(pt)}),
|
|
}
|
|
|
|
if ((try sema.typeHasOnePossibleValue(operand_ty.childType(zcu))) != null) {
|
|
// No need to validate the actual pointer value, we don't need it!
|
|
return;
|
|
}
|
|
|
|
const elem_ty = operand_ty.elemType2(zcu);
|
|
if (try sema.resolveValue(operand)) |val| {
|
|
if (val.isUndef(zcu)) {
|
|
return sema.fail(block, src, "cannot dereference undefined value", .{});
|
|
}
|
|
} else if (try elem_ty.comptimeOnlySema(pt)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
src,
|
|
"values of type '{f}' must be comptime-known, but operand value is runtime-known",
|
|
.{elem_ty.fmt(pt)},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsComptime(msg, src, elem_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
fn typeIsDestructurable(ty: Type, zcu: *const Zcu) bool {
|
|
return switch (ty.zigTypeTag(zcu)) {
|
|
.array, .vector => true,
|
|
.@"struct" => ty.isTuple(zcu),
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
fn zirValidateDestructure(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.ValidateDestructure, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const destructure_src = block.nodeOffset(extra.destructure_node);
|
|
const operand = try sema.resolveInst(extra.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
if (!typeIsDestructurable(operand_ty, zcu)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "type '{f}' cannot be destructured", .{operand_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(destructure_src, msg, "result destructured here", .{});
|
|
if (operand_ty.zigTypeTag(pt.zcu) == .error_union) {
|
|
const base_op_ty = operand_ty.errorUnionPayload(zcu);
|
|
if (typeIsDestructurable(base_op_ty, zcu))
|
|
try sema.errNote(src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
}
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
if (operand_ty.arrayLen(zcu) != extra.expect_len) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "expected {d} elements for destructure, found {d}", .{
|
|
extra.expect_len, operand_ty.arrayLen(zcu),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(destructure_src, msg, "result destructured here", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
fn failWithBadMemberAccess(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
agg_ty: Type,
|
|
field_src: LazySrcLoc,
|
|
field_name: InternPool.NullTerminatedString,
|
|
) CompileError {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const kw_name = switch (agg_ty.zigTypeTag(zcu)) {
|
|
.@"union" => "union",
|
|
.@"struct" => "struct",
|
|
.@"opaque" => "opaque",
|
|
.@"enum" => "enum",
|
|
else => unreachable,
|
|
};
|
|
if (agg_ty.typeDeclInst(zcu)) |inst| if ((inst.resolve(ip) orelse return error.AnalysisFail) == .main_struct_inst) {
|
|
return sema.fail(block, field_src, "root source file struct '{f}' has no member named '{f}'", .{
|
|
agg_ty.fmt(pt), field_name.fmt(ip),
|
|
});
|
|
};
|
|
|
|
return sema.fail(block, field_src, "{s} '{f}' has no member named '{f}'", .{
|
|
kw_name, agg_ty.fmt(pt), field_name.fmt(ip),
|
|
});
|
|
}
|
|
|
|
fn failWithBadStructFieldAccess(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
struct_ty: Type,
|
|
struct_type: InternPool.LoadedStructType,
|
|
field_src: LazySrcLoc,
|
|
field_name: InternPool.NullTerminatedString,
|
|
) CompileError {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
field_src,
|
|
"no field named '{f}' in struct '{f}'",
|
|
.{ field_name.fmt(ip), struct_type.name.fmt(ip) },
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(struct_ty.srcLoc(zcu), msg, "struct declared here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn failWithBadUnionFieldAccess(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
union_ty: Type,
|
|
union_obj: InternPool.LoadedUnionType,
|
|
field_src: LazySrcLoc,
|
|
field_name: InternPool.NullTerminatedString,
|
|
) CompileError {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const gpa = sema.gpa;
|
|
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
field_src,
|
|
"no field named '{f}' in union '{f}'",
|
|
.{ field_name.fmt(ip), union_obj.name.fmt(ip) },
|
|
);
|
|
errdefer msg.destroy(gpa);
|
|
try sema.errNote(union_ty.srcLoc(zcu), msg, "union declared here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn addDeclaredHereNote(sema: *Sema, parent: *Zcu.ErrorMsg, decl_ty: Type) !void {
|
|
const zcu = sema.pt.zcu;
|
|
const src_loc = decl_ty.srcLocOrNull(zcu) orelse return;
|
|
const category = switch (decl_ty.zigTypeTag(zcu)) {
|
|
.@"union" => "union",
|
|
.@"struct" => "struct",
|
|
.@"enum" => "enum",
|
|
.@"opaque" => "opaque",
|
|
else => unreachable,
|
|
};
|
|
try sema.errNote(src_loc, parent, "{s} declared here", .{category});
|
|
}
|
|
|
|
fn zirStoreToInferredPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(pl_node.src_node);
|
|
const bin = sema.code.extraData(Zir.Inst.Bin, pl_node.payload_index).data;
|
|
const ptr = try sema.resolveInst(bin.lhs);
|
|
const operand = try sema.resolveInst(bin.rhs);
|
|
const ptr_inst = ptr.toIndex().?;
|
|
const air_datas = sema.air_instructions.items(.data);
|
|
|
|
switch (sema.air_instructions.items(.tag)[@intFromEnum(ptr_inst)]) {
|
|
.inferred_alloc_comptime => {
|
|
const iac = &air_datas[@intFromEnum(ptr_inst)].inferred_alloc_comptime;
|
|
return sema.storeToInferredAllocComptime(block, src, operand, iac);
|
|
},
|
|
.inferred_alloc => {
|
|
const ia = sema.unresolved_inferred_allocs.getPtr(ptr_inst).?;
|
|
return sema.storeToInferredAlloc(block, src, ptr, operand, ia);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn storeToInferredAlloc(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ptr: Air.Inst.Ref,
|
|
operand: Air.Inst.Ref,
|
|
inferred_alloc: *InferredAlloc,
|
|
) CompileError!void {
|
|
// Create a store instruction as a placeholder. This will be replaced by a
|
|
// proper store sequence once we know the stored type.
|
|
const dummy_store = try block.addBinOp(.store, ptr, operand);
|
|
try sema.checkComptimeKnownStore(block, dummy_store, src);
|
|
// Add the stored instruction to the set we will use to resolve peer types
|
|
// for the inferred allocation.
|
|
try inferred_alloc.prongs.append(sema.arena, dummy_store.toIndex().?);
|
|
}
|
|
|
|
fn storeToInferredAllocComptime(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
iac: *Air.Inst.Data.InferredAllocComptime,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
// There will be only one store_to_inferred_ptr because we are running at comptime.
|
|
// The alloc will turn into a Decl or a ComptimeAlloc.
|
|
const operand_val = try sema.resolveValue(operand) orelse {
|
|
return sema.failWithNeededComptime(block, src, .{ .simple = .stored_to_comptime_var });
|
|
};
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = operand_ty.toIntern(),
|
|
.flags = .{
|
|
.alignment = iac.alignment,
|
|
.is_const = iac.is_const,
|
|
},
|
|
});
|
|
if (iac.is_const and !operand_val.canMutateComptimeVarState(zcu)) {
|
|
iac.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = alloc_ty.toIntern(),
|
|
.base_addr = .{ .uav = .{
|
|
.val = operand_val.toIntern(),
|
|
.orig_ty = alloc_ty.toIntern(),
|
|
} },
|
|
.byte_offset = 0,
|
|
} });
|
|
} else {
|
|
const alloc_index = try sema.newComptimeAlloc(block, src, operand_ty, iac.alignment);
|
|
sema.getComptimeAlloc(alloc_index).val = .{ .interned = operand_val.toIntern() };
|
|
iac.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = alloc_ty.toIntern(),
|
|
.base_addr = .{ .comptime_alloc = alloc_index },
|
|
.byte_offset = 0,
|
|
} });
|
|
}
|
|
}
|
|
|
|
fn zirSetEvalBranchQuota(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const quota: u32 = @intCast(try sema.resolveInt(block, src, inst_data.operand, .u32, .{ .simple = .operand_setEvalBranchQuota }));
|
|
sema.branch_quota = @max(sema.branch_quota, quota);
|
|
sema.allow_memoize = false;
|
|
}
|
|
|
|
fn zirStoreNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const zir_tags = sema.code.instructions.items(.tag);
|
|
const zir_datas = sema.code.instructions.items(.data);
|
|
const inst_data = zir_datas[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const ptr = try sema.resolveInst(extra.lhs);
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
|
|
const is_ret = if (extra.lhs.toIndex()) |ptr_index|
|
|
zir_tags[@intFromEnum(ptr_index)] == .ret_ptr
|
|
else
|
|
false;
|
|
|
|
const ptr_src = block.src(.{ .node_offset_store_ptr = inst_data.src_node });
|
|
const operand_src = block.src(.{ .node_offset_store_operand = inst_data.src_node });
|
|
const air_tag: Air.Inst.Tag = if (is_ret)
|
|
.ret_ptr
|
|
else if (block.wantSafety())
|
|
.store_safe
|
|
else
|
|
.store;
|
|
return sema.storePtr2(block, src, ptr, ptr_src, operand, operand_src, air_tag);
|
|
}
|
|
|
|
fn zirStr(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const bytes = sema.code.instructions.items(.data)[@intFromEnum(inst)].str.get(sema.code);
|
|
return sema.addStrLit(
|
|
try sema.pt.zcu.intern_pool.getOrPutString(sema.gpa, sema.pt.tid, bytes, .maybe_embedded_nulls),
|
|
bytes.len,
|
|
);
|
|
}
|
|
|
|
fn addNullTerminatedStrLit(sema: *Sema, string: InternPool.NullTerminatedString) CompileError!Air.Inst.Ref {
|
|
return sema.addStrLit(string.toString(), string.length(&sema.pt.zcu.intern_pool));
|
|
}
|
|
|
|
pub fn addStrLit(sema: *Sema, string: InternPool.String, len: u64) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const array_ty = try pt.arrayType(.{
|
|
.len = len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
});
|
|
const val = try pt.intern(.{ .aggregate = .{
|
|
.ty = array_ty.toIntern(),
|
|
.storage = .{ .bytes = string },
|
|
} });
|
|
return sema.uavRef(val);
|
|
}
|
|
|
|
fn uavRef(sema: *Sema, val: InternPool.Index) CompileError!Air.Inst.Ref {
|
|
return Air.internedToRef(try sema.pt.refValue(val));
|
|
}
|
|
|
|
fn zirInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
_ = block;
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const int = sema.code.instructions.items(.data)[@intFromEnum(inst)].int;
|
|
return sema.pt.intRef(.comptime_int, int);
|
|
}
|
|
|
|
fn zirIntBig(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
_ = block;
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const int = sema.code.instructions.items(.data)[@intFromEnum(inst)].str;
|
|
const byte_count = int.len * @sizeOf(std.math.big.Limb);
|
|
const limb_bytes = sema.code.string_bytes[@intFromEnum(int.start)..][0..byte_count];
|
|
|
|
// TODO: this allocation and copy is only needed because the limbs may be unaligned.
|
|
// If ZIR is adjusted so that big int limbs are guaranteed to be aligned, these
|
|
// two lines can be removed.
|
|
const limbs = try sema.arena.alloc(std.math.big.Limb, int.len);
|
|
@memcpy(mem.sliceAsBytes(limbs), limb_bytes);
|
|
|
|
return Air.internedToRef((try sema.pt.intValue_big(.comptime_int, .{
|
|
.limbs = limbs,
|
|
.positive = true,
|
|
})).toIntern());
|
|
}
|
|
|
|
fn zirFloat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
_ = block;
|
|
const number = sema.code.instructions.items(.data)[@intFromEnum(inst)].float;
|
|
return Air.internedToRef((try sema.pt.floatValue(
|
|
.comptime_float,
|
|
number,
|
|
)).toIntern());
|
|
}
|
|
|
|
fn zirFloat128(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
_ = block;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Float128, inst_data.payload_index).data;
|
|
const number = extra.get();
|
|
return Air.internedToRef((try sema.pt.floatValue(.comptime_float, number)).toIntern());
|
|
}
|
|
|
|
fn zirCompileError(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const msg = try sema.resolveConstString(block, operand_src, inst_data.operand, .{ .simple = .compile_error_string });
|
|
return sema.fail(block, src, "{s}", .{msg});
|
|
}
|
|
|
|
fn zirCompileLog(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
|
|
var aw: std.Io.Writer.Allocating = .init(gpa);
|
|
defer aw.deinit();
|
|
const writer = &aw.writer;
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.NodeMultiOp, extended.operand);
|
|
const src_node = extra.data.src_node;
|
|
const args = sema.code.refSlice(extra.end, extended.small);
|
|
|
|
for (args, 0..) |arg_ref, i| {
|
|
if (i != 0) writer.writeAll(", ") catch return error.OutOfMemory;
|
|
|
|
const arg = try sema.resolveInst(arg_ref);
|
|
const arg_ty = sema.typeOf(arg);
|
|
if (try sema.resolveValueResolveLazy(arg)) |val| {
|
|
writer.print("@as({f}, {f})", .{
|
|
arg_ty.fmt(pt), val.fmtValueSema(pt, sema),
|
|
}) catch return error.OutOfMemory;
|
|
} else {
|
|
writer.print("@as({f}, [runtime value])", .{arg_ty.fmt(pt)}) catch return error.OutOfMemory;
|
|
}
|
|
}
|
|
|
|
const line_data = try zcu.intern_pool.getOrPutString(gpa, pt.tid, aw.written(), .no_embedded_nulls);
|
|
|
|
const line_idx: Zcu.CompileLogLine.Index = if (zcu.free_compile_log_lines.pop()) |idx| idx: {
|
|
zcu.compile_log_lines.items[@intFromEnum(idx)] = .{
|
|
.next = .none,
|
|
.data = line_data,
|
|
};
|
|
break :idx idx;
|
|
} else idx: {
|
|
try zcu.compile_log_lines.append(gpa, .{
|
|
.next = .none,
|
|
.data = line_data,
|
|
});
|
|
break :idx @enumFromInt(zcu.compile_log_lines.items.len - 1);
|
|
};
|
|
|
|
const gop = try zcu.compile_logs.getOrPut(gpa, sema.owner);
|
|
if (gop.found_existing) {
|
|
const prev_line = gop.value_ptr.last_line.get(zcu);
|
|
assert(prev_line.next == .none);
|
|
prev_line.next = line_idx.toOptional();
|
|
gop.value_ptr.last_line = line_idx;
|
|
} else {
|
|
gop.value_ptr.* = .{
|
|
.base_node_inst = block.src_base_inst,
|
|
.node_offset = src_node,
|
|
.first_line = line_idx,
|
|
.last_line = line_idx,
|
|
};
|
|
}
|
|
return .void_value;
|
|
}
|
|
|
|
fn zirPanic(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const msg_inst = try sema.resolveInst(inst_data.operand);
|
|
|
|
const coerced_msg = try sema.coerce(block, .slice_const_u8, msg_inst, block.builtinCallArgSrc(inst_data.src_node, 0));
|
|
|
|
if (block.isComptime()) {
|
|
return sema.fail(block, src, "encountered @panic at comptime", .{});
|
|
}
|
|
|
|
// We only apply the first hint in a branch.
|
|
// This allows user-provided hints to override implicit cold hints.
|
|
if (sema.branch_hint == null) {
|
|
sema.branch_hint = .cold;
|
|
}
|
|
|
|
if (!zcu.backendSupportsFeature(.panic_fn)) {
|
|
_ = try block.addNoOp(.trap);
|
|
return;
|
|
}
|
|
|
|
try sema.ensureMemoizedStateResolved(src, .panic);
|
|
const panic_fn_index = zcu.builtin_decl_values.get(.@"panic.call");
|
|
const opt_usize_ty = try pt.optionalType(.usize_type);
|
|
const null_ret_addr = Air.internedToRef((try pt.intern(.{ .opt = .{
|
|
.ty = opt_usize_ty.toIntern(),
|
|
.val = .none,
|
|
} })));
|
|
// `callBuiltin` also calls `addReferenceEntry` to the function body for us.
|
|
try sema.callBuiltin(
|
|
block,
|
|
src,
|
|
.fromIntern(panic_fn_index),
|
|
.auto,
|
|
&.{ coerced_msg, null_ret_addr },
|
|
.@"@panic",
|
|
);
|
|
}
|
|
|
|
fn zirTrap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const src_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].node;
|
|
const src = block.nodeOffset(src_node);
|
|
if (block.isComptime())
|
|
return sema.fail(block, src, "encountered @trap at comptime", .{});
|
|
_ = try block.addNoOp(.trap);
|
|
}
|
|
|
|
fn zirLoop(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = parent_block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const gpa = sema.gpa;
|
|
|
|
// AIR expects a block outside the loop block too.
|
|
// Reserve space for a Loop instruction so that generated Break instructions can
|
|
// point to it, even if it doesn't end up getting used because the code ends up being
|
|
// comptime evaluated.
|
|
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
const loop_inst: Air.Inst.Index = @enumFromInt(@intFromEnum(block_inst) + 1);
|
|
try sema.air_instructions.ensureUnusedCapacity(gpa, 2);
|
|
sema.air_instructions.appendAssumeCapacity(.{
|
|
.tag = .block,
|
|
.data = undefined,
|
|
});
|
|
sema.air_instructions.appendAssumeCapacity(.{
|
|
.tag = .loop,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = .noreturn_type,
|
|
.payload = undefined,
|
|
} },
|
|
});
|
|
var label: Block.Label = .{
|
|
.zir_block = inst,
|
|
.merges = .{
|
|
.src_locs = .{},
|
|
.results = .{},
|
|
.br_list = .{},
|
|
.block_inst = block_inst,
|
|
},
|
|
};
|
|
var child_block = parent_block.makeSubBlock();
|
|
child_block.label = &label;
|
|
child_block.runtime_cond = null;
|
|
child_block.runtime_loop = src;
|
|
child_block.runtime_index.increment();
|
|
const merges = &child_block.label.?.merges;
|
|
|
|
defer child_block.instructions.deinit(gpa);
|
|
defer merges.deinit(gpa);
|
|
|
|
var loop_block = child_block.makeSubBlock();
|
|
defer loop_block.instructions.deinit(gpa);
|
|
|
|
// Use `analyzeBodyInner` directly to push any comptime control flow up the stack.
|
|
try sema.analyzeBodyInner(&loop_block, body);
|
|
|
|
// TODO: since AIR has `repeat` now, we could change ZIR to generate
|
|
// more optimal code utilizing `repeat` instructions across blocks!
|
|
// For now, if the generated loop body does not terminate `noreturn`,
|
|
// then `analyzeBodyInner` is signalling that it ended with `repeat`.
|
|
|
|
const loop_block_len = loop_block.instructions.items.len;
|
|
if (loop_block_len > 0 and sema.typeOf(loop_block.instructions.items[loop_block_len - 1].toRef()).isNoReturn(zcu)) {
|
|
// If the loop ended with a noreturn terminator, then there is no way for it to loop,
|
|
// so we can just use the block instead.
|
|
try child_block.instructions.appendSlice(gpa, loop_block.instructions.items);
|
|
} else {
|
|
_ = try loop_block.addInst(.{
|
|
.tag = .repeat,
|
|
.data = .{ .repeat = .{
|
|
.loop_inst = loop_inst,
|
|
} },
|
|
});
|
|
// Note that `loop_block_len` is now off by one.
|
|
|
|
try child_block.instructions.append(gpa, loop_inst);
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).@"struct".fields.len + loop_block_len + 1);
|
|
sema.air_instructions.items(.data)[@intFromEnum(loop_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(
|
|
Air.Block{ .body_len = @intCast(loop_block_len + 1) },
|
|
);
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(loop_block.instructions.items));
|
|
}
|
|
return sema.resolveAnalyzedBlock(parent_block, src, &child_block, merges, false);
|
|
}
|
|
|
|
fn zirCImport(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const comp = zcu.comp;
|
|
const gpa = sema.gpa;
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = parent_block.nodeOffset(pl_node.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
|
|
var c_import_buf = std.array_list.Managed(u8).init(gpa);
|
|
defer c_import_buf.deinit();
|
|
|
|
var child_block: Block = .{
|
|
.parent = parent_block,
|
|
.sema = sema,
|
|
.namespace = parent_block.namespace,
|
|
.instructions = .{},
|
|
.inlining = parent_block.inlining,
|
|
.comptime_reason = .{ .reason = .{
|
|
.src = src,
|
|
.r = .{ .simple = .operand_cImport },
|
|
} },
|
|
.c_import_buf = &c_import_buf,
|
|
.runtime_cond = parent_block.runtime_cond,
|
|
.runtime_loop = parent_block.runtime_loop,
|
|
.runtime_index = parent_block.runtime_index,
|
|
.src_base_inst = parent_block.src_base_inst,
|
|
.type_name_ctx = parent_block.type_name_ctx,
|
|
};
|
|
defer child_block.instructions.deinit(gpa);
|
|
|
|
_ = try sema.analyzeInlineBody(&child_block, body, inst);
|
|
|
|
const prog_node = zcu.cur_sema_prog_node.start("@cImport", 0);
|
|
defer prog_node.end();
|
|
|
|
var c_import_res = comp.cImport(c_import_buf.items, parent_block.ownerModule(), prog_node) catch |err|
|
|
return sema.fail(&child_block, src, "C import failed: {t}", .{err});
|
|
defer c_import_res.deinit(gpa);
|
|
|
|
if (c_import_res.errors.errorMessageCount() != 0) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "C import failed", .{});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
if (!comp.config.link_libc)
|
|
try sema.errNote(src, msg, "libc headers not available; compilation does not link against libc", .{});
|
|
|
|
const gop = try zcu.cimport_errors.getOrPut(gpa, sema.owner);
|
|
if (!gop.found_existing) {
|
|
gop.value_ptr.* = c_import_res.errors;
|
|
c_import_res.errors = std.zig.ErrorBundle.empty;
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&child_block, msg);
|
|
}
|
|
const parent_mod = parent_block.ownerModule();
|
|
const digest = Cache.binToHex(c_import_res.digest);
|
|
|
|
const new_file_index = file: {
|
|
const c_import_zig_path = try comp.arena.dupe(u8, "o" ++ std.fs.path.sep_str ++ digest);
|
|
const c_import_mod = Package.Module.create(comp.arena, .{
|
|
.paths = .{
|
|
.root = try .fromRoot(comp.arena, comp.dirs, .local_cache, c_import_zig_path),
|
|
.root_src_path = "cimport.zig",
|
|
},
|
|
.fully_qualified_name = c_import_zig_path,
|
|
.cc_argv = parent_mod.cc_argv,
|
|
.inherited = .{},
|
|
.global = comp.config,
|
|
.parent = parent_mod,
|
|
}) catch |err| switch (err) {
|
|
error.OutOfMemory => |e| return e,
|
|
// None of these are possible because we are creating a package with
|
|
// the exact same configuration as the parent package, which already
|
|
// passed these checks.
|
|
error.ValgrindUnsupportedOnTarget => unreachable,
|
|
error.TargetRequiresSingleThreaded => unreachable,
|
|
error.BackendRequiresSingleThreaded => unreachable,
|
|
error.TargetRequiresPic => unreachable,
|
|
error.PieRequiresPic => unreachable,
|
|
error.DynamicLinkingRequiresPic => unreachable,
|
|
error.TargetHasNoRedZone => unreachable,
|
|
error.StackCheckUnsupportedByTarget => unreachable,
|
|
error.StackProtectorUnsupportedByTarget => unreachable,
|
|
error.StackProtectorUnavailableWithoutLibC => unreachable,
|
|
};
|
|
const c_import_file_path: Compilation.Path = try c_import_mod.root.join(gpa, comp.dirs, "cimport.zig");
|
|
errdefer c_import_file_path.deinit(gpa);
|
|
const c_import_file = try gpa.create(Zcu.File);
|
|
errdefer gpa.destroy(c_import_file);
|
|
const c_import_file_index = try zcu.intern_pool.createFile(gpa, pt.tid, .{
|
|
.bin_digest = c_import_file_path.digest(),
|
|
.file = c_import_file,
|
|
.root_type = .none,
|
|
});
|
|
c_import_file.* = .{
|
|
.status = .never_loaded,
|
|
.stat = undefined,
|
|
.is_builtin = false,
|
|
.path = c_import_file_path,
|
|
.source = null,
|
|
.tree = null,
|
|
.zir = null,
|
|
.zoir = null,
|
|
.mod = c_import_mod,
|
|
.sub_file_path = "cimport.zig",
|
|
.module_changed = false,
|
|
.prev_zir = null,
|
|
.zoir_invalidated = false,
|
|
};
|
|
break :file c_import_file_index;
|
|
};
|
|
pt.updateFile(new_file_index, zcu.fileByIndex(new_file_index)) catch |err|
|
|
return sema.fail(&child_block, src, "C import failed: {s}", .{@errorName(err)});
|
|
|
|
try pt.ensureFileAnalyzed(new_file_index);
|
|
const ty = zcu.fileRootType(new_file_index);
|
|
try sema.declareDependency(.{ .interned = ty });
|
|
try sema.addTypeReferenceEntry(src, ty);
|
|
return Air.internedToRef(ty);
|
|
}
|
|
|
|
fn zirSuspendBlock(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = parent_block.nodeOffset(inst_data.src_node);
|
|
return sema.failWithUseOfAsync(parent_block, src);
|
|
}
|
|
|
|
fn zirBlock(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = parent_block.nodeOffset(pl_node.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const gpa = sema.gpa;
|
|
|
|
// Reserve space for a Block instruction so that generated Break instructions can
|
|
// point to it, even if it doesn't end up getting used because the code ends up being
|
|
// comptime evaluated or is an unlabeled block.
|
|
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .block,
|
|
.data = undefined,
|
|
});
|
|
|
|
var label: Block.Label = .{
|
|
.zir_block = inst,
|
|
.merges = .{
|
|
.src_locs = .{},
|
|
.results = .{},
|
|
.br_list = .{},
|
|
.block_inst = block_inst,
|
|
},
|
|
};
|
|
|
|
var child_block: Block = .{
|
|
.parent = parent_block,
|
|
.sema = sema,
|
|
.namespace = parent_block.namespace,
|
|
.instructions = .{},
|
|
.label = &label,
|
|
.inlining = parent_block.inlining,
|
|
.comptime_reason = parent_block.comptime_reason,
|
|
.is_typeof = parent_block.is_typeof,
|
|
.want_safety = parent_block.want_safety,
|
|
.float_mode = parent_block.float_mode,
|
|
.c_import_buf = parent_block.c_import_buf,
|
|
.runtime_cond = parent_block.runtime_cond,
|
|
.runtime_loop = parent_block.runtime_loop,
|
|
.runtime_index = parent_block.runtime_index,
|
|
.error_return_trace_index = parent_block.error_return_trace_index,
|
|
.src_base_inst = parent_block.src_base_inst,
|
|
.type_name_ctx = parent_block.type_name_ctx,
|
|
};
|
|
|
|
defer child_block.instructions.deinit(gpa);
|
|
defer label.merges.deinit(gpa);
|
|
|
|
return sema.resolveBlockBody(parent_block, src, &child_block, body, inst, &label.merges);
|
|
}
|
|
|
|
/// Semantically analyze the given ZIR body, emitting any resulting runtime code into the AIR block
|
|
/// specified by `child_block` if necessary (and emitting this block into `parent_block`).
|
|
/// TODO: `merges` is known from `child_block`, remove this parameter.
|
|
fn resolveBlockBody(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
child_block: *Block,
|
|
body: []const Zir.Inst.Index,
|
|
/// This is the instruction that a break instruction within `body` can
|
|
/// use to return from the body.
|
|
body_inst: Zir.Inst.Index,
|
|
merges: *Block.Merges,
|
|
) CompileError!Air.Inst.Ref {
|
|
if (child_block.isComptime()) {
|
|
return sema.resolveInlineBody(child_block, body, body_inst);
|
|
} else {
|
|
assert(sema.air_instructions.items(.tag)[@intFromEnum(merges.block_inst)] == .block);
|
|
var need_debug_scope = false;
|
|
child_block.need_debug_scope = &need_debug_scope;
|
|
if (sema.analyzeBodyInner(child_block, body)) |_| {
|
|
return sema.resolveAnalyzedBlock(parent_block, src, child_block, merges, need_debug_scope);
|
|
} else |err| switch (err) {
|
|
error.ComptimeBreak => {
|
|
// Comptime control flow is happening, however child_block may still contain
|
|
// runtime instructions which need to be copied to the parent block.
|
|
if (need_debug_scope and child_block.instructions.items.len > 0) {
|
|
// We need a runtime block for scoping reasons.
|
|
_ = try child_block.addBr(merges.block_inst, .void_value);
|
|
try parent_block.instructions.append(sema.gpa, merges.block_inst);
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.Block).@"struct".fields.len +
|
|
child_block.instructions.items.len);
|
|
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
|
|
.ty = .void_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = @intCast(child_block.instructions.items.len),
|
|
}),
|
|
} };
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
|
|
} else {
|
|
// We can copy instructions directly to the parent block.
|
|
try parent_block.instructions.appendSlice(sema.gpa, child_block.instructions.items);
|
|
}
|
|
|
|
const break_inst = sema.comptime_break_inst;
|
|
const break_data = sema.code.instructions.items(.data)[@intFromEnum(break_inst)].@"break";
|
|
const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data;
|
|
if (extra.block_inst == body_inst) {
|
|
return try sema.resolveInst(break_data.operand);
|
|
} else {
|
|
return error.ComptimeBreak;
|
|
}
|
|
},
|
|
else => |e| return e,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// After a body corresponding to an AIR `block` has been analyzed, this function places them into
|
|
/// the block pointed at by `merges.block_inst` if necessary, or the block may be elided in favor of
|
|
/// inlining the instructions directly into the parent block. Either way, it considers all merges of
|
|
/// this block, and combines them appropriately using peer type resolution, returning the final
|
|
/// value of the block.
|
|
fn resolveAnalyzedBlock(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
child_block: *Block,
|
|
merges: *Block.Merges,
|
|
need_debug_scope: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const gpa = sema.gpa;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
// Blocks must terminate with noreturn instruction.
|
|
assert(child_block.instructions.items.len != 0);
|
|
assert(sema.typeOf(child_block.instructions.items[child_block.instructions.items.len - 1].toRef()).isNoReturn(zcu));
|
|
|
|
const block_tag = sema.air_instructions.items(.tag)[@intFromEnum(merges.block_inst)];
|
|
switch (block_tag) {
|
|
.block => {},
|
|
.dbg_inline_block => assert(need_debug_scope),
|
|
else => unreachable,
|
|
}
|
|
if (merges.results.items.len == 0) {
|
|
switch (block_tag) {
|
|
.block => {
|
|
// No need for a block instruction. We can put the new instructions
|
|
// directly into the parent block.
|
|
if (need_debug_scope) {
|
|
// The code following this block is unreachable, as the block has no
|
|
// merges, so we don't necessarily need to emit this as an AIR block.
|
|
// However, we need a block *somewhere* to make the scoping correct,
|
|
// so forward this request to the parent block.
|
|
if (parent_block.need_debug_scope) |ptr| ptr.* = true;
|
|
}
|
|
try parent_block.instructions.appendSlice(gpa, child_block.instructions.items);
|
|
return child_block.instructions.items[child_block.instructions.items.len - 1].toRef();
|
|
},
|
|
.dbg_inline_block => {
|
|
// Create a block containing all instruction from the body.
|
|
try parent_block.instructions.append(gpa, merges.block_inst);
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.DbgInlineBlock).@"struct".fields.len +
|
|
child_block.instructions.items.len);
|
|
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
|
|
.ty = .noreturn_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.DbgInlineBlock{
|
|
.func = child_block.inlining.?.func,
|
|
.body_len = @intCast(child_block.instructions.items.len),
|
|
}),
|
|
} };
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
|
|
return merges.block_inst.toRef();
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
if (merges.results.items.len == 1) {
|
|
// If the `break` is trailing, we may be able to elide the AIR block here
|
|
// by appending the new instructions directly to the parent block.
|
|
if (!need_debug_scope) {
|
|
const last_inst_index = child_block.instructions.items.len - 1;
|
|
const last_inst = child_block.instructions.items[last_inst_index];
|
|
if (sema.getBreakBlock(last_inst)) |br_block| {
|
|
if (br_block == merges.block_inst) {
|
|
// Great, the last instruction is the break! Put the instructions
|
|
// directly into the parent block.
|
|
try parent_block.instructions.appendSlice(gpa, child_block.instructions.items[0..last_inst_index]);
|
|
return merges.results.items[0];
|
|
}
|
|
}
|
|
}
|
|
// Okay, we need a runtime block. If the value is comptime-known, the
|
|
// block should just return void, and we return the merge result
|
|
// directly. Otherwise, we can defer to the logic below.
|
|
if (try sema.resolveValue(merges.results.items[0])) |result_val| {
|
|
// Create a block containing all instruction from the body.
|
|
try parent_block.instructions.append(gpa, merges.block_inst);
|
|
switch (block_tag) {
|
|
.block => {
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).@"struct".fields.len +
|
|
child_block.instructions.items.len);
|
|
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
|
|
.ty = .void_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = @intCast(child_block.instructions.items.len),
|
|
}),
|
|
} };
|
|
},
|
|
.dbg_inline_block => {
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.DbgInlineBlock).@"struct".fields.len +
|
|
child_block.instructions.items.len);
|
|
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
|
|
.ty = .void_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.DbgInlineBlock{
|
|
.func = child_block.inlining.?.func,
|
|
.body_len = @intCast(child_block.instructions.items.len),
|
|
}),
|
|
} };
|
|
},
|
|
else => unreachable,
|
|
}
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
|
|
// Rewrite the break to just give value {}; the value is
|
|
// comptime-known and will be returned directly.
|
|
sema.air_instructions.items(.data)[@intFromEnum(merges.br_list.items[0])].br.operand = .void_value;
|
|
return Air.internedToRef(result_val.toIntern());
|
|
}
|
|
}
|
|
// It is impossible to have the number of results be > 1 in a comptime scope.
|
|
assert(!child_block.isComptime()); // Should already got a compile error in the condbr condition.
|
|
|
|
// Note that we'll always create an AIR block here, so `need_debug_scope` is irrelevant.
|
|
|
|
// Need to set the type and emit the Block instruction. This allows machine code generation
|
|
// to emit a jump instruction to after the block when it encounters the break.
|
|
try parent_block.instructions.append(gpa, merges.block_inst);
|
|
const resolved_ty = try sema.resolvePeerTypes(parent_block, src, merges.results.items, .{ .override = merges.src_locs.items });
|
|
// TODO add note "missing else causes void value"
|
|
|
|
const type_src = src; // TODO: better source location
|
|
if (try resolved_ty.comptimeOnlySema(pt)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(type_src, "value with comptime-only type '{f}' depends on runtime control flow", .{resolved_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
const runtime_src = child_block.runtime_cond orelse child_block.runtime_loop.?;
|
|
try sema.errNote(runtime_src, msg, "runtime control flow here", .{});
|
|
|
|
try sema.explainWhyTypeIsComptime(msg, type_src, resolved_ty);
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(child_block, msg);
|
|
}
|
|
for (merges.results.items, merges.src_locs.items) |merge_inst, merge_src| {
|
|
try sema.validateRuntimeValue(child_block, merge_src orelse src, merge_inst);
|
|
}
|
|
|
|
try sema.checkMergeAllowed(child_block, type_src, resolved_ty);
|
|
|
|
const ty_inst = Air.internedToRef(resolved_ty.toIntern());
|
|
switch (block_tag) {
|
|
.block => {
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).@"struct".fields.len +
|
|
child_block.instructions.items.len);
|
|
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
|
|
.ty = ty_inst,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = @intCast(child_block.instructions.items.len),
|
|
}),
|
|
} };
|
|
},
|
|
.dbg_inline_block => {
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.DbgInlineBlock).@"struct".fields.len +
|
|
child_block.instructions.items.len);
|
|
sema.air_instructions.items(.data)[@intFromEnum(merges.block_inst)] = .{ .ty_pl = .{
|
|
.ty = ty_inst,
|
|
.payload = sema.addExtraAssumeCapacity(Air.DbgInlineBlock{
|
|
.func = child_block.inlining.?.func,
|
|
.body_len = @intCast(child_block.instructions.items.len),
|
|
}),
|
|
} };
|
|
},
|
|
else => unreachable,
|
|
}
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
|
|
// Now that the block has its type resolved, we need to go back into all the break
|
|
// instructions, and insert type coercion on the operands.
|
|
for (merges.br_list.items) |br| {
|
|
const br_operand = sema.air_instructions.items(.data)[@intFromEnum(br)].br.operand;
|
|
const br_operand_src = src;
|
|
const br_operand_ty = sema.typeOf(br_operand);
|
|
if (br_operand_ty.eql(resolved_ty, zcu)) {
|
|
// No type coercion needed.
|
|
continue;
|
|
}
|
|
var coerce_block = parent_block.makeSubBlock();
|
|
defer coerce_block.instructions.deinit(gpa);
|
|
const coerced_operand = try sema.coerce(&coerce_block, resolved_ty, br_operand, br_operand_src);
|
|
// If no instructions were produced, such as in the case of a coercion of a
|
|
// constant value to a new type, we can simply point the br operand to it.
|
|
if (coerce_block.instructions.items.len == 0) {
|
|
sema.air_instructions.items(.data)[@intFromEnum(br)].br.operand = coerced_operand;
|
|
continue;
|
|
}
|
|
assert(coerce_block.instructions.items[coerce_block.instructions.items.len - 1].toRef() == coerced_operand);
|
|
|
|
// Convert the br instruction to a block instruction that has the coercion
|
|
// and then a new br inside that returns the coerced instruction.
|
|
const sub_block_len: u32 = @intCast(coerce_block.instructions.items.len + 1);
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).@"struct".fields.len +
|
|
sub_block_len);
|
|
try sema.air_instructions.ensureUnusedCapacity(gpa, 1);
|
|
const sub_br_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
|
|
sema.air_instructions.items(.tag)[@intFromEnum(br)] = .block;
|
|
sema.air_instructions.items(.data)[@intFromEnum(br)] = .{ .ty_pl = .{
|
|
.ty = .noreturn_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = sub_block_len,
|
|
}),
|
|
} };
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(coerce_block.instructions.items));
|
|
sema.air_extra.appendAssumeCapacity(@intFromEnum(sub_br_inst));
|
|
|
|
sema.air_instructions.appendAssumeCapacity(.{
|
|
.tag = .br,
|
|
.data = .{ .br = .{
|
|
.block_inst = merges.block_inst,
|
|
.operand = coerced_operand,
|
|
} },
|
|
});
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(resolved_ty)) |block_only_value| {
|
|
return Air.internedToRef(block_only_value.toIntern());
|
|
}
|
|
|
|
return merges.block_inst.toRef();
|
|
}
|
|
|
|
fn zirExport(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Export, inst_data.payload_index).data;
|
|
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ptr_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const options_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
|
|
const ptr = try sema.resolveInst(extra.exported);
|
|
const ptr_val = try sema.resolveConstDefinedValue(block, ptr_src, ptr, .{ .simple = .export_target });
|
|
const ptr_ty = ptr_val.typeOf(zcu);
|
|
|
|
const options = try sema.resolveExportOptions(block, options_src, extra.options);
|
|
|
|
{
|
|
if (ptr_ty.zigTypeTag(zcu) != .pointer) {
|
|
return sema.fail(block, ptr_src, "expected pointer type, found '{f}'", .{ptr_ty.fmt(pt)});
|
|
}
|
|
const ptr_ty_info = ptr_ty.ptrInfo(zcu);
|
|
if (ptr_ty_info.flags.size == .slice) {
|
|
return sema.fail(block, ptr_src, "export target cannot be slice", .{});
|
|
}
|
|
if (ptr_ty_info.packed_offset.host_size != 0) {
|
|
return sema.fail(block, ptr_src, "export target cannot be bit-pointer", .{});
|
|
}
|
|
}
|
|
|
|
const ptr_info = ip.indexToKey(ptr_val.toIntern()).ptr;
|
|
switch (ptr_info.base_addr) {
|
|
.comptime_alloc, .int, .comptime_field => return sema.fail(block, ptr_src, "export target must be a global variable or a comptime-known constant", .{}),
|
|
.eu_payload, .opt_payload, .field, .arr_elem => return sema.fail(block, ptr_src, "TODO: export pointer in middle of value", .{}),
|
|
.uav => |uav| {
|
|
if (ptr_info.byte_offset != 0) {
|
|
return sema.fail(block, ptr_src, "TODO: export pointer in middle of value", .{});
|
|
}
|
|
if (zcu.llvm_object != null and options.linkage == .internal) return;
|
|
const export_ty = Value.fromInterned(uav.val).typeOf(zcu);
|
|
if (!try sema.validateExternType(export_ty, .other)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "unable to export type '{f}'", .{export_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.explainWhyTypeIsNotExtern(msg, src, export_ty, .other);
|
|
try sema.addDeclaredHereNote(msg, export_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
try sema.exports.append(zcu.gpa, .{
|
|
.opts = options,
|
|
.src = src,
|
|
.exported = .{ .uav = uav.val },
|
|
.status = .in_progress,
|
|
});
|
|
},
|
|
.nav => |nav| {
|
|
if (ptr_info.byte_offset != 0) {
|
|
return sema.fail(block, ptr_src, "TODO: export pointer in middle of value", .{});
|
|
}
|
|
try sema.analyzeExport(block, src, options, nav);
|
|
},
|
|
}
|
|
}
|
|
|
|
pub fn analyzeExport(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
options: Zcu.Export.Options,
|
|
orig_nav_index: InternPool.Nav.Index,
|
|
) !void {
|
|
const gpa = sema.gpa;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
if (zcu.llvm_object != null and options.linkage == .internal)
|
|
return;
|
|
|
|
try sema.ensureNavResolved(block, src, orig_nav_index, .fully);
|
|
|
|
const exported_nav_index = switch (ip.indexToKey(ip.getNav(orig_nav_index).status.fully_resolved.val)) {
|
|
.variable => |v| v.owner_nav,
|
|
.@"extern" => |e| e.owner_nav,
|
|
.func => |f| f.owner_nav,
|
|
else => orig_nav_index,
|
|
};
|
|
|
|
const exported_nav = ip.getNav(exported_nav_index);
|
|
const export_ty: Type = .fromInterned(exported_nav.typeOf(ip));
|
|
|
|
if (!try sema.validateExternType(export_ty, .other)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "unable to export type '{f}'", .{export_ty.fmt(pt)});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, src, export_ty, .other);
|
|
|
|
try sema.addDeclaredHereNote(msg, export_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
// TODO: some backends might support re-exporting extern decls
|
|
if (exported_nav.getExtern(ip) != null) {
|
|
return sema.fail(block, src, "export target cannot be extern", .{});
|
|
}
|
|
|
|
try sema.maybeQueueFuncBodyAnalysis(block, src, exported_nav_index);
|
|
|
|
try sema.exports.append(gpa, .{
|
|
.opts = options,
|
|
.src = src,
|
|
.exported = .{ .nav = exported_nav_index },
|
|
.status = .in_progress,
|
|
});
|
|
}
|
|
|
|
fn zirDisableInstrumentation(sema: *Sema) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const func = switch (sema.owner.unwrap()) {
|
|
.func => |func| func,
|
|
.@"comptime",
|
|
.nav_val,
|
|
.nav_ty,
|
|
.type,
|
|
.memoized_state,
|
|
=> return, // does nothing outside a function
|
|
};
|
|
ip.funcSetDisableInstrumentation(func);
|
|
sema.allow_memoize = false;
|
|
}
|
|
|
|
fn zirDisableIntrinsics(sema: *Sema) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const func = switch (sema.owner.unwrap()) {
|
|
.func => |func| func,
|
|
.@"comptime",
|
|
.nav_val,
|
|
.nav_ty,
|
|
.type,
|
|
.memoized_state,
|
|
=> return, // does nothing outside a function
|
|
};
|
|
ip.funcSetDisableIntrinsics(func);
|
|
sema.allow_memoize = false;
|
|
}
|
|
|
|
fn zirSetFloatMode(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.builtinCallArgSrc(extra.node, 0);
|
|
block.float_mode = try sema.resolveBuiltinEnum(block, src, extra.operand, .FloatMode, .{ .simple = .operand_setFloatMode });
|
|
}
|
|
|
|
fn zirSetRuntimeSafety(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
block.want_safety = try sema.resolveConstBool(block, operand_src, inst_data.operand, .{ .simple = .operand_setRuntimeSafety });
|
|
}
|
|
|
|
fn zirBreak(sema: *Sema, start_block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"break";
|
|
const extra = sema.code.extraData(Zir.Inst.Break, inst_data.payload_index).data;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const zir_block = extra.block_inst;
|
|
|
|
var block = start_block;
|
|
while (true) {
|
|
if (block.label) |label| {
|
|
if (label.zir_block == zir_block) {
|
|
const br_ref = try start_block.addBr(label.merges.block_inst, operand);
|
|
const src_loc = if (extra.operand_src_node.unwrap()) |operand_src_node|
|
|
start_block.nodeOffset(operand_src_node)
|
|
else
|
|
null;
|
|
try label.merges.src_locs.append(sema.gpa, src_loc);
|
|
try label.merges.results.append(sema.gpa, operand);
|
|
try label.merges.br_list.append(sema.gpa, br_ref.toIndex().?);
|
|
block.runtime_index.increment();
|
|
if (block.runtime_cond == null and block.runtime_loop == null) {
|
|
block.runtime_cond = start_block.runtime_cond orelse start_block.runtime_loop;
|
|
block.runtime_loop = start_block.runtime_loop;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
block = block.parent.?;
|
|
}
|
|
}
|
|
|
|
fn zirSwitchContinue(sema: *Sema, start_block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"break";
|
|
const extra = sema.code.extraData(Zir.Inst.Break, inst_data.payload_index).data;
|
|
const operand_src = start_block.nodeOffset(extra.operand_src_node.unwrap().?);
|
|
const uncoerced_operand = try sema.resolveInst(inst_data.operand);
|
|
const switch_inst = extra.block_inst;
|
|
|
|
switch (sema.code.instructions.items(.tag)[@intFromEnum(switch_inst)]) {
|
|
.switch_block, .switch_block_ref => {},
|
|
else => unreachable, // assertion failure
|
|
}
|
|
|
|
const switch_payload_index = sema.code.instructions.items(.data)[@intFromEnum(switch_inst)].pl_node.payload_index;
|
|
const switch_operand_ref = sema.code.extraData(Zir.Inst.SwitchBlock, switch_payload_index).data.operand;
|
|
const switch_operand_ty = sema.typeOf(try sema.resolveInst(switch_operand_ref));
|
|
|
|
const operand = try sema.coerce(start_block, switch_operand_ty, uncoerced_operand, operand_src);
|
|
|
|
try sema.validateRuntimeValue(start_block, operand_src, operand);
|
|
|
|
// We want to generate a `switch_dispatch` instruction with the switch condition,
|
|
// possibly preceded by a store to the stack alloc containing the raw operand.
|
|
// However, to avoid too much special-case state in Sema, this is handled by the
|
|
// `switch` lowering logic. As such, we will find the `Block` corresponding to the
|
|
// parent `switch_block[_ref]` instruction, create a dummy `br`, and add a merge
|
|
// to signal to the switch logic to rewrite this into an appropriate dispatch.
|
|
|
|
var block = start_block;
|
|
while (true) {
|
|
if (block.label) |label| {
|
|
if (label.zir_block == switch_inst) {
|
|
const br_ref = try start_block.addBr(label.merges.block_inst, operand);
|
|
try label.merges.extra_insts.append(sema.gpa, br_ref.toIndex().?);
|
|
try label.merges.extra_src_locs.append(sema.gpa, operand_src);
|
|
block.runtime_index.increment();
|
|
if (block.runtime_cond == null and block.runtime_loop == null) {
|
|
block.runtime_cond = start_block.runtime_cond orelse start_block.runtime_loop;
|
|
block.runtime_loop = start_block.runtime_loop;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
block = block.parent.?;
|
|
}
|
|
}
|
|
|
|
fn zirDbgStmt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
if (block.isComptime() or block.ownerModule().strip) return;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
|
|
|
|
if (block.instructions.items.len != 0) {
|
|
const idx = block.instructions.items[block.instructions.items.len - 1];
|
|
if (sema.air_instructions.items(.tag)[@intFromEnum(idx)] == .dbg_stmt) {
|
|
// The previous dbg_stmt didn't correspond to any actual code, so replace it.
|
|
sema.air_instructions.items(.data)[@intFromEnum(idx)].dbg_stmt = .{
|
|
.line = inst_data.line,
|
|
.column = inst_data.column,
|
|
};
|
|
return;
|
|
}
|
|
}
|
|
|
|
_ = try block.addInst(.{
|
|
.tag = .dbg_stmt,
|
|
.data = .{ .dbg_stmt = .{
|
|
.line = inst_data.line,
|
|
.column = inst_data.column,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirDbgEmptyStmt(_: *Sema, block: *Block, _: Zir.Inst.Index) CompileError!void {
|
|
if (block.isComptime() or block.ownerModule().strip) return;
|
|
_ = try block.addNoOp(.dbg_empty_stmt);
|
|
}
|
|
|
|
fn zirDbgVar(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
air_tag: Air.Inst.Tag,
|
|
) CompileError!void {
|
|
const str_op = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_op;
|
|
const operand = try sema.resolveInst(str_op.operand);
|
|
const name = str_op.getStr(sema.code);
|
|
try sema.addDbgVar(block, operand, air_tag, name);
|
|
}
|
|
|
|
fn addDbgVar(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
operand: Air.Inst.Ref,
|
|
air_tag: Air.Inst.Tag,
|
|
name: []const u8,
|
|
) CompileError!void {
|
|
if (block.isComptime() or block.ownerModule().strip) return;
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
const val_ty = switch (air_tag) {
|
|
.dbg_var_ptr => operand_ty.childType(zcu),
|
|
.dbg_var_val, .dbg_arg_inline => operand_ty,
|
|
else => unreachable,
|
|
};
|
|
if (try val_ty.comptimeOnlySema(pt)) return;
|
|
if (!(try val_ty.hasRuntimeBitsSema(pt))) return;
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
if (operand_val.canMutateComptimeVarState(zcu)) return;
|
|
}
|
|
|
|
// To ensure the lexical scoping is known to backends, this alloc must be
|
|
// within a real runtime block. We set a flag which communicates information
|
|
// to the closest lexically enclosing block:
|
|
// * If it is a `block_inline`, communicates to logic in `analyzeBodyInner`
|
|
// to create a post-hoc block.
|
|
// * Otherwise, communicates to logic in `resolveBlockBody` to create a
|
|
// real `block` instruction.
|
|
if (block.need_debug_scope) |ptr| ptr.* = true;
|
|
|
|
// Add the name to the AIR.
|
|
const name_nts = try sema.appendAirString(name);
|
|
|
|
_ = try block.addInst(.{
|
|
.tag = air_tag,
|
|
.data = .{ .pl_op = .{
|
|
.payload = @intFromEnum(name_nts),
|
|
.operand = operand,
|
|
} },
|
|
});
|
|
}
|
|
|
|
pub fn appendAirString(sema: *Sema, str: []const u8) Allocator.Error!Air.NullTerminatedString {
|
|
if (str.len == 0) return .none;
|
|
const nts: Air.NullTerminatedString = @enumFromInt(sema.air_extra.items.len);
|
|
const elements_used = str.len / 4 + 1;
|
|
const elements = try sema.air_extra.addManyAsSlice(sema.gpa, elements_used);
|
|
const buffer = mem.sliceAsBytes(elements);
|
|
@memcpy(buffer[0..str.len], str);
|
|
buffer[str.len] = 0;
|
|
return nts;
|
|
}
|
|
|
|
fn zirDeclRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
|
|
const src = block.tokenOffset(inst_data.src_tok);
|
|
const decl_name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
inst_data.get(sema.code),
|
|
.no_embedded_nulls,
|
|
);
|
|
const nav_index = try sema.lookupIdentifier(block, decl_name);
|
|
return sema.analyzeNavRef(block, src, nav_index);
|
|
}
|
|
|
|
fn zirDeclVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
|
|
const src = block.tokenOffset(inst_data.src_tok);
|
|
const decl_name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
inst_data.get(sema.code),
|
|
.no_embedded_nulls,
|
|
);
|
|
const nav = try sema.lookupIdentifier(block, decl_name);
|
|
return sema.analyzeNavVal(block, src, nav);
|
|
}
|
|
|
|
fn lookupIdentifier(sema: *Sema, block: *Block, name: InternPool.NullTerminatedString) !InternPool.Nav.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
var namespace = block.namespace;
|
|
while (true) {
|
|
if (try sema.lookupInNamespace(block, namespace, name)) |lookup| {
|
|
assert(lookup.accessible);
|
|
return lookup.nav;
|
|
}
|
|
namespace = zcu.namespacePtr(namespace).parent.unwrap() orelse break;
|
|
}
|
|
unreachable; // AstGen detects use of undeclared identifiers.
|
|
}
|
|
|
|
/// This looks up a member of a specific namespace.
|
|
fn lookupInNamespace(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
namespace_index: InternPool.NamespaceIndex,
|
|
ident_name: InternPool.NullTerminatedString,
|
|
) CompileError!?struct {
|
|
nav: InternPool.Nav.Index,
|
|
/// If `false`, the declaration is in a different file and is not `pub`.
|
|
/// We still return the declaration for better error reporting.
|
|
accessible: bool,
|
|
} {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
try pt.ensureNamespaceUpToDate(namespace_index);
|
|
|
|
const namespace = zcu.namespacePtr(namespace_index);
|
|
|
|
const adapter: Zcu.Namespace.NameAdapter = .{ .zcu = zcu };
|
|
|
|
const src_file = zcu.namespacePtr(block.namespace).file_scope;
|
|
|
|
if (Type.fromInterned(namespace.owner_type).typeDeclInst(zcu)) |type_decl_inst| {
|
|
try sema.declareDependency(.{ .namespace_name = .{
|
|
.namespace = type_decl_inst,
|
|
.name = ident_name,
|
|
} });
|
|
}
|
|
|
|
if (namespace.pub_decls.getKeyAdapted(ident_name, adapter)) |nav_index| {
|
|
return .{
|
|
.nav = nav_index,
|
|
.accessible = true,
|
|
};
|
|
} else if (namespace.priv_decls.getKeyAdapted(ident_name, adapter)) |nav_index| {
|
|
return .{
|
|
.nav = nav_index,
|
|
.accessible = src_file == namespace.file_scope,
|
|
};
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
fn funcDeclSrcInst(sema: *Sema, func_inst: Air.Inst.Ref) !?InternPool.TrackedInst.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const func_val = try sema.resolveValue(func_inst) orelse return null;
|
|
if (func_val.isUndef(zcu)) return null;
|
|
const nav = switch (ip.indexToKey(func_val.toIntern())) {
|
|
.@"extern" => |e| e.owner_nav,
|
|
.func => |f| f.owner_nav,
|
|
.ptr => |ptr| switch (ptr.base_addr) {
|
|
.nav => |nav| if (ptr.byte_offset == 0) nav else return null,
|
|
else => return null,
|
|
},
|
|
else => return null,
|
|
};
|
|
return ip.getNav(nav).srcInst(ip);
|
|
}
|
|
|
|
pub fn analyzeSaveErrRetIndex(sema: *Sema, block: *Block) SemaError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
|
|
if (block.isComptime() or block.is_typeof) {
|
|
const index_val = try pt.intValue_u64(.usize, sema.comptime_err_ret_trace.items.len);
|
|
return Air.internedToRef(index_val.toIntern());
|
|
}
|
|
|
|
if (!block.ownerModule().error_tracing) return .none;
|
|
|
|
const stack_trace_ty = try sema.getBuiltinType(block.nodeOffset(.zero), .StackTrace);
|
|
try stack_trace_ty.resolveFields(pt);
|
|
const field_name = try zcu.intern_pool.getOrPutString(gpa, pt.tid, "index", .no_embedded_nulls);
|
|
const field_index = sema.structFieldIndex(block, stack_trace_ty, field_name, LazySrcLoc.unneeded) catch |err| switch (err) {
|
|
error.AnalysisFail => @panic("std.builtin.StackTrace is corrupt"),
|
|
error.ComptimeReturn, error.ComptimeBreak => unreachable,
|
|
error.OutOfMemory => |e| return e,
|
|
};
|
|
|
|
return try block.addInst(.{
|
|
.tag = .save_err_return_trace_index,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(stack_trace_ty.toIntern()),
|
|
.payload = @intCast(field_index),
|
|
} },
|
|
});
|
|
}
|
|
|
|
/// Add instructions to block to "pop" the error return trace.
|
|
/// If `operand` is provided, only pops if operand is non-error.
|
|
fn popErrorReturnTrace(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
saved_error_trace_index: Air.Inst.Ref,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
var is_non_error: ?bool = null;
|
|
var is_non_error_inst: Air.Inst.Ref = undefined;
|
|
if (operand != .none) {
|
|
is_non_error_inst = try sema.analyzeIsNonErr(block, src, operand);
|
|
if (try sema.resolveDefinedValue(block, src, is_non_error_inst)) |cond_val|
|
|
is_non_error = cond_val.toBool();
|
|
} else is_non_error = true; // no operand means pop unconditionally
|
|
|
|
if (is_non_error == true) {
|
|
// AstGen determined this result does not go to an error-handling expr (try/catch/return etc.), or
|
|
// the result is comptime-known to be a non-error. Either way, pop unconditionally.
|
|
|
|
const stack_trace_ty = try sema.getBuiltinType(src, .StackTrace);
|
|
try stack_trace_ty.resolveFields(pt);
|
|
const ptr_stack_trace_ty = try pt.singleMutPtrType(stack_trace_ty);
|
|
const err_return_trace = try block.addTy(.err_return_trace, ptr_stack_trace_ty);
|
|
const field_name = try zcu.intern_pool.getOrPutString(gpa, pt.tid, "index", .no_embedded_nulls);
|
|
const field_ptr = try sema.structFieldPtr(block, src, err_return_trace, field_name, src, stack_trace_ty, true);
|
|
try sema.storePtr2(block, src, field_ptr, src, saved_error_trace_index, src, .store);
|
|
} else if (is_non_error == null) {
|
|
// The result might be an error. If it is, we leave the error trace alone. If it isn't, we need
|
|
// to pop any error trace that may have been propagated from our arguments.
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).@"struct".fields.len);
|
|
const cond_block_inst = try block.addInstAsIndex(.{
|
|
.tag = .block,
|
|
.data = .{
|
|
.ty_pl = .{
|
|
.ty = .void_type,
|
|
.payload = undefined, // updated below
|
|
},
|
|
},
|
|
});
|
|
|
|
var then_block = block.makeSubBlock();
|
|
defer then_block.instructions.deinit(gpa);
|
|
|
|
// If non-error, then pop the error return trace by restoring the index.
|
|
const stack_trace_ty = try sema.getBuiltinType(src, .StackTrace);
|
|
try stack_trace_ty.resolveFields(pt);
|
|
const ptr_stack_trace_ty = try pt.singleMutPtrType(stack_trace_ty);
|
|
const err_return_trace = try then_block.addTy(.err_return_trace, ptr_stack_trace_ty);
|
|
const field_name = try zcu.intern_pool.getOrPutString(gpa, pt.tid, "index", .no_embedded_nulls);
|
|
const field_ptr = try sema.structFieldPtr(&then_block, src, err_return_trace, field_name, src, stack_trace_ty, true);
|
|
try sema.storePtr2(&then_block, src, field_ptr, src, saved_error_trace_index, src, .store);
|
|
_ = try then_block.addBr(cond_block_inst, .void_value);
|
|
|
|
// Otherwise, do nothing
|
|
var else_block = block.makeSubBlock();
|
|
defer else_block.instructions.deinit(gpa);
|
|
_ = try else_block.addBr(cond_block_inst, .void_value);
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).@"struct".fields.len +
|
|
then_block.instructions.items.len + else_block.instructions.items.len +
|
|
@typeInfo(Air.Block).@"struct".fields.len + 1); // +1 for the sole .cond_br instruction in the .block
|
|
|
|
const cond_br_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .cond_br,
|
|
.data = .{
|
|
.pl_op = .{
|
|
.operand = is_non_error_inst,
|
|
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
|
|
.then_body_len = @intCast(then_block.instructions.items.len),
|
|
.else_body_len = @intCast(else_block.instructions.items.len),
|
|
.branch_hints = .{
|
|
// Weight against error branch.
|
|
.true = .likely,
|
|
.false = .unlikely,
|
|
// Code coverage is not valuable on either branch.
|
|
.then_cov = .none,
|
|
.else_cov = .none,
|
|
},
|
|
}),
|
|
},
|
|
},
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(then_block.instructions.items));
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(else_block.instructions.items));
|
|
|
|
sema.air_instructions.items(.data)[@intFromEnum(cond_block_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = 1 });
|
|
sema.air_extra.appendAssumeCapacity(@intFromEnum(cond_br_inst));
|
|
}
|
|
}
|
|
|
|
fn zirCall(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
comptime kind: enum { direct, field },
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const callee_src = block.src(.{ .node_offset_call_func = inst_data.src_node });
|
|
const call_src = block.nodeOffset(inst_data.src_node);
|
|
const ExtraType = switch (kind) {
|
|
.direct => Zir.Inst.Call,
|
|
.field => Zir.Inst.FieldCall,
|
|
};
|
|
const extra = sema.code.extraData(ExtraType, inst_data.payload_index);
|
|
const args_len = extra.data.flags.args_len;
|
|
|
|
const modifier: std.builtin.CallModifier = @enumFromInt(extra.data.flags.packed_modifier);
|
|
const ensure_result_used = extra.data.flags.ensure_result_used;
|
|
const pop_error_return_trace = extra.data.flags.pop_error_return_trace;
|
|
|
|
const callee: ResolvedFieldCallee = switch (kind) {
|
|
.direct => .{ .direct = try sema.resolveInst(extra.data.callee) },
|
|
.field => blk: {
|
|
const object_ptr = try sema.resolveInst(extra.data.obj_ptr);
|
|
const field_name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(extra.data.field_name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
const field_name_src = block.src(.{ .node_offset_field_name = inst_data.src_node });
|
|
break :blk try sema.fieldCallBind(block, callee_src, object_ptr, field_name, field_name_src);
|
|
},
|
|
};
|
|
const func: Air.Inst.Ref = switch (callee) {
|
|
.direct => |func_inst| func_inst,
|
|
.method => |method| method.func_inst,
|
|
};
|
|
|
|
const callee_ty = sema.typeOf(func);
|
|
const total_args = args_len + @intFromBool(callee == .method);
|
|
const func_ty = try sema.checkCallArgumentCount(block, func, callee_src, callee_ty, total_args, callee == .method);
|
|
|
|
// The block index before the call, so we can potentially insert an error trace save here later.
|
|
const block_index: Air.Inst.Index = @enumFromInt(block.instructions.items.len);
|
|
|
|
// This will be set by `analyzeCall` to indicate whether any parameter was an error (making the
|
|
// error trace potentially dirty).
|
|
var input_is_error = false;
|
|
|
|
const args_info: CallArgsInfo = .{ .zir_call = .{
|
|
.bound_arg = switch (callee) {
|
|
.direct => .none,
|
|
.method => |method| method.arg0_inst,
|
|
},
|
|
.bound_arg_src = callee_src,
|
|
.call_inst = inst,
|
|
.call_node_offset = inst_data.src_node,
|
|
.num_args = args_len,
|
|
.args_body = @ptrCast(sema.code.extra[extra.end..]),
|
|
.any_arg_is_error = &input_is_error,
|
|
} };
|
|
|
|
// AstGen ensures that a call instruction is always preceded by a dbg_stmt instruction.
|
|
const call_dbg_node: Zir.Inst.Index = @enumFromInt(@intFromEnum(inst) - 1);
|
|
const call_inst = try sema.analyzeCall(block, func, func_ty, callee_src, call_src, modifier, ensure_result_used, args_info, call_dbg_node, .call);
|
|
|
|
if (block.ownerModule().error_tracing and
|
|
!block.isComptime() and !block.is_typeof and (input_is_error or pop_error_return_trace))
|
|
{
|
|
const return_ty = sema.typeOf(call_inst);
|
|
if (modifier != .always_tail and return_ty.isNoReturn(zcu))
|
|
return call_inst; // call to "fn (...) noreturn", don't pop
|
|
|
|
// TODO: we don't fix up the error trace for always_tail correctly, we should be doing it
|
|
// *before* the recursive call. This will be a bit tricky to do and probably requires
|
|
// moving this logic into analyzeCall. But that's probably a good idea anyway.
|
|
if (modifier == .always_tail)
|
|
return call_inst;
|
|
|
|
// If any input is an error-type, we might need to pop any trace it generated. Otherwise, we only
|
|
// need to clean-up our own trace if we were passed to a non-error-handling expression.
|
|
if (input_is_error or (pop_error_return_trace and return_ty.isError(zcu))) {
|
|
const stack_trace_ty = try sema.getBuiltinType(call_src, .StackTrace);
|
|
try stack_trace_ty.resolveFields(pt);
|
|
const field_name = try zcu.intern_pool.getOrPutString(sema.gpa, pt.tid, "index", .no_embedded_nulls);
|
|
const field_index = try sema.structFieldIndex(block, stack_trace_ty, field_name, call_src);
|
|
|
|
// Insert a save instruction before the arg resolution + call instructions we just generated
|
|
const save_inst = try block.insertInst(block_index, .{
|
|
.tag = .save_err_return_trace_index,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(stack_trace_ty.toIntern()),
|
|
.payload = @intCast(field_index),
|
|
} },
|
|
});
|
|
|
|
// Pop the error return trace, testing the result for non-error if necessary
|
|
const operand = if (pop_error_return_trace or modifier == .always_tail) .none else call_inst;
|
|
try sema.popErrorReturnTrace(block, call_src, operand, save_inst);
|
|
}
|
|
|
|
return call_inst;
|
|
} else {
|
|
return call_inst;
|
|
}
|
|
}
|
|
|
|
fn checkCallArgumentCount(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
func: Air.Inst.Ref,
|
|
func_src: LazySrcLoc,
|
|
callee_ty: Type,
|
|
total_args: usize,
|
|
member_fn: bool,
|
|
) !Type {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const func_ty: Type = func_ty: {
|
|
switch (callee_ty.zigTypeTag(zcu)) {
|
|
.@"fn" => break :func_ty callee_ty,
|
|
.pointer => {
|
|
const ptr_info = callee_ty.ptrInfo(zcu);
|
|
if (ptr_info.flags.size == .one and Type.fromInterned(ptr_info.child).zigTypeTag(zcu) == .@"fn") {
|
|
break :func_ty .fromInterned(ptr_info.child);
|
|
}
|
|
},
|
|
.optional => {
|
|
const opt_child = callee_ty.optionalChild(zcu);
|
|
if (opt_child.zigTypeTag(zcu) == .@"fn" or (opt_child.isSinglePointer(zcu) and
|
|
opt_child.childType(zcu).zigTypeTag(zcu) == .@"fn"))
|
|
{
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(func_src, "cannot call optional type '{f}'", .{
|
|
callee_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(func_src, msg, "consider using '.?', 'orelse' or 'if'", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
return sema.fail(block, func_src, "type '{f}' not a function", .{callee_ty.fmt(pt)});
|
|
};
|
|
|
|
const func_ty_info = zcu.typeToFunc(func_ty).?;
|
|
const fn_params_len = func_ty_info.param_types.len;
|
|
const args_len = total_args - @intFromBool(member_fn);
|
|
if (func_ty_info.is_var_args) {
|
|
assert(callConvSupportsVarArgs(func_ty_info.cc));
|
|
if (total_args >= fn_params_len) return func_ty;
|
|
} else if (fn_params_len == total_args) {
|
|
return func_ty;
|
|
}
|
|
|
|
const maybe_func_inst = try sema.funcDeclSrcInst(func);
|
|
const member_str = if (member_fn) "member function " else "";
|
|
const variadic_str = if (func_ty_info.is_var_args) "at least " else "";
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
func_src,
|
|
"{s}expected {s}{d} argument(s), found {d}",
|
|
.{
|
|
member_str,
|
|
variadic_str,
|
|
fn_params_len - @intFromBool(member_fn),
|
|
args_len,
|
|
},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
if (maybe_func_inst) |func_inst| {
|
|
try sema.errNote(.{
|
|
.base_node_inst = func_inst,
|
|
.offset = LazySrcLoc.Offset.nodeOffset(.zero),
|
|
}, msg, "function declared here", .{});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn callBuiltin(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
call_src: LazySrcLoc,
|
|
builtin_fn: Air.Inst.Ref,
|
|
modifier: std.builtin.CallModifier,
|
|
args: []const Air.Inst.Ref,
|
|
operation: CallOperation,
|
|
) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const callee_ty = sema.typeOf(builtin_fn);
|
|
const func_ty: Type = func_ty: {
|
|
switch (callee_ty.zigTypeTag(zcu)) {
|
|
.@"fn" => break :func_ty callee_ty,
|
|
.pointer => {
|
|
const ptr_info = callee_ty.ptrInfo(zcu);
|
|
if (ptr_info.flags.size == .one and Type.fromInterned(ptr_info.child).zigTypeTag(zcu) == .@"fn") {
|
|
break :func_ty .fromInterned(ptr_info.child);
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
std.debug.panic("type '{f}' is not a function calling builtin fn", .{callee_ty.fmt(pt)});
|
|
};
|
|
|
|
const func_ty_info = zcu.typeToFunc(func_ty).?;
|
|
const fn_params_len = func_ty_info.param_types.len;
|
|
if (args.len != fn_params_len or (func_ty_info.is_var_args and args.len < fn_params_len)) {
|
|
std.debug.panic("parameter count mismatch calling builtin fn, expected {d}, found {d}", .{ fn_params_len, args.len });
|
|
}
|
|
|
|
_ = try sema.analyzeCall(
|
|
block,
|
|
builtin_fn,
|
|
func_ty,
|
|
call_src,
|
|
call_src,
|
|
modifier,
|
|
false,
|
|
.{ .resolved = .{ .src = call_src, .args = args } },
|
|
null,
|
|
operation,
|
|
);
|
|
}
|
|
|
|
const CallOperation = enum {
|
|
call,
|
|
@"@call",
|
|
@"@panic",
|
|
@"safety check",
|
|
@"error return",
|
|
};
|
|
|
|
const CallArgsInfo = union(enum) {
|
|
/// The full list of resolved (but uncoerced) arguments is known ahead of time.
|
|
resolved: struct {
|
|
src: LazySrcLoc,
|
|
args: []const Air.Inst.Ref,
|
|
},
|
|
|
|
/// The list of resolved (but uncoerced) arguments is known ahead of time, but
|
|
/// originated from a usage of the @call builtin at the given node offset.
|
|
call_builtin: struct {
|
|
call_node_offset: std.zig.Ast.Node.Offset,
|
|
args: []const Air.Inst.Ref,
|
|
},
|
|
|
|
/// This call corresponds to a ZIR call instruction. The arguments have not yet been
|
|
/// resolved. They must be resolved by `analyzeCall` so that argument resolution and
|
|
/// generic instantiation may be interleaved. This is required for RLS to work on
|
|
/// generic parameters.
|
|
zir_call: struct {
|
|
/// This may be `none`, in which case it is ignored. Otherwise, it is the
|
|
/// already-resolved value of the first argument, from method call syntax.
|
|
bound_arg: Air.Inst.Ref,
|
|
/// The source location of `bound_arg` if it is not `null`. Otherwise `undefined`.
|
|
bound_arg_src: LazySrcLoc,
|
|
/// The ZIR call instruction. The parameter type is placed at this index while
|
|
/// analyzing arguments.
|
|
call_inst: Zir.Inst.Index,
|
|
/// The node offset of `call_inst`.
|
|
call_node_offset: std.zig.Ast.Node.Offset,
|
|
/// The number of arguments to this call, not including `bound_arg`.
|
|
num_args: u32,
|
|
/// The ZIR corresponding to all function arguments (other than `bound_arg`, if it
|
|
/// is not `none`). Format is precisely the same as trailing data of ZIR `call`.
|
|
args_body: []const Zir.Inst.Index,
|
|
/// This bool will be set to true if any argument evaluated turns out to have an error set or error union type.
|
|
/// This is used by the caller to restore the error return trace when necessary.
|
|
any_arg_is_error: *bool,
|
|
},
|
|
|
|
fn count(cai: CallArgsInfo) usize {
|
|
return switch (cai) {
|
|
inline .resolved, .call_builtin => |resolved| resolved.args.len,
|
|
.zir_call => |zir_call| zir_call.num_args + @intFromBool(zir_call.bound_arg != .none),
|
|
};
|
|
}
|
|
|
|
fn argSrc(cai: CallArgsInfo, block: *Block, arg_index: usize) LazySrcLoc {
|
|
return switch (cai) {
|
|
.resolved => |resolved| resolved.src,
|
|
.call_builtin => |call_builtin| block.src(.{ .call_arg = .{
|
|
.call_node_offset = call_builtin.call_node_offset,
|
|
.arg_index = @intCast(arg_index),
|
|
} }),
|
|
.zir_call => |zir_call| if (arg_index == 0 and zir_call.bound_arg != .none) {
|
|
return zir_call.bound_arg_src;
|
|
} else block.src(.{ .call_arg = .{
|
|
.call_node_offset = zir_call.call_node_offset,
|
|
.arg_index = @intCast(arg_index - @intFromBool(zir_call.bound_arg != .none)),
|
|
} }),
|
|
};
|
|
}
|
|
|
|
/// Analyzes the arg at `arg_index` and coerces it to `param_ty`.
|
|
/// `param_ty` may be `generic_poison`. A value of `null` indicates a varargs parameter.
|
|
/// `func_ty_info` may be the type before instantiation, even if a generic instantiation is in progress.
|
|
/// Emits a compile error if the argument is not comptime-known despite either `block.isComptime()` or
|
|
/// the parameter being marked `comptime`.
|
|
fn analyzeArg(
|
|
cai: CallArgsInfo,
|
|
sema: *Sema,
|
|
block: *Block,
|
|
arg_index: usize,
|
|
maybe_param_ty: ?Type,
|
|
func_ty_info: InternPool.Key.FuncType,
|
|
func_inst: Air.Inst.Ref,
|
|
maybe_func_src_inst: ?InternPool.TrackedInst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const param_count = func_ty_info.param_types.len;
|
|
const uncoerced_arg: Air.Inst.Ref = switch (cai) {
|
|
inline .resolved, .call_builtin => |resolved| resolved.args[arg_index],
|
|
.zir_call => |zir_call| arg_val: {
|
|
const has_bound_arg = zir_call.bound_arg != .none;
|
|
if (arg_index == 0 and has_bound_arg) {
|
|
break :arg_val zir_call.bound_arg;
|
|
}
|
|
const real_arg_idx = arg_index - @intFromBool(has_bound_arg);
|
|
|
|
const arg_body = if (real_arg_idx == 0) blk: {
|
|
const start = zir_call.num_args;
|
|
const end = @intFromEnum(zir_call.args_body[0]);
|
|
break :blk zir_call.args_body[start..end];
|
|
} else blk: {
|
|
const start = @intFromEnum(zir_call.args_body[real_arg_idx - 1]);
|
|
const end = @intFromEnum(zir_call.args_body[real_arg_idx]);
|
|
break :blk zir_call.args_body[start..end];
|
|
};
|
|
|
|
// Generate args to comptime params in comptime block
|
|
const parent_comptime = block.comptime_reason;
|
|
defer block.comptime_reason = parent_comptime;
|
|
// Note that we are indexing into parameters, not arguments, so use `arg_index` instead of `real_arg_idx`
|
|
if (std.math.cast(u5, arg_index)) |i| {
|
|
if (i < param_count and func_ty_info.paramIsComptime(i)) {
|
|
block.comptime_reason = .{
|
|
.reason = .{
|
|
.src = cai.argSrc(block, arg_index),
|
|
.r = .{
|
|
.comptime_param = .{
|
|
.comptime_src = if (maybe_func_src_inst) |src_inst| .{
|
|
.base_node_inst = src_inst,
|
|
.offset = .{ .func_decl_param_comptime = @intCast(arg_index) },
|
|
} else unreachable, // should be non-null because the function is generic
|
|
},
|
|
},
|
|
},
|
|
};
|
|
}
|
|
}
|
|
// Give the arg its result type
|
|
const provide_param_ty: Type = maybe_param_ty orelse .generic_poison;
|
|
sema.inst_map.putAssumeCapacity(zir_call.call_inst, Air.internedToRef(provide_param_ty.toIntern()));
|
|
// Resolve the arg!
|
|
const uncoerced_arg = try sema.resolveInlineBody(block, arg_body, zir_call.call_inst);
|
|
|
|
if (block.isComptime() and !try sema.isComptimeKnown(uncoerced_arg)) {
|
|
return sema.failWithNeededComptime(block, cai.argSrc(block, arg_index), null);
|
|
}
|
|
|
|
if (sema.typeOf(uncoerced_arg).zigTypeTag(zcu) == .noreturn) {
|
|
// This terminates resolution of arguments. The caller should
|
|
// propagate this.
|
|
return uncoerced_arg;
|
|
}
|
|
|
|
if (sema.typeOf(uncoerced_arg).isError(zcu)) {
|
|
zir_call.any_arg_is_error.* = true;
|
|
}
|
|
|
|
break :arg_val uncoerced_arg;
|
|
},
|
|
};
|
|
const param_ty = maybe_param_ty orelse {
|
|
return sema.coerceVarArgParam(block, uncoerced_arg, cai.argSrc(block, arg_index));
|
|
};
|
|
switch (param_ty.toIntern()) {
|
|
.generic_poison_type => return uncoerced_arg,
|
|
else => return sema.coerceExtra(
|
|
block,
|
|
param_ty,
|
|
uncoerced_arg,
|
|
cai.argSrc(block, arg_index),
|
|
.{ .param_src = .{
|
|
.func_inst = func_inst,
|
|
.param_i = @intCast(arg_index),
|
|
} },
|
|
) catch |err| switch (err) {
|
|
error.NotCoercible => unreachable,
|
|
else => |e| return e,
|
|
},
|
|
}
|
|
}
|
|
};
|
|
|
|
fn analyzeCall(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
callee: Air.Inst.Ref,
|
|
func_ty: Type,
|
|
func_src: LazySrcLoc,
|
|
call_src: LazySrcLoc,
|
|
modifier: std.builtin.CallModifier,
|
|
ensure_result_used: bool,
|
|
args_info: CallArgsInfo,
|
|
call_dbg_node: ?Zir.Inst.Index,
|
|
operation: CallOperation,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const arena = sema.arena;
|
|
|
|
const maybe_func_inst = try sema.funcDeclSrcInst(callee);
|
|
const func_ret_ty_src: LazySrcLoc = if (maybe_func_inst) |fn_decl_inst| .{
|
|
.base_node_inst = fn_decl_inst,
|
|
.offset = .{ .node_offset_fn_type_ret_ty = .zero },
|
|
} else func_src;
|
|
|
|
const func_ty_info = zcu.typeToFunc(func_ty).?;
|
|
if (!callConvIsCallable(func_ty_info.cc)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(
|
|
func_src,
|
|
"unable to call function with calling convention '{s}'",
|
|
.{@tagName(func_ty_info.cc)},
|
|
);
|
|
errdefer msg.destroy(gpa);
|
|
if (maybe_func_inst) |func_inst| try sema.errNote(.{
|
|
.base_node_inst = func_inst,
|
|
.offset = .nodeOffset(.zero),
|
|
}, msg, "function declared here", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
// We need this value in a few code paths.
|
|
const callee_val = try sema.resolveDefinedValue(block, call_src, callee);
|
|
// If the callee is a comptime-known *non-extern* function, `func_val` is populated.
|
|
// If it is a comptime-known extern function, `func_is_extern` is set instead.
|
|
// If it is not comptime-known, neither is set.
|
|
const func_val: ?Value, const func_is_extern: bool = if (callee_val) |c| switch (ip.indexToKey(c.toIntern())) {
|
|
.func => .{ c, false },
|
|
.ptr => switch (try sema.pointerDerefExtra(block, func_src, c)) {
|
|
.runtime_load, .needed_well_defined, .out_of_bounds => .{ null, false },
|
|
.val => |pointee| switch (ip.indexToKey(pointee.toIntern())) {
|
|
.func => .{ pointee, false },
|
|
.@"extern" => .{ null, true },
|
|
else => unreachable,
|
|
},
|
|
},
|
|
.@"extern" => .{ null, true },
|
|
else => unreachable,
|
|
} else .{ null, false };
|
|
|
|
if (func_ty_info.is_generic and func_val == null) {
|
|
return sema.failWithNeededComptime(block, func_src, .{ .simple = .generic_call_target });
|
|
}
|
|
|
|
const inline_requested = func_ty_info.cc == .@"inline" or modifier == .always_inline;
|
|
|
|
// If the modifier is `.compile_time`, or if the return type is non-generic and comptime-only,
|
|
// then we need to enter a comptime scope *now* to make sure the args are comptime-eval'd.
|
|
const old_block_comptime_reason = block.comptime_reason;
|
|
defer block.comptime_reason = old_block_comptime_reason;
|
|
if (!block.isComptime()) {
|
|
if (modifier == .compile_time) {
|
|
block.comptime_reason = .{ .reason = .{
|
|
.src = call_src,
|
|
.r = .{ .simple = .comptime_call_modifier },
|
|
} };
|
|
} else if (!inline_requested and try Type.fromInterned(func_ty_info.return_type).comptimeOnlySema(pt)) {
|
|
block.comptime_reason = .{
|
|
.reason = .{
|
|
.src = call_src,
|
|
.r = .{
|
|
.comptime_only_ret_ty = .{
|
|
.ty = .fromInterned(func_ty_info.return_type),
|
|
.is_generic_inst = false,
|
|
.ret_ty_src = func_ret_ty_src,
|
|
},
|
|
},
|
|
},
|
|
};
|
|
}
|
|
}
|
|
|
|
// This is whether we already know this to be an inline call.
|
|
// If so, then comptime-known arguments are propagated when evaluating generic parameter/return types.
|
|
// We might still learn that this call is inline *after* evaluating the generic return type.
|
|
const early_known_inline = inline_requested or block.isComptime();
|
|
|
|
// These values are undefined if `func_val == null`.
|
|
const fn_nav: InternPool.Nav, const fn_zir: Zir, const fn_tracked_inst: InternPool.TrackedInst.Index, const fn_zir_inst: Zir.Inst.Index, const fn_zir_info: Zir.FnInfo = if (func_val) |f| b: {
|
|
const info = ip.indexToKey(f.toIntern()).func;
|
|
const nav = ip.getNav(info.owner_nav);
|
|
const resolved_func_inst = info.zir_body_inst.resolveFull(ip) orelse return error.AnalysisFail;
|
|
const file = zcu.fileByIndex(resolved_func_inst.file);
|
|
const zir_info = file.zir.?.getFnInfo(resolved_func_inst.inst);
|
|
break :b .{ nav, file.zir.?, info.zir_body_inst, resolved_func_inst.inst, zir_info };
|
|
} else .{ undefined, undefined, undefined, undefined, undefined };
|
|
|
|
// This is the `inst_map` used when evaluating generic parameters and return types.
|
|
var generic_inst_map: InstMap = .{};
|
|
defer generic_inst_map.deinit(gpa);
|
|
if (func_ty_info.is_generic) {
|
|
try generic_inst_map.ensureSpaceForInstructions(gpa, fn_zir_info.param_body);
|
|
}
|
|
|
|
// This exists so that `generic_block` below can include a "called from here" note back to this
|
|
// call site when analyzing generic parameter/return types.
|
|
var generic_inlining: Block.Inlining = if (func_ty_info.is_generic) .{
|
|
.call_block = block,
|
|
.call_src = call_src,
|
|
.func = func_val.?.toIntern(),
|
|
.is_generic_instantiation = true, // this allows the following fields to be `undefined`
|
|
.has_comptime_args = undefined,
|
|
.comptime_result = undefined,
|
|
.merges = undefined,
|
|
} else undefined;
|
|
|
|
// This is the block in which we evaluate generic function components: that is, generic parameter
|
|
// types and the generic return type. This must not be used if the function is not generic.
|
|
// `comptime_reason` is set as needed.
|
|
var generic_block: Block = if (func_ty_info.is_generic) .{
|
|
.parent = null,
|
|
.sema = sema,
|
|
.namespace = fn_nav.analysis.?.namespace,
|
|
.instructions = .{},
|
|
.inlining = &generic_inlining,
|
|
.src_base_inst = fn_nav.analysis.?.zir_index,
|
|
.type_name_ctx = fn_nav.fqn,
|
|
} else undefined;
|
|
defer if (func_ty_info.is_generic) generic_block.instructions.deinit(gpa);
|
|
|
|
if (func_ty_info.is_generic) {
|
|
// We certainly depend on the generic owner's signature!
|
|
try sema.declareDependency(.{ .src_hash = fn_tracked_inst });
|
|
}
|
|
|
|
const args = try arena.alloc(Air.Inst.Ref, args_info.count());
|
|
for (args, 0..) |*arg, arg_idx| {
|
|
const param_ty: ?Type = if (arg_idx < func_ty_info.param_types.len) ty: {
|
|
const raw = func_ty_info.param_types.get(ip)[arg_idx];
|
|
if (raw != .generic_poison_type) break :ty .fromInterned(raw);
|
|
|
|
// We must discover the generic parameter type.
|
|
assert(func_ty_info.is_generic);
|
|
const param_inst_idx = fn_zir_info.param_body[arg_idx];
|
|
const param_inst = fn_zir.instructions.get(@intFromEnum(param_inst_idx));
|
|
switch (param_inst.tag) {
|
|
.param_anytype, .param_anytype_comptime => break :ty .generic_poison,
|
|
.param, .param_comptime => {},
|
|
else => unreachable,
|
|
}
|
|
|
|
// Evaluate the generic parameter type. We need to switch out `sema.code` and `sema.inst_map`, because
|
|
// the function definition may be in a different file to the call site.
|
|
const old_code = sema.code;
|
|
const old_inst_map = sema.inst_map;
|
|
defer {
|
|
generic_inst_map = sema.inst_map;
|
|
sema.code = old_code;
|
|
sema.inst_map = old_inst_map;
|
|
}
|
|
sema.code = fn_zir;
|
|
sema.inst_map = generic_inst_map;
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.Param, param_inst.data.pl_tok.payload_index);
|
|
const param_src = generic_block.tokenOffset(param_inst.data.pl_tok.src_tok);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.type.body_len);
|
|
|
|
generic_block.comptime_reason = .{ .reason = .{
|
|
.r = .{ .simple = .function_parameters },
|
|
.src = param_src,
|
|
} };
|
|
|
|
const ty_ref = try sema.resolveInlineBody(&generic_block, body, param_inst_idx);
|
|
const param_ty = try sema.analyzeAsType(&generic_block, param_src, ty_ref);
|
|
|
|
if (!param_ty.isValidParamType(zcu)) {
|
|
const opaque_str = if (param_ty.zigTypeTag(zcu) == .@"opaque") "opaque " else "";
|
|
return sema.fail(block, param_src, "parameter of {s}type '{f}' not allowed", .{
|
|
opaque_str, param_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
break :ty param_ty;
|
|
} else null; // vararg
|
|
|
|
arg.* = try args_info.analyzeArg(sema, block, arg_idx, param_ty, func_ty_info, callee, maybe_func_inst);
|
|
const arg_ty = sema.typeOf(arg.*);
|
|
if (arg_ty.zigTypeTag(zcu) == .noreturn) {
|
|
return arg.*; // terminate analysis here
|
|
}
|
|
|
|
if (func_ty_info.is_generic) {
|
|
// We need to put the argument into `generic_inst_map` so that other parameters can refer to it.
|
|
const param_inst_idx = fn_zir_info.param_body[arg_idx];
|
|
const declared_comptime = if (std.math.cast(u5, arg_idx)) |i| func_ty_info.paramIsComptime(i) else false;
|
|
const param_is_comptime = declared_comptime or try arg_ty.comptimeOnlySema(pt);
|
|
// We allow comptime-known arguments to propagate to generic types not only for comptime
|
|
// parameters, but if the call is known to be inline.
|
|
if (param_is_comptime or early_known_inline) {
|
|
if (param_is_comptime and !try sema.isComptimeKnown(arg.*)) {
|
|
assert(!declared_comptime); // `analyzeArg` handles this
|
|
const arg_src = args_info.argSrc(block, arg_idx);
|
|
const param_ty_src: LazySrcLoc = .{
|
|
.base_node_inst = maybe_func_inst.?, // the function is generic
|
|
.offset = .{ .func_decl_param_ty = @intCast(arg_idx) },
|
|
};
|
|
return sema.failWithNeededComptime(
|
|
block,
|
|
arg_src,
|
|
.{ .comptime_only_param_ty = .{ .ty = arg_ty, .param_ty_src = param_ty_src } },
|
|
);
|
|
}
|
|
generic_inst_map.putAssumeCapacityNoClobber(param_inst_idx, arg.*);
|
|
} else {
|
|
// We need a dummy instruction with this type. It doesn't actually need to be in any block,
|
|
// since it will never be referenced at runtime!
|
|
const dummy: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(gpa, .{ .tag = .alloc, .data = .{ .ty = arg_ty } });
|
|
generic_inst_map.putAssumeCapacityNoClobber(param_inst_idx, dummy.toRef());
|
|
}
|
|
}
|
|
}
|
|
|
|
// This return type is never generic poison.
|
|
// However, if it has an IES, it is always associated with the callee value.
|
|
// This is not correct for inline calls (where it should be an ad-hoc IES), nor for generic
|
|
// calls (where it should be the IES of the instantiation). However, it's how we print this
|
|
// in error messages.
|
|
const resolved_ret_ty: Type = ret_ty: {
|
|
if (!func_ty_info.is_generic) break :ret_ty .fromInterned(func_ty_info.return_type);
|
|
|
|
const maybe_poison_bare = if (fn_zir_info.inferred_error_set) maybe_poison: {
|
|
break :maybe_poison ip.errorUnionPayload(func_ty_info.return_type);
|
|
} else func_ty_info.return_type;
|
|
|
|
if (maybe_poison_bare != .generic_poison_type) break :ret_ty .fromInterned(func_ty_info.return_type);
|
|
|
|
// Evaluate the generic return type. As with generic parameters, we switch out `sema.code` and `sema.inst_map`.
|
|
|
|
assert(func_ty_info.is_generic);
|
|
|
|
const old_code = sema.code;
|
|
const old_inst_map = sema.inst_map;
|
|
defer {
|
|
generic_inst_map = sema.inst_map;
|
|
sema.code = old_code;
|
|
sema.inst_map = old_inst_map;
|
|
}
|
|
sema.code = fn_zir;
|
|
sema.inst_map = generic_inst_map;
|
|
|
|
generic_block.comptime_reason = .{ .reason = .{
|
|
.r = .{ .simple = .function_ret_ty },
|
|
.src = func_ret_ty_src,
|
|
} };
|
|
|
|
const bare_ty = if (fn_zir_info.ret_ty_ref != .none) bare: {
|
|
assert(fn_zir_info.ret_ty_body.len == 0);
|
|
break :bare try sema.resolveType(&generic_block, func_ret_ty_src, fn_zir_info.ret_ty_ref);
|
|
} else bare: {
|
|
assert(fn_zir_info.ret_ty_body.len != 0);
|
|
const ty_ref = try sema.resolveInlineBody(&generic_block, fn_zir_info.ret_ty_body, fn_zir_inst);
|
|
break :bare try sema.analyzeAsType(&generic_block, func_ret_ty_src, ty_ref);
|
|
};
|
|
assert(bare_ty.toIntern() != .generic_poison_type);
|
|
|
|
const full_ty = if (fn_zir_info.inferred_error_set) full: {
|
|
try sema.validateErrorUnionPayloadType(block, bare_ty, func_ret_ty_src);
|
|
const set = ip.errorUnionSet(func_ty_info.return_type);
|
|
break :full try pt.errorUnionType(.fromInterned(set), bare_ty);
|
|
} else bare_ty;
|
|
|
|
if (!full_ty.isValidReturnType(zcu)) {
|
|
const opaque_str = if (full_ty.zigTypeTag(zcu) == .@"opaque") "opaque " else "";
|
|
return sema.fail(block, func_ret_ty_src, "{s}return type '{f}' not allowed", .{
|
|
opaque_str, full_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
break :ret_ty full_ty;
|
|
};
|
|
|
|
// If we've discovered after evaluating arguments that a generic function instantiation is
|
|
// comptime-only, then we can mark the block as comptime *now*.
|
|
if (!inline_requested and !block.isComptime() and try resolved_ret_ty.comptimeOnlySema(pt)) {
|
|
block.comptime_reason = .{
|
|
.reason = .{
|
|
.src = call_src,
|
|
.r = .{
|
|
.comptime_only_ret_ty = .{
|
|
.ty = resolved_ret_ty,
|
|
.is_generic_inst = true,
|
|
.ret_ty_src = func_ret_ty_src,
|
|
},
|
|
},
|
|
},
|
|
};
|
|
}
|
|
|
|
if (call_dbg_node) |some| try sema.zirDbgStmt(block, some);
|
|
|
|
const is_inline_call = block.isComptime() or inline_requested;
|
|
|
|
if (!is_inline_call) {
|
|
if (sema.func_is_naked) return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(call_src, "runtime {s} not allowed in naked function", .{@tagName(operation)});
|
|
errdefer msg.destroy(gpa);
|
|
switch (operation) {
|
|
.call, .@"@call", .@"@panic", .@"error return" => {},
|
|
.@"safety check" => try sema.errNote(call_src, msg, "use @setRuntimeSafety to disable runtime safety", .{}),
|
|
}
|
|
break :msg msg;
|
|
});
|
|
if (func_ty_info.cc == .auto) {
|
|
switch (sema.owner.unwrap()) {
|
|
.@"comptime", .nav_ty, .nav_val, .type, .memoized_state => {},
|
|
.func => |owner_func| ip.funcSetHasErrorTrace(owner_func, true),
|
|
}
|
|
}
|
|
for (args, 0..) |arg, arg_idx| {
|
|
try sema.validateRuntimeValue(block, args_info.argSrc(block, arg_idx), arg);
|
|
}
|
|
const runtime_func: Air.Inst.Ref, const runtime_args: []const Air.Inst.Ref = func: {
|
|
if (!func_ty_info.is_generic) break :func .{ callee, args };
|
|
|
|
// Instantiate the generic function!
|
|
|
|
// This may be an overestimate, but it's definitely sufficient.
|
|
const max_runtime_args = args_info.count() - @popCount(func_ty_info.comptime_bits);
|
|
var runtime_args: std.ArrayListUnmanaged(Air.Inst.Ref) = try .initCapacity(arena, max_runtime_args);
|
|
var runtime_param_tys: std.ArrayListUnmanaged(InternPool.Index) = try .initCapacity(arena, max_runtime_args);
|
|
|
|
const comptime_args = try arena.alloc(InternPool.Index, args_info.count());
|
|
|
|
var noalias_bits: u32 = 0;
|
|
|
|
for (args, comptime_args, 0..) |arg, *comptime_arg, arg_idx| {
|
|
const arg_ty = sema.typeOf(arg);
|
|
|
|
const is_comptime = c: {
|
|
if (std.math.cast(u5, arg_idx)) |i| {
|
|
if (func_ty_info.paramIsComptime(i)) {
|
|
break :c true;
|
|
}
|
|
}
|
|
break :c try arg_ty.comptimeOnlySema(pt);
|
|
};
|
|
const is_noalias = if (std.math.cast(u5, arg_idx)) |i| func_ty_info.paramIsNoalias(i) else false;
|
|
|
|
if (is_comptime) {
|
|
// We already emitted an error if the argument isn't comptime-known.
|
|
comptime_arg.* = (try sema.resolveValue(arg)).?.toIntern();
|
|
} else {
|
|
comptime_arg.* = .none;
|
|
if (is_noalias) {
|
|
const runtime_idx = runtime_args.items.len;
|
|
noalias_bits |= @as(u32, 1) << @intCast(runtime_idx);
|
|
}
|
|
runtime_args.appendAssumeCapacity(arg);
|
|
runtime_param_tys.appendAssumeCapacity(arg_ty.toIntern());
|
|
}
|
|
}
|
|
|
|
const bare_ret_ty = if (fn_zir_info.inferred_error_set) t: {
|
|
break :t resolved_ret_ty.errorUnionPayload(zcu);
|
|
} else resolved_ret_ty;
|
|
|
|
// We now need to actually create the function instance.
|
|
const func_instance = try ip.getFuncInstance(gpa, pt.tid, .{
|
|
.param_types = runtime_param_tys.items,
|
|
.noalias_bits = noalias_bits,
|
|
.bare_return_type = bare_ret_ty.toIntern(),
|
|
.is_noinline = func_ty_info.is_noinline,
|
|
.inferred_error_set = fn_zir_info.inferred_error_set,
|
|
.generic_owner = func_val.?.toIntern(),
|
|
.comptime_args = comptime_args,
|
|
});
|
|
if (zcu.comp.debugIncremental()) {
|
|
const nav = ip.indexToKey(func_instance).func.owner_nav;
|
|
const gop = try zcu.incremental_debug_state.navs.getOrPut(gpa, nav);
|
|
if (!gop.found_existing) gop.value_ptr.* = zcu.generation;
|
|
}
|
|
|
|
// This call is problematic as it breaks guarantees about order-independency of semantic analysis.
|
|
// These guarantees are necessary for incremental compilation and parallel semantic analysis.
|
|
// See: #22410
|
|
zcu.funcInfo(func_instance).maxBranchQuota(ip, sema.branch_quota);
|
|
|
|
break :func .{ Air.internedToRef(func_instance), runtime_args.items };
|
|
};
|
|
|
|
ref_func: {
|
|
const runtime_func_val = try sema.resolveValue(runtime_func) orelse break :ref_func;
|
|
if (!ip.isFuncBody(runtime_func_val.toIntern())) break :ref_func;
|
|
const orig_fn_index = ip.unwrapCoercedFunc(runtime_func_val.toIntern());
|
|
try sema.addReferenceEntry(block, call_src, .wrap(.{ .func = orig_fn_index }));
|
|
try zcu.ensureFuncBodyAnalysisQueued(orig_fn_index);
|
|
}
|
|
|
|
const call_tag: Air.Inst.Tag = switch (modifier) {
|
|
.auto, .no_suspend => .call,
|
|
.never_tail => .call_never_tail,
|
|
.never_inline => .call_never_inline,
|
|
.always_tail => .call_always_tail,
|
|
|
|
.always_inline,
|
|
.compile_time,
|
|
=> unreachable,
|
|
};
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Call).@"struct".fields.len + runtime_args.len);
|
|
const maybe_opv = try block.addInst(.{
|
|
.tag = call_tag,
|
|
.data = .{ .pl_op = .{
|
|
.operand = runtime_func,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Call{
|
|
.args_len = @intCast(runtime_args.len),
|
|
}),
|
|
} },
|
|
});
|
|
sema.appendRefsAssumeCapacity(runtime_args);
|
|
|
|
if (ensure_result_used) {
|
|
try sema.ensureResultUsed(block, sema.typeOf(maybe_opv), call_src);
|
|
}
|
|
|
|
if (call_tag == .call_always_tail) {
|
|
const func_or_ptr_ty = sema.typeOf(runtime_func);
|
|
const runtime_func_ty = switch (func_or_ptr_ty.zigTypeTag(zcu)) {
|
|
.@"fn" => func_or_ptr_ty,
|
|
.pointer => func_or_ptr_ty.childType(zcu),
|
|
else => unreachable,
|
|
};
|
|
return sema.handleTailCall(block, call_src, runtime_func_ty, maybe_opv);
|
|
}
|
|
|
|
if (ip.isNoReturn(resolved_ret_ty.toIntern())) {
|
|
const want_check = c: {
|
|
if (!block.wantSafety()) break :c false;
|
|
if (func_val != null) break :c false;
|
|
break :c true;
|
|
};
|
|
if (want_check) {
|
|
try sema.safetyPanic(block, call_src, .noreturn_returned);
|
|
} else {
|
|
_ = try block.addNoOp(.unreach);
|
|
}
|
|
return .unreachable_value;
|
|
}
|
|
|
|
const result: Air.Inst.Ref = if (try sema.typeHasOnePossibleValue(sema.typeOf(maybe_opv))) |opv|
|
|
.fromValue(opv)
|
|
else
|
|
maybe_opv;
|
|
|
|
return result;
|
|
}
|
|
|
|
// This is an inline call. The function must be comptime-known. We will analyze its body directly using this `Sema`.
|
|
|
|
if (zcu.comp.time_report) |*tr| {
|
|
if (!block.isComptime()) {
|
|
tr.stats.n_inline_calls += 1;
|
|
}
|
|
}
|
|
|
|
if (func_ty_info.is_noinline and !block.isComptime()) {
|
|
return sema.fail(block, call_src, "inline call of noinline function", .{});
|
|
}
|
|
|
|
const call_type: []const u8 = if (block.isComptime()) "comptime" else "inline";
|
|
if (modifier == .never_inline) {
|
|
const msg, const fail_block = msg: {
|
|
const msg = try sema.errMsg(call_src, "cannot perform {s} call with 'never_inline' modifier", .{call_type});
|
|
errdefer msg.destroy(gpa);
|
|
const fail_block = if (block.isComptime()) b: {
|
|
break :b try block.explainWhyBlockIsComptime(msg);
|
|
} else block;
|
|
break :msg .{ msg, fail_block };
|
|
};
|
|
return sema.failWithOwnedErrorMsg(fail_block, msg);
|
|
}
|
|
if (func_ty_info.is_var_args) {
|
|
const msg, const fail_block = msg: {
|
|
const msg = try sema.errMsg(call_src, "{s} call of variadic function", .{call_type});
|
|
errdefer msg.destroy(gpa);
|
|
const fail_block = if (block.isComptime()) b: {
|
|
break :b try block.explainWhyBlockIsComptime(msg);
|
|
} else block;
|
|
break :msg .{ msg, fail_block };
|
|
};
|
|
return sema.failWithOwnedErrorMsg(fail_block, msg);
|
|
}
|
|
if (func_val == null) {
|
|
if (func_is_extern) {
|
|
const msg, const fail_block = msg: {
|
|
const msg = try sema.errMsg(call_src, "{s} call of extern function", .{call_type});
|
|
errdefer msg.destroy(gpa);
|
|
const fail_block = if (block.isComptime()) b: {
|
|
break :b try block.explainWhyBlockIsComptime(msg);
|
|
} else block;
|
|
break :msg .{ msg, fail_block };
|
|
};
|
|
return sema.failWithOwnedErrorMsg(fail_block, msg);
|
|
}
|
|
return sema.failWithNeededComptime(
|
|
block,
|
|
func_src,
|
|
if (block.isComptime()) null else .{ .simple = .inline_call_target },
|
|
);
|
|
}
|
|
|
|
if (block.isComptime()) {
|
|
for (args, 0..) |arg, arg_idx| {
|
|
if (!try sema.isComptimeKnown(arg)) {
|
|
const arg_src = args_info.argSrc(block, arg_idx);
|
|
return sema.failWithNeededComptime(block, arg_src, null);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For an inline call, we depend on the source code of the whole function definition.
|
|
try sema.declareDependency(.{ .src_hash = fn_nav.analysis.?.zir_index });
|
|
|
|
try sema.emitBackwardBranch(block, call_src);
|
|
|
|
const want_memoize = m: {
|
|
// TODO: comptime call memoization is currently not supported under incremental compilation
|
|
// since dependencies are not marked on callers. If we want to keep this around (we should
|
|
// check that it's worthwhile first!), each memoized call needs an `AnalUnit`.
|
|
if (zcu.comp.config.incremental) break :m false;
|
|
if (!block.isComptime()) break :m false;
|
|
for (args) |a| {
|
|
const val = (try sema.resolveValue(a)).?;
|
|
if (val.canMutateComptimeVarState(zcu)) break :m false;
|
|
}
|
|
break :m true;
|
|
};
|
|
const memoized_arg_values: []const InternPool.Index = if (want_memoize) arg_vals: {
|
|
const vals = try sema.arena.alloc(InternPool.Index, args.len);
|
|
for (vals, args) |*v, a| v.* = (try sema.resolveValue(a)).?.toIntern();
|
|
break :arg_vals vals;
|
|
} else undefined;
|
|
if (want_memoize) memoize: {
|
|
const memoized_call_index = ip.getIfExists(.{
|
|
.memoized_call = .{
|
|
.func = func_val.?.toIntern(),
|
|
.arg_values = memoized_arg_values,
|
|
.result = undefined, // ignored by hash+eql
|
|
.branch_count = undefined, // ignored by hash+eql
|
|
},
|
|
}) orelse break :memoize;
|
|
const memoized_call = ip.indexToKey(memoized_call_index).memoized_call;
|
|
if (sema.branch_count + memoized_call.branch_count > sema.branch_quota) {
|
|
// Let the call play out se we get the correct source location for the
|
|
// "evaluation exceeded X backwards branches" error.
|
|
break :memoize;
|
|
}
|
|
sema.branch_count += memoized_call.branch_count;
|
|
const result = Air.internedToRef(memoized_call.result);
|
|
if (ensure_result_used) {
|
|
try sema.ensureResultUsed(block, sema.typeOf(result), call_src);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
var new_ies: InferredErrorSet = .{ .func = .none };
|
|
|
|
const old_inst_map = sema.inst_map;
|
|
const old_code = sema.code;
|
|
const old_func_index = sema.func_index;
|
|
const old_fn_ret_ty = sema.fn_ret_ty;
|
|
const old_fn_ret_ty_ies = sema.fn_ret_ty_ies;
|
|
const old_error_return_trace_index_on_fn_entry = sema.error_return_trace_index_on_fn_entry;
|
|
defer {
|
|
sema.inst_map.deinit(gpa);
|
|
sema.inst_map = old_inst_map;
|
|
sema.code = old_code;
|
|
sema.func_index = old_func_index;
|
|
sema.fn_ret_ty = old_fn_ret_ty;
|
|
sema.fn_ret_ty_ies = old_fn_ret_ty_ies;
|
|
sema.error_return_trace_index_on_fn_entry = old_error_return_trace_index_on_fn_entry;
|
|
}
|
|
sema.inst_map = .{};
|
|
sema.code = fn_zir;
|
|
sema.func_index = func_val.?.toIntern();
|
|
sema.fn_ret_ty = if (fn_zir_info.inferred_error_set) try pt.errorUnionType(
|
|
.fromInterned(.adhoc_inferred_error_set_type),
|
|
resolved_ret_ty.errorUnionPayload(zcu),
|
|
) else resolved_ret_ty;
|
|
sema.fn_ret_ty_ies = if (fn_zir_info.inferred_error_set) &new_ies else null;
|
|
|
|
try sema.inst_map.ensureSpaceForInstructions(gpa, fn_zir_info.param_body);
|
|
for (args, 0..) |arg, arg_idx| {
|
|
sema.inst_map.putAssumeCapacityNoClobber(fn_zir_info.param_body[arg_idx], arg);
|
|
}
|
|
|
|
const need_debug_scope = !block.isComptime() and !block.is_typeof and !block.ownerModule().strip;
|
|
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = if (need_debug_scope) .dbg_inline_block else .block,
|
|
.data = undefined,
|
|
});
|
|
|
|
var inlining: Block.Inlining = .{
|
|
.call_block = block,
|
|
.call_src = call_src,
|
|
.func = func_val.?.toIntern(),
|
|
.is_generic_instantiation = false,
|
|
.has_comptime_args = for (args) |a| {
|
|
if (try sema.isComptimeKnown(a)) break true;
|
|
} else false,
|
|
.comptime_result = undefined,
|
|
.merges = .{
|
|
.block_inst = block_inst,
|
|
.results = .empty,
|
|
.br_list = .empty,
|
|
.src_locs = .empty,
|
|
},
|
|
};
|
|
var child_block: Block = .{
|
|
.parent = null,
|
|
.sema = sema,
|
|
.namespace = fn_nav.analysis.?.namespace,
|
|
.instructions = .{},
|
|
.inlining = &inlining,
|
|
.is_typeof = block.is_typeof,
|
|
.comptime_reason = if (block.isComptime()) .inlining_parent else null,
|
|
.error_return_trace_index = block.error_return_trace_index,
|
|
.runtime_cond = block.runtime_cond,
|
|
.runtime_loop = block.runtime_loop,
|
|
.runtime_index = block.runtime_index,
|
|
.src_base_inst = fn_nav.analysis.?.zir_index,
|
|
.type_name_ctx = fn_nav.fqn,
|
|
};
|
|
|
|
defer child_block.instructions.deinit(gpa);
|
|
defer inlining.merges.deinit(gpa);
|
|
|
|
if (!inlining.has_comptime_args) {
|
|
var block_it = block;
|
|
while (block_it.inlining) |parent_inlining| {
|
|
if (!parent_inlining.is_generic_instantiation and
|
|
!parent_inlining.has_comptime_args and
|
|
parent_inlining.func == func_val.?.toIntern())
|
|
{
|
|
return sema.fail(block, call_src, "inline call is recursive", .{});
|
|
}
|
|
block_it = parent_inlining.call_block;
|
|
}
|
|
}
|
|
|
|
if (!block.isComptime() and !block.is_typeof) {
|
|
const zir_tags = sema.code.instructions.items(.tag);
|
|
const zir_datas = sema.code.instructions.items(.data);
|
|
for (fn_zir_info.param_body) |inst| switch (zir_tags[@intFromEnum(inst)]) {
|
|
.param, .param_comptime => {
|
|
const extra = sema.code.extraData(Zir.Inst.Param, zir_datas[@intFromEnum(inst)].pl_tok.payload_index);
|
|
const param_name = sema.code.nullTerminatedString(extra.data.name);
|
|
const air_inst = sema.inst_map.get(inst).?;
|
|
try sema.addDbgVar(&child_block, air_inst, .dbg_arg_inline, param_name);
|
|
},
|
|
.param_anytype, .param_anytype_comptime => {
|
|
const param_name = zir_datas[@intFromEnum(inst)].str_tok.get(sema.code);
|
|
const air_inst = sema.inst_map.get(inst).?;
|
|
try sema.addDbgVar(&child_block, air_inst, .dbg_arg_inline, param_name);
|
|
},
|
|
else => {},
|
|
};
|
|
}
|
|
|
|
child_block.error_return_trace_index = try sema.analyzeSaveErrRetIndex(&child_block);
|
|
// Save the error trace as our first action in the function
|
|
// to match the behavior of runtime function calls.
|
|
const error_return_trace_index_on_parent_fn_entry = sema.error_return_trace_index_on_fn_entry;
|
|
sema.error_return_trace_index_on_fn_entry = child_block.error_return_trace_index;
|
|
defer sema.error_return_trace_index_on_fn_entry = error_return_trace_index_on_parent_fn_entry;
|
|
|
|
// We temporarily set `allow_memoize` to `true` to track this comptime call.
|
|
// It is restored after the call finishes analysis, so that a caller may
|
|
// know whether an in-progress call (containing this call) may be memoized.
|
|
const old_allow_memoize = sema.allow_memoize;
|
|
defer sema.allow_memoize = old_allow_memoize and sema.allow_memoize;
|
|
sema.allow_memoize = true;
|
|
|
|
// Store the current eval branch count so we can find out how many eval branches
|
|
// the comptime call caused.
|
|
const old_branch_count = sema.branch_count;
|
|
|
|
const result_raw: Air.Inst.Ref = result: {
|
|
sema.analyzeFnBody(&child_block, fn_zir_info.body) catch |err| switch (err) {
|
|
error.ComptimeReturn => break :result inlining.comptime_result,
|
|
else => |e| return e,
|
|
};
|
|
break :result try sema.resolveAnalyzedBlock(block, call_src, &child_block, &inlining.merges, need_debug_scope);
|
|
};
|
|
|
|
const maybe_opv: Air.Inst.Ref = if (try sema.resolveValue(result_raw)) |result_val| r: {
|
|
const val_resolved = try sema.resolveAdHocInferredErrorSet(block, call_src, result_val.toIntern());
|
|
break :r Air.internedToRef(val_resolved);
|
|
} else r: {
|
|
const resolved_ty = try sema.resolveAdHocInferredErrorSetTy(block, call_src, sema.typeOf(result_raw).toIntern());
|
|
if (resolved_ty == .none) break :r result_raw;
|
|
// TODO: mutate in place the previous instruction if possible
|
|
// rather than adding a bitcast instruction.
|
|
break :r try block.addBitCast(.fromInterned(resolved_ty), result_raw);
|
|
};
|
|
|
|
if (block.isComptime()) {
|
|
const result_val = (try sema.resolveValue(maybe_opv)).?;
|
|
if (want_memoize and sema.allow_memoize and !result_val.canMutateComptimeVarState(zcu)) {
|
|
_ = try pt.intern(.{ .memoized_call = .{
|
|
.func = func_val.?.toIntern(),
|
|
.arg_values = memoized_arg_values,
|
|
.result = result_val.toIntern(),
|
|
.branch_count = sema.branch_count - old_branch_count,
|
|
} });
|
|
}
|
|
}
|
|
|
|
if (ensure_result_used) {
|
|
try sema.ensureResultUsed(block, sema.typeOf(maybe_opv), call_src);
|
|
}
|
|
|
|
return maybe_opv;
|
|
}
|
|
|
|
fn handleTailCall(sema: *Sema, block: *Block, call_src: LazySrcLoc, func_ty: Type, result: Air.Inst.Ref) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const target = zcu.getTarget();
|
|
const backend = zcu.comp.getZigBackend();
|
|
if (!target_util.supportsTailCall(target, backend)) {
|
|
return sema.fail(block, call_src, "unable to perform tail call: compiler backend '{s}' does not support tail calls on target architecture '{s}' with the selected CPU feature flags", .{
|
|
@tagName(backend), @tagName(target.cpu.arch),
|
|
});
|
|
}
|
|
const owner_func_ty: Type = .fromInterned(zcu.funcInfo(sema.owner.unwrap().func).ty);
|
|
if (owner_func_ty.toIntern() != func_ty.toIntern()) {
|
|
return sema.fail(block, call_src, "unable to perform tail call: type of function being called '{f}' does not match type of calling function '{f}'", .{
|
|
func_ty.fmt(pt), owner_func_ty.fmt(pt),
|
|
});
|
|
}
|
|
_ = try block.addUnOp(.ret, result);
|
|
return .unreachable_value;
|
|
}
|
|
|
|
fn zirIntType(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const int_type = sema.code.instructions.items(.data)[@intFromEnum(inst)].int_type;
|
|
const ty = try sema.pt.intType(int_type.signedness, int_type.bit_count);
|
|
return Air.internedToRef(ty.toIntern());
|
|
}
|
|
|
|
fn zirOptionalType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.src(.{ .node_offset_un_op = inst_data.src_node });
|
|
const child_type = try sema.resolveType(block, operand_src, inst_data.operand);
|
|
if (child_type.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.fail(block, operand_src, "opaque type '{f}' cannot be optional", .{child_type.fmt(pt)});
|
|
} else if (child_type.zigTypeTag(zcu) == .null) {
|
|
return sema.fail(block, operand_src, "type '{f}' cannot be optional", .{child_type.fmt(pt)});
|
|
}
|
|
const opt_type = try pt.optionalType(child_type.toIntern());
|
|
|
|
return Air.internedToRef(opt_type.toIntern());
|
|
}
|
|
|
|
fn zirArrayInitElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const bin = sema.code.instructions.items(.data)[@intFromEnum(inst)].bin;
|
|
const maybe_wrapped_indexable_ty = try sema.resolveTypeOrPoison(block, LazySrcLoc.unneeded, bin.lhs) orelse return .generic_poison_type;
|
|
const indexable_ty = maybe_wrapped_indexable_ty.optEuBaseType(zcu);
|
|
try indexable_ty.resolveFields(pt);
|
|
assert(indexable_ty.isIndexable(zcu)); // validated by a previous instruction
|
|
if (indexable_ty.zigTypeTag(zcu) == .@"struct") {
|
|
const elem_type = indexable_ty.fieldType(@intFromEnum(bin.rhs), zcu);
|
|
return Air.internedToRef(elem_type.toIntern());
|
|
} else {
|
|
const elem_type = indexable_ty.elemType2(zcu);
|
|
return Air.internedToRef(elem_type.toIntern());
|
|
}
|
|
}
|
|
|
|
fn zirElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const maybe_wrapped_ptr_ty = try sema.resolveTypeOrPoison(block, LazySrcLoc.unneeded, un_node.operand) orelse return .generic_poison_type;
|
|
const ptr_ty = maybe_wrapped_ptr_ty.optEuBaseType(zcu);
|
|
assert(ptr_ty.zigTypeTag(zcu) == .pointer); // validated by a previous instruction
|
|
const elem_ty = ptr_ty.childType(zcu);
|
|
if (elem_ty.toIntern() == .anyopaque_type) {
|
|
// The pointer's actual child type is effectively unknown, so it makes
|
|
// sense to represent it with a generic poison.
|
|
return .generic_poison_type;
|
|
}
|
|
return Air.internedToRef(ptr_ty.childType(zcu).toIntern());
|
|
}
|
|
|
|
fn zirIndexablePtrElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(un_node.src_node);
|
|
const ptr_ty = try sema.resolveTypeOrPoison(block, src, un_node.operand) orelse return .generic_poison_type;
|
|
try sema.checkMemOperand(block, src, ptr_ty);
|
|
const elem_ty = switch (ptr_ty.ptrSize(zcu)) {
|
|
.slice, .many, .c => ptr_ty.childType(zcu),
|
|
.one => ptr_ty.childType(zcu).childType(zcu),
|
|
};
|
|
return Air.internedToRef(elem_ty.toIntern());
|
|
}
|
|
|
|
fn zirSplatOpResultType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const un_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
|
|
const raw_ty = try sema.resolveTypeOrPoison(block, LazySrcLoc.unneeded, un_node.operand) orelse return .generic_poison_type;
|
|
const vec_ty = raw_ty.optEuBaseType(zcu);
|
|
|
|
switch (vec_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => {},
|
|
else => return sema.fail(block, block.nodeOffset(un_node.src_node), "expected array or vector type, found '{f}'", .{vec_ty.fmt(pt)}),
|
|
}
|
|
return Air.internedToRef(vec_ty.childType(zcu).toIntern());
|
|
}
|
|
|
|
fn zirVectorType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const len_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const elem_type_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const len: u32 = @intCast(try sema.resolveInt(block, len_src, extra.lhs, .u32, .{ .simple = .vector_length }));
|
|
const elem_type = try sema.resolveType(block, elem_type_src, extra.rhs);
|
|
try sema.checkVectorElemType(block, elem_type_src, elem_type);
|
|
const vector_type = try sema.pt.vectorType(.{
|
|
.len = len,
|
|
.child = elem_type.toIntern(),
|
|
});
|
|
return Air.internedToRef(vector_type.toIntern());
|
|
}
|
|
|
|
fn zirArrayType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const len_src = block.src(.{ .node_offset_array_type_len = inst_data.src_node });
|
|
const elem_src = block.src(.{ .node_offset_array_type_elem = inst_data.src_node });
|
|
const len = try sema.resolveInt(block, len_src, extra.lhs, .usize, .{ .simple = .array_length });
|
|
const elem_type = try sema.resolveType(block, elem_src, extra.rhs);
|
|
try sema.validateArrayElemType(block, elem_type, elem_src);
|
|
const array_ty = try sema.pt.arrayType(.{
|
|
.len = len,
|
|
.child = elem_type.toIntern(),
|
|
});
|
|
|
|
return Air.internedToRef(array_ty.toIntern());
|
|
}
|
|
|
|
fn zirArrayTypeSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.ArrayTypeSentinel, inst_data.payload_index).data;
|
|
const len_src = block.src(.{ .node_offset_array_type_len = inst_data.src_node });
|
|
const sentinel_src = block.src(.{ .node_offset_array_type_sentinel = inst_data.src_node });
|
|
const elem_src = block.src(.{ .node_offset_array_type_elem = inst_data.src_node });
|
|
const len = try sema.resolveInt(block, len_src, extra.len, .usize, .{ .simple = .array_length });
|
|
const elem_type = try sema.resolveType(block, elem_src, extra.elem_type);
|
|
try sema.validateArrayElemType(block, elem_type, elem_src);
|
|
const uncasted_sentinel = try sema.resolveInst(extra.sentinel);
|
|
const sentinel = try sema.coerce(block, elem_type, uncasted_sentinel, sentinel_src);
|
|
const sentinel_val = try sema.resolveConstDefinedValue(block, sentinel_src, sentinel, .{ .simple = .array_sentinel });
|
|
if (sentinel_val.canMutateComptimeVarState(zcu)) {
|
|
const sentinel_name = try ip.getOrPutString(sema.gpa, pt.tid, "sentinel", .no_embedded_nulls);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, sentinel_src, sentinel_name, "sentinel", sentinel_val);
|
|
}
|
|
const array_ty = try pt.arrayType(.{
|
|
.len = len,
|
|
.sentinel = sentinel_val.toIntern(),
|
|
.child = elem_type.toIntern(),
|
|
});
|
|
try sema.checkSentinelType(block, sentinel_src, elem_type);
|
|
|
|
return Air.internedToRef(array_ty.toIntern());
|
|
}
|
|
|
|
fn validateArrayElemType(sema: *Sema, block: *Block, elem_type: Type, elem_src: LazySrcLoc) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (elem_type.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.fail(block, elem_src, "array of opaque type '{f}' not allowed", .{elem_type.fmt(pt)});
|
|
} else if (elem_type.zigTypeTag(zcu) == .noreturn) {
|
|
return sema.fail(block, elem_src, "array of 'noreturn' not allowed", .{});
|
|
}
|
|
}
|
|
|
|
fn zirAnyframeType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
if (true) {
|
|
return sema.failWithUseOfAsync(block, block.nodeOffset(inst_data.src_node));
|
|
}
|
|
const zcu = sema.zcu;
|
|
const operand_src = block.src(.{ .node_offset_anyframe_type = inst_data.src_node });
|
|
const return_type = try sema.resolveType(block, operand_src, inst_data.operand);
|
|
const anyframe_type = try zcu.anyframeType(return_type);
|
|
|
|
return Air.internedToRef(anyframe_type.toIntern());
|
|
}
|
|
|
|
fn zirErrorUnionType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const error_set = try sema.resolveType(block, lhs_src, extra.lhs);
|
|
const payload = try sema.resolveType(block, rhs_src, extra.rhs);
|
|
|
|
if (error_set.zigTypeTag(zcu) != .error_set) {
|
|
return sema.fail(block, lhs_src, "expected error set type, found '{f}'", .{
|
|
error_set.fmt(pt),
|
|
});
|
|
}
|
|
try sema.validateErrorUnionPayloadType(block, payload, rhs_src);
|
|
const err_union_ty = try pt.errorUnionType(error_set, payload);
|
|
return Air.internedToRef(err_union_ty.toIntern());
|
|
}
|
|
|
|
fn validateErrorUnionPayloadType(sema: *Sema, block: *Block, payload_ty: Type, payload_src: LazySrcLoc) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (payload_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.fail(block, payload_src, "error union with payload of opaque type '{f}' not allowed", .{
|
|
payload_ty.fmt(pt),
|
|
});
|
|
} else if (payload_ty.zigTypeTag(zcu) == .error_set) {
|
|
return sema.fail(block, payload_src, "error union with payload of error set type '{f}' not allowed", .{
|
|
payload_ty.fmt(pt),
|
|
});
|
|
}
|
|
}
|
|
|
|
fn zirErrorValue(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
_ = block;
|
|
const pt = sema.pt;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
|
|
const name = try pt.zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
inst_data.get(sema.code),
|
|
.no_embedded_nulls,
|
|
);
|
|
_ = try pt.getErrorValue(name);
|
|
// Create an error set type with only this error value, and return the value.
|
|
const error_set_type = try pt.singleErrorSetType(name);
|
|
return Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = error_set_type.toIntern(),
|
|
.name = name,
|
|
} })));
|
|
}
|
|
|
|
fn zirIntFromError(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const operand_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const uncasted_operand = try sema.resolveInst(extra.operand);
|
|
const operand = try sema.coerce(block, .anyerror, uncasted_operand, operand_src);
|
|
const err_int_ty = try pt.errorIntType();
|
|
|
|
if (try sema.resolveValue(operand)) |val| {
|
|
if (val.isUndef(zcu)) {
|
|
return pt.undefRef(err_int_ty);
|
|
}
|
|
const err_name = ip.indexToKey(val.toIntern()).err.name;
|
|
return Air.internedToRef((try pt.intValue(
|
|
err_int_ty,
|
|
try pt.getErrorValue(err_name),
|
|
)).toIntern());
|
|
}
|
|
|
|
const op_ty = sema.typeOf(uncasted_operand);
|
|
switch (try sema.resolveInferredErrorSetTy(block, src, op_ty.toIntern())) {
|
|
.anyerror_type => {},
|
|
else => |err_set_ty_index| {
|
|
const names = ip.indexToKey(err_set_ty_index).error_set_type.names;
|
|
switch (names.len) {
|
|
0 => return Air.internedToRef((try pt.intValue(err_int_ty, 0)).toIntern()),
|
|
1 => return pt.intRef(err_int_ty, ip.getErrorValueIfExists(names.get(ip)[0]).?),
|
|
else => {},
|
|
}
|
|
},
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
return block.addBitCast(err_int_ty, operand);
|
|
}
|
|
|
|
fn zirErrorFromInt(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const operand_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const uncasted_operand = try sema.resolveInst(extra.operand);
|
|
const err_int_ty = try pt.errorIntType();
|
|
const operand = try sema.coerce(block, err_int_ty, uncasted_operand, operand_src);
|
|
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand)) |value| {
|
|
const int = try sema.usizeCast(block, operand_src, try value.toUnsignedIntSema(pt));
|
|
if (int > len: {
|
|
const mutate = &ip.global_error_set.mutate;
|
|
mutate.map.mutex.lock();
|
|
defer mutate.map.mutex.unlock();
|
|
break :len mutate.names.len;
|
|
} or int == 0)
|
|
return sema.fail(block, operand_src, "integer value '{d}' represents no error", .{int});
|
|
return Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = .anyerror_type,
|
|
.name = ip.global_error_set.shared.names.acquire().view().items(.@"0")[int - 1],
|
|
} })));
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
if (block.wantSafety()) {
|
|
const is_lt_len = try block.addUnOp(.cmp_lt_errors_len, operand);
|
|
const zero_val = Air.internedToRef((try pt.intValue(err_int_ty, 0)).toIntern());
|
|
const is_non_zero = try block.addBinOp(.cmp_neq, operand, zero_val);
|
|
const ok = try block.addBinOp(.bool_and, is_lt_len, is_non_zero);
|
|
try sema.addSafetyCheck(block, src, ok, .invalid_error_code);
|
|
}
|
|
return block.addInst(.{
|
|
.tag = .bitcast,
|
|
.data = .{ .ty_op = .{
|
|
.ty = .anyerror_type,
|
|
.operand = operand,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirMergeErrorSets(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
if (sema.typeOf(lhs).zigTypeTag(zcu) == .bool and sema.typeOf(rhs).zigTypeTag(zcu) == .bool) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(lhs_src, "expected error set type, found 'bool'", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "'||' merges error sets; 'or' performs boolean OR", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
const lhs_ty = try sema.analyzeAsType(block, lhs_src, lhs);
|
|
const rhs_ty = try sema.analyzeAsType(block, rhs_src, rhs);
|
|
if (lhs_ty.zigTypeTag(zcu) != .error_set)
|
|
return sema.fail(block, lhs_src, "expected error set type, found '{f}'", .{lhs_ty.fmt(pt)});
|
|
if (rhs_ty.zigTypeTag(zcu) != .error_set)
|
|
return sema.fail(block, rhs_src, "expected error set type, found '{f}'", .{rhs_ty.fmt(pt)});
|
|
|
|
// Anything merged with anyerror is anyerror.
|
|
if (lhs_ty.toIntern() == .anyerror_type or rhs_ty.toIntern() == .anyerror_type) {
|
|
return .anyerror_type;
|
|
}
|
|
|
|
if (ip.isInferredErrorSetType(lhs_ty.toIntern())) {
|
|
switch (try sema.resolveInferredErrorSet(block, src, lhs_ty.toIntern())) {
|
|
// isAnyError might have changed from a false negative to a true
|
|
// positive after resolution.
|
|
.anyerror_type => return .anyerror_type,
|
|
else => {},
|
|
}
|
|
}
|
|
if (ip.isInferredErrorSetType(rhs_ty.toIntern())) {
|
|
switch (try sema.resolveInferredErrorSet(block, src, rhs_ty.toIntern())) {
|
|
// isAnyError might have changed from a false negative to a true
|
|
// positive after resolution.
|
|
.anyerror_type => return .anyerror_type,
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
const err_set_ty = try sema.errorSetMerge(lhs_ty, rhs_ty);
|
|
return Air.internedToRef(err_set_ty.toIntern());
|
|
}
|
|
|
|
fn zirEnumLiteral(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
_ = block;
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
|
|
const name = inst_data.get(sema.code);
|
|
return Air.internedToRef((try pt.intern(.{
|
|
.enum_literal = try zcu.intern_pool.getOrPutString(sema.gpa, pt.tid, name, .no_embedded_nulls),
|
|
})));
|
|
}
|
|
|
|
fn zirDeclLiteral(sema: *Sema, block: *Block, inst: Zir.Inst.Index, do_coerce: bool) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data;
|
|
const name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(extra.field_name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
|
|
const orig_ty: Type = try sema.resolveTypeOrPoison(block, src, extra.lhs) orelse .generic_poison;
|
|
|
|
const uncoerced_result = res: {
|
|
if (orig_ty.toIntern() == .generic_poison_type) {
|
|
// Treat this as a normal enum literal.
|
|
break :res Air.internedToRef(try pt.intern(.{ .enum_literal = name }));
|
|
}
|
|
|
|
var ty = orig_ty;
|
|
while (true) switch (ty.zigTypeTag(zcu)) {
|
|
.error_union => ty = ty.errorUnionPayload(zcu),
|
|
.optional => ty = ty.optionalChild(zcu),
|
|
.pointer => ty = if (ty.isSinglePointer(zcu)) ty.childType(zcu) else break,
|
|
.enum_literal, .error_set => {
|
|
// Treat this as a normal enum literal.
|
|
break :res Air.internedToRef(try pt.intern(.{ .enum_literal = name }));
|
|
},
|
|
else => break,
|
|
};
|
|
|
|
break :res try sema.fieldVal(block, src, Air.internedToRef(ty.toIntern()), name, src);
|
|
};
|
|
|
|
// Decl literals cannot lookup runtime `var`s.
|
|
if (!try sema.isComptimeKnown(uncoerced_result)) {
|
|
return sema.fail(block, src, "decl literal must be comptime-known", .{});
|
|
}
|
|
|
|
if (do_coerce) {
|
|
return sema.coerce(block, orig_ty, uncoerced_result, src);
|
|
} else {
|
|
return uncoerced_result;
|
|
}
|
|
}
|
|
|
|
fn zirIntFromEnum(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
const enum_tag: Air.Inst.Ref = switch (operand_ty.zigTypeTag(zcu)) {
|
|
.@"enum" => operand,
|
|
.@"union" => blk: {
|
|
try operand_ty.resolveFields(pt);
|
|
const tag_ty = operand_ty.unionTagType(zcu) orelse {
|
|
return sema.fail(
|
|
block,
|
|
operand_src,
|
|
"untagged union '{f}' cannot be converted to integer",
|
|
.{operand_ty.fmt(pt)},
|
|
);
|
|
};
|
|
|
|
break :blk try sema.unionToTag(block, tag_ty, operand, operand_src);
|
|
},
|
|
else => {
|
|
return sema.fail(block, operand_src, "expected enum or tagged union, found '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
});
|
|
},
|
|
};
|
|
const enum_tag_ty = sema.typeOf(enum_tag);
|
|
const int_tag_ty = enum_tag_ty.intTagType(zcu);
|
|
|
|
// TODO: use correct solution
|
|
// https://github.com/ziglang/zig/issues/15909
|
|
if (enum_tag_ty.enumFieldCount(zcu) == 0 and !enum_tag_ty.isNonexhaustiveEnum(zcu)) {
|
|
return sema.fail(block, operand_src, "cannot use @intFromEnum on empty enum '{f}'", .{
|
|
enum_tag_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(enum_tag_ty)) |opv| {
|
|
return Air.internedToRef((try pt.getCoerced(opv, int_tag_ty)).toIntern());
|
|
}
|
|
|
|
if (try sema.resolveValue(enum_tag)) |enum_tag_val| {
|
|
if (enum_tag_val.isUndef(zcu)) {
|
|
return pt.undefRef(int_tag_ty);
|
|
}
|
|
|
|
const val = try enum_tag_val.intFromEnum(enum_tag_ty, pt);
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
return block.addBitCast(int_tag_ty, enum_tag);
|
|
}
|
|
|
|
fn zirEnumFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@enumFromInt");
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
if (dest_ty.zigTypeTag(zcu) != .@"enum") {
|
|
return sema.fail(block, src, "expected enum, found '{f}'", .{dest_ty.fmt(pt)});
|
|
}
|
|
_ = try sema.checkIntType(block, operand_src, operand_ty);
|
|
|
|
if (try sema.resolveValue(operand)) |int_val| {
|
|
if (dest_ty.isNonexhaustiveEnum(zcu)) {
|
|
const int_tag_ty = dest_ty.intTagType(zcu);
|
|
if (try sema.intFitsInType(int_val, int_tag_ty, null)) {
|
|
return Air.internedToRef((try pt.getCoerced(int_val, dest_ty)).toIntern());
|
|
}
|
|
return sema.fail(block, src, "int value '{f}' out of range of non-exhaustive enum '{f}'", .{
|
|
int_val.fmtValueSema(pt, sema), dest_ty.fmt(pt),
|
|
});
|
|
}
|
|
if (int_val.isUndef(zcu)) {
|
|
return sema.failWithUseOfUndef(block, operand_src, null);
|
|
}
|
|
if (!(try sema.enumHasInt(dest_ty, int_val))) {
|
|
return sema.fail(block, src, "enum '{f}' has no tag with value '{f}'", .{
|
|
dest_ty.fmt(pt), int_val.fmtValueSema(pt, sema),
|
|
});
|
|
}
|
|
return Air.internedToRef((try pt.getCoerced(int_val, dest_ty)).toIntern());
|
|
}
|
|
|
|
if (dest_ty.intTagType(zcu).zigTypeTag(zcu) == .comptime_int) {
|
|
return sema.failWithNeededComptime(block, operand_src, .{ .simple = .casted_to_comptime_enum });
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(dest_ty)) |opv| {
|
|
if (block.wantSafety()) {
|
|
// The operand is runtime-known but the result is comptime-known. In
|
|
// this case we still need a safety check.
|
|
const expect_int_val = switch (zcu.intern_pool.indexToKey(opv.toIntern())) {
|
|
.enum_tag => |enum_tag| enum_tag.int,
|
|
else => unreachable,
|
|
};
|
|
const expect_int_coerced = try pt.getCoerced(.fromInterned(expect_int_val), operand_ty);
|
|
const ok = try block.addBinOp(.cmp_eq, operand, Air.internedToRef(expect_int_coerced.toIntern()));
|
|
try sema.addSafetyCheck(block, src, ok, .invalid_enum_value);
|
|
}
|
|
return Air.internedToRef(opv.toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
if (block.wantSafety()) {
|
|
try sema.preparePanicId(src, .invalid_enum_value);
|
|
return block.addTyOp(.intcast_safe, dest_ty, operand);
|
|
}
|
|
return block.addTyOp(.intcast, dest_ty, operand);
|
|
}
|
|
|
|
/// Pointer in, pointer out.
|
|
fn zirOptionalPayloadPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
safety_check: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const optional_ptr = try sema.resolveInst(inst_data.operand);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
return sema.analyzeOptionalPayloadPtr(block, src, optional_ptr, safety_check, false);
|
|
}
|
|
|
|
fn analyzeOptionalPayloadPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
optional_ptr: Air.Inst.Ref,
|
|
safety_check: bool,
|
|
initializing: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const optional_ptr_ty = sema.typeOf(optional_ptr);
|
|
assert(optional_ptr_ty.zigTypeTag(zcu) == .pointer);
|
|
|
|
const opt_type = optional_ptr_ty.childType(zcu);
|
|
if (opt_type.zigTypeTag(zcu) != .optional) {
|
|
return sema.failWithExpectedOptionalType(block, src, opt_type);
|
|
}
|
|
|
|
const child_type = opt_type.optionalChild(zcu);
|
|
const child_pointer = try pt.ptrTypeSema(.{
|
|
.child = child_type.toIntern(),
|
|
.flags = .{
|
|
.is_const = optional_ptr_ty.isConstPtr(zcu),
|
|
.address_space = optional_ptr_ty.ptrAddressSpace(zcu),
|
|
},
|
|
});
|
|
|
|
if (try sema.resolveDefinedValue(block, src, optional_ptr)) |ptr_val| {
|
|
if (initializing) {
|
|
if (sema.isComptimeMutablePtr(ptr_val)) {
|
|
// Set the optional to non-null at comptime.
|
|
// If the payload is OPV, we must use that value instead of undef.
|
|
const payload_val = try sema.typeHasOnePossibleValue(child_type) orelse try pt.undefValue(child_type);
|
|
const opt_val = try pt.intern(.{ .opt = .{
|
|
.ty = opt_type.toIntern(),
|
|
.val = payload_val.toIntern(),
|
|
} });
|
|
try sema.storePtrVal(block, src, ptr_val, Value.fromInterned(opt_val), opt_type);
|
|
} else {
|
|
// Emit runtime instructions to set the optional non-null bit.
|
|
const opt_payload_ptr = try block.addTyOp(.optional_payload_ptr_set, child_pointer, optional_ptr);
|
|
try sema.checkKnownAllocPtr(block, optional_ptr, opt_payload_ptr);
|
|
}
|
|
return Air.internedToRef((try ptr_val.ptrOptPayload(pt)).toIntern());
|
|
}
|
|
if (try sema.pointerDeref(block, src, ptr_val, optional_ptr_ty)) |val| {
|
|
if (val.isNull(zcu)) {
|
|
return sema.fail(block, src, "unable to unwrap null", .{});
|
|
}
|
|
return Air.internedToRef((try ptr_val.ptrOptPayload(pt)).toIntern());
|
|
}
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
if (safety_check and block.wantSafety()) {
|
|
const is_non_null = try block.addUnOp(.is_non_null_ptr, optional_ptr);
|
|
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
|
|
}
|
|
|
|
if (initializing) {
|
|
const opt_payload_ptr = try block.addTyOp(.optional_payload_ptr_set, child_pointer, optional_ptr);
|
|
try sema.checkKnownAllocPtr(block, optional_ptr, opt_payload_ptr);
|
|
return opt_payload_ptr;
|
|
} else {
|
|
return block.addTyOp(.optional_payload_ptr, child_pointer, optional_ptr);
|
|
}
|
|
}
|
|
|
|
/// Value in, value out.
|
|
fn zirOptionalPayload(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
safety_check: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const result_ty = switch (operand_ty.zigTypeTag(zcu)) {
|
|
.optional => operand_ty.optionalChild(zcu),
|
|
.pointer => t: {
|
|
if (operand_ty.ptrSize(zcu) != .c) {
|
|
return sema.failWithExpectedOptionalType(block, src, operand_ty);
|
|
}
|
|
// TODO https://github.com/ziglang/zig/issues/6597
|
|
if (true) break :t operand_ty;
|
|
const ptr_info = operand_ty.ptrInfo(zcu);
|
|
break :t try pt.ptrTypeSema(.{
|
|
.child = ptr_info.child,
|
|
.flags = .{
|
|
.alignment = ptr_info.flags.alignment,
|
|
.is_const = ptr_info.flags.is_const,
|
|
.is_volatile = ptr_info.flags.is_volatile,
|
|
.is_allowzero = ptr_info.flags.is_allowzero,
|
|
.address_space = ptr_info.flags.address_space,
|
|
},
|
|
});
|
|
},
|
|
else => return sema.failWithExpectedOptionalType(block, src, operand_ty),
|
|
};
|
|
|
|
if (try sema.resolveDefinedValue(block, src, operand)) |val| {
|
|
if (val.optionalValue(zcu)) |payload| return Air.internedToRef(payload.toIntern());
|
|
if (block.isComptime()) return sema.fail(block, src, "unable to unwrap null", .{});
|
|
if (safety_check and block.wantSafety()) {
|
|
try sema.safetyPanic(block, src, .unwrap_null);
|
|
} else {
|
|
_ = try block.addNoOp(.unreach);
|
|
}
|
|
return .unreachable_value;
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
if (safety_check and block.wantSafety()) {
|
|
const is_non_null = try block.addUnOp(.is_non_null, operand);
|
|
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
|
|
}
|
|
return block.addTyOp(.optional_payload, result_ty, operand);
|
|
}
|
|
|
|
/// Value in, value out
|
|
fn zirErrUnionPayload(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_src = src;
|
|
const err_union_ty = sema.typeOf(operand);
|
|
if (err_union_ty.zigTypeTag(zcu) != .error_union) {
|
|
return sema.fail(block, operand_src, "expected error union type, found '{f}'", .{
|
|
err_union_ty.fmt(pt),
|
|
});
|
|
}
|
|
return sema.analyzeErrUnionPayload(block, src, err_union_ty, operand, operand_src, false);
|
|
}
|
|
|
|
fn analyzeErrUnionPayload(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
err_union_ty: Type,
|
|
operand: Air.Inst.Ref,
|
|
operand_src: LazySrcLoc,
|
|
safety_check: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const payload_ty = err_union_ty.errorUnionPayload(zcu);
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand)) |val| {
|
|
if (val.getErrorName(zcu).unwrap()) |name| {
|
|
return sema.failWithComptimeErrorRetTrace(block, src, name);
|
|
}
|
|
return Air.internedToRef(zcu.intern_pool.indexToKey(val.toIntern()).error_union.val.payload);
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
|
|
// If the error set has no fields then no safety check is needed.
|
|
if (safety_check and block.wantSafety() and
|
|
!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu))
|
|
{
|
|
try sema.addSafetyCheckUnwrapError(block, src, operand, .unwrap_errunion_err, .is_non_err);
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(payload_ty)) |payload_only_value| {
|
|
return Air.internedToRef(payload_only_value.toIntern());
|
|
}
|
|
|
|
return block.addTyOp(.unwrap_errunion_payload, payload_ty, operand);
|
|
}
|
|
|
|
/// Pointer in, pointer out.
|
|
fn zirErrUnionPayloadPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
return sema.analyzeErrUnionPayloadPtr(block, src, operand, false, false);
|
|
}
|
|
|
|
fn analyzeErrUnionPayloadPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
safety_check: bool,
|
|
initializing: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
assert(operand_ty.zigTypeTag(zcu) == .pointer);
|
|
|
|
if (operand_ty.childType(zcu).zigTypeTag(zcu) != .error_union) {
|
|
return sema.fail(block, src, "expected error union type, found '{f}'", .{
|
|
operand_ty.childType(zcu).fmt(pt),
|
|
});
|
|
}
|
|
|
|
const err_union_ty = operand_ty.childType(zcu);
|
|
const payload_ty = err_union_ty.errorUnionPayload(zcu);
|
|
const operand_pointer_ty = try pt.ptrTypeSema(.{
|
|
.child = payload_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = operand_ty.isConstPtr(zcu),
|
|
.address_space = operand_ty.ptrAddressSpace(zcu),
|
|
},
|
|
});
|
|
|
|
if (try sema.resolveDefinedValue(block, src, operand)) |ptr_val| {
|
|
if (initializing) {
|
|
if (sema.isComptimeMutablePtr(ptr_val)) {
|
|
// Set the error union to non-error at comptime.
|
|
// If the payload is OPV, we must use that value instead of undef.
|
|
const payload_val = try sema.typeHasOnePossibleValue(payload_ty) orelse try pt.undefValue(payload_ty);
|
|
const eu_val = try pt.intern(.{ .error_union = .{
|
|
.ty = err_union_ty.toIntern(),
|
|
.val = .{ .payload = payload_val.toIntern() },
|
|
} });
|
|
try sema.storePtrVal(block, src, ptr_val, Value.fromInterned(eu_val), err_union_ty);
|
|
} else {
|
|
// Emit runtime instructions to set the error union error code.
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
const eu_payload_ptr = try block.addTyOp(.errunion_payload_ptr_set, operand_pointer_ty, operand);
|
|
try sema.checkKnownAllocPtr(block, operand, eu_payload_ptr);
|
|
}
|
|
return Air.internedToRef((try ptr_val.ptrEuPayload(pt)).toIntern());
|
|
}
|
|
if (try sema.pointerDeref(block, src, ptr_val, operand_ty)) |val| {
|
|
if (val.getErrorName(zcu).unwrap()) |name| {
|
|
return sema.failWithComptimeErrorRetTrace(block, src, name);
|
|
}
|
|
return Air.internedToRef((try ptr_val.ptrEuPayload(pt)).toIntern());
|
|
}
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
|
|
// If the error set has no fields then no safety check is needed.
|
|
if (safety_check and block.wantSafety() and
|
|
!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu))
|
|
{
|
|
try sema.addSafetyCheckUnwrapError(block, src, operand, .unwrap_errunion_err_ptr, .is_non_err_ptr);
|
|
}
|
|
|
|
if (initializing) {
|
|
const eu_payload_ptr = try block.addTyOp(.errunion_payload_ptr_set, operand_pointer_ty, operand);
|
|
try sema.checkKnownAllocPtr(block, operand, eu_payload_ptr);
|
|
return eu_payload_ptr;
|
|
} else {
|
|
return block.addTyOp(.unwrap_errunion_payload_ptr, operand_pointer_ty, operand);
|
|
}
|
|
}
|
|
|
|
/// Value in, value out
|
|
fn zirErrUnionCode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
return sema.analyzeErrUnionCode(block, src, operand);
|
|
}
|
|
|
|
/// If `operand` is comptime-known, asserts that it is an error value rather than a payload value.
|
|
fn analyzeErrUnionCode(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
if (operand_ty.zigTypeTag(zcu) != .error_union) {
|
|
return sema.fail(block, src, "expected error union type, found '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
const result_ty = operand_ty.errorUnionSet(zcu);
|
|
|
|
if (try sema.resolveDefinedValue(block, src, operand)) |val| {
|
|
return Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = result_ty.toIntern(),
|
|
.name = zcu.intern_pool.indexToKey(val.toIntern()).error_union.val.err_name,
|
|
} })));
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addTyOp(.unwrap_errunion_err, result_ty, operand);
|
|
}
|
|
|
|
/// Pointer in, value out
|
|
fn zirErrUnionCodePtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
return sema.analyzeErrUnionCodePtr(block, src, operand);
|
|
}
|
|
|
|
fn analyzeErrUnionCodePtr(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
assert(operand_ty.zigTypeTag(zcu) == .pointer);
|
|
|
|
if (operand_ty.childType(zcu).zigTypeTag(zcu) != .error_union) {
|
|
return sema.fail(block, src, "expected error union type, found '{f}'", .{
|
|
operand_ty.childType(zcu).fmt(pt),
|
|
});
|
|
}
|
|
|
|
const result_ty = operand_ty.childType(zcu).errorUnionSet(zcu);
|
|
|
|
if (try sema.resolveDefinedValue(block, src, operand)) |pointer_val| {
|
|
if (try sema.pointerDeref(block, src, pointer_val, operand_ty)) |val| {
|
|
assert(val.getErrorName(zcu) != .none);
|
|
return Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = result_ty.toIntern(),
|
|
.name = zcu.intern_pool.indexToKey(val.toIntern()).error_union.val.err_name,
|
|
} })));
|
|
}
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addTyOp(.unwrap_errunion_err_ptr, result_ty, operand);
|
|
}
|
|
|
|
fn zirFunc(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
inferred_error_set: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Func, inst_data.payload_index);
|
|
const target = zcu.getTarget();
|
|
const ret_ty_src = block.src(.{ .node_offset_fn_type_ret_ty = inst_data.src_node });
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
var extra_index = extra.end;
|
|
|
|
const ret_ty: Type = if (extra.data.ret_ty.is_generic)
|
|
.generic_poison
|
|
else switch (extra.data.ret_ty.body_len) {
|
|
0 => .void,
|
|
1 => blk: {
|
|
const ret_ty_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk try sema.resolveType(block, ret_ty_src, ret_ty_ref);
|
|
},
|
|
else => blk: {
|
|
const ret_ty_body = sema.code.bodySlice(extra_index, extra.data.ret_ty.body_len);
|
|
extra_index += ret_ty_body.len;
|
|
|
|
const ret_ty_val = try sema.resolveGenericBody(block, ret_ty_src, ret_ty_body, inst, .type, .{ .simple = .function_ret_ty });
|
|
break :blk ret_ty_val.toType();
|
|
},
|
|
};
|
|
|
|
var src_locs: Zir.Inst.Func.SrcLocs = undefined;
|
|
const has_body = extra.data.body_len != 0;
|
|
if (has_body) {
|
|
extra_index += extra.data.body_len;
|
|
src_locs = sema.code.extraData(Zir.Inst.Func.SrcLocs, extra_index).data;
|
|
}
|
|
|
|
// If this instruction has a body, then it's a function declaration, and we decide
|
|
// the callconv based on whether it is exported. Otherwise, the callconv defaults
|
|
// to `.auto`.
|
|
const cc: std.builtin.CallingConvention = if (has_body) cc: {
|
|
const func_decl_nav = sema.owner.unwrap().nav_val;
|
|
const fn_is_exported = exported: {
|
|
const decl_inst = ip.getNav(func_decl_nav).analysis.?.zir_index.resolve(ip) orelse return error.AnalysisFail;
|
|
const zir_decl = sema.code.getDeclaration(decl_inst);
|
|
break :exported zir_decl.linkage == .@"export";
|
|
};
|
|
if (fn_is_exported) {
|
|
break :cc target.cCallingConvention() orelse {
|
|
// This target has no default C calling convention. We sometimes trigger a similar
|
|
// error by trying to evaluate `std.builtin.CallingConvention.c`, so for consistency,
|
|
// let's eval that now and just get the transitive error. (It's guaranteed to error
|
|
// because it does the exact `cCallingConvention` call we just did.)
|
|
const cc_type = try sema.getBuiltinType(src, .CallingConvention);
|
|
_ = try sema.namespaceLookupVal(
|
|
block,
|
|
LazySrcLoc.unneeded,
|
|
cc_type.getNamespaceIndex(zcu),
|
|
try ip.getOrPutString(sema.gpa, pt.tid, "c", .no_embedded_nulls),
|
|
);
|
|
// The above should have errored.
|
|
@panic("std.builtin is corrupt");
|
|
};
|
|
} else {
|
|
break :cc .auto;
|
|
}
|
|
} else .auto;
|
|
|
|
return sema.funcCommon(
|
|
block,
|
|
inst_data.src_node,
|
|
inst,
|
|
cc,
|
|
ret_ty,
|
|
false,
|
|
inferred_error_set,
|
|
has_body,
|
|
src_locs,
|
|
0,
|
|
false,
|
|
);
|
|
}
|
|
|
|
fn resolveGenericBody(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
body: []const Zir.Inst.Index,
|
|
func_inst: Zir.Inst.Index,
|
|
dest_ty: Type,
|
|
reason: ComptimeReason,
|
|
) !Value {
|
|
assert(body.len != 0);
|
|
|
|
// Make sure any nested param instructions don't clobber our work.
|
|
const prev_params = block.params;
|
|
block.params = .{};
|
|
defer {
|
|
block.params = prev_params;
|
|
}
|
|
|
|
const uncasted = try sema.resolveInlineBody(block, body, func_inst);
|
|
const result = try sema.coerce(block, dest_ty, uncasted, src);
|
|
return sema.resolveConstDefinedValue(block, src, result, reason);
|
|
}
|
|
|
|
/// Given a library name, examines if the library name should end up in
|
|
/// `link.File.Options.windows_libs` table (for example, libc is always
|
|
/// specified via dedicated flag `link_libc` instead),
|
|
/// and puts it there if it doesn't exist.
|
|
/// It also dupes the library name which can then be saved as part of the
|
|
/// respective `Decl` (either `ExternFn` or `Var`).
|
|
/// The liveness of the duped library name is tied to liveness of `Zcu`.
|
|
/// To deallocate, call `deinit` on the respective `Decl` (`ExternFn` or `Var`).
|
|
pub fn handleExternLibName(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src_loc: LazySrcLoc,
|
|
lib_name: []const u8,
|
|
) CompileError!void {
|
|
blk: {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const comp = zcu.comp;
|
|
const target = zcu.getTarget();
|
|
log.debug("extern fn symbol expected in lib '{s}'", .{lib_name});
|
|
if (std.zig.target.isLibCLibName(target, lib_name)) {
|
|
if (!comp.config.link_libc) {
|
|
return sema.fail(
|
|
block,
|
|
src_loc,
|
|
"dependency on libc must be explicitly specified in the build command",
|
|
.{},
|
|
);
|
|
}
|
|
break :blk;
|
|
}
|
|
if (std.zig.target.isLibCxxLibName(target, lib_name)) {
|
|
if (!comp.config.link_libcpp) return sema.fail(
|
|
block,
|
|
src_loc,
|
|
"dependency on libc++ must be explicitly specified in the build command",
|
|
.{},
|
|
);
|
|
break :blk;
|
|
}
|
|
if (mem.eql(u8, lib_name, "unwind")) {
|
|
if (!comp.config.link_libunwind) return sema.fail(
|
|
block,
|
|
src_loc,
|
|
"dependency on libunwind must be explicitly specified in the build command",
|
|
.{},
|
|
);
|
|
break :blk;
|
|
}
|
|
if (!target.cpu.arch.isWasm() and !block.ownerModule().pic) {
|
|
return sema.fail(
|
|
block,
|
|
src_loc,
|
|
"dependency on dynamic library '{s}' requires enabling Position Independent Code; fixed by '-l{s}' or '-fPIC'",
|
|
.{ lib_name, lib_name },
|
|
);
|
|
}
|
|
comp.addLinkLib(lib_name) catch |err| {
|
|
return sema.fail(block, src_loc, "unable to add link lib '{s}': {s}", .{
|
|
lib_name, @errorName(err),
|
|
});
|
|
};
|
|
}
|
|
}
|
|
|
|
/// These are calling conventions that are confirmed to work with variadic functions.
|
|
/// Any calling conventions not included here are either not yet verified to work with variadic
|
|
/// functions or there are no more other calling conventions that support variadic functions.
|
|
const calling_conventions_supporting_var_args = [_]std.builtin.CallingConvention.Tag{
|
|
.x86_16_cdecl,
|
|
.x86_64_sysv,
|
|
.x86_64_x32,
|
|
.x86_64_win,
|
|
.x86_sysv,
|
|
.x86_win,
|
|
.aarch64_aapcs,
|
|
.aarch64_aapcs_darwin,
|
|
.aarch64_aapcs_win,
|
|
.aarch64_vfabi,
|
|
.aarch64_vfabi_sve,
|
|
.alpha_osf,
|
|
.arm_aapcs,
|
|
.arm_aapcs_vfp,
|
|
.microblaze_std,
|
|
.mips64_n64,
|
|
.mips64_n32,
|
|
.mips_o32,
|
|
.riscv64_lp64,
|
|
.riscv64_lp64_v,
|
|
.riscv32_ilp32,
|
|
.riscv32_ilp32_v,
|
|
.sparc64_sysv,
|
|
.sparc_sysv,
|
|
.powerpc64_elf,
|
|
.powerpc64_elf_altivec,
|
|
.powerpc64_elf_v2,
|
|
.powerpc_sysv,
|
|
.powerpc_sysv_altivec,
|
|
.powerpc_aix,
|
|
.powerpc_aix_altivec,
|
|
.wasm_mvp,
|
|
.arc_sysv,
|
|
.avr_gnu,
|
|
.bpf_std,
|
|
.csky_sysv,
|
|
.hexagon_sysv,
|
|
.hexagon_sysv_hvx,
|
|
.hppa_elf,
|
|
.hppa64_elf,
|
|
.lanai_sysv,
|
|
.loongarch64_lp64,
|
|
.loongarch32_ilp32,
|
|
.m68k_sysv,
|
|
.m68k_gnu,
|
|
.m68k_rtd,
|
|
.msp430_eabi,
|
|
.or1k_sysv,
|
|
.s390x_sysv,
|
|
.s390x_sysv_vx,
|
|
.sh_gnu,
|
|
.sh_renesas,
|
|
.ve_sysv,
|
|
.xcore_xs1,
|
|
.xcore_xs2,
|
|
.xtensa_call0,
|
|
.xtensa_windowed,
|
|
};
|
|
fn callConvSupportsVarArgs(cc: std.builtin.CallingConvention.Tag) bool {
|
|
return for (calling_conventions_supporting_var_args) |supported_cc| {
|
|
if (cc == supported_cc) return true;
|
|
} else false;
|
|
}
|
|
fn checkCallConvSupportsVarArgs(sema: *Sema, block: *Block, src: LazySrcLoc, cc: std.builtin.CallingConvention.Tag) CompileError!void {
|
|
const CallingConventionsSupportingVarArgsList = struct {
|
|
arch: std.Target.Cpu.Arch,
|
|
pub fn format(ctx: @This(), w: *std.Io.Writer) std.Io.Writer.Error!void {
|
|
var first = true;
|
|
for (calling_conventions_supporting_var_args) |cc_inner| {
|
|
for (std.Target.Cpu.Arch.fromCallingConvention(cc_inner)) |supported_arch| {
|
|
if (supported_arch == ctx.arch) break;
|
|
} else continue; // callconv not supported by this arch
|
|
if (!first) {
|
|
try w.writeAll(", ");
|
|
}
|
|
first = false;
|
|
try w.print("'{s}'", .{@tagName(cc_inner)});
|
|
}
|
|
}
|
|
};
|
|
|
|
if (!callConvSupportsVarArgs(cc)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "variadic function does not support '{s}' calling convention", .{@tagName(cc)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
const target = sema.pt.zcu.getTarget();
|
|
try sema.errNote(src, msg, "supported calling conventions: {f}", .{CallingConventionsSupportingVarArgsList{ .arch = target.cpu.arch }});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
fn callConvIsCallable(cc: std.builtin.CallingConvention.Tag) bool {
|
|
return switch (cc) {
|
|
.naked,
|
|
|
|
.arc_interrupt,
|
|
.arm_interrupt,
|
|
.avr_interrupt,
|
|
.avr_signal,
|
|
.csky_interrupt,
|
|
.m68k_interrupt,
|
|
.microblaze_interrupt,
|
|
.mips_interrupt,
|
|
.mips64_interrupt,
|
|
.msp430_interrupt,
|
|
.riscv32_interrupt,
|
|
.riscv64_interrupt,
|
|
.sh_interrupt,
|
|
.x86_interrupt,
|
|
.x86_64_interrupt,
|
|
|
|
.amdgcn_kernel,
|
|
.nvptx_kernel,
|
|
.spirv_kernel,
|
|
.spirv_fragment,
|
|
.spirv_vertex,
|
|
=> false,
|
|
|
|
else => true,
|
|
};
|
|
}
|
|
|
|
fn checkMergeAllowed(sema: *Sema, block: *Block, src: LazySrcLoc, peer_ty: Type) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const target = zcu.getTarget();
|
|
|
|
if (!peer_ty.isPtrAtRuntime(zcu)) {
|
|
return;
|
|
}
|
|
|
|
const as = peer_ty.ptrAddressSpace(zcu);
|
|
if (!target_util.shouldBlockPointerOps(target, as)) {
|
|
return;
|
|
}
|
|
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "value with non-mergable pointer type '{f}' depends on runtime control flow", .{peer_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
const runtime_src = block.runtime_cond orelse block.runtime_loop.?;
|
|
try sema.errNote(runtime_src, msg, "runtime control flow here", .{});
|
|
|
|
const backend = target_util.zigBackend(target, zcu.comp.config.use_llvm);
|
|
try sema.errNote(src, msg, "pointers with address space '{s}' cannot be returned from a branch on target {s}-{s} by compiler backend {s}", .{
|
|
@tagName(as),
|
|
@tagName(target.cpu.arch.family()),
|
|
@tagName(target.os.tag),
|
|
@tagName(backend),
|
|
});
|
|
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
const Section = union(enum) {
|
|
generic,
|
|
default,
|
|
explicit: InternPool.NullTerminatedString,
|
|
};
|
|
|
|
fn funcCommon(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src_node_offset: std.zig.Ast.Node.Offset,
|
|
func_inst: Zir.Inst.Index,
|
|
cc: std.builtin.CallingConvention,
|
|
/// this might be Type.generic_poison
|
|
bare_return_type: Type,
|
|
var_args: bool,
|
|
inferred_error_set: bool,
|
|
has_body: bool,
|
|
src_locs: Zir.Inst.Func.SrcLocs,
|
|
noalias_bits: u32,
|
|
is_noinline: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const target = zcu.getTarget();
|
|
const ip = &zcu.intern_pool;
|
|
const ret_ty_src = block.src(.{ .node_offset_fn_type_ret_ty = src_node_offset });
|
|
const cc_src = block.src(.{ .node_offset_fn_type_cc = src_node_offset });
|
|
const func_src = block.nodeOffset(src_node_offset);
|
|
|
|
const ret_ty_requires_comptime = try bare_return_type.comptimeOnlySema(pt);
|
|
var is_generic = bare_return_type.isGenericPoison() or ret_ty_requires_comptime;
|
|
|
|
var comptime_bits: u32 = 0;
|
|
for (block.params.items(.ty), block.params.items(.is_comptime), 0..) |param_ty_ip, param_is_comptime, i| {
|
|
const param_ty: Type = .fromInterned(param_ty_ip);
|
|
const is_noalias = blk: {
|
|
const index = std.math.cast(u5, i) orelse break :blk false;
|
|
break :blk @as(u1, @truncate(noalias_bits >> index)) != 0;
|
|
};
|
|
const param_src = block.src(.{ .fn_proto_param = .{
|
|
.fn_proto_node_offset = src_node_offset,
|
|
.param_index = @intCast(i),
|
|
} });
|
|
const param_ty_comptime = try param_ty.comptimeOnlySema(pt);
|
|
const param_ty_generic = param_ty.isGenericPoison();
|
|
if (param_is_comptime or param_ty_comptime or param_ty_generic) {
|
|
is_generic = true;
|
|
}
|
|
if (param_is_comptime) {
|
|
comptime_bits |= @as(u32, 1) << @intCast(i); // TODO: handle cast error
|
|
}
|
|
if (param_is_comptime and !target_util.fnCallConvAllowsZigTypes(cc)) {
|
|
return sema.fail(block, param_src, "comptime parameters not allowed in function with calling convention '{s}'", .{@tagName(cc)});
|
|
}
|
|
if (param_ty_generic and !target_util.fnCallConvAllowsZigTypes(cc)) {
|
|
return sema.fail(block, param_src, "generic parameters not allowed in function with calling convention '{s}'", .{@tagName(cc)});
|
|
}
|
|
if (!param_ty.isValidParamType(zcu)) {
|
|
const opaque_str = if (param_ty.zigTypeTag(zcu) == .@"opaque") "opaque " else "";
|
|
return sema.fail(block, param_src, "parameter of {s}type '{f}' not allowed", .{
|
|
opaque_str, param_ty.fmt(pt),
|
|
});
|
|
}
|
|
if (!param_ty_generic and !target_util.fnCallConvAllowsZigTypes(cc) and !try sema.validateExternType(param_ty, .param_ty)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(param_src, "parameter of type '{f}' not allowed in function with calling convention '{s}'", .{
|
|
param_ty.fmt(pt), @tagName(cc),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, param_src, param_ty, .param_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, param_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
if (param_ty_comptime and !param_is_comptime and has_body and !block.isComptime()) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(param_src, "parameter of type '{f}' must be declared comptime", .{
|
|
param_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsComptime(msg, param_src, param_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, param_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
if (!param_ty_generic and is_noalias and
|
|
!(param_ty.zigTypeTag(zcu) == .pointer or param_ty.isPtrLikeOptional(zcu)))
|
|
{
|
|
return sema.fail(block, param_src, "non-pointer parameter declared noalias", .{});
|
|
}
|
|
switch (cc) {
|
|
.x86_64_interrupt, .x86_interrupt => {
|
|
const err_code_size = target.ptrBitWidth();
|
|
switch (i) {
|
|
0 => if (param_ty.zigTypeTag(zcu) != .pointer) return sema.fail(block, param_src, "first parameter of function with '{s}' calling convention must be a pointer type", .{@tagName(cc)}),
|
|
1 => if (param_ty.bitSize(zcu) != err_code_size) return sema.fail(block, param_src, "second parameter of function with '{s}' calling convention must be a {d}-bit integer", .{ @tagName(cc), err_code_size }),
|
|
else => return sema.fail(block, param_src, "'{s}' calling convention supports up to 2 parameters, found {d}", .{ @tagName(cc), i + 1 }),
|
|
}
|
|
},
|
|
.arc_interrupt,
|
|
.arm_interrupt,
|
|
.microblaze_interrupt,
|
|
.mips64_interrupt,
|
|
.mips_interrupt,
|
|
.riscv64_interrupt,
|
|
.riscv32_interrupt,
|
|
.sh_interrupt,
|
|
.avr_interrupt,
|
|
.csky_interrupt,
|
|
.m68k_interrupt,
|
|
.msp430_interrupt,
|
|
.avr_signal,
|
|
=> return sema.fail(block, param_src, "parameters are not allowed with '{s}' calling convention", .{@tagName(cc)}),
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
if (var_args) {
|
|
if (is_generic) {
|
|
return sema.fail(block, func_src, "generic function cannot be variadic", .{});
|
|
}
|
|
const va_args_src = block.src(.{
|
|
.fn_proto_param = .{
|
|
.fn_proto_node_offset = src_node_offset,
|
|
.param_index = @intCast(block.params.len), // va_arg must be the last parameter
|
|
},
|
|
});
|
|
try sema.checkCallConvSupportsVarArgs(block, va_args_src, cc);
|
|
}
|
|
|
|
const ret_poison = bare_return_type.isGenericPoison();
|
|
|
|
const param_types = block.params.items(.ty);
|
|
|
|
if (inferred_error_set) {
|
|
assert(has_body);
|
|
if (!ret_poison)
|
|
try sema.validateErrorUnionPayloadType(block, bare_return_type, ret_ty_src);
|
|
const func_index = try ip.getFuncDeclIes(gpa, pt.tid, .{
|
|
.owner_nav = sema.owner.unwrap().nav_val,
|
|
|
|
.param_types = param_types,
|
|
.noalias_bits = noalias_bits,
|
|
.comptime_bits = comptime_bits,
|
|
.bare_return_type = bare_return_type.toIntern(),
|
|
.cc = cc,
|
|
.is_var_args = var_args,
|
|
.is_generic = is_generic,
|
|
.is_noinline = is_noinline,
|
|
|
|
.zir_body_inst = try block.trackZir(func_inst),
|
|
.lbrace_line = src_locs.lbrace_line,
|
|
.rbrace_line = src_locs.rbrace_line,
|
|
.lbrace_column = @as(u16, @truncate(src_locs.columns)),
|
|
.rbrace_column = @as(u16, @truncate(src_locs.columns >> 16)),
|
|
});
|
|
return finishFunc(
|
|
sema,
|
|
block,
|
|
func_index,
|
|
.none,
|
|
ret_poison,
|
|
bare_return_type,
|
|
ret_ty_src,
|
|
cc,
|
|
ret_ty_requires_comptime,
|
|
func_inst,
|
|
cc_src,
|
|
is_noinline,
|
|
);
|
|
}
|
|
|
|
const func_ty = try ip.getFuncType(gpa, pt.tid, .{
|
|
.param_types = param_types,
|
|
.noalias_bits = noalias_bits,
|
|
.comptime_bits = comptime_bits,
|
|
.return_type = bare_return_type.toIntern(),
|
|
.cc = cc,
|
|
.is_var_args = var_args,
|
|
.is_generic = is_generic,
|
|
.is_noinline = is_noinline,
|
|
});
|
|
|
|
if (has_body) {
|
|
const func_index = try ip.getFuncDecl(gpa, pt.tid, .{
|
|
.owner_nav = sema.owner.unwrap().nav_val,
|
|
.ty = func_ty,
|
|
.cc = cc,
|
|
.is_noinline = is_noinline,
|
|
.zir_body_inst = try block.trackZir(func_inst),
|
|
.lbrace_line = src_locs.lbrace_line,
|
|
.rbrace_line = src_locs.rbrace_line,
|
|
.lbrace_column = @as(u16, @truncate(src_locs.columns)),
|
|
.rbrace_column = @as(u16, @truncate(src_locs.columns >> 16)),
|
|
});
|
|
return finishFunc(
|
|
sema,
|
|
block,
|
|
func_index,
|
|
func_ty,
|
|
ret_poison,
|
|
bare_return_type,
|
|
ret_ty_src,
|
|
cc,
|
|
ret_ty_requires_comptime,
|
|
func_inst,
|
|
cc_src,
|
|
is_noinline,
|
|
);
|
|
}
|
|
|
|
return finishFunc(
|
|
sema,
|
|
block,
|
|
.none,
|
|
func_ty,
|
|
ret_poison,
|
|
bare_return_type,
|
|
ret_ty_src,
|
|
cc,
|
|
ret_ty_requires_comptime,
|
|
func_inst,
|
|
cc_src,
|
|
is_noinline,
|
|
);
|
|
}
|
|
|
|
fn finishFunc(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
opt_func_index: InternPool.Index,
|
|
func_ty: InternPool.Index,
|
|
ret_poison: bool,
|
|
bare_return_type: Type,
|
|
ret_ty_src: LazySrcLoc,
|
|
cc_resolved: std.builtin.CallingConvention,
|
|
ret_ty_requires_comptime: bool,
|
|
func_inst: Zir.Inst.Index,
|
|
cc_src: LazySrcLoc,
|
|
is_noinline: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const gpa = sema.gpa;
|
|
|
|
const return_type: Type = if (opt_func_index == .none or ret_poison)
|
|
bare_return_type
|
|
else
|
|
.fromInterned(ip.funcTypeReturnType(ip.typeOf(opt_func_index)));
|
|
|
|
if (!return_type.isValidReturnType(zcu)) {
|
|
const opaque_str = if (return_type.zigTypeTag(zcu) == .@"opaque") "opaque " else "";
|
|
return sema.fail(block, ret_ty_src, "{s}return type '{f}' not allowed", .{
|
|
opaque_str, return_type.fmt(pt),
|
|
});
|
|
}
|
|
if (!ret_poison and !target_util.fnCallConvAllowsZigTypes(cc_resolved) and
|
|
!try sema.validateExternType(return_type, .ret_ty))
|
|
{
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ret_ty_src, "return type '{f}' not allowed in function with calling convention '{s}'", .{
|
|
return_type.fmt(pt), @tagName(cc_resolved),
|
|
});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, ret_ty_src, return_type, .ret_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, return_type);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
// If the return type is comptime-only but not dependent on parameters then
|
|
// all parameter types also need to be comptime.
|
|
if (opt_func_index != .none and ret_ty_requires_comptime and !block.isComptime()) comptime_check: {
|
|
for (block.params.items(.is_comptime)) |is_comptime| {
|
|
if (!is_comptime) break;
|
|
} else break :comptime_check;
|
|
|
|
const msg = try sema.errMsg(
|
|
ret_ty_src,
|
|
"function with comptime-only return type '{f}' requires all parameters to be comptime",
|
|
.{return_type.fmt(pt)},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.explainWhyTypeIsComptime(msg, ret_ty_src, return_type);
|
|
|
|
const tags = sema.code.instructions.items(.tag);
|
|
const data = sema.code.instructions.items(.data);
|
|
const param_body = sema.code.getParamBody(func_inst);
|
|
for (
|
|
block.params.items(.is_comptime),
|
|
block.params.items(.name),
|
|
param_body[0..block.params.len],
|
|
) |is_comptime, name_nts, param_index| {
|
|
if (!is_comptime) {
|
|
const param_src = block.tokenOffset(switch (tags[@intFromEnum(param_index)]) {
|
|
.param => data[@intFromEnum(param_index)].pl_tok.src_tok,
|
|
.param_anytype => data[@intFromEnum(param_index)].str_tok.src_tok,
|
|
else => unreachable,
|
|
});
|
|
const name = sema.code.nullTerminatedString(name_nts);
|
|
if (name.len != 0) {
|
|
try sema.errNote(param_src, msg, "param '{s}' is required to be comptime", .{name});
|
|
} else {
|
|
try sema.errNote(param_src, msg, "param is required to be comptime", .{});
|
|
}
|
|
}
|
|
}
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
validate_incoming_stack_align: {
|
|
const a: u64 = switch (cc_resolved) {
|
|
inline else => |payload| if (@TypeOf(payload) != void and @hasField(@TypeOf(payload), "incoming_stack_alignment"))
|
|
payload.incoming_stack_alignment orelse break :validate_incoming_stack_align
|
|
else
|
|
break :validate_incoming_stack_align,
|
|
};
|
|
if (!std.math.isPowerOfTwo(a)) {
|
|
return sema.fail(block, cc_src, "calling convention incoming stack alignment '{d}' is not a power of two", .{a});
|
|
}
|
|
}
|
|
|
|
switch (cc_resolved) {
|
|
.x86_64_interrupt,
|
|
.x86_interrupt,
|
|
.arm_interrupt,
|
|
.mips64_interrupt,
|
|
.mips_interrupt,
|
|
.riscv64_interrupt,
|
|
.riscv32_interrupt,
|
|
.sh_interrupt,
|
|
.arc_interrupt,
|
|
.avr_interrupt,
|
|
.csky_interrupt,
|
|
.m68k_interrupt,
|
|
.microblaze_interrupt,
|
|
.msp430_interrupt,
|
|
.avr_signal,
|
|
=> if (return_type.zigTypeTag(zcu) != .void and return_type.zigTypeTag(zcu) != .noreturn) {
|
|
return sema.fail(block, ret_ty_src, "function with calling convention '{s}' must return 'void' or 'noreturn'", .{@tagName(cc_resolved)});
|
|
},
|
|
.@"inline" => if (is_noinline) {
|
|
return sema.fail(block, cc_src, "'noinline' function cannot have calling convention 'inline'", .{});
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
switch (zcu.callconvSupported(cc_resolved)) {
|
|
.ok => {},
|
|
.bad_arch => |allowed_archs| {
|
|
const ArchListFormatter = struct {
|
|
archs: []const std.Target.Cpu.Arch,
|
|
pub fn format(formatter: @This(), w: *std.Io.Writer) std.Io.Writer.Error!void {
|
|
for (formatter.archs, 0..) |arch, i| {
|
|
if (i != 0)
|
|
try w.writeAll(", ");
|
|
try w.print("'{s}'", .{@tagName(arch)});
|
|
}
|
|
}
|
|
};
|
|
return sema.fail(block, cc_src, "calling convention '{s}' only available on architectures {f}", .{
|
|
@tagName(cc_resolved),
|
|
ArchListFormatter{ .archs = allowed_archs },
|
|
});
|
|
},
|
|
.bad_backend => |bad_backend| return sema.fail(block, cc_src, "calling convention '{s}' not supported by compiler backend '{s}'", .{
|
|
@tagName(cc_resolved),
|
|
@tagName(bad_backend),
|
|
}),
|
|
}
|
|
|
|
return Air.internedToRef(if (opt_func_index != .none) opt_func_index else func_ty);
|
|
}
|
|
|
|
fn zirParam(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
comptime_syntax: bool,
|
|
) CompileError!void {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_tok;
|
|
const src = block.tokenOffset(inst_data.src_tok);
|
|
const extra = sema.code.extraData(Zir.Inst.Param, inst_data.payload_index);
|
|
const param_name: Zir.NullTerminatedString = extra.data.name;
|
|
const body = sema.code.bodySlice(extra.end, extra.data.type.body_len);
|
|
|
|
const param_ty: Type = if (extra.data.type.is_generic) .generic_poison else ty: {
|
|
// Make sure any nested param instructions don't clobber our work.
|
|
const prev_params = block.params;
|
|
block.params = .{};
|
|
defer {
|
|
block.params = prev_params;
|
|
}
|
|
|
|
const param_ty_inst = try sema.resolveInlineBody(block, body, inst);
|
|
break :ty try sema.analyzeAsType(block, src, param_ty_inst);
|
|
};
|
|
|
|
try block.params.append(sema.arena, .{
|
|
.ty = param_ty.toIntern(),
|
|
.is_comptime = comptime_syntax,
|
|
.name = param_name,
|
|
});
|
|
}
|
|
|
|
fn zirParamAnytype(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
comptime_syntax: bool,
|
|
) CompileError!void {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
|
|
const param_name: Zir.NullTerminatedString = inst_data.start;
|
|
|
|
try block.params.append(sema.arena, .{
|
|
.ty = .generic_poison_type,
|
|
.is_comptime = comptime_syntax,
|
|
.name = param_name,
|
|
});
|
|
}
|
|
|
|
fn zirAsNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.As, inst_data.payload_index).data;
|
|
return sema.analyzeAs(block, src, extra.dest_type, extra.operand, false);
|
|
}
|
|
|
|
fn zirAsShiftOperand(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.As, inst_data.payload_index).data;
|
|
return sema.analyzeAs(block, src, extra.dest_type, extra.operand, true);
|
|
}
|
|
|
|
fn analyzeAs(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_dest_type: Zir.Inst.Ref,
|
|
zir_operand: Zir.Inst.Ref,
|
|
no_cast_to_comptime_int: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand = try sema.resolveInst(zir_operand);
|
|
const dest_ty = try sema.resolveTypeOrPoison(block, src, zir_dest_type) orelse return operand;
|
|
switch (dest_ty.zigTypeTag(zcu)) {
|
|
.@"opaque" => return sema.fail(block, src, "cannot cast to opaque type '{f}'", .{dest_ty.fmt(pt)}),
|
|
.noreturn => return sema.fail(block, src, "cannot cast to noreturn", .{}),
|
|
else => {},
|
|
}
|
|
|
|
const is_ret = if (zir_dest_type.toIndex()) |ptr_index|
|
|
sema.code.instructions.items(.tag)[@intFromEnum(ptr_index)] == .ret_type
|
|
else
|
|
false;
|
|
return sema.coerceExtra(block, dest_ty, operand, src, .{ .is_ret = is_ret, .no_cast_to_comptime_int = no_cast_to_comptime_int }) catch |err| switch (err) {
|
|
error.NotCoercible => unreachable,
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
|
|
fn zirIntFromPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const ptr_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const ptr_ty = operand_ty.scalarType(zcu);
|
|
const is_vector = operand_ty.zigTypeTag(zcu) == .vector;
|
|
if (!ptr_ty.isPtrAtRuntime(zcu)) {
|
|
return sema.fail(block, ptr_src, "expected pointer, found '{f}'", .{ptr_ty.fmt(pt)});
|
|
}
|
|
const pointee_ty = ptr_ty.childType(zcu);
|
|
if (try ptr_ty.comptimeOnlySema(pt)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ptr_src, "comptime-only type '{f}' has no pointer address", .{pointee_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.explainWhyTypeIsComptime(msg, ptr_src, pointee_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
const len = if (is_vector) operand_ty.vectorLen(zcu) else undefined;
|
|
const dest_ty: Type = if (is_vector) try pt.vectorType(.{ .child = .usize_type, .len = len }) else .usize;
|
|
|
|
if (try sema.resolveValue(operand)) |operand_val| ct: {
|
|
if (!is_vector) {
|
|
if (operand_val.isUndef(zcu)) {
|
|
return .undef_usize;
|
|
}
|
|
const addr = try operand_val.getUnsignedIntSema(pt) orelse {
|
|
// Wasn't an integer pointer. This is a runtime operation.
|
|
break :ct;
|
|
};
|
|
return Air.internedToRef((try pt.intValue(
|
|
.usize,
|
|
addr,
|
|
)).toIntern());
|
|
}
|
|
const new_elems = try sema.arena.alloc(InternPool.Index, len);
|
|
for (new_elems, 0..) |*new_elem, i| {
|
|
const ptr_val = try operand_val.elemValue(pt, i);
|
|
if (ptr_val.isUndef(zcu)) {
|
|
new_elem.* = .undef_usize;
|
|
continue;
|
|
}
|
|
const addr = try ptr_val.getUnsignedIntSema(pt) orelse {
|
|
// A vector element wasn't an integer pointer. This is a runtime operation.
|
|
break :ct;
|
|
};
|
|
new_elem.* = (try pt.intValue(
|
|
.usize,
|
|
addr,
|
|
)).toIntern();
|
|
}
|
|
return Air.internedToRef((try pt.aggregateValue(dest_ty, new_elems)).toIntern());
|
|
}
|
|
try sema.requireRuntimeBlock(block, block.nodeOffset(inst_data.src_node), ptr_src);
|
|
try sema.validateRuntimeValue(block, ptr_src, operand);
|
|
try sema.checkLogicalPtrOperation(block, ptr_src, ptr_ty);
|
|
return block.addBitCast(dest_ty, operand);
|
|
}
|
|
|
|
fn zirFieldPtrLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const field_name_src = block.src(.{ .node_offset_field_name = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data;
|
|
const field_name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(extra.field_name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
const object_ptr = try sema.resolveInst(extra.lhs);
|
|
return fieldPtrLoad(sema, block, src, object_ptr, field_name, field_name_src);
|
|
}
|
|
|
|
fn zirFieldPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const field_name_src = block.src(.{ .node_offset_field_name = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data;
|
|
const field_name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(extra.field_name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
const object_ptr = try sema.resolveInst(extra.lhs);
|
|
return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, false);
|
|
}
|
|
|
|
fn zirStructInitFieldPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const field_name_src = block.src(.{ .node_offset_field_name_init = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data;
|
|
const field_name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(extra.field_name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
const object_ptr = try sema.resolveInst(extra.lhs);
|
|
const struct_ty = sema.typeOf(object_ptr).childType(zcu);
|
|
switch (struct_ty.zigTypeTag(zcu)) {
|
|
.@"struct", .@"union" => {
|
|
return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, true);
|
|
},
|
|
else => {
|
|
return sema.failWithStructInitNotSupported(block, src, struct_ty);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn zirFieldPtrNamedLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const field_name_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.FieldNamed, inst_data.payload_index).data;
|
|
const object_ptr = try sema.resolveInst(extra.lhs);
|
|
const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, .{ .simple = .field_name });
|
|
return fieldPtrLoad(sema, block, src, object_ptr, field_name, field_name_src);
|
|
}
|
|
|
|
fn zirFieldPtrNamed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const field_name_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.FieldNamed, inst_data.payload_index).data;
|
|
const object_ptr = try sema.resolveInst(extra.lhs);
|
|
const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, .{ .simple = .field_name });
|
|
return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, false);
|
|
}
|
|
|
|
fn zirIntCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@intCast");
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
|
|
return sema.intCast(block, block.nodeOffset(inst_data.src_node), dest_ty, src, operand, operand_src);
|
|
}
|
|
|
|
fn intCast(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
dest_ty: Type,
|
|
dest_ty_src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
operand_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
const dest_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, dest_ty, dest_ty_src);
|
|
const operand_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, operand_ty, operand_src);
|
|
|
|
if (try sema.isComptimeKnown(operand)) {
|
|
return sema.coerce(block, dest_ty, operand, operand_src);
|
|
} else if (dest_scalar_ty.zigTypeTag(zcu) == .comptime_int) {
|
|
return sema.fail(block, operand_src, "unable to cast runtime value to 'comptime_int'", .{});
|
|
}
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, dest_ty_src, operand_src);
|
|
const is_vector = dest_ty.zigTypeTag(zcu) == .vector;
|
|
|
|
if ((try sema.typeHasOnePossibleValue(dest_ty))) |opv| {
|
|
// requirement: intCast(u0, input) iff input == 0
|
|
if (block.wantSafety()) {
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
const wanted_info = dest_scalar_ty.intInfo(zcu);
|
|
const wanted_bits = wanted_info.bits;
|
|
|
|
if (wanted_bits == 0) {
|
|
const ok = if (is_vector) ok: {
|
|
const zeros = try sema.splat(operand_ty, try pt.intValue(operand_scalar_ty, 0));
|
|
const zero_inst = Air.internedToRef(zeros.toIntern());
|
|
const is_in_range = try block.addCmpVector(operand, zero_inst, .eq);
|
|
const all_in_range = try block.addReduce(is_in_range, .And);
|
|
break :ok all_in_range;
|
|
} else ok: {
|
|
const zero_inst = Air.internedToRef((try pt.intValue(operand_ty, 0)).toIntern());
|
|
const is_in_range = try block.addBinOp(.cmp_lte, operand, zero_inst);
|
|
break :ok is_in_range;
|
|
};
|
|
try sema.addSafetyCheck(block, src, ok, .integer_out_of_bounds);
|
|
}
|
|
}
|
|
|
|
return Air.internedToRef(opv.toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
if (block.wantSafety()) {
|
|
try sema.preparePanicId(src, .integer_out_of_bounds);
|
|
return block.addTyOp(.intcast_safe, dest_ty, operand);
|
|
}
|
|
return block.addTyOp(.intcast, dest_ty, operand);
|
|
}
|
|
|
|
fn zirBitcast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@bitCast");
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
switch (dest_ty.zigTypeTag(zcu)) {
|
|
.@"anyframe",
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.error_set,
|
|
.error_union,
|
|
.@"fn",
|
|
.frame,
|
|
.noreturn,
|
|
.null,
|
|
.@"opaque",
|
|
.optional,
|
|
.type,
|
|
.undefined,
|
|
.void,
|
|
=> return sema.fail(block, src, "cannot @bitCast to '{f}'", .{dest_ty.fmt(pt)}),
|
|
|
|
.@"enum" => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "cannot @bitCast to '{f}'", .{dest_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => try sema.errNote(src, msg, "use @enumFromInt to cast from '{f}'", .{operand_ty.fmt(pt)}),
|
|
else => {},
|
|
}
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
|
|
.pointer => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "cannot @bitCast to '{f}'", .{dest_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => try sema.errNote(src, msg, "use @ptrFromInt to cast from '{f}'", .{operand_ty.fmt(pt)}),
|
|
.pointer => try sema.errNote(src, msg, "use @ptrCast to cast from '{f}'", .{operand_ty.fmt(pt)}),
|
|
else => {},
|
|
}
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
.@"struct", .@"union" => if (dest_ty.containerLayout(zcu) == .auto) {
|
|
const container = switch (dest_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => "struct",
|
|
.@"union" => "union",
|
|
else => unreachable,
|
|
};
|
|
return sema.fail(block, src, "cannot @bitCast to '{f}'; {s} does not have a guaranteed in-memory layout", .{
|
|
dest_ty.fmt(pt), container,
|
|
});
|
|
},
|
|
.array => {
|
|
const elem_ty = dest_ty.childType(zcu);
|
|
if (!elem_ty.hasWellDefinedLayout(zcu)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "cannot @bitCast to '{f}'", .{dest_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "array element type '{f}' does not have a guaranteed in-memory layout", .{elem_ty.fmt(pt)});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
},
|
|
|
|
.bool,
|
|
.float,
|
|
.int,
|
|
.vector,
|
|
=> {},
|
|
}
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.@"anyframe",
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.error_set,
|
|
.error_union,
|
|
.@"fn",
|
|
.frame,
|
|
.noreturn,
|
|
.null,
|
|
.@"opaque",
|
|
.optional,
|
|
.type,
|
|
.undefined,
|
|
.void,
|
|
=> return sema.fail(block, operand_src, "cannot @bitCast from '{f}'", .{operand_ty.fmt(pt)}),
|
|
|
|
.@"enum" => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(operand_src, "cannot @bitCast from '{f}'", .{operand_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
switch (dest_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => try sema.errNote(operand_src, msg, "use @intFromEnum to cast to '{f}'", .{dest_ty.fmt(pt)}),
|
|
else => {},
|
|
}
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
.pointer => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(operand_src, "cannot @bitCast from '{f}'", .{operand_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
switch (dest_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => try sema.errNote(operand_src, msg, "use @intFromPtr to cast to '{f}'", .{dest_ty.fmt(pt)}),
|
|
.pointer => try sema.errNote(operand_src, msg, "use @ptrCast to cast to '{f}'", .{dest_ty.fmt(pt)}),
|
|
else => {},
|
|
}
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
.@"struct", .@"union" => if (operand_ty.containerLayout(zcu) == .auto) {
|
|
const container = switch (operand_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => "struct",
|
|
.@"union" => "union",
|
|
else => unreachable,
|
|
};
|
|
return sema.fail(block, operand_src, "cannot @bitCast from '{f}'; {s} does not have a guaranteed in-memory layout", .{
|
|
operand_ty.fmt(pt), container,
|
|
});
|
|
},
|
|
.array => {
|
|
const elem_ty = operand_ty.childType(zcu);
|
|
if (!elem_ty.hasWellDefinedLayout(zcu)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "cannot @bitCast from '{f}'", .{operand_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "array element type '{f}' does not have a guaranteed in-memory layout", .{elem_ty.fmt(pt)});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
},
|
|
|
|
.bool,
|
|
.float,
|
|
.int,
|
|
.vector,
|
|
=> {},
|
|
}
|
|
return sema.bitCast(block, dest_ty, operand, block.nodeOffset(inst_data.src_node), operand_src);
|
|
}
|
|
|
|
fn zirFloatCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@floatCast");
|
|
const dest_scalar_ty = dest_ty.scalarType(zcu);
|
|
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const operand_scalar_ty = operand_ty.scalarType(zcu);
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, src, operand_src);
|
|
const is_vector = dest_ty.zigTypeTag(zcu) == .vector;
|
|
|
|
const target = zcu.getTarget();
|
|
const dest_is_comptime_float = switch (dest_scalar_ty.zigTypeTag(zcu)) {
|
|
.comptime_float => true,
|
|
.float => false,
|
|
else => return sema.fail(
|
|
block,
|
|
src,
|
|
"expected float or vector type, found '{f}'",
|
|
.{dest_ty.fmt(pt)},
|
|
),
|
|
};
|
|
|
|
switch (operand_scalar_ty.zigTypeTag(zcu)) {
|
|
.comptime_float, .float, .comptime_int => {},
|
|
else => return sema.fail(
|
|
block,
|
|
operand_src,
|
|
"expected float or vector type, found '{f}'",
|
|
.{operand_ty.fmt(pt)},
|
|
),
|
|
}
|
|
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
if (!is_vector) {
|
|
return Air.internedToRef((try operand_val.floatCast(dest_ty, pt)).toIntern());
|
|
}
|
|
const vec_len = operand_ty.vectorLen(zcu);
|
|
const new_elems = try sema.arena.alloc(InternPool.Index, vec_len);
|
|
for (new_elems, 0..) |*new_elem, i| {
|
|
const old_elem = try operand_val.elemValue(pt, i);
|
|
new_elem.* = (try old_elem.floatCast(dest_scalar_ty, pt)).toIntern();
|
|
}
|
|
return Air.internedToRef((try pt.aggregateValue(dest_ty, new_elems)).toIntern());
|
|
}
|
|
if (dest_is_comptime_float) {
|
|
return sema.fail(block, operand_src, "unable to cast runtime value to 'comptime_float'", .{});
|
|
}
|
|
try sema.requireRuntimeBlock(block, block.nodeOffset(inst_data.src_node), operand_src);
|
|
|
|
const src_bits = operand_scalar_ty.floatBits(target);
|
|
const dst_bits = dest_scalar_ty.floatBits(target);
|
|
if (dst_bits >= src_bits) {
|
|
return sema.coerce(block, dest_ty, operand, operand_src);
|
|
}
|
|
return block.addTyOp(.fptrunc, dest_ty, operand);
|
|
}
|
|
|
|
fn zirElemVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const array = try sema.resolveInst(extra.lhs);
|
|
const elem_index = try sema.resolveInst(extra.rhs);
|
|
return sema.elemVal(block, src, array, elem_index, src, false);
|
|
}
|
|
|
|
fn zirElemPtrLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const elem_index_src = block.src(.{ .node_offset_array_access_index = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.lhs);
|
|
const uncoerced_elem_index = try sema.resolveInst(extra.rhs);
|
|
if (try sema.resolveDefinedValue(block, src, array_ptr)) |array_ptr_val| {
|
|
const array_ptr_ty = sema.typeOf(array_ptr);
|
|
if (try sema.pointerDeref(block, src, array_ptr_val, array_ptr_ty)) |array_val| {
|
|
const array: Air.Inst.Ref = .fromValue(array_val);
|
|
return elemVal(sema, block, src, array, uncoerced_elem_index, elem_index_src, true);
|
|
}
|
|
}
|
|
const elem_index = try sema.coerce(block, .usize, uncoerced_elem_index, elem_index_src);
|
|
const elem_ptr = try elemPtr(sema, block, src, array_ptr, elem_index, elem_index_src, false, true);
|
|
return analyzeLoad(sema, block, src, elem_ptr, elem_index_src);
|
|
}
|
|
|
|
fn zirElemValImm(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].elem_val_imm;
|
|
const array = try sema.resolveInst(inst_data.operand);
|
|
const elem_index = try sema.pt.intRef(.usize, inst_data.idx);
|
|
return sema.elemVal(block, LazySrcLoc.unneeded, array, elem_index, LazySrcLoc.unneeded, false);
|
|
}
|
|
|
|
fn zirElemPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.lhs);
|
|
const elem_index = try sema.resolveInst(extra.rhs);
|
|
const indexable_ty = sema.typeOf(array_ptr);
|
|
if (indexable_ty.zigTypeTag(zcu) != .pointer) {
|
|
const capture_src = block.src(.{ .for_capture_from_input = inst_data.src_node });
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(capture_src, "pointer capture of non pointer type '{f}'", .{
|
|
indexable_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (indexable_ty.isIndexable(zcu)) {
|
|
try sema.errNote(src, msg, "consider using '&' here", .{});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
return sema.elemPtrOneLayerOnly(block, src, array_ptr, elem_index, src, false, false);
|
|
}
|
|
|
|
fn zirElemPtrNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const elem_index_src = block.src(.{ .node_offset_array_access_index = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.lhs);
|
|
const uncoerced_elem_index = try sema.resolveInst(extra.rhs);
|
|
const elem_index = try sema.coerce(block, .usize, uncoerced_elem_index, elem_index_src);
|
|
return sema.elemPtr(block, src, array_ptr, elem_index, elem_index_src, false, true);
|
|
}
|
|
|
|
fn zirArrayInitElemPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.ElemPtrImm, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.ptr);
|
|
const elem_index = try pt.intRef(.usize, extra.index);
|
|
const array_ty = sema.typeOf(array_ptr).childType(zcu);
|
|
switch (array_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => {},
|
|
else => if (!array_ty.isTuple(zcu)) {
|
|
return sema.failWithArrayInitNotSupported(block, src, array_ty);
|
|
},
|
|
}
|
|
return sema.elemPtr(block, src, array_ptr, elem_index, src, true, true);
|
|
}
|
|
|
|
fn zirSliceStart(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.SliceStart, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.lhs);
|
|
const start = try sema.resolveInst(extra.start);
|
|
const ptr_src = block.src(.{ .node_offset_slice_ptr = inst_data.src_node });
|
|
const start_src = block.src(.{ .node_offset_slice_start = inst_data.src_node });
|
|
const end_src = block.src(.{ .node_offset_slice_end = inst_data.src_node });
|
|
|
|
return sema.analyzeSlice(block, src, array_ptr, start, .none, .none, LazySrcLoc.unneeded, ptr_src, start_src, end_src, false);
|
|
}
|
|
|
|
fn zirSliceEnd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.SliceEnd, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.lhs);
|
|
const start = try sema.resolveInst(extra.start);
|
|
const end = try sema.resolveInst(extra.end);
|
|
const ptr_src = block.src(.{ .node_offset_slice_ptr = inst_data.src_node });
|
|
const start_src = block.src(.{ .node_offset_slice_start = inst_data.src_node });
|
|
const end_src = block.src(.{ .node_offset_slice_end = inst_data.src_node });
|
|
|
|
return sema.analyzeSlice(block, src, array_ptr, start, end, .none, LazySrcLoc.unneeded, ptr_src, start_src, end_src, false);
|
|
}
|
|
|
|
fn zirSliceSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const sentinel_src = block.src(.{ .node_offset_slice_sentinel = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.SliceSentinel, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.lhs);
|
|
const start = try sema.resolveInst(extra.start);
|
|
const end: Air.Inst.Ref = if (extra.end == .none) .none else try sema.resolveInst(extra.end);
|
|
const sentinel = try sema.resolveInst(extra.sentinel);
|
|
const ptr_src = block.src(.{ .node_offset_slice_ptr = inst_data.src_node });
|
|
const start_src = block.src(.{ .node_offset_slice_start = inst_data.src_node });
|
|
const end_src = block.src(.{ .node_offset_slice_end = inst_data.src_node });
|
|
|
|
return sema.analyzeSlice(block, src, array_ptr, start, end, sentinel, sentinel_src, ptr_src, start_src, end_src, false);
|
|
}
|
|
|
|
fn zirSliceLength(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.SliceLength, inst_data.payload_index).data;
|
|
const array_ptr = try sema.resolveInst(extra.lhs);
|
|
const start = try sema.resolveInst(extra.start);
|
|
const len = try sema.resolveInst(extra.len);
|
|
const sentinel = if (extra.sentinel == .none) .none else try sema.resolveInst(extra.sentinel);
|
|
const ptr_src = block.src(.{ .node_offset_slice_ptr = inst_data.src_node });
|
|
const start_src = block.src(.{ .node_offset_slice_start = extra.start_src_node_offset });
|
|
const end_src = block.src(.{ .node_offset_slice_end = inst_data.src_node });
|
|
const sentinel_src: LazySrcLoc = if (sentinel == .none)
|
|
LazySrcLoc.unneeded
|
|
else
|
|
block.src(.{ .node_offset_slice_sentinel = inst_data.src_node });
|
|
|
|
return sema.analyzeSlice(block, src, array_ptr, start, len, sentinel, sentinel_src, ptr_src, start_src, end_src, true);
|
|
}
|
|
|
|
fn zirSliceSentinelTy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ptr_src = block.src(.{ .node_offset_slice_ptr = inst_data.src_node });
|
|
const sentinel_src = block.src(.{ .node_offset_slice_sentinel = inst_data.src_node });
|
|
|
|
// This is like the logic in `analyzeSlice`; since we've evaluated the LHS as an lvalue, we will
|
|
// have a double pointer if it was already a pointer.
|
|
|
|
const lhs_ptr_ty = sema.typeOf(try sema.resolveInst(inst_data.operand));
|
|
const lhs_ty = switch (lhs_ptr_ty.zigTypeTag(zcu)) {
|
|
.pointer => lhs_ptr_ty.childType(zcu),
|
|
else => return sema.fail(block, ptr_src, "expected pointer, found '{f}'", .{lhs_ptr_ty.fmt(pt)}),
|
|
};
|
|
|
|
const sentinel_ty: Type = switch (lhs_ty.zigTypeTag(zcu)) {
|
|
.array => lhs_ty.childType(zcu),
|
|
.pointer => switch (lhs_ty.ptrSize(zcu)) {
|
|
.many, .c, .slice => lhs_ty.childType(zcu),
|
|
.one => s: {
|
|
const lhs_elem_ty = lhs_ty.childType(zcu);
|
|
break :s switch (lhs_elem_ty.zigTypeTag(zcu)) {
|
|
.array => lhs_elem_ty.childType(zcu), // array element type
|
|
else => return sema.fail(block, sentinel_src, "slice of single-item pointer cannot have sentinel", .{}),
|
|
};
|
|
},
|
|
},
|
|
else => return sema.fail(block, src, "slice of non-array type '{f}'", .{lhs_ty.fmt(pt)}),
|
|
};
|
|
|
|
return Air.internedToRef(sentinel_ty.toIntern());
|
|
}
|
|
|
|
/// Holds common data used when analyzing or resolving switch prong bodies,
|
|
/// including setting up captures.
|
|
const SwitchProngAnalysis = struct {
|
|
sema: *Sema,
|
|
/// The block containing the `switch_block` itself.
|
|
parent_block: *Block,
|
|
operand: Operand,
|
|
/// If this switch is on an error set, this is the type to assign to the
|
|
/// `else` prong. If `null`, the prong should be unreachable.
|
|
else_error_ty: ?Type,
|
|
/// The index of the `switch_block` instruction itself.
|
|
switch_block_inst: Zir.Inst.Index,
|
|
/// The dummy index into which inline tag captures should be placed. May be
|
|
/// undefined if no prong has a tag capture.
|
|
tag_capture_inst: Zir.Inst.Index,
|
|
|
|
const Operand = union(enum) {
|
|
/// This switch will be dispatched only once, with the given operand.
|
|
simple: struct {
|
|
/// The raw switch operand value. Always defined.
|
|
by_val: Air.Inst.Ref,
|
|
/// The switch operand *pointer*. Defined only if there is a prong
|
|
/// with a by-ref capture.
|
|
by_ref: Air.Inst.Ref,
|
|
/// The switch condition value. For unions, `operand` is the union
|
|
/// and `cond` is its enum tag value.
|
|
cond: Air.Inst.Ref,
|
|
},
|
|
/// This switch may be dispatched multiple times with `continue` syntax.
|
|
/// As such, the operand is stored in an alloc if needed.
|
|
loop: struct {
|
|
/// The `alloc` containing the `switch` operand for the active dispatch.
|
|
/// Each prong must load from this `alloc` to get captures.
|
|
/// If there are no captures, this may be undefined.
|
|
operand_alloc: Air.Inst.Ref,
|
|
/// Whether `operand_alloc` contains a by-val operand or a by-ref
|
|
/// operand.
|
|
operand_is_ref: bool,
|
|
/// The switch condition value for the *initial* dispatch. For
|
|
/// unions, this is the enum tag value.
|
|
init_cond: Air.Inst.Ref,
|
|
},
|
|
};
|
|
|
|
/// Resolve a switch prong which is determined at comptime to have no peers.
|
|
/// Uses `resolveBlockBody`. Sets up captures as needed.
|
|
fn resolveProngComptime(
|
|
spa: SwitchProngAnalysis,
|
|
child_block: *Block,
|
|
prong_type: enum { normal, special },
|
|
prong_body: []const Zir.Inst.Index,
|
|
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
|
|
/// Must use the `switch_capture` field in `offset`.
|
|
capture_src: LazySrcLoc,
|
|
/// The set of all values which can reach this prong. May be undefined
|
|
/// if the prong is special or contains ranges.
|
|
case_vals: []const Air.Inst.Ref,
|
|
/// The inline capture of this prong. If this is not an inline prong,
|
|
/// this is `.none`.
|
|
inline_case_capture: Air.Inst.Ref,
|
|
/// Whether this prong has an inline tag capture. If `true`, then
|
|
/// `inline_case_capture` cannot be `.none`.
|
|
has_tag_capture: bool,
|
|
merges: *Block.Merges,
|
|
) CompileError!Air.Inst.Ref {
|
|
const sema = spa.sema;
|
|
const src = spa.parent_block.nodeOffset(
|
|
sema.code.instructions.items(.data)[@intFromEnum(spa.switch_block_inst)].pl_node.src_node,
|
|
);
|
|
|
|
// We can propagate `.cold` hints from this branch since it's comptime-known
|
|
// to be taken from the parent branch.
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint orelse if (sema.branch_hint == .cold) .cold else null;
|
|
|
|
if (has_tag_capture) {
|
|
const tag_ref = try spa.analyzeTagCapture(child_block, capture_src, inline_case_capture);
|
|
sema.inst_map.putAssumeCapacity(spa.tag_capture_inst, tag_ref);
|
|
}
|
|
defer if (has_tag_capture) assert(sema.inst_map.remove(spa.tag_capture_inst));
|
|
|
|
switch (capture) {
|
|
.none => {
|
|
return sema.resolveBlockBody(spa.parent_block, src, child_block, prong_body, spa.switch_block_inst, merges);
|
|
},
|
|
|
|
.by_val, .by_ref => {
|
|
const capture_ref = try spa.analyzeCapture(
|
|
child_block,
|
|
capture == .by_ref,
|
|
prong_type == .special,
|
|
capture_src,
|
|
case_vals,
|
|
inline_case_capture,
|
|
);
|
|
|
|
if (sema.typeOf(capture_ref).isNoReturn(sema.pt.zcu)) {
|
|
// This prong should be unreachable!
|
|
return .unreachable_value;
|
|
}
|
|
|
|
sema.inst_map.putAssumeCapacity(spa.switch_block_inst, capture_ref);
|
|
defer assert(sema.inst_map.remove(spa.switch_block_inst));
|
|
|
|
return sema.resolveBlockBody(spa.parent_block, src, child_block, prong_body, spa.switch_block_inst, merges);
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Analyze a switch prong which may have peers at runtime.
|
|
/// Uses `analyzeBodyRuntimeBreak`. Sets up captures as needed.
|
|
/// Returns the `BranchHint` for the prong.
|
|
fn analyzeProngRuntime(
|
|
spa: SwitchProngAnalysis,
|
|
case_block: *Block,
|
|
prong_type: enum { normal, special },
|
|
prong_body: []const Zir.Inst.Index,
|
|
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
|
|
/// Must use the `switch_capture` field in `offset`.
|
|
capture_src: LazySrcLoc,
|
|
/// The set of all values which can reach this prong. May be undefined
|
|
/// if the prong is special or contains ranges.
|
|
case_vals: []const Air.Inst.Ref,
|
|
/// The inline capture of this prong. If this is not an inline prong,
|
|
/// this is `.none`.
|
|
inline_case_capture: Air.Inst.Ref,
|
|
/// Whether this prong has an inline tag capture. If `true`, then
|
|
/// `inline_case_capture` cannot be `.none`.
|
|
has_tag_capture: bool,
|
|
) CompileError!std.builtin.BranchHint {
|
|
const sema = spa.sema;
|
|
|
|
if (has_tag_capture) {
|
|
const tag_ref = try spa.analyzeTagCapture(case_block, capture_src, inline_case_capture);
|
|
sema.inst_map.putAssumeCapacity(spa.tag_capture_inst, tag_ref);
|
|
}
|
|
defer if (has_tag_capture) assert(sema.inst_map.remove(spa.tag_capture_inst));
|
|
|
|
switch (capture) {
|
|
.none => {
|
|
return sema.analyzeBodyRuntimeBreak(case_block, prong_body);
|
|
},
|
|
|
|
.by_val, .by_ref => {
|
|
const capture_ref = try spa.analyzeCapture(
|
|
case_block,
|
|
capture == .by_ref,
|
|
prong_type == .special,
|
|
capture_src,
|
|
case_vals,
|
|
inline_case_capture,
|
|
);
|
|
|
|
if (sema.typeOf(capture_ref).isNoReturn(sema.pt.zcu)) {
|
|
// No need to analyze any further, the prong is unreachable
|
|
return .none;
|
|
}
|
|
|
|
sema.inst_map.putAssumeCapacity(spa.switch_block_inst, capture_ref);
|
|
defer assert(sema.inst_map.remove(spa.switch_block_inst));
|
|
|
|
return sema.analyzeBodyRuntimeBreak(case_block, prong_body);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn analyzeTagCapture(
|
|
spa: SwitchProngAnalysis,
|
|
block: *Block,
|
|
capture_src: LazySrcLoc,
|
|
inline_case_capture: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const sema = spa.sema;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = switch (spa.operand) {
|
|
.simple => |s| sema.typeOf(s.by_val),
|
|
.loop => |l| ty: {
|
|
const alloc_ty = sema.typeOf(l.operand_alloc);
|
|
const alloc_child = alloc_ty.childType(zcu);
|
|
if (l.operand_is_ref) break :ty alloc_child.childType(zcu);
|
|
break :ty alloc_child;
|
|
},
|
|
};
|
|
if (operand_ty.zigTypeTag(zcu) != .@"union") {
|
|
const tag_capture_src: LazySrcLoc = .{
|
|
.base_node_inst = capture_src.base_node_inst,
|
|
.offset = .{ .switch_tag_capture = capture_src.offset.switch_capture },
|
|
};
|
|
return sema.fail(block, tag_capture_src, "cannot capture tag of non-union type '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
assert(inline_case_capture != .none);
|
|
return inline_case_capture;
|
|
}
|
|
|
|
fn analyzeCapture(
|
|
spa: SwitchProngAnalysis,
|
|
block: *Block,
|
|
capture_byref: bool,
|
|
is_special_prong: bool,
|
|
capture_src: LazySrcLoc,
|
|
case_vals: []const Air.Inst.Ref,
|
|
inline_case_capture: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const sema = spa.sema;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const zir_datas = sema.code.instructions.items(.data);
|
|
const switch_node_offset = zir_datas[@intFromEnum(spa.switch_block_inst)].pl_node.src_node;
|
|
|
|
const operand_src = block.src(.{ .node_offset_switch_operand = switch_node_offset });
|
|
|
|
const operand_val, const operand_ptr = switch (spa.operand) {
|
|
.simple => |s| .{ s.by_val, s.by_ref },
|
|
.loop => |l| op: {
|
|
const loaded = try sema.analyzeLoad(block, operand_src, l.operand_alloc, operand_src);
|
|
if (l.operand_is_ref) {
|
|
const by_val = try sema.analyzeLoad(block, operand_src, loaded, operand_src);
|
|
break :op .{ by_val, loaded };
|
|
} else {
|
|
break :op .{ loaded, undefined };
|
|
}
|
|
},
|
|
};
|
|
|
|
const operand_ty = sema.typeOf(operand_val);
|
|
const operand_ptr_ty = if (capture_byref) sema.typeOf(operand_ptr) else undefined;
|
|
|
|
if (inline_case_capture != .none) {
|
|
const item_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, inline_case_capture, undefined) catch unreachable;
|
|
if (operand_ty.zigTypeTag(zcu) == .@"union") {
|
|
const field_index: u32 = @intCast(operand_ty.unionTagFieldIndex(item_val, zcu).?);
|
|
const union_obj = zcu.typeToUnion(operand_ty).?;
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_index]);
|
|
if (capture_byref) {
|
|
const ptr_field_ty = try pt.ptrTypeSema(.{
|
|
.child = field_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = !operand_ptr_ty.ptrIsMutable(zcu),
|
|
.is_volatile = operand_ptr_ty.isVolatilePtr(zcu),
|
|
.address_space = operand_ptr_ty.ptrAddressSpace(zcu),
|
|
},
|
|
});
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand_ptr)) |union_ptr| {
|
|
return Air.internedToRef((try union_ptr.ptrField(field_index, pt)).toIntern());
|
|
}
|
|
return block.addStructFieldPtr(operand_ptr, field_index, ptr_field_ty);
|
|
} else {
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand_val)) |union_val| {
|
|
const tag_and_val = ip.indexToKey(union_val.toIntern()).un;
|
|
return Air.internedToRef(tag_and_val.val);
|
|
}
|
|
return block.addStructFieldVal(operand_val, field_index, field_ty);
|
|
}
|
|
} else if (capture_byref) {
|
|
return sema.uavRef(item_val.toIntern());
|
|
} else {
|
|
return inline_case_capture;
|
|
}
|
|
}
|
|
|
|
if (is_special_prong) {
|
|
if (capture_byref) {
|
|
return operand_ptr;
|
|
}
|
|
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.error_set => if (spa.else_error_ty) |ty| {
|
|
return sema.bitCast(block, ty, operand_val, operand_src, null);
|
|
} else {
|
|
try sema.analyzeUnreachable(block, operand_src, false);
|
|
return .unreachable_value;
|
|
},
|
|
else => return operand_val,
|
|
}
|
|
}
|
|
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.@"union" => {
|
|
const union_obj = zcu.typeToUnion(operand_ty).?;
|
|
const first_item_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, case_vals[0], undefined) catch unreachable;
|
|
|
|
const first_field_index: u32 = zcu.unionTagFieldIndex(union_obj, first_item_val).?;
|
|
const first_field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[first_field_index]);
|
|
|
|
const field_indices = try sema.arena.alloc(u32, case_vals.len);
|
|
for (case_vals, field_indices) |item, *field_idx| {
|
|
const item_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, item, undefined) catch unreachable;
|
|
field_idx.* = zcu.unionTagFieldIndex(union_obj, item_val).?;
|
|
}
|
|
|
|
// Fast path: if all the operands are the same type already, we don't need to hit
|
|
// PTR! This will also allow us to emit simpler code.
|
|
const same_types = for (field_indices[1..]) |field_idx| {
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_idx]);
|
|
if (!field_ty.eql(first_field_ty, zcu)) break false;
|
|
} else true;
|
|
|
|
const capture_ty = if (same_types) first_field_ty else capture_ty: {
|
|
// We need values to run PTR on, so make a bunch of undef constants.
|
|
const dummy_captures = try sema.arena.alloc(Air.Inst.Ref, case_vals.len);
|
|
for (dummy_captures, field_indices) |*dummy, field_idx| {
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_idx]);
|
|
dummy.* = try pt.undefRef(field_ty);
|
|
}
|
|
|
|
const case_srcs = try sema.arena.alloc(?LazySrcLoc, case_vals.len);
|
|
for (case_srcs, 0..) |*case_src, i| {
|
|
case_src.* = .{
|
|
.base_node_inst = capture_src.base_node_inst,
|
|
.offset = .{ .switch_case_item = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = capture_src.offset.switch_capture.case_idx,
|
|
.item_idx = .{ .kind = .single, .index = @intCast(i) },
|
|
} },
|
|
};
|
|
}
|
|
|
|
break :capture_ty sema.resolvePeerTypes(block, capture_src, dummy_captures, .{ .override = case_srcs }) catch |err| switch (err) {
|
|
error.AnalysisFail => {
|
|
const msg = sema.err orelse return error.AnalysisFail;
|
|
try sema.reparentOwnedErrorMsg(capture_src, msg, "capture group with incompatible types", .{});
|
|
return error.AnalysisFail;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
};
|
|
|
|
// By-reference captures have some further restrictions which make them easier to emit
|
|
if (capture_byref) {
|
|
const operand_ptr_info = operand_ptr_ty.ptrInfo(zcu);
|
|
const capture_ptr_ty = resolve: {
|
|
// By-ref captures of hetereogeneous types are only allowed if all field
|
|
// pointer types are peer resolvable to each other.
|
|
// We need values to run PTR on, so make a bunch of undef constants.
|
|
const dummy_captures = try sema.arena.alloc(Air.Inst.Ref, case_vals.len);
|
|
for (field_indices, dummy_captures) |field_idx, *dummy| {
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_idx]);
|
|
const field_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = field_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = operand_ptr_info.flags.is_const,
|
|
.is_volatile = operand_ptr_info.flags.is_volatile,
|
|
.address_space = operand_ptr_info.flags.address_space,
|
|
.alignment = union_obj.fieldAlign(ip, field_idx),
|
|
},
|
|
});
|
|
dummy.* = try pt.undefRef(field_ptr_ty);
|
|
}
|
|
const case_srcs = try sema.arena.alloc(?LazySrcLoc, case_vals.len);
|
|
for (case_srcs, 0..) |*case_src, i| {
|
|
case_src.* = .{
|
|
.base_node_inst = capture_src.base_node_inst,
|
|
.offset = .{ .switch_case_item = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = capture_src.offset.switch_capture.case_idx,
|
|
.item_idx = .{ .kind = .single, .index = @intCast(i) },
|
|
} },
|
|
};
|
|
}
|
|
|
|
break :resolve sema.resolvePeerTypes(block, capture_src, dummy_captures, .{ .override = case_srcs }) catch |err| switch (err) {
|
|
error.AnalysisFail => {
|
|
const msg = sema.err orelse return error.AnalysisFail;
|
|
try sema.errNote(capture_src, msg, "this coercion is only possible when capturing by value", .{});
|
|
try sema.reparentOwnedErrorMsg(capture_src, msg, "capture group with incompatible types", .{});
|
|
return error.AnalysisFail;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
};
|
|
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand_ptr)) |op_ptr_val| {
|
|
if (op_ptr_val.isUndef(zcu)) return pt.undefRef(capture_ptr_ty);
|
|
const field_ptr_val = try op_ptr_val.ptrField(first_field_index, pt);
|
|
return Air.internedToRef((try pt.getCoerced(field_ptr_val, capture_ptr_ty)).toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, operand_src, null);
|
|
return block.addStructFieldPtr(operand_ptr, first_field_index, capture_ptr_ty);
|
|
}
|
|
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand_val)) |operand_val_val| {
|
|
if (operand_val_val.isUndef(zcu)) return pt.undefRef(capture_ty);
|
|
const union_val = ip.indexToKey(operand_val_val.toIntern()).un;
|
|
if (Value.fromInterned(union_val.tag).isUndef(zcu)) return pt.undefRef(capture_ty);
|
|
const uncoerced = Air.internedToRef(union_val.val);
|
|
return sema.coerce(block, capture_ty, uncoerced, operand_src);
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, operand_src, null);
|
|
|
|
if (same_types) {
|
|
return block.addStructFieldVal(operand_val, first_field_index, capture_ty);
|
|
}
|
|
|
|
// We may have to emit a switch block which coerces the operand to the capture type.
|
|
// If we can, try to avoid that using in-memory coercions.
|
|
const first_non_imc = in_mem: {
|
|
for (field_indices, 0..) |field_idx, i| {
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_idx]);
|
|
if (.ok != try sema.coerceInMemoryAllowed(block, capture_ty, field_ty, false, zcu.getTarget(), LazySrcLoc.unneeded, LazySrcLoc.unneeded, null)) {
|
|
break :in_mem i;
|
|
}
|
|
}
|
|
// All fields are in-memory coercible to the resolved type!
|
|
// Just take the first field and bitcast the result.
|
|
const uncoerced = try block.addStructFieldVal(operand_val, first_field_index, first_field_ty);
|
|
return block.addBitCast(capture_ty, uncoerced);
|
|
};
|
|
|
|
// By-val capture with heterogeneous types which are not all in-memory coercible to
|
|
// the resolved capture type. We finally have to fall back to the ugly method.
|
|
|
|
// However, let's first track which operands are in-memory coercible. There may well
|
|
// be several, and we can squash all of these cases into the same switch prong using
|
|
// a simple bitcast. We'll make this the 'else' prong.
|
|
|
|
var in_mem_coercible = try std.DynamicBitSet.initFull(sema.arena, field_indices.len);
|
|
in_mem_coercible.unset(first_non_imc);
|
|
{
|
|
const next = first_non_imc + 1;
|
|
for (field_indices[next..], next..) |field_idx, i| {
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_idx]);
|
|
if (.ok != try sema.coerceInMemoryAllowed(block, capture_ty, field_ty, false, zcu.getTarget(), LazySrcLoc.unneeded, LazySrcLoc.unneeded, null)) {
|
|
in_mem_coercible.unset(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
const capture_block_inst = try block.addInstAsIndex(.{
|
|
.tag = .block,
|
|
.data = .{
|
|
.ty_pl = .{
|
|
.ty = Air.internedToRef(capture_ty.toIntern()),
|
|
.payload = undefined, // updated below
|
|
},
|
|
},
|
|
});
|
|
|
|
const prong_count = field_indices.len - in_mem_coercible.count();
|
|
|
|
const estimated_extra = prong_count * 6 + (prong_count / 10); // 2 for Case, 1 item, probably 3 insts; plus hints
|
|
var cases_extra = try std.array_list.Managed(u32).initCapacity(sema.gpa, estimated_extra);
|
|
defer cases_extra.deinit();
|
|
|
|
{
|
|
// All branch hints are `.none`, so just add zero elems.
|
|
comptime assert(@intFromEnum(std.builtin.BranchHint.none) == 0);
|
|
const need_elems = std.math.divCeil(usize, prong_count + 1, 10) catch unreachable;
|
|
try cases_extra.appendNTimes(0, need_elems);
|
|
}
|
|
|
|
{
|
|
// Non-bitcast cases
|
|
var it = in_mem_coercible.iterator(.{ .kind = .unset });
|
|
while (it.next()) |idx| {
|
|
var coerce_block = block.makeSubBlock();
|
|
defer coerce_block.instructions.deinit(sema.gpa);
|
|
|
|
const case_src: LazySrcLoc = .{
|
|
.base_node_inst = capture_src.base_node_inst,
|
|
.offset = .{ .switch_case_item = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = capture_src.offset.switch_capture.case_idx,
|
|
.item_idx = .{ .kind = .single, .index = @intCast(idx) },
|
|
} },
|
|
};
|
|
|
|
const field_idx = field_indices[idx];
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_idx]);
|
|
const uncoerced = try coerce_block.addStructFieldVal(operand_val, field_idx, field_ty);
|
|
const coerced = try sema.coerce(&coerce_block, capture_ty, uncoerced, case_src);
|
|
_ = try coerce_block.addBr(capture_block_inst, coerced);
|
|
|
|
try cases_extra.ensureUnusedCapacity(@typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
coerce_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(coerce_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(case_vals[idx])); // item
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(coerce_block.instructions.items)); // body
|
|
}
|
|
}
|
|
const else_body_len = len: {
|
|
// 'else' prong uses a bitcast
|
|
var coerce_block = block.makeSubBlock();
|
|
defer coerce_block.instructions.deinit(sema.gpa);
|
|
|
|
const first_imc_item_idx = in_mem_coercible.findFirstSet().?;
|
|
const first_imc_field_idx = field_indices[first_imc_item_idx];
|
|
const first_imc_field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[first_imc_field_idx]);
|
|
const uncoerced = try coerce_block.addStructFieldVal(operand_val, first_imc_field_idx, first_imc_field_ty);
|
|
const coerced = try coerce_block.addBitCast(capture_ty, uncoerced);
|
|
_ = try coerce_block.addBr(capture_block_inst, coerced);
|
|
|
|
try cases_extra.appendSlice(@ptrCast(coerce_block.instructions.items));
|
|
break :len coerce_block.instructions.items.len;
|
|
};
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.SwitchBr).@"struct".fields.len +
|
|
cases_extra.items.len +
|
|
@typeInfo(Air.Block).@"struct".fields.len +
|
|
1);
|
|
|
|
const switch_br_inst: u32 = @intCast(sema.air_instructions.len);
|
|
try sema.air_instructions.append(sema.gpa, .{
|
|
.tag = .switch_br,
|
|
.data = .{
|
|
.pl_op = .{
|
|
.operand = undefined, // set by switch below
|
|
.payload = sema.addExtraAssumeCapacity(Air.SwitchBr{
|
|
.cases_len = @intCast(prong_count),
|
|
.else_body_len = @intCast(else_body_len),
|
|
}),
|
|
},
|
|
},
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(cases_extra.items);
|
|
|
|
// Set up block body
|
|
switch (spa.operand) {
|
|
.simple => |s| {
|
|
const air_datas = sema.air_instructions.items(.data);
|
|
air_datas[switch_br_inst].pl_op.operand = s.cond;
|
|
air_datas[@intFromEnum(capture_block_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = 1,
|
|
});
|
|
sema.air_extra.appendAssumeCapacity(switch_br_inst);
|
|
},
|
|
.loop => {
|
|
// The block must first extract the tag from the loaded union.
|
|
const tag_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(sema.gpa, .{
|
|
.tag = .get_union_tag,
|
|
.data = .{ .ty_op = .{
|
|
.ty = Air.internedToRef(union_obj.enum_tag_ty),
|
|
.operand = operand_val,
|
|
} },
|
|
});
|
|
const air_datas = sema.air_instructions.items(.data);
|
|
air_datas[switch_br_inst].pl_op.operand = tag_inst.toRef();
|
|
air_datas[@intFromEnum(capture_block_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = 2,
|
|
});
|
|
sema.air_extra.appendAssumeCapacity(@intFromEnum(tag_inst));
|
|
sema.air_extra.appendAssumeCapacity(switch_br_inst);
|
|
},
|
|
}
|
|
|
|
return capture_block_inst.toRef();
|
|
},
|
|
.error_set => {
|
|
if (capture_byref) {
|
|
return sema.fail(
|
|
block,
|
|
capture_src,
|
|
"error set cannot be captured by reference",
|
|
.{},
|
|
);
|
|
}
|
|
|
|
if (case_vals.len == 1) {
|
|
const item_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, case_vals[0], undefined) catch unreachable;
|
|
const item_ty = try pt.singleErrorSetType(item_val.getErrorName(zcu).unwrap().?);
|
|
return sema.bitCast(block, item_ty, operand_val, operand_src, null);
|
|
}
|
|
|
|
var names: InferredErrorSet.NameMap = .{};
|
|
try names.ensureUnusedCapacity(sema.arena, case_vals.len);
|
|
for (case_vals) |err| {
|
|
const err_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, err, undefined) catch unreachable;
|
|
names.putAssumeCapacityNoClobber(err_val.getErrorName(zcu).unwrap().?, {});
|
|
}
|
|
const error_ty = try pt.errorSetFromUnsortedNames(names.keys());
|
|
return sema.bitCast(block, error_ty, operand_val, operand_src, null);
|
|
},
|
|
else => {
|
|
// In this case the capture value is just the passed-through value
|
|
// of the switch condition.
|
|
if (capture_byref) {
|
|
return operand_ptr;
|
|
} else {
|
|
return operand_val;
|
|
}
|
|
},
|
|
}
|
|
}
|
|
};
|
|
|
|
fn switchCond(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.type,
|
|
.void,
|
|
.bool,
|
|
.int,
|
|
.float,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.pointer,
|
|
.@"fn",
|
|
.error_set,
|
|
.@"enum",
|
|
=> {
|
|
if (operand_ty.isSlice(zcu)) {
|
|
return sema.fail(block, src, "switch on type '{f}'", .{operand_ty.fmt(pt)});
|
|
}
|
|
if ((try sema.typeHasOnePossibleValue(operand_ty))) |opv| {
|
|
return Air.internedToRef(opv.toIntern());
|
|
}
|
|
return operand;
|
|
},
|
|
|
|
.@"union" => {
|
|
try operand_ty.resolveFields(pt);
|
|
const enum_ty = operand_ty.unionTagType(zcu) orelse {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "switch on union with no attached enum", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (operand_ty.srcLocOrNull(zcu)) |union_src| {
|
|
try sema.errNote(union_src, msg, "consider 'union(enum)' here", .{});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
};
|
|
return sema.unionToTag(block, enum_ty, operand, src);
|
|
},
|
|
|
|
.error_union,
|
|
.noreturn,
|
|
.array,
|
|
.@"struct",
|
|
.undefined,
|
|
.null,
|
|
.optional,
|
|
.@"opaque",
|
|
.vector,
|
|
.frame,
|
|
.@"anyframe",
|
|
=> return sema.fail(block, src, "switch on type '{f}'", .{operand_ty.fmt(pt)}),
|
|
}
|
|
}
|
|
|
|
const SwitchErrorSet = std.AutoHashMap(InternPool.NullTerminatedString, LazySrcLoc);
|
|
|
|
fn zirSwitchBlockErrUnion(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const switch_src = block.nodeOffset(inst_data.src_node);
|
|
const switch_src_node_offset = inst_data.src_node;
|
|
const switch_operand_src = block.src(.{ .node_offset_switch_operand = switch_src_node_offset });
|
|
const else_prong_src = block.src(.{ .node_offset_switch_else_prong = switch_src_node_offset });
|
|
const extra = sema.code.extraData(Zir.Inst.SwitchBlockErrUnion, inst_data.payload_index);
|
|
const main_operand_src = block.src(.{ .node_offset_if_cond = extra.data.main_src_node_offset });
|
|
const main_src = block.src(.{ .node_offset_main_token = extra.data.main_src_node_offset });
|
|
|
|
const raw_operand_val = try sema.resolveInst(extra.data.operand);
|
|
|
|
// AstGen guarantees that the instruction immediately preceding
|
|
// switch_block_err_union is a dbg_stmt
|
|
const cond_dbg_node_index: Zir.Inst.Index = @enumFromInt(@intFromEnum(inst) - 1);
|
|
|
|
var header_extra_index: usize = extra.end;
|
|
|
|
const scalar_cases_len = extra.data.bits.scalar_cases_len;
|
|
const multi_cases_len = if (extra.data.bits.has_multi_cases) blk: {
|
|
const multi_cases_len = sema.code.extra[header_extra_index];
|
|
header_extra_index += 1;
|
|
break :blk multi_cases_len;
|
|
} else 0;
|
|
|
|
const err_capture_inst: Zir.Inst.Index = if (extra.data.bits.any_uses_err_capture) blk: {
|
|
const err_capture_inst: Zir.Inst.Index = @enumFromInt(sema.code.extra[header_extra_index]);
|
|
header_extra_index += 1;
|
|
// SwitchProngAnalysis wants inst_map to have space for the tag capture.
|
|
// Note that the normal capture is referred to via the switch block
|
|
// index, which there is already necessarily space for.
|
|
try sema.inst_map.ensureSpaceForInstructions(gpa, &.{err_capture_inst});
|
|
break :blk err_capture_inst;
|
|
} else undefined;
|
|
|
|
var case_vals = try std.ArrayListUnmanaged(Air.Inst.Ref).initCapacity(gpa, scalar_cases_len + 2 * multi_cases_len);
|
|
defer case_vals.deinit(gpa);
|
|
|
|
const NonError = struct {
|
|
body: []const Zir.Inst.Index,
|
|
end: usize,
|
|
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
|
|
};
|
|
|
|
const non_error_case: NonError = non_error: {
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[header_extra_index]);
|
|
const extra_body_start = header_extra_index + 1;
|
|
break :non_error .{
|
|
.body = sema.code.bodySlice(extra_body_start, info.body_len),
|
|
.end = extra_body_start + info.body_len,
|
|
.capture = info.capture,
|
|
};
|
|
};
|
|
|
|
const Else = struct {
|
|
body: []const Zir.Inst.Index,
|
|
end: usize,
|
|
is_inline: bool,
|
|
has_capture: bool,
|
|
};
|
|
|
|
const else_case: Else = if (!extra.data.bits.has_else) .{
|
|
.body = &.{},
|
|
.end = non_error_case.end,
|
|
.is_inline = false,
|
|
.has_capture = false,
|
|
} else special: {
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[non_error_case.end]);
|
|
const extra_body_start = non_error_case.end + 1;
|
|
assert(info.capture != .by_ref);
|
|
assert(!info.has_tag_capture);
|
|
break :special .{
|
|
.body = sema.code.bodySlice(extra_body_start, info.body_len),
|
|
.end = extra_body_start + info.body_len,
|
|
.is_inline = info.is_inline,
|
|
.has_capture = info.capture != .none,
|
|
};
|
|
};
|
|
|
|
var seen_errors = SwitchErrorSet.init(gpa);
|
|
defer seen_errors.deinit();
|
|
|
|
const operand_ty = sema.typeOf(raw_operand_val);
|
|
const operand_err_set = if (extra.data.bits.payload_is_ref)
|
|
operand_ty.childType(zcu)
|
|
else
|
|
operand_ty;
|
|
|
|
if (operand_err_set.zigTypeTag(zcu) != .error_union) {
|
|
return sema.fail(block, switch_src, "expected error union type, found '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
const operand_err_set_ty = operand_err_set.errorUnionSet(zcu);
|
|
|
|
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .block,
|
|
.data = undefined,
|
|
});
|
|
var label: Block.Label = .{
|
|
.zir_block = inst,
|
|
.merges = .{
|
|
.src_locs = .{},
|
|
.results = .{},
|
|
.br_list = .{},
|
|
.block_inst = block_inst,
|
|
},
|
|
};
|
|
|
|
var child_block: Block = .{
|
|
.parent = block,
|
|
.sema = sema,
|
|
.namespace = block.namespace,
|
|
.instructions = .{},
|
|
.label = &label,
|
|
.inlining = block.inlining,
|
|
.comptime_reason = block.comptime_reason,
|
|
.is_typeof = block.is_typeof,
|
|
.c_import_buf = block.c_import_buf,
|
|
.runtime_cond = block.runtime_cond,
|
|
.runtime_loop = block.runtime_loop,
|
|
.runtime_index = block.runtime_index,
|
|
.error_return_trace_index = block.error_return_trace_index,
|
|
.want_safety = block.want_safety,
|
|
.src_base_inst = block.src_base_inst,
|
|
.type_name_ctx = block.type_name_ctx,
|
|
};
|
|
const merges = &child_block.label.?.merges;
|
|
defer child_block.instructions.deinit(gpa);
|
|
defer merges.deinit(gpa);
|
|
|
|
const resolved_err_set = try sema.resolveInferredErrorSetTy(block, main_src, operand_err_set_ty.toIntern());
|
|
if (Type.fromInterned(resolved_err_set).errorSetIsEmpty(zcu)) {
|
|
return sema.resolveBlockBody(block, main_operand_src, &child_block, non_error_case.body, inst, merges);
|
|
}
|
|
|
|
const else_error_ty: ?Type = try validateErrSetSwitch(
|
|
sema,
|
|
block,
|
|
&seen_errors,
|
|
&case_vals,
|
|
operand_err_set_ty,
|
|
inst_data,
|
|
scalar_cases_len,
|
|
multi_cases_len,
|
|
.{ .body = else_case.body, .end = else_case.end, .src = else_prong_src },
|
|
extra.data.bits.has_else,
|
|
);
|
|
|
|
var spa: SwitchProngAnalysis = .{
|
|
.sema = sema,
|
|
.parent_block = block,
|
|
.operand = .{
|
|
.simple = .{
|
|
.by_val = undefined, // must be set to the unwrapped error code before use
|
|
.by_ref = undefined,
|
|
.cond = raw_operand_val,
|
|
},
|
|
},
|
|
.else_error_ty = else_error_ty,
|
|
.switch_block_inst = inst,
|
|
.tag_capture_inst = undefined,
|
|
};
|
|
|
|
if (try sema.resolveDefinedValue(&child_block, main_src, raw_operand_val)) |ov| {
|
|
const operand_val = if (extra.data.bits.payload_is_ref)
|
|
(try sema.pointerDeref(&child_block, main_src, ov, operand_ty)).?
|
|
else
|
|
ov;
|
|
|
|
if (operand_val.errorUnionIsPayload(zcu)) {
|
|
return sema.resolveBlockBody(block, main_operand_src, &child_block, non_error_case.body, inst, merges);
|
|
} else {
|
|
const err_val = Value.fromInterned(try pt.intern(.{
|
|
.err = .{
|
|
.ty = operand_err_set_ty.toIntern(),
|
|
.name = operand_val.getErrorName(zcu).unwrap().?,
|
|
},
|
|
}));
|
|
spa.operand.simple.by_val = if (extra.data.bits.payload_is_ref)
|
|
try sema.analyzeErrUnionCodePtr(block, switch_operand_src, raw_operand_val)
|
|
else
|
|
try sema.analyzeErrUnionCode(block, switch_operand_src, raw_operand_val);
|
|
|
|
if (extra.data.bits.any_uses_err_capture) {
|
|
sema.inst_map.putAssumeCapacity(err_capture_inst, spa.operand.simple.by_val);
|
|
}
|
|
defer if (extra.data.bits.any_uses_err_capture) assert(sema.inst_map.remove(err_capture_inst));
|
|
|
|
return resolveSwitchComptime(
|
|
sema,
|
|
spa,
|
|
&child_block,
|
|
try sema.switchCond(block, switch_operand_src, spa.operand.simple.by_val),
|
|
err_val,
|
|
operand_err_set_ty,
|
|
switch_src_node_offset,
|
|
null,
|
|
.{
|
|
.body = else_case.body,
|
|
.end = else_case.end,
|
|
.capture = if (else_case.has_capture) .by_val else .none,
|
|
.is_inline = else_case.is_inline,
|
|
.has_tag_capture = false,
|
|
},
|
|
false,
|
|
case_vals,
|
|
scalar_cases_len,
|
|
multi_cases_len,
|
|
true,
|
|
false,
|
|
);
|
|
}
|
|
}
|
|
|
|
if (scalar_cases_len + multi_cases_len == 0) {
|
|
if (else_error_ty) |ty| if (ty.errorSetIsEmpty(zcu)) {
|
|
return sema.resolveBlockBody(block, main_operand_src, &child_block, non_error_case.body, inst, merges);
|
|
};
|
|
}
|
|
|
|
if (child_block.isComptime()) {
|
|
_ = try sema.resolveConstDefinedValue(&child_block, main_operand_src, raw_operand_val, null);
|
|
unreachable;
|
|
}
|
|
|
|
const cond = if (extra.data.bits.payload_is_ref) blk: {
|
|
try sema.checkErrorType(block, main_src, sema.typeOf(raw_operand_val).elemType2(zcu));
|
|
const loaded = try sema.analyzeLoad(block, main_src, raw_operand_val, main_src);
|
|
break :blk try sema.analyzeIsNonErr(block, main_src, loaded);
|
|
} else blk: {
|
|
try sema.checkErrorType(block, main_src, sema.typeOf(raw_operand_val));
|
|
break :blk try sema.analyzeIsNonErr(block, main_src, raw_operand_val);
|
|
};
|
|
|
|
var sub_block = child_block.makeSubBlock();
|
|
sub_block.runtime_loop = null;
|
|
sub_block.runtime_cond = main_operand_src;
|
|
sub_block.runtime_index.increment();
|
|
sub_block.need_debug_scope = null; // this body is emitted regardless
|
|
defer sub_block.instructions.deinit(gpa);
|
|
|
|
const non_error_hint = try sema.analyzeBodyRuntimeBreak(&sub_block, non_error_case.body);
|
|
const true_instructions = try sub_block.instructions.toOwnedSlice(gpa);
|
|
defer gpa.free(true_instructions);
|
|
|
|
spa.operand.simple.by_val = if (extra.data.bits.payload_is_ref)
|
|
try sema.analyzeErrUnionCodePtr(&sub_block, switch_operand_src, raw_operand_val)
|
|
else
|
|
try sema.analyzeErrUnionCode(&sub_block, switch_operand_src, raw_operand_val);
|
|
|
|
if (extra.data.bits.any_uses_err_capture) {
|
|
sema.inst_map.putAssumeCapacity(err_capture_inst, spa.operand.simple.by_val);
|
|
}
|
|
defer if (extra.data.bits.any_uses_err_capture) assert(sema.inst_map.remove(err_capture_inst));
|
|
_ = try sema.analyzeSwitchRuntimeBlock(
|
|
spa,
|
|
&sub_block,
|
|
switch_src,
|
|
try sema.switchCond(block, switch_operand_src, spa.operand.simple.by_val),
|
|
operand_err_set_ty,
|
|
switch_operand_src,
|
|
case_vals,
|
|
.{
|
|
.body = else_case.body,
|
|
.end = else_case.end,
|
|
.capture = if (else_case.has_capture) .by_val else .none,
|
|
.is_inline = else_case.is_inline,
|
|
.has_tag_capture = false,
|
|
},
|
|
scalar_cases_len,
|
|
multi_cases_len,
|
|
false,
|
|
undefined,
|
|
true,
|
|
switch_src_node_offset,
|
|
else_prong_src,
|
|
false,
|
|
undefined,
|
|
seen_errors,
|
|
undefined,
|
|
undefined,
|
|
undefined,
|
|
cond_dbg_node_index,
|
|
true,
|
|
null,
|
|
undefined,
|
|
&.{},
|
|
&.{},
|
|
);
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).@"struct".fields.len +
|
|
true_instructions.len + sub_block.instructions.items.len);
|
|
|
|
_ = try child_block.addInst(.{
|
|
.tag = .cond_br,
|
|
.data = .{
|
|
.pl_op = .{
|
|
.operand = cond,
|
|
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
|
|
.then_body_len = @intCast(true_instructions.len),
|
|
.else_body_len = @intCast(sub_block.instructions.items.len),
|
|
.branch_hints = .{
|
|
.true = non_error_hint,
|
|
.false = .none,
|
|
// Code coverage is desired for error handling.
|
|
.then_cov = .poi,
|
|
.else_cov = .poi,
|
|
},
|
|
}),
|
|
},
|
|
},
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(true_instructions));
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
|
|
|
|
return sema.resolveAnalyzedBlock(block, main_src, &child_block, merges, false);
|
|
}
|
|
|
|
fn zirSwitchBlock(sema: *Sema, block: *Block, inst: Zir.Inst.Index, operand_is_ref: bool) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const gpa = sema.gpa;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const src_node_offset = inst_data.src_node;
|
|
const operand_src = block.src(.{ .node_offset_switch_operand = src_node_offset });
|
|
const else_prong_src = block.src(.{ .node_offset_switch_else_prong = src_node_offset });
|
|
const under_prong_src = block.src(.{ .node_offset_switch_under_prong = src_node_offset });
|
|
const extra = sema.code.extraData(Zir.Inst.SwitchBlock, inst_data.payload_index);
|
|
|
|
const operand: SwitchProngAnalysis.Operand, const raw_operand_ty: Type = op: {
|
|
const maybe_ptr = try sema.resolveInst(extra.data.operand);
|
|
const val, const ref = if (operand_is_ref)
|
|
.{ try sema.analyzeLoad(block, src, maybe_ptr, operand_src), maybe_ptr }
|
|
else
|
|
.{ maybe_ptr, undefined };
|
|
|
|
const init_cond = try sema.switchCond(block, operand_src, val);
|
|
|
|
const operand_ty = sema.typeOf(val);
|
|
|
|
if (extra.data.bits.has_continue and !block.isComptime()) {
|
|
// Even if the operand is comptime-known, this `switch` is runtime.
|
|
if (try operand_ty.comptimeOnlySema(pt)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(operand_src, "operand of switch loop has comptime-only type '{f}'", .{operand_ty.fmt(pt)});
|
|
errdefer msg.destroy(gpa);
|
|
try sema.errNote(operand_src, msg, "switch loops are evaluated at runtime outside of comptime scopes", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
try sema.validateRuntimeValue(block, operand_src, maybe_ptr);
|
|
const operand_alloc = if (extra.data.bits.any_non_inline_capture) a: {
|
|
const operand_ptr_ty = try pt.singleMutPtrType(sema.typeOf(maybe_ptr));
|
|
const operand_alloc = try block.addTy(.alloc, operand_ptr_ty);
|
|
_ = try block.addBinOp(.store, operand_alloc, maybe_ptr);
|
|
break :a operand_alloc;
|
|
} else undefined;
|
|
break :op .{
|
|
.{ .loop = .{
|
|
.operand_alloc = operand_alloc,
|
|
.operand_is_ref = operand_is_ref,
|
|
.init_cond = init_cond,
|
|
} },
|
|
operand_ty,
|
|
};
|
|
}
|
|
|
|
// We always use `simple` in the comptime case, because as far as the dispatching logic
|
|
// is concerned, it really is dispatching a single prong. `resolveSwitchComptime` will
|
|
// be resposible for recursively resolving different prongs as needed.
|
|
break :op .{
|
|
.{ .simple = .{
|
|
.by_val = val,
|
|
.by_ref = ref,
|
|
.cond = init_cond,
|
|
} },
|
|
operand_ty,
|
|
};
|
|
};
|
|
|
|
const union_originally = raw_operand_ty.zigTypeTag(zcu) == .@"union";
|
|
const err_set = raw_operand_ty.zigTypeTag(zcu) == .error_set;
|
|
const cond_ty = switch (raw_operand_ty.zigTypeTag(zcu)) {
|
|
.@"union" => raw_operand_ty.unionTagType(zcu).?, // validated by `switchCond` above
|
|
else => raw_operand_ty,
|
|
};
|
|
|
|
// AstGen guarantees that the instruction immediately preceding
|
|
// switch_block(_ref) is a dbg_stmt
|
|
const cond_dbg_node_index: Zir.Inst.Index = @enumFromInt(@intFromEnum(inst) - 1);
|
|
|
|
var header_extra_index: usize = extra.end;
|
|
|
|
const scalar_cases_len = extra.data.bits.scalar_cases_len;
|
|
const multi_cases_len = if (extra.data.bits.has_multi_cases) blk: {
|
|
const multi_cases_len = sema.code.extra[header_extra_index];
|
|
header_extra_index += 1;
|
|
break :blk multi_cases_len;
|
|
} else 0;
|
|
|
|
const tag_capture_inst: Zir.Inst.Index = if (extra.data.bits.any_has_tag_capture) blk: {
|
|
const tag_capture_inst: Zir.Inst.Index = @enumFromInt(sema.code.extra[header_extra_index]);
|
|
header_extra_index += 1;
|
|
// SwitchProngAnalysis wants inst_map to have space for the tag capture.
|
|
// Note that the normal capture is referred to via the switch block
|
|
// index, which there is already necessarily space for.
|
|
try sema.inst_map.ensureSpaceForInstructions(gpa, &.{tag_capture_inst});
|
|
break :blk tag_capture_inst;
|
|
} else undefined;
|
|
|
|
var case_vals = try std.ArrayListUnmanaged(Air.Inst.Ref).initCapacity(gpa, scalar_cases_len + 2 * multi_cases_len);
|
|
defer case_vals.deinit(gpa);
|
|
|
|
var single_absorbed_item: Zir.Inst.Ref = .none;
|
|
var absorbed_items: []const Zir.Inst.Ref = &.{};
|
|
var absorbed_ranges: []const Zir.Inst.Ref = &.{};
|
|
|
|
const special_prongs = extra.data.bits.special_prongs;
|
|
const has_else = special_prongs.hasElse();
|
|
const has_under = special_prongs.hasUnder();
|
|
const special_else: SpecialProng = if (has_else) blk: {
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[header_extra_index]);
|
|
const extra_body_start = header_extra_index + 1;
|
|
break :blk .{
|
|
.body = sema.code.bodySlice(extra_body_start, info.body_len),
|
|
.end = extra_body_start + info.body_len,
|
|
.capture = info.capture,
|
|
.is_inline = info.is_inline,
|
|
.has_tag_capture = info.has_tag_capture,
|
|
};
|
|
} else .{
|
|
.body = &.{},
|
|
.end = header_extra_index,
|
|
.capture = .none,
|
|
.is_inline = false,
|
|
.has_tag_capture = false,
|
|
};
|
|
const special_under: SpecialProng = if (has_under) blk: {
|
|
var extra_index = special_else.end;
|
|
var trailing_items_len: usize = 0;
|
|
if (special_prongs.hasOneAdditionalItem()) {
|
|
single_absorbed_item = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
absorbed_items = @ptrCast(&single_absorbed_item);
|
|
} else if (special_prongs.hasManyAdditionalItems()) {
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
absorbed_items = sema.code.refSlice(extra_index + 1, items_len);
|
|
absorbed_ranges = sema.code.refSlice(extra_index + 1 + items_len, ranges_len * 2);
|
|
trailing_items_len = items_len + ranges_len * 2;
|
|
}
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1 + trailing_items_len;
|
|
break :blk .{
|
|
.body = sema.code.bodySlice(extra_index, info.body_len),
|
|
.end = extra_index + info.body_len,
|
|
.capture = info.capture,
|
|
.is_inline = info.is_inline,
|
|
.has_tag_capture = info.has_tag_capture,
|
|
};
|
|
} else .{
|
|
.body = &.{},
|
|
.end = special_else.end,
|
|
.capture = .none,
|
|
.is_inline = false,
|
|
.has_tag_capture = false,
|
|
};
|
|
const special_end = special_under.end;
|
|
|
|
// Duplicate checking variables later also used for `inline else`.
|
|
var seen_enum_fields: []?LazySrcLoc = &.{};
|
|
var seen_errors = SwitchErrorSet.init(gpa);
|
|
var range_set = RangeSet.init(gpa, zcu);
|
|
var true_count: u8 = 0;
|
|
var false_count: u8 = 0;
|
|
|
|
defer {
|
|
range_set.deinit();
|
|
gpa.free(seen_enum_fields);
|
|
seen_errors.deinit();
|
|
}
|
|
|
|
var empty_enum = false;
|
|
|
|
var else_error_ty: ?Type = null;
|
|
|
|
// Validate usage of '_' prongs.
|
|
if (has_under and !raw_operand_ty.isNonexhaustiveEnum(zcu)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
src,
|
|
"'_' prong only allowed when switching on non-exhaustive enums",
|
|
.{},
|
|
);
|
|
errdefer msg.destroy(gpa);
|
|
try sema.errNote(
|
|
under_prong_src,
|
|
msg,
|
|
"'_' prong here",
|
|
.{},
|
|
);
|
|
try sema.errNote(
|
|
src,
|
|
msg,
|
|
"consider using 'else'",
|
|
.{},
|
|
);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
// Validate for duplicate items, missing else prong, and invalid range.
|
|
switch (cond_ty.zigTypeTag(zcu)) {
|
|
.@"union" => unreachable, // handled in `switchCond`
|
|
.@"enum" => {
|
|
seen_enum_fields = try gpa.alloc(?LazySrcLoc, cond_ty.enumFieldCount(zcu));
|
|
empty_enum = seen_enum_fields.len == 0 and !cond_ty.isNonexhaustiveEnum(zcu);
|
|
@memset(seen_enum_fields, null);
|
|
// `range_set` is used for non-exhaustive enum values that do not correspond to any tags.
|
|
|
|
for (absorbed_items, 0..) |item_ref, item_i| {
|
|
_ = try sema.validateSwitchItemEnum(
|
|
block,
|
|
seen_enum_fields,
|
|
&range_set,
|
|
item_ref,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .special_under,
|
|
.item_idx = .{ .kind = .single, .index = @intCast(item_i) },
|
|
} }),
|
|
);
|
|
}
|
|
try sema.validateSwitchNoRange(block, @intCast(absorbed_ranges.len), cond_ty, src_node_offset);
|
|
|
|
var extra_index: usize = special_end;
|
|
{
|
|
var scalar_i: u32 = 0;
|
|
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
|
|
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1 + info.body_len;
|
|
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemEnum(
|
|
block,
|
|
seen_enum_fields,
|
|
&range_set,
|
|
item_ref,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .scalar, .index = @intCast(scalar_i) },
|
|
.item_idx = .{ .kind = .single, .index = 0 },
|
|
} }),
|
|
));
|
|
}
|
|
}
|
|
{
|
|
var multi_i: u32 = 0;
|
|
while (multi_i < multi_cases_len) : (multi_i += 1) {
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const items = sema.code.refSlice(extra_index, items_len);
|
|
extra_index += items_len + info.body_len;
|
|
|
|
try case_vals.ensureUnusedCapacity(gpa, items.len);
|
|
for (items, 0..) |item_ref, item_i| {
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemEnum(
|
|
block,
|
|
seen_enum_fields,
|
|
&range_set,
|
|
item_ref,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .single, .index = @intCast(item_i) },
|
|
} }),
|
|
));
|
|
}
|
|
|
|
try sema.validateSwitchNoRange(block, ranges_len, cond_ty, src_node_offset);
|
|
}
|
|
}
|
|
const all_tags_handled = for (seen_enum_fields) |seen_src| {
|
|
if (seen_src == null) break false;
|
|
} else true;
|
|
|
|
if (has_else) {
|
|
if (all_tags_handled) {
|
|
if (cond_ty.isNonexhaustiveEnum(zcu)) {
|
|
if (has_under) return sema.fail(
|
|
block,
|
|
else_prong_src,
|
|
"unreachable else prong; all explicit cases already handled",
|
|
.{},
|
|
);
|
|
} else return sema.fail(
|
|
block,
|
|
else_prong_src,
|
|
"unreachable else prong; all cases already handled",
|
|
.{},
|
|
);
|
|
}
|
|
} else if (!all_tags_handled) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
src,
|
|
"switch must handle all possibilities",
|
|
.{},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
for (seen_enum_fields, 0..) |seen_src, i| {
|
|
if (seen_src != null) continue;
|
|
|
|
const field_name = cond_ty.enumFieldName(i, zcu);
|
|
try sema.addFieldErrNote(
|
|
cond_ty,
|
|
i,
|
|
msg,
|
|
"unhandled enumeration value: '{f}'",
|
|
.{field_name.fmt(ip)},
|
|
);
|
|
}
|
|
try sema.errNote(
|
|
cond_ty.srcLoc(zcu),
|
|
msg,
|
|
"enum '{f}' declared here",
|
|
.{cond_ty.fmt(pt)},
|
|
);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
} else if (special_prongs == .none and cond_ty.isNonexhaustiveEnum(zcu) and !union_originally) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"switch on non-exhaustive enum must include 'else' or '_' prong or both",
|
|
.{},
|
|
);
|
|
}
|
|
},
|
|
.error_set => else_error_ty = try validateErrSetSwitch(
|
|
sema,
|
|
block,
|
|
&seen_errors,
|
|
&case_vals,
|
|
cond_ty,
|
|
inst_data,
|
|
scalar_cases_len,
|
|
multi_cases_len,
|
|
.{ .body = special_else.body, .end = special_else.end, .src = else_prong_src },
|
|
has_else,
|
|
),
|
|
.int, .comptime_int => {
|
|
var extra_index: usize = special_end;
|
|
{
|
|
var scalar_i: u32 = 0;
|
|
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
|
|
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1 + info.body_len;
|
|
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemInt(
|
|
block,
|
|
&range_set,
|
|
item_ref,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .scalar, .index = @intCast(scalar_i) },
|
|
.item_idx = .{ .kind = .single, .index = 0 },
|
|
} }),
|
|
));
|
|
}
|
|
}
|
|
{
|
|
var multi_i: u32 = 0;
|
|
while (multi_i < multi_cases_len) : (multi_i += 1) {
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const items = sema.code.refSlice(extra_index, items_len);
|
|
extra_index += items_len;
|
|
|
|
try case_vals.ensureUnusedCapacity(gpa, items.len);
|
|
for (items, 0..) |item_ref, item_i| {
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemInt(
|
|
block,
|
|
&range_set,
|
|
item_ref,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .single, .index = @intCast(item_i) },
|
|
} }),
|
|
));
|
|
}
|
|
|
|
try case_vals.ensureUnusedCapacity(gpa, 2 * ranges_len);
|
|
var range_i: u32 = 0;
|
|
while (range_i < ranges_len) : (range_i += 1) {
|
|
const item_first: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const item_last: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
|
|
const vals = try sema.validateSwitchRange(
|
|
block,
|
|
&range_set,
|
|
item_first,
|
|
item_last,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .range, .index = @intCast(range_i) },
|
|
} }),
|
|
);
|
|
case_vals.appendAssumeCapacity(vals[0]);
|
|
case_vals.appendAssumeCapacity(vals[1]);
|
|
}
|
|
|
|
extra_index += info.body_len;
|
|
}
|
|
}
|
|
|
|
check_range: {
|
|
if (cond_ty.zigTypeTag(zcu) == .int) {
|
|
const min_int = try cond_ty.minInt(pt, cond_ty);
|
|
const max_int = try cond_ty.maxInt(pt, cond_ty);
|
|
if (try range_set.spans(min_int.toIntern(), max_int.toIntern())) {
|
|
if (has_else) {
|
|
return sema.fail(
|
|
block,
|
|
else_prong_src,
|
|
"unreachable else prong; all cases already handled",
|
|
.{},
|
|
);
|
|
}
|
|
break :check_range;
|
|
}
|
|
}
|
|
if (special_prongs == .none) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"switch must handle all possibilities",
|
|
.{},
|
|
);
|
|
}
|
|
}
|
|
},
|
|
.bool => {
|
|
var extra_index: usize = special_end;
|
|
{
|
|
var scalar_i: u32 = 0;
|
|
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
|
|
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1 + info.body_len;
|
|
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemBool(
|
|
block,
|
|
&true_count,
|
|
&false_count,
|
|
item_ref,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .scalar, .index = @intCast(scalar_i) },
|
|
.item_idx = .{ .kind = .single, .index = 0 },
|
|
} }),
|
|
));
|
|
}
|
|
}
|
|
{
|
|
var multi_i: u32 = 0;
|
|
while (multi_i < multi_cases_len) : (multi_i += 1) {
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const items = sema.code.refSlice(extra_index, items_len);
|
|
extra_index += items_len + info.body_len;
|
|
|
|
try case_vals.ensureUnusedCapacity(gpa, items.len);
|
|
for (items, 0..) |item_ref, item_i| {
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemBool(
|
|
block,
|
|
&true_count,
|
|
&false_count,
|
|
item_ref,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .single, .index = @intCast(item_i) },
|
|
} }),
|
|
));
|
|
}
|
|
|
|
try sema.validateSwitchNoRange(block, ranges_len, cond_ty, src_node_offset);
|
|
}
|
|
}
|
|
if (has_else) {
|
|
if (true_count + false_count == 2) {
|
|
return sema.fail(
|
|
block,
|
|
else_prong_src,
|
|
"unreachable else prong; all cases already handled",
|
|
.{},
|
|
);
|
|
}
|
|
} else {
|
|
if (true_count + false_count < 2) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"switch must handle all possibilities",
|
|
.{},
|
|
);
|
|
}
|
|
}
|
|
},
|
|
.enum_literal, .void, .@"fn", .pointer, .type => {
|
|
if (!has_else) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"else prong required when switching on type '{f}'",
|
|
.{cond_ty.fmt(pt)},
|
|
);
|
|
}
|
|
|
|
var seen_values = ValueSrcMap{};
|
|
defer seen_values.deinit(gpa);
|
|
|
|
var extra_index: usize = special_end;
|
|
{
|
|
var scalar_i: u32 = 0;
|
|
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
|
|
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
extra_index += info.body_len;
|
|
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemSparse(
|
|
block,
|
|
&seen_values,
|
|
item_ref,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .scalar, .index = @intCast(scalar_i) },
|
|
.item_idx = .{ .kind = .single, .index = 0 },
|
|
} }),
|
|
));
|
|
}
|
|
}
|
|
{
|
|
var multi_i: u32 = 0;
|
|
while (multi_i < multi_cases_len) : (multi_i += 1) {
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const items = sema.code.refSlice(extra_index, items_len);
|
|
extra_index += items_len + info.body_len;
|
|
|
|
try case_vals.ensureUnusedCapacity(gpa, items.len);
|
|
for (items, 0..) |item_ref, item_i| {
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemSparse(
|
|
block,
|
|
&seen_values,
|
|
item_ref,
|
|
cond_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .single, .index = @intCast(item_i) },
|
|
} }),
|
|
));
|
|
}
|
|
|
|
try sema.validateSwitchNoRange(block, ranges_len, cond_ty, src_node_offset);
|
|
}
|
|
}
|
|
},
|
|
|
|
.error_union,
|
|
.noreturn,
|
|
.array,
|
|
.@"struct",
|
|
.undefined,
|
|
.null,
|
|
.optional,
|
|
.@"opaque",
|
|
.vector,
|
|
.frame,
|
|
.@"anyframe",
|
|
.comptime_float,
|
|
.float,
|
|
=> return sema.fail(block, operand_src, "invalid switch operand type '{f}'", .{
|
|
raw_operand_ty.fmt(pt),
|
|
}),
|
|
}
|
|
|
|
var special_members_only: ?SpecialProng = null;
|
|
var special_members_only_src: LazySrcLoc = undefined;
|
|
const special_generic, const special_generic_src = if (has_under) b: {
|
|
if (has_else) {
|
|
special_members_only = special_else;
|
|
special_members_only_src = else_prong_src;
|
|
}
|
|
break :b .{ special_under, under_prong_src };
|
|
} else .{ special_else, else_prong_src };
|
|
|
|
const spa: SwitchProngAnalysis = .{
|
|
.sema = sema,
|
|
.parent_block = block,
|
|
.operand = operand,
|
|
.else_error_ty = else_error_ty,
|
|
.switch_block_inst = inst,
|
|
.tag_capture_inst = tag_capture_inst,
|
|
};
|
|
|
|
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .block,
|
|
.data = undefined,
|
|
});
|
|
var label: Block.Label = .{
|
|
.zir_block = inst,
|
|
.merges = .{
|
|
.src_locs = .{},
|
|
.results = .{},
|
|
.br_list = .{},
|
|
.block_inst = block_inst,
|
|
},
|
|
};
|
|
|
|
var child_block: Block = .{
|
|
.parent = block,
|
|
.sema = sema,
|
|
.namespace = block.namespace,
|
|
.instructions = .{},
|
|
.label = &label,
|
|
.inlining = block.inlining,
|
|
.comptime_reason = block.comptime_reason,
|
|
.is_typeof = block.is_typeof,
|
|
.c_import_buf = block.c_import_buf,
|
|
.runtime_cond = block.runtime_cond,
|
|
.runtime_loop = block.runtime_loop,
|
|
.runtime_index = block.runtime_index,
|
|
.want_safety = block.want_safety,
|
|
.error_return_trace_index = block.error_return_trace_index,
|
|
.src_base_inst = block.src_base_inst,
|
|
.type_name_ctx = block.type_name_ctx,
|
|
};
|
|
const merges = &child_block.label.?.merges;
|
|
defer child_block.instructions.deinit(gpa);
|
|
defer merges.deinit(gpa);
|
|
|
|
if (scalar_cases_len + multi_cases_len == 0 and
|
|
special_members_only == null and
|
|
!special_generic.is_inline)
|
|
{
|
|
if (empty_enum) {
|
|
return .void_value;
|
|
}
|
|
if (special_prongs == .none) {
|
|
return sema.fail(block, src, "switch must handle all possibilities", .{});
|
|
}
|
|
const init_cond = switch (operand) {
|
|
.simple => |s| s.cond,
|
|
.loop => |l| l.init_cond,
|
|
};
|
|
if (zcu.backendSupportsFeature(.is_named_enum_value) and block.wantSafety() and
|
|
raw_operand_ty.zigTypeTag(zcu) == .@"enum" and !raw_operand_ty.isNonexhaustiveEnum(zcu))
|
|
{
|
|
try sema.zirDbgStmt(block, cond_dbg_node_index);
|
|
const ok = try block.addUnOp(.is_named_enum_value, init_cond);
|
|
try sema.addSafetyCheck(block, src, ok, .corrupt_switch);
|
|
}
|
|
if (err_set and try sema.maybeErrorUnwrap(block, special_generic.body, init_cond, operand_src, false)) {
|
|
return .unreachable_value;
|
|
}
|
|
}
|
|
|
|
switch (operand) {
|
|
.loop => {}, // always runtime; evaluation in comptime scope uses `simple`
|
|
.simple => |s| {
|
|
if (try sema.resolveDefinedValue(&child_block, src, s.cond)) |cond_val| {
|
|
return resolveSwitchComptimeLoop(
|
|
sema,
|
|
spa,
|
|
&child_block,
|
|
if (operand_is_ref)
|
|
sema.typeOf(s.by_ref)
|
|
else
|
|
raw_operand_ty,
|
|
cond_ty,
|
|
cond_val,
|
|
src_node_offset,
|
|
special_members_only,
|
|
special_generic,
|
|
has_under,
|
|
case_vals,
|
|
scalar_cases_len,
|
|
multi_cases_len,
|
|
err_set,
|
|
empty_enum,
|
|
operand_is_ref,
|
|
);
|
|
}
|
|
|
|
if (scalar_cases_len + multi_cases_len == 0 and
|
|
special_members_only == null and
|
|
!special_generic.is_inline and
|
|
!extra.data.bits.has_continue)
|
|
{
|
|
return spa.resolveProngComptime(
|
|
&child_block,
|
|
.special,
|
|
special_generic.body,
|
|
special_generic.capture,
|
|
block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = if (has_under) .special_under else .special_else,
|
|
} }),
|
|
undefined, // case_vals may be undefined for special prongs
|
|
.none,
|
|
false,
|
|
merges,
|
|
);
|
|
}
|
|
},
|
|
}
|
|
|
|
if (child_block.isComptime()) {
|
|
_ = try sema.resolveConstDefinedValue(&child_block, operand_src, operand.simple.cond, null);
|
|
unreachable;
|
|
}
|
|
|
|
var extra_case_vals: struct {
|
|
items: std.ArrayListUnmanaged(Air.Inst.Ref),
|
|
ranges: std.ArrayListUnmanaged([2]Air.Inst.Ref),
|
|
} = .{ .items = .empty, .ranges = .empty };
|
|
defer {
|
|
extra_case_vals.items.deinit(gpa);
|
|
extra_case_vals.ranges.deinit(gpa);
|
|
}
|
|
|
|
// Runtime switch, if we have a special_members_only prong we need to unroll
|
|
// it to a prong with explicit items.
|
|
// Although this is potentially the same as `inline else` it does not count
|
|
// towards the backward branch quota because it's an implementation detail.
|
|
if (special_members_only != null) gen: {
|
|
assert(cond_ty.isNonexhaustiveEnum(zcu));
|
|
|
|
var min_i: usize = math.maxInt(usize);
|
|
var max_i: usize = 0;
|
|
var seen_field_count: usize = 0;
|
|
for (seen_enum_fields, 0..) |seen, enum_i| {
|
|
if (seen != null) {
|
|
seen_field_count += 1;
|
|
} else {
|
|
min_i = @min(min_i, enum_i);
|
|
max_i = @max(max_i, enum_i);
|
|
}
|
|
}
|
|
if (min_i == max_i) {
|
|
seen_enum_fields[min_i] = special_members_only_src;
|
|
const item_val = try pt.enumValueFieldIndex(cond_ty, @intCast(min_i));
|
|
const item_ref = Air.internedToRef(item_val.toIntern());
|
|
try extra_case_vals.items.append(gpa, item_ref);
|
|
break :gen;
|
|
}
|
|
const missing_field_count = seen_enum_fields.len - seen_field_count;
|
|
|
|
extra_case_vals.items = try .initCapacity(gpa, missing_field_count / 2);
|
|
extra_case_vals.ranges = try .initCapacity(gpa, missing_field_count / 4);
|
|
const int_ty = cond_ty.intTagType(zcu);
|
|
|
|
var last_val = try pt.enumValueFieldIndex(cond_ty, @intCast(min_i));
|
|
var first_ref = Air.internedToRef(last_val.toIntern());
|
|
seen_enum_fields[min_i] = special_members_only_src;
|
|
for (seen_enum_fields[(min_i + 1)..(max_i + 1)], (min_i + 1)..) |seen, enum_i| {
|
|
if (seen != null) continue;
|
|
seen_enum_fields[enum_i] = special_members_only_src;
|
|
|
|
const item_val = try pt.enumValueFieldIndex(cond_ty, @intCast(enum_i));
|
|
const item_ref = Air.internedToRef(item_val.toIntern());
|
|
|
|
const is_next = is_next: {
|
|
const prev_int = ip.indexToKey(last_val.toIntern()).enum_tag.int;
|
|
|
|
const result = try arith.incrementDefinedInt(sema, int_ty, .fromInterned(prev_int));
|
|
if (result.overflow) break :is_next false;
|
|
|
|
const item_int = ip.indexToKey(item_val.toIntern()).enum_tag.int;
|
|
break :is_next try sema.valuesEqual(.fromInterned(item_int), result.val, int_ty);
|
|
};
|
|
|
|
if (is_next) {
|
|
last_val = item_val;
|
|
} else {
|
|
const last_ref = Air.internedToRef(last_val.toIntern());
|
|
if (first_ref == last_ref) {
|
|
try extra_case_vals.items.append(gpa, first_ref);
|
|
} else {
|
|
try extra_case_vals.ranges.append(gpa, .{ first_ref, last_ref });
|
|
}
|
|
first_ref = item_ref;
|
|
last_val = item_val;
|
|
}
|
|
}
|
|
const last_ref = Air.internedToRef(last_val.toIntern());
|
|
if (first_ref == last_ref) {
|
|
try extra_case_vals.items.append(gpa, first_ref);
|
|
} else {
|
|
try extra_case_vals.ranges.append(gpa, .{ first_ref, last_ref });
|
|
}
|
|
}
|
|
|
|
const air_switch_ref = try sema.analyzeSwitchRuntimeBlock(
|
|
spa,
|
|
&child_block,
|
|
src,
|
|
switch (operand) {
|
|
.simple => |s| s.cond,
|
|
.loop => |l| l.init_cond,
|
|
},
|
|
cond_ty,
|
|
operand_src,
|
|
case_vals,
|
|
special_generic,
|
|
scalar_cases_len,
|
|
multi_cases_len,
|
|
union_originally,
|
|
raw_operand_ty,
|
|
err_set,
|
|
src_node_offset,
|
|
special_generic_src,
|
|
has_under,
|
|
seen_enum_fields,
|
|
seen_errors,
|
|
range_set,
|
|
true_count,
|
|
false_count,
|
|
cond_dbg_node_index,
|
|
false,
|
|
special_members_only,
|
|
special_members_only_src,
|
|
extra_case_vals.items.items,
|
|
extra_case_vals.ranges.items,
|
|
);
|
|
|
|
for (merges.extra_insts.items, merges.extra_src_locs.items) |placeholder_inst, dispatch_src| {
|
|
var replacement_block = block.makeSubBlock();
|
|
defer replacement_block.instructions.deinit(gpa);
|
|
|
|
assert(sema.air_instructions.items(.tag)[@intFromEnum(placeholder_inst)] == .br);
|
|
const new_operand_maybe_ref = sema.air_instructions.items(.data)[@intFromEnum(placeholder_inst)].br.operand;
|
|
|
|
if (extra.data.bits.any_non_inline_capture) {
|
|
_ = try replacement_block.addBinOp(.store, operand.loop.operand_alloc, new_operand_maybe_ref);
|
|
}
|
|
|
|
const new_operand_val = if (operand_is_ref)
|
|
try sema.analyzeLoad(&replacement_block, dispatch_src, new_operand_maybe_ref, dispatch_src)
|
|
else
|
|
new_operand_maybe_ref;
|
|
|
|
const new_cond = try sema.switchCond(&replacement_block, dispatch_src, new_operand_val);
|
|
|
|
if (zcu.backendSupportsFeature(.is_named_enum_value) and block.wantSafety() and
|
|
cond_ty.zigTypeTag(zcu) == .@"enum" and !cond_ty.isNonexhaustiveEnum(zcu) and
|
|
!try sema.isComptimeKnown(new_cond))
|
|
{
|
|
const ok = try replacement_block.addUnOp(.is_named_enum_value, new_cond);
|
|
try sema.addSafetyCheck(&replacement_block, src, ok, .corrupt_switch);
|
|
}
|
|
|
|
_ = try replacement_block.addInst(.{
|
|
.tag = .switch_dispatch,
|
|
.data = .{ .br = .{
|
|
.block_inst = air_switch_ref.toIndex().?,
|
|
.operand = new_cond,
|
|
} },
|
|
});
|
|
|
|
if (replacement_block.instructions.items.len == 1) {
|
|
// Optimization: we don't need a block!
|
|
sema.air_instructions.set(
|
|
@intFromEnum(placeholder_inst),
|
|
sema.air_instructions.get(@intFromEnum(replacement_block.instructions.items[0])),
|
|
);
|
|
continue;
|
|
}
|
|
|
|
// Replace placeholder with a block.
|
|
// No `br` is needed as the block is a switch dispatch so necessarily `noreturn`.
|
|
try sema.air_extra.ensureUnusedCapacity(
|
|
gpa,
|
|
@typeInfo(Air.Block).@"struct".fields.len + replacement_block.instructions.items.len,
|
|
);
|
|
sema.air_instructions.set(@intFromEnum(placeholder_inst), .{
|
|
.tag = .block,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = .noreturn_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = @intCast(replacement_block.instructions.items.len),
|
|
}),
|
|
} },
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(replacement_block.instructions.items));
|
|
}
|
|
|
|
return sema.resolveAnalyzedBlock(block, src, &child_block, merges, false);
|
|
}
|
|
|
|
const SpecialProng = struct {
|
|
body: []const Zir.Inst.Index,
|
|
end: usize,
|
|
capture: Zir.Inst.SwitchBlock.ProngInfo.Capture,
|
|
is_inline: bool,
|
|
has_tag_capture: bool,
|
|
};
|
|
|
|
fn analyzeSwitchRuntimeBlock(
|
|
sema: *Sema,
|
|
spa: SwitchProngAnalysis,
|
|
child_block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
operand_ty: Type,
|
|
operand_src: LazySrcLoc,
|
|
case_vals: std.ArrayListUnmanaged(Air.Inst.Ref),
|
|
else_prong: SpecialProng,
|
|
scalar_cases_len: usize,
|
|
multi_cases_len: usize,
|
|
union_originally: bool,
|
|
maybe_union_ty: Type,
|
|
err_set: bool,
|
|
switch_node_offset: std.zig.Ast.Node.Offset,
|
|
else_prong_src: LazySrcLoc,
|
|
else_prong_is_underscore: bool,
|
|
seen_enum_fields: []?LazySrcLoc,
|
|
seen_errors: SwitchErrorSet,
|
|
range_set: RangeSet,
|
|
true_count: u8,
|
|
false_count: u8,
|
|
cond_dbg_node_index: Zir.Inst.Index,
|
|
allow_err_code_unwrap: bool,
|
|
extra_prong: ?SpecialProng,
|
|
/// May be `undefined` if `extra_prong` is `null`
|
|
extra_prong_src: LazySrcLoc,
|
|
extra_prong_items: []const Air.Inst.Ref,
|
|
extra_prong_ranges: []const [2]Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const block = child_block.parent.?;
|
|
|
|
const estimated_cases_extra = (scalar_cases_len + multi_cases_len) *
|
|
@typeInfo(Air.SwitchBr.Case).@"struct".fields.len + 2;
|
|
var cases_extra = try std.ArrayListUnmanaged(u32).initCapacity(gpa, estimated_cases_extra);
|
|
defer cases_extra.deinit(gpa);
|
|
|
|
var branch_hints = try std.ArrayListUnmanaged(std.builtin.BranchHint).initCapacity(gpa, scalar_cases_len);
|
|
defer branch_hints.deinit(gpa);
|
|
|
|
var case_block = child_block.makeSubBlock();
|
|
case_block.runtime_loop = null;
|
|
case_block.runtime_cond = operand_src;
|
|
case_block.runtime_index.increment();
|
|
case_block.need_debug_scope = null; // this body is emitted regardless
|
|
defer case_block.instructions.deinit(gpa);
|
|
|
|
var extra_index: usize = else_prong.end;
|
|
|
|
var scalar_i: usize = 0;
|
|
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const body = sema.code.bodySlice(extra_index, info.body_len);
|
|
extra_index += info.body_len;
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
const item = case_vals.items[scalar_i];
|
|
// `item` is already guaranteed to be constant known.
|
|
|
|
const analyze_body = if (union_originally) blk: {
|
|
const unresolved_item_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, item, undefined) catch unreachable;
|
|
const item_val = sema.resolveLazyValue(unresolved_item_val) catch unreachable;
|
|
const field_ty = maybe_union_ty.unionFieldType(item_val, zcu).?;
|
|
break :blk field_ty.zigTypeTag(zcu) != .noreturn;
|
|
} else true;
|
|
|
|
const prong_hint: std.builtin.BranchHint = if (err_set and
|
|
try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src, allow_err_code_unwrap))
|
|
h: {
|
|
// nothing to do here. weight against error branch
|
|
break :h .unlikely;
|
|
} else if (analyze_body) h: {
|
|
break :h try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.normal,
|
|
body,
|
|
info.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .scalar, .index = @intCast(scalar_i) },
|
|
} }),
|
|
&.{item},
|
|
if (info.is_inline) item else .none,
|
|
info.has_tag_capture,
|
|
);
|
|
} else h: {
|
|
_ = try case_block.addNoOp(.unreach);
|
|
break :h .none;
|
|
};
|
|
|
|
try branch_hints.append(gpa, prong_hint);
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(item));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
|
|
var cases_len = scalar_cases_len;
|
|
var case_val_idx: usize = scalar_cases_len;
|
|
const multi_cases_len_with_extra_prong = multi_cases_len + @intFromBool(extra_prong != null);
|
|
var multi_i: u32 = 0;
|
|
while (multi_i < multi_cases_len_with_extra_prong) : (multi_i += 1) {
|
|
const is_extra_prong = multi_i == multi_cases_len;
|
|
var items: []const Air.Inst.Ref = undefined;
|
|
var info: Zir.Inst.SwitchBlock.ProngInfo = undefined;
|
|
var ranges: []const [2]Air.Inst.Ref = undefined;
|
|
var body: []const Zir.Inst.Index = undefined;
|
|
if (is_extra_prong) {
|
|
const prong = extra_prong.?;
|
|
items = extra_prong_items;
|
|
ranges = extra_prong_ranges;
|
|
body = prong.body;
|
|
info = .{
|
|
.body_len = undefined,
|
|
.capture = prong.capture,
|
|
.is_inline = prong.is_inline,
|
|
.has_tag_capture = prong.has_tag_capture,
|
|
};
|
|
} else {
|
|
@branchHint(.likely);
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
info = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1 + items_len + ranges_len * 2;
|
|
|
|
items = case_vals.items[case_val_idx..][0..items_len];
|
|
case_val_idx += items_len;
|
|
ranges = @ptrCast(case_vals.items[case_val_idx..][0 .. ranges_len * 2]);
|
|
case_val_idx += ranges_len * 2;
|
|
|
|
body = sema.code.bodySlice(extra_index, info.body_len);
|
|
extra_index += info.body_len;
|
|
}
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
// Generate all possible cases as scalar prongs.
|
|
if (info.is_inline) {
|
|
var emit_bb = false;
|
|
|
|
for (ranges, 0..) |range_items, range_i| {
|
|
var item = sema.resolveConstDefinedValue(block, .unneeded, range_items[0], undefined) catch unreachable;
|
|
const item_last = sema.resolveConstDefinedValue(block, .unneeded, range_items[1], undefined) catch unreachable;
|
|
|
|
while (item.compareScalar(.lte, item_last, operand_ty, zcu)) : ({
|
|
// Previous validation has resolved any possible lazy values.
|
|
const int_val: Value, const int_ty: Type = switch (operand_ty.zigTypeTag(zcu)) {
|
|
.int => .{ item, operand_ty },
|
|
.@"enum" => b: {
|
|
const int_val = Value.fromInterned(ip.indexToKey(item.toIntern()).enum_tag.int);
|
|
break :b .{ int_val, int_val.typeOf(zcu) };
|
|
},
|
|
else => unreachable,
|
|
};
|
|
const result = try arith.incrementDefinedInt(sema, int_ty, int_val);
|
|
assert(!result.overflow);
|
|
item = switch (operand_ty.zigTypeTag(zcu)) {
|
|
.int => result.val,
|
|
.@"enum" => .fromInterned(try pt.intern(.{ .enum_tag = .{
|
|
.ty = operand_ty.toIntern(),
|
|
.int = result.val.toIntern(),
|
|
} })),
|
|
else => unreachable,
|
|
};
|
|
}) {
|
|
cases_len += 1;
|
|
|
|
const item_ref = Air.internedToRef(item.toIntern());
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
if (emit_bb) {
|
|
const bb_src = if (is_extra_prong) extra_prong_src else block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .range, .index = @intCast(range_i) },
|
|
} });
|
|
try sema.emitBackwardBranch(block, bb_src);
|
|
}
|
|
emit_bb = true;
|
|
|
|
const prong_hint = try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.normal,
|
|
body,
|
|
info.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
} }),
|
|
undefined, // case_vals may be undefined for ranges
|
|
item_ref,
|
|
info.has_tag_capture,
|
|
);
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
|
|
if (item.compareScalar(.eq, item_last, operand_ty, zcu)) break;
|
|
}
|
|
}
|
|
|
|
for (items, 0..) |item, item_i| {
|
|
cases_len += 1;
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
const analyze_body = if (union_originally) blk: {
|
|
const item_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, item, undefined) catch unreachable;
|
|
const field_ty = maybe_union_ty.unionFieldType(item_val, zcu).?;
|
|
break :blk field_ty.zigTypeTag(zcu) != .noreturn;
|
|
} else true;
|
|
|
|
if (emit_bb) {
|
|
const bb_src = if (is_extra_prong) extra_prong_src else block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .single, .index = @intCast(item_i) },
|
|
} });
|
|
try sema.emitBackwardBranch(block, bb_src);
|
|
}
|
|
emit_bb = true;
|
|
|
|
const prong_hint: std.builtin.BranchHint = if (analyze_body) h: {
|
|
break :h try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.normal,
|
|
body,
|
|
info.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
} }),
|
|
&.{item},
|
|
item,
|
|
info.has_tag_capture,
|
|
);
|
|
} else h: {
|
|
_ = try case_block.addNoOp(.unreach);
|
|
break :h .none;
|
|
};
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(item));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
cases_len += 1;
|
|
|
|
const analyze_body = if (union_originally)
|
|
for (items) |item| {
|
|
const item_val = sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, item, undefined) catch unreachable;
|
|
const field_ty = maybe_union_ty.unionFieldType(item_val, zcu).?;
|
|
if (field_ty.zigTypeTag(zcu) != .noreturn) break true;
|
|
} else false
|
|
else
|
|
true;
|
|
|
|
const prong_hint: std.builtin.BranchHint = if (err_set and
|
|
try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src, allow_err_code_unwrap))
|
|
h: {
|
|
// nothing to do here. weight against error branch
|
|
break :h .unlikely;
|
|
} else if (analyze_body) h: {
|
|
break :h try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.normal,
|
|
body,
|
|
info.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
} }),
|
|
items,
|
|
.none,
|
|
false,
|
|
);
|
|
} else h: {
|
|
_ = try case_block.addNoOp(.unreach);
|
|
break :h .none;
|
|
};
|
|
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
items.len + ranges.len * 2 +
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = @intCast(items.len),
|
|
.ranges_len = @intCast(ranges.len),
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
|
|
for (items) |item| {
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(item));
|
|
}
|
|
for (ranges) |range| {
|
|
cases_extra.appendSliceAssumeCapacity(&.{
|
|
@intFromEnum(range[0]),
|
|
@intFromEnum(range[1]),
|
|
});
|
|
}
|
|
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
|
|
const else_body: []const Air.Inst.Index = if (else_prong.body.len != 0 or case_block.wantSafety()) else_body: {
|
|
var emit_bb = false;
|
|
// If this is true we must have a 'true' else prong and not an underscore because
|
|
// underscore prongs can never be inlined. We've already checked for this.
|
|
if (else_prong.is_inline) switch (operand_ty.zigTypeTag(zcu)) {
|
|
.@"enum" => {
|
|
if (operand_ty.isNonexhaustiveEnum(zcu) and !union_originally) {
|
|
return sema.fail(block, else_prong_src, "cannot enumerate values of type '{f}' for 'inline else'", .{
|
|
operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
for (seen_enum_fields, 0..) |f, i| {
|
|
if (f != null) continue;
|
|
cases_len += 1;
|
|
|
|
const item_val = try pt.enumValueFieldIndex(operand_ty, @intCast(i));
|
|
const item_ref = Air.internedToRef(item_val.toIntern());
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
const analyze_body = if (union_originally) blk: {
|
|
const field_ty = maybe_union_ty.unionFieldType(item_val, zcu).?;
|
|
break :blk field_ty.zigTypeTag(zcu) != .noreturn;
|
|
} else true;
|
|
|
|
if (emit_bb) try sema.emitBackwardBranch(block, else_prong_src);
|
|
emit_bb = true;
|
|
|
|
const prong_hint: std.builtin.BranchHint = if (analyze_body) h: {
|
|
break :h try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.special,
|
|
else_prong.body,
|
|
else_prong.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .special_else,
|
|
} }),
|
|
&.{item_ref},
|
|
item_ref,
|
|
else_prong.has_tag_capture,
|
|
);
|
|
} else h: {
|
|
_ = try case_block.addNoOp(.unreach);
|
|
break :h .none;
|
|
};
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
},
|
|
.error_set => {
|
|
if (operand_ty.isAnyError(zcu)) {
|
|
return sema.fail(block, else_prong_src, "cannot enumerate values of type '{f}' for 'inline else'", .{
|
|
operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
const error_names = operand_ty.errorSetNames(zcu);
|
|
for (0..error_names.len) |name_index| {
|
|
const error_name = error_names.get(ip)[name_index];
|
|
if (seen_errors.contains(error_name)) continue;
|
|
cases_len += 1;
|
|
|
|
const item_val = try pt.intern(.{ .err = .{
|
|
.ty = operand_ty.toIntern(),
|
|
.name = error_name,
|
|
} });
|
|
const item_ref = Air.internedToRef(item_val);
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
if (emit_bb) try sema.emitBackwardBranch(block, else_prong_src);
|
|
emit_bb = true;
|
|
|
|
const prong_hint = try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.special,
|
|
else_prong.body,
|
|
else_prong.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .special_else,
|
|
} }),
|
|
&.{item_ref},
|
|
item_ref,
|
|
else_prong.has_tag_capture,
|
|
);
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
},
|
|
.int => {
|
|
var it = try RangeSetUnhandledIterator.init(sema, operand_ty, range_set);
|
|
while (try it.next()) |cur| {
|
|
cases_len += 1;
|
|
|
|
const item_ref = Air.internedToRef(cur);
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
if (emit_bb) try sema.emitBackwardBranch(block, else_prong_src);
|
|
emit_bb = true;
|
|
|
|
const prong_hint = try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.special,
|
|
else_prong.body,
|
|
else_prong.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .special_else,
|
|
} }),
|
|
&.{item_ref},
|
|
item_ref,
|
|
else_prong.has_tag_capture,
|
|
);
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(item_ref));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
},
|
|
.bool => {
|
|
if (true_count == 0) {
|
|
cases_len += 1;
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
if (emit_bb) try sema.emitBackwardBranch(block, else_prong_src);
|
|
emit_bb = true;
|
|
|
|
const prong_hint = try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.special,
|
|
else_prong.body,
|
|
else_prong.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .special_else,
|
|
} }),
|
|
&.{.bool_true},
|
|
.bool_true,
|
|
else_prong.has_tag_capture,
|
|
);
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(Air.Inst.Ref.bool_true));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
if (false_count == 0) {
|
|
cases_len += 1;
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
if (emit_bb) try sema.emitBackwardBranch(block, else_prong_src);
|
|
emit_bb = true;
|
|
|
|
const prong_hint = try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.special,
|
|
else_prong.body,
|
|
else_prong.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .special_else,
|
|
} }),
|
|
&.{.bool_false},
|
|
.bool_false,
|
|
else_prong.has_tag_capture,
|
|
);
|
|
try branch_hints.append(gpa, prong_hint);
|
|
|
|
try cases_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr.Case).@"struct".fields.len +
|
|
1 + // `item`, no ranges
|
|
case_block.instructions.items.len);
|
|
cases_extra.appendSliceAssumeCapacity(&payloadToExtraItems(Air.SwitchBr.Case{
|
|
.items_len = 1,
|
|
.ranges_len = 0,
|
|
.body_len = @intCast(case_block.instructions.items.len),
|
|
}));
|
|
cases_extra.appendAssumeCapacity(@intFromEnum(Air.Inst.Ref.bool_false));
|
|
cases_extra.appendSliceAssumeCapacity(@ptrCast(case_block.instructions.items));
|
|
}
|
|
},
|
|
else => return sema.fail(block, else_prong_src, "cannot enumerate values of type '{f}' for 'inline else'", .{
|
|
operand_ty.fmt(pt),
|
|
}),
|
|
};
|
|
|
|
case_block.instructions.shrinkRetainingCapacity(0);
|
|
case_block.error_return_trace_index = child_block.error_return_trace_index;
|
|
|
|
if (zcu.backendSupportsFeature(.is_named_enum_value) and
|
|
else_prong.body.len != 0 and block.wantSafety() and
|
|
operand_ty.zigTypeTag(zcu) == .@"enum" and
|
|
(!operand_ty.isNonexhaustiveEnum(zcu) or union_originally))
|
|
{
|
|
try sema.zirDbgStmt(&case_block, cond_dbg_node_index);
|
|
const ok = try case_block.addUnOp(.is_named_enum_value, operand);
|
|
try sema.addSafetyCheck(&case_block, src, ok, .corrupt_switch);
|
|
}
|
|
|
|
const else_src_idx: LazySrcLoc.Offset.SwitchCaseIndex = if (else_prong_is_underscore)
|
|
.special_under
|
|
else
|
|
.special_else;
|
|
|
|
const analyze_body = if (union_originally and !else_prong.is_inline)
|
|
for (seen_enum_fields, 0..) |seen_field, index| {
|
|
if (seen_field != null) continue;
|
|
const union_obj = zcu.typeToUnion(maybe_union_ty).?;
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[index]);
|
|
if (field_ty.zigTypeTag(zcu) != .noreturn) break true;
|
|
} else false
|
|
else
|
|
true;
|
|
const else_hint: std.builtin.BranchHint = if (else_prong.body.len != 0 and err_set and
|
|
try sema.maybeErrorUnwrap(&case_block, else_prong.body, operand, operand_src, allow_err_code_unwrap))
|
|
h: {
|
|
// nothing to do here. weight against error branch
|
|
break :h .unlikely;
|
|
} else if (else_prong.body.len != 0 and analyze_body and !else_prong.is_inline) h: {
|
|
break :h try spa.analyzeProngRuntime(
|
|
&case_block,
|
|
.special,
|
|
else_prong.body,
|
|
else_prong.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = else_src_idx,
|
|
} }),
|
|
undefined, // case_vals may be undefined for special prongs
|
|
.none,
|
|
false,
|
|
);
|
|
} else h: {
|
|
// We still need a terminator in this block, but we have proven
|
|
// that it is unreachable.
|
|
if (case_block.wantSafety()) {
|
|
try sema.zirDbgStmt(&case_block, cond_dbg_node_index);
|
|
try sema.safetyPanic(&case_block, src, .corrupt_switch);
|
|
} else {
|
|
_ = try case_block.addNoOp(.unreach);
|
|
}
|
|
// Safety check / unreachable branches are cold.
|
|
break :h .cold;
|
|
};
|
|
|
|
try branch_hints.append(gpa, else_hint);
|
|
break :else_body case_block.instructions.items;
|
|
} else else_body: {
|
|
try branch_hints.append(gpa, .none);
|
|
break :else_body &.{};
|
|
};
|
|
|
|
assert(branch_hints.items.len == cases_len + 1);
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr).@"struct".fields.len +
|
|
cases_extra.items.len + else_body.len +
|
|
(std.math.divCeil(usize, branch_hints.items.len, 10) catch unreachable)); // branch hints
|
|
|
|
const payload_index = sema.addExtraAssumeCapacity(Air.SwitchBr{
|
|
.cases_len = @intCast(cases_len),
|
|
.else_body_len = @intCast(else_body.len),
|
|
});
|
|
|
|
{
|
|
// Add branch hints.
|
|
var cur_bag: u32 = 0;
|
|
for (branch_hints.items, 0..) |hint, idx| {
|
|
const idx_in_bag = idx % 10;
|
|
cur_bag |= @as(u32, @intFromEnum(hint)) << @intCast(idx_in_bag * 3);
|
|
if (idx_in_bag == 9) {
|
|
sema.air_extra.appendAssumeCapacity(cur_bag);
|
|
cur_bag = 0;
|
|
}
|
|
}
|
|
if (branch_hints.items.len % 10 != 0) {
|
|
sema.air_extra.appendAssumeCapacity(cur_bag);
|
|
}
|
|
}
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(cases_extra.items));
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(else_body));
|
|
|
|
const has_any_continues = spa.operand == .loop and child_block.label.?.merges.extra_insts.items.len > 0;
|
|
|
|
return try child_block.addInst(.{
|
|
.tag = if (has_any_continues) .loop_switch_br else .switch_br,
|
|
.data = .{ .pl_op = .{
|
|
.operand = operand,
|
|
.payload = payload_index,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn resolveSwitchComptimeLoop(
|
|
sema: *Sema,
|
|
init_spa: SwitchProngAnalysis,
|
|
child_block: *Block,
|
|
maybe_ptr_operand_ty: Type,
|
|
cond_ty: Type,
|
|
init_cond_val: Value,
|
|
switch_node_offset: std.zig.Ast.Node.Offset,
|
|
special_members_only: ?SpecialProng,
|
|
special_generic: SpecialProng,
|
|
special_generic_is_under: bool,
|
|
case_vals: std.ArrayListUnmanaged(Air.Inst.Ref),
|
|
scalar_cases_len: u32,
|
|
multi_cases_len: u32,
|
|
err_set: bool,
|
|
empty_enum: bool,
|
|
operand_is_ref: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
var spa = init_spa;
|
|
var cond_val = init_cond_val;
|
|
|
|
while (true) {
|
|
if (resolveSwitchComptime(
|
|
sema,
|
|
spa,
|
|
child_block,
|
|
spa.operand.simple.cond,
|
|
cond_val,
|
|
cond_ty,
|
|
switch_node_offset,
|
|
special_members_only,
|
|
special_generic,
|
|
special_generic_is_under,
|
|
case_vals,
|
|
scalar_cases_len,
|
|
multi_cases_len,
|
|
err_set,
|
|
empty_enum,
|
|
)) |result| {
|
|
return result;
|
|
} else |err| switch (err) {
|
|
error.ComptimeBreak => {
|
|
const break_inst = sema.code.instructions.get(@intFromEnum(sema.comptime_break_inst));
|
|
if (break_inst.tag != .switch_continue) return error.ComptimeBreak;
|
|
const extra = sema.code.extraData(Zir.Inst.Break, break_inst.data.@"break".payload_index).data;
|
|
if (extra.block_inst != spa.switch_block_inst) return error.ComptimeBreak;
|
|
// This is a `switch_continue` targeting this block. Change the operand and start over.
|
|
const src = child_block.nodeOffset(extra.operand_src_node.unwrap().?);
|
|
const new_operand_uncoerced = try sema.resolveInst(break_inst.data.@"break".operand);
|
|
const new_operand = try sema.coerce(child_block, maybe_ptr_operand_ty, new_operand_uncoerced, src);
|
|
|
|
try sema.emitBackwardBranch(child_block, src);
|
|
|
|
const val, const ref = if (operand_is_ref)
|
|
.{ try sema.analyzeLoad(child_block, src, new_operand, src), new_operand }
|
|
else
|
|
.{ new_operand, undefined };
|
|
|
|
const cond_ref = try sema.switchCond(child_block, src, val);
|
|
|
|
cond_val = try sema.resolveConstDefinedValue(child_block, src, cond_ref, null);
|
|
spa.operand = .{ .simple = .{
|
|
.by_val = val,
|
|
.by_ref = ref,
|
|
.cond = cond_ref,
|
|
} };
|
|
},
|
|
else => |e| return e,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolveSwitchComptime(
|
|
sema: *Sema,
|
|
spa: SwitchProngAnalysis,
|
|
child_block: *Block,
|
|
cond_operand: Air.Inst.Ref,
|
|
operand_val: Value,
|
|
operand_ty: Type,
|
|
switch_node_offset: std.zig.Ast.Node.Offset,
|
|
special_members_only: ?SpecialProng,
|
|
special_generic: SpecialProng,
|
|
special_generic_is_under: bool,
|
|
case_vals: std.ArrayListUnmanaged(Air.Inst.Ref),
|
|
scalar_cases_len: u32,
|
|
multi_cases_len: u32,
|
|
err_set: bool,
|
|
empty_enum: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const zcu = sema.pt.zcu;
|
|
const merges = &child_block.label.?.merges;
|
|
const resolved_operand_val = try sema.resolveLazyValue(operand_val);
|
|
|
|
var extra_index: usize = special_generic.end;
|
|
{
|
|
var scalar_i: usize = 0;
|
|
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const body = sema.code.bodySlice(extra_index, info.body_len);
|
|
extra_index += info.body_len;
|
|
|
|
const item = case_vals.items[scalar_i];
|
|
const item_val = sema.resolveConstDefinedValue(child_block, LazySrcLoc.unneeded, item, undefined) catch unreachable;
|
|
if (operand_val.eql(item_val, operand_ty, sema.pt.zcu)) {
|
|
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, body, cond_operand);
|
|
return spa.resolveProngComptime(
|
|
child_block,
|
|
.normal,
|
|
body,
|
|
info.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .scalar, .index = @intCast(scalar_i) },
|
|
} }),
|
|
&.{item},
|
|
if (info.is_inline) cond_operand else .none,
|
|
info.has_tag_capture,
|
|
merges,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
{
|
|
var multi_i: usize = 0;
|
|
var case_val_idx: usize = scalar_cases_len;
|
|
while (multi_i < multi_cases_len) : (multi_i += 1) {
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1 + items_len;
|
|
const body = sema.code.bodySlice(extra_index + 2 * ranges_len, info.body_len);
|
|
|
|
const items = case_vals.items[case_val_idx..][0..items_len];
|
|
case_val_idx += items_len;
|
|
|
|
for (items) |item| {
|
|
// Validation above ensured these will succeed.
|
|
const item_val = sema.resolveConstDefinedValue(child_block, LazySrcLoc.unneeded, item, undefined) catch unreachable;
|
|
if (operand_val.eql(item_val, operand_ty, sema.pt.zcu)) {
|
|
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, body, cond_operand);
|
|
return spa.resolveProngComptime(
|
|
child_block,
|
|
.normal,
|
|
body,
|
|
info.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
} }),
|
|
items,
|
|
if (info.is_inline) cond_operand else .none,
|
|
info.has_tag_capture,
|
|
merges,
|
|
);
|
|
}
|
|
}
|
|
|
|
var range_i: usize = 0;
|
|
while (range_i < ranges_len) : (range_i += 1) {
|
|
const range_items = case_vals.items[case_val_idx..][0..2];
|
|
extra_index += 2;
|
|
case_val_idx += 2;
|
|
|
|
// Validation above ensured these will succeed.
|
|
const first_val = sema.resolveConstDefinedValue(child_block, LazySrcLoc.unneeded, range_items[0], undefined) catch unreachable;
|
|
const last_val = sema.resolveConstDefinedValue(child_block, LazySrcLoc.unneeded, range_items[1], undefined) catch unreachable;
|
|
if ((try sema.compareAll(resolved_operand_val, .gte, first_val, operand_ty)) and
|
|
(try sema.compareAll(resolved_operand_val, .lte, last_val, operand_ty)))
|
|
{
|
|
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, body, cond_operand);
|
|
return spa.resolveProngComptime(
|
|
child_block,
|
|
.normal,
|
|
body,
|
|
info.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
} }),
|
|
undefined, // case_vals may be undefined for ranges
|
|
if (info.is_inline) cond_operand else .none,
|
|
info.has_tag_capture,
|
|
merges,
|
|
);
|
|
}
|
|
}
|
|
|
|
extra_index += info.body_len;
|
|
}
|
|
}
|
|
if (err_set) try sema.maybeErrorUnwrapComptime(child_block, special_generic.body, cond_operand);
|
|
if (empty_enum) {
|
|
return .void_value;
|
|
}
|
|
if (special_members_only) |special| {
|
|
assert(operand_ty.isNonexhaustiveEnum(zcu));
|
|
if (operand_ty.enumTagFieldIndex(operand_val, zcu)) |_| {
|
|
return spa.resolveProngComptime(
|
|
child_block,
|
|
.special,
|
|
special.body,
|
|
special.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = .special_else,
|
|
} }),
|
|
undefined, // case_vals may be undefined for special prongs
|
|
if (special.is_inline) cond_operand else .none,
|
|
special.has_tag_capture,
|
|
merges,
|
|
);
|
|
}
|
|
}
|
|
|
|
return spa.resolveProngComptime(
|
|
child_block,
|
|
.special,
|
|
special_generic.body,
|
|
special_generic.capture,
|
|
child_block.src(.{ .switch_capture = .{
|
|
.switch_node_offset = switch_node_offset,
|
|
.case_idx = if (special_generic_is_under)
|
|
.special_under
|
|
else
|
|
.special_else,
|
|
} }),
|
|
undefined, // case_vals may be undefined for special prongs
|
|
if (special_generic.is_inline) cond_operand else .none,
|
|
special_generic.has_tag_capture,
|
|
merges,
|
|
);
|
|
}
|
|
|
|
const RangeSetUnhandledIterator = struct {
|
|
pt: Zcu.PerThread,
|
|
cur: ?InternPool.Index,
|
|
max: InternPool.Index,
|
|
range_i: usize,
|
|
ranges: []const RangeSet.Range,
|
|
limbs: []math.big.Limb,
|
|
|
|
const preallocated_limbs = math.big.int.calcTwosCompLimbCount(128);
|
|
|
|
fn init(sema: *Sema, ty: Type, range_set: RangeSet) !RangeSetUnhandledIterator {
|
|
const pt = sema.pt;
|
|
const int_type = pt.zcu.intern_pool.indexToKey(ty.toIntern()).int_type;
|
|
const needed_limbs = math.big.int.calcTwosCompLimbCount(int_type.bits);
|
|
return .{
|
|
.pt = pt,
|
|
.cur = (try ty.minInt(pt, ty)).toIntern(),
|
|
.max = (try ty.maxInt(pt, ty)).toIntern(),
|
|
.range_i = 0,
|
|
.ranges = range_set.ranges.items,
|
|
.limbs = if (needed_limbs > preallocated_limbs)
|
|
try sema.arena.alloc(math.big.Limb, needed_limbs)
|
|
else
|
|
&.{},
|
|
};
|
|
}
|
|
|
|
fn addOne(it: *const RangeSetUnhandledIterator, val: InternPool.Index) !?InternPool.Index {
|
|
if (val == it.max) return null;
|
|
const int = it.pt.zcu.intern_pool.indexToKey(val).int;
|
|
|
|
switch (int.storage) {
|
|
inline .u64, .i64 => |val_int| {
|
|
const next_int = @addWithOverflow(val_int, 1);
|
|
if (next_int[1] == 0)
|
|
return (try it.pt.intValue(.fromInterned(int.ty), next_int[0])).toIntern();
|
|
},
|
|
.big_int => {},
|
|
.lazy_align, .lazy_size => unreachable,
|
|
}
|
|
|
|
var val_space: InternPool.Key.Int.Storage.BigIntSpace = undefined;
|
|
const val_bigint = int.storage.toBigInt(&val_space);
|
|
|
|
var result_limbs: [preallocated_limbs]math.big.Limb = undefined;
|
|
var result_bigint = math.big.int.Mutable.init(
|
|
if (it.limbs.len > 0) it.limbs else &result_limbs,
|
|
0,
|
|
);
|
|
|
|
result_bigint.addScalar(val_bigint, 1);
|
|
return (try it.pt.intValue_big(.fromInterned(int.ty), result_bigint.toConst())).toIntern();
|
|
}
|
|
|
|
fn next(it: *RangeSetUnhandledIterator) !?InternPool.Index {
|
|
var cur = it.cur orelse return null;
|
|
while (it.range_i < it.ranges.len and cur == it.ranges[it.range_i].first) {
|
|
defer it.range_i += 1;
|
|
cur = (try it.addOne(it.ranges[it.range_i].last)) orelse {
|
|
it.cur = null;
|
|
return null;
|
|
};
|
|
}
|
|
it.cur = try it.addOne(cur);
|
|
return cur;
|
|
}
|
|
};
|
|
|
|
const ResolvedSwitchItem = struct {
|
|
ref: Air.Inst.Ref,
|
|
val: InternPool.Index,
|
|
};
|
|
fn resolveSwitchItemVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
item_ref: Zir.Inst.Ref,
|
|
/// Coerce `item_ref` to this type.
|
|
coerce_ty: Type,
|
|
item_src: LazySrcLoc,
|
|
) CompileError!ResolvedSwitchItem {
|
|
const uncoerced_item = try sema.resolveInst(item_ref);
|
|
|
|
// Constructing a LazySrcLoc is costly because we only have the switch AST node.
|
|
// Only if we know for sure we need to report a compile error do we resolve the
|
|
// full source locations.
|
|
|
|
const item = try sema.coerce(block, coerce_ty, uncoerced_item, item_src);
|
|
|
|
const maybe_lazy = try sema.resolveConstDefinedValue(block, item_src, item, .{ .simple = .switch_item });
|
|
|
|
const val = try sema.resolveLazyValue(maybe_lazy);
|
|
const new_item = if (val.toIntern() != maybe_lazy.toIntern()) blk: {
|
|
break :blk Air.internedToRef(val.toIntern());
|
|
} else item;
|
|
|
|
return .{ .ref = new_item, .val = val.toIntern() };
|
|
}
|
|
|
|
fn validateErrSetSwitch(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
seen_errors: *SwitchErrorSet,
|
|
case_vals: *std.ArrayListUnmanaged(Air.Inst.Ref),
|
|
operand_ty: Type,
|
|
inst_data: @FieldType(Zir.Inst.Data, "pl_node"),
|
|
scalar_cases_len: u32,
|
|
multi_cases_len: u32,
|
|
else_case: struct { body: []const Zir.Inst.Index, end: usize, src: LazySrcLoc },
|
|
has_else: bool,
|
|
) CompileError!?Type {
|
|
const gpa = sema.gpa;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const src_node_offset = inst_data.src_node;
|
|
const src = block.nodeOffset(src_node_offset);
|
|
|
|
var extra_index: usize = else_case.end;
|
|
{
|
|
var scalar_i: u32 = 0;
|
|
while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
|
|
const item_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1 + info.body_len;
|
|
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemError(
|
|
block,
|
|
seen_errors,
|
|
item_ref,
|
|
operand_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .scalar, .index = @intCast(scalar_i) },
|
|
.item_idx = .{ .kind = .single, .index = 0 },
|
|
} }),
|
|
));
|
|
}
|
|
}
|
|
{
|
|
var multi_i: u32 = 0;
|
|
while (multi_i < multi_cases_len) : (multi_i += 1) {
|
|
const items_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const ranges_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const info: Zir.Inst.SwitchBlock.ProngInfo = @bitCast(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const items = sema.code.refSlice(extra_index, items_len);
|
|
extra_index += items_len + info.body_len;
|
|
|
|
try case_vals.ensureUnusedCapacity(gpa, items.len);
|
|
for (items, 0..) |item_ref, item_i| {
|
|
case_vals.appendAssumeCapacity(try sema.validateSwitchItemError(
|
|
block,
|
|
seen_errors,
|
|
item_ref,
|
|
operand_ty,
|
|
block.src(.{ .switch_case_item = .{
|
|
.switch_node_offset = src_node_offset,
|
|
.case_idx = .{ .kind = .multi, .index = @intCast(multi_i) },
|
|
.item_idx = .{ .kind = .single, .index = @intCast(item_i) },
|
|
} }),
|
|
));
|
|
}
|
|
|
|
try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset);
|
|
}
|
|
}
|
|
|
|
switch (try sema.resolveInferredErrorSetTy(block, src, operand_ty.toIntern())) {
|
|
.anyerror_type => {
|
|
if (!has_else) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"else prong required when switching on type 'anyerror'",
|
|
.{},
|
|
);
|
|
}
|
|
return .anyerror;
|
|
},
|
|
else => |err_set_ty_index| else_validation: {
|
|
const error_names = ip.indexToKey(err_set_ty_index).error_set_type.names;
|
|
var maybe_msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (maybe_msg) |msg| msg.destroy(sema.gpa);
|
|
|
|
for (error_names.get(ip)) |error_name| {
|
|
if (!seen_errors.contains(error_name) and !has_else) {
|
|
const msg = maybe_msg orelse blk: {
|
|
maybe_msg = try sema.errMsg(
|
|
src,
|
|
"switch must handle all possibilities",
|
|
.{},
|
|
);
|
|
break :blk maybe_msg.?;
|
|
};
|
|
|
|
try sema.errNote(
|
|
src,
|
|
msg,
|
|
"unhandled error value: 'error.{f}'",
|
|
.{error_name.fmt(ip)},
|
|
);
|
|
}
|
|
}
|
|
|
|
if (maybe_msg) |msg| {
|
|
maybe_msg = null;
|
|
try sema.addDeclaredHereNote(msg, operand_ty);
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
if (has_else and seen_errors.count() == error_names.len) {
|
|
// In order to enable common patterns for generic code allow simple else bodies
|
|
// else => unreachable,
|
|
// else => return,
|
|
// else => |e| return e,
|
|
// even if all the possible errors were already handled.
|
|
const tags = sema.code.instructions.items(.tag);
|
|
const datas = sema.code.instructions.items(.data);
|
|
for (else_case.body) |else_inst| switch (tags[@intFromEnum(else_inst)]) {
|
|
.dbg_stmt,
|
|
.dbg_var_val,
|
|
.ret_type,
|
|
.as_node,
|
|
.ret_node,
|
|
.@"unreachable",
|
|
.@"defer",
|
|
.defer_err_code,
|
|
.err_union_code,
|
|
.ret_err_value_code,
|
|
.save_err_ret_index,
|
|
.restore_err_ret_index_unconditional,
|
|
.restore_err_ret_index_fn_entry,
|
|
.is_non_err,
|
|
.ret_is_non_err,
|
|
.condbr,
|
|
=> {},
|
|
.extended => switch (datas[@intFromEnum(else_inst)].extended.opcode) {
|
|
.restore_err_ret_index => {},
|
|
else => break,
|
|
},
|
|
else => break,
|
|
} else break :else_validation;
|
|
|
|
return sema.fail(
|
|
block,
|
|
else_case.src,
|
|
"unreachable else prong; all cases already handled",
|
|
.{},
|
|
);
|
|
}
|
|
|
|
var names: InferredErrorSet.NameMap = .{};
|
|
try names.ensureUnusedCapacity(sema.arena, error_names.len);
|
|
for (error_names.get(ip)) |error_name| {
|
|
if (seen_errors.contains(error_name)) continue;
|
|
|
|
names.putAssumeCapacityNoClobber(error_name, {});
|
|
}
|
|
// No need to keep the hash map metadata correct; here we
|
|
// extract the (sorted) keys only.
|
|
return try pt.errorSetFromUnsortedNames(names.keys());
|
|
},
|
|
}
|
|
return null;
|
|
}
|
|
|
|
fn validateSwitchRange(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
range_set: *RangeSet,
|
|
first_ref: Zir.Inst.Ref,
|
|
last_ref: Zir.Inst.Ref,
|
|
operand_ty: Type,
|
|
item_src: LazySrcLoc,
|
|
) CompileError![2]Air.Inst.Ref {
|
|
const first_src: LazySrcLoc = .{
|
|
.base_node_inst = item_src.base_node_inst,
|
|
.offset = .{ .switch_case_item_range_first = item_src.offset.switch_case_item },
|
|
};
|
|
const last_src: LazySrcLoc = .{
|
|
.base_node_inst = item_src.base_node_inst,
|
|
.offset = .{ .switch_case_item_range_last = item_src.offset.switch_case_item },
|
|
};
|
|
const first = try sema.resolveSwitchItemVal(block, first_ref, operand_ty, first_src);
|
|
const last = try sema.resolveSwitchItemVal(block, last_ref, operand_ty, last_src);
|
|
if (try Value.fromInterned(first.val).compareAll(.gt, Value.fromInterned(last.val), operand_ty, sema.pt)) {
|
|
return sema.fail(block, item_src, "range start value is greater than the end value", .{});
|
|
}
|
|
const maybe_prev_src = try range_set.add(first.val, last.val, item_src);
|
|
try sema.validateSwitchDupe(block, maybe_prev_src, item_src);
|
|
return .{ first.ref, last.ref };
|
|
}
|
|
|
|
fn validateSwitchItemInt(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
range_set: *RangeSet,
|
|
item_ref: Zir.Inst.Ref,
|
|
operand_ty: Type,
|
|
item_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, item_src);
|
|
const maybe_prev_src = try range_set.add(item.val, item.val, item_src);
|
|
try sema.validateSwitchDupe(block, maybe_prev_src, item_src);
|
|
return item.ref;
|
|
}
|
|
|
|
fn validateSwitchItemEnum(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
seen_fields: []?LazySrcLoc,
|
|
range_set: *RangeSet,
|
|
item_ref: Zir.Inst.Ref,
|
|
operand_ty: Type,
|
|
item_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const ip = &sema.pt.zcu.intern_pool;
|
|
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, item_src);
|
|
const int = ip.indexToKey(item.val).enum_tag.int;
|
|
const field_index = ip.loadEnumType(ip.typeOf(item.val)).tagValueIndex(ip, int) orelse {
|
|
const maybe_prev_src = try range_set.add(int, int, item_src);
|
|
try sema.validateSwitchDupe(block, maybe_prev_src, item_src);
|
|
return item.ref;
|
|
};
|
|
const maybe_prev_src = seen_fields[field_index];
|
|
seen_fields[field_index] = item_src;
|
|
try sema.validateSwitchDupe(block, maybe_prev_src, item_src);
|
|
return item.ref;
|
|
}
|
|
|
|
fn validateSwitchItemError(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
seen_errors: *SwitchErrorSet,
|
|
item_ref: Zir.Inst.Ref,
|
|
operand_ty: Type,
|
|
item_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, item_src);
|
|
const error_name = sema.pt.zcu.intern_pool.indexToKey(item.val).err.name;
|
|
const maybe_prev_src = if (try seen_errors.fetchPut(error_name, item_src)) |prev|
|
|
prev.value
|
|
else
|
|
null;
|
|
try sema.validateSwitchDupe(block, maybe_prev_src, item_src);
|
|
return item.ref;
|
|
}
|
|
|
|
fn validateSwitchDupe(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
maybe_prev_src: ?LazySrcLoc,
|
|
item_src: LazySrcLoc,
|
|
) CompileError!void {
|
|
const prev_item_src = maybe_prev_src orelse return;
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(
|
|
item_src,
|
|
"duplicate switch value",
|
|
.{},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(
|
|
prev_item_src,
|
|
msg,
|
|
"previous value here",
|
|
.{},
|
|
);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
fn validateSwitchItemBool(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
true_count: *u8,
|
|
false_count: *u8,
|
|
item_ref: Zir.Inst.Ref,
|
|
item_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const item = try sema.resolveSwitchItemVal(block, item_ref, .bool, item_src);
|
|
if (Value.fromInterned(item.val).toBool()) {
|
|
true_count.* += 1;
|
|
} else {
|
|
false_count.* += 1;
|
|
}
|
|
if (true_count.* > 1 or false_count.* > 1) {
|
|
return sema.fail(block, item_src, "duplicate switch value", .{});
|
|
}
|
|
return item.ref;
|
|
}
|
|
|
|
const ValueSrcMap = std.AutoHashMapUnmanaged(InternPool.Index, LazySrcLoc);
|
|
|
|
fn validateSwitchItemSparse(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
seen_values: *ValueSrcMap,
|
|
item_ref: Zir.Inst.Ref,
|
|
operand_ty: Type,
|
|
item_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, item_src);
|
|
const kv = try seen_values.fetchPut(sema.gpa, item.val, item_src) orelse return item.ref;
|
|
try sema.validateSwitchDupe(block, kv.value, item_src);
|
|
unreachable;
|
|
}
|
|
|
|
fn validateSwitchNoRange(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ranges_len: u32,
|
|
operand_ty: Type,
|
|
src_node_offset: std.zig.Ast.Node.Offset,
|
|
) CompileError!void {
|
|
if (ranges_len == 0)
|
|
return;
|
|
|
|
const operand_src = block.src(.{ .node_offset_switch_operand = src_node_offset });
|
|
const range_src = block.src(.{ .node_offset_switch_range = src_node_offset });
|
|
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
operand_src,
|
|
"ranges not allowed when switching on type '{f}'",
|
|
.{operand_ty.fmt(sema.pt)},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(
|
|
range_src,
|
|
msg,
|
|
"range here",
|
|
.{},
|
|
);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn maybeErrorUnwrap(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
body: []const Zir.Inst.Index,
|
|
operand: Air.Inst.Ref,
|
|
operand_src: LazySrcLoc,
|
|
allow_err_code_inst: bool,
|
|
) !bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const tags = sema.code.instructions.items(.tag);
|
|
for (body) |inst| {
|
|
switch (tags[@intFromEnum(inst)]) {
|
|
.@"unreachable" => if (!block.wantSafety()) return false,
|
|
.err_union_code => if (!allow_err_code_inst) return false,
|
|
.save_err_ret_index,
|
|
.dbg_stmt,
|
|
.str,
|
|
.as_node,
|
|
.panic,
|
|
=> {},
|
|
else => return false,
|
|
}
|
|
}
|
|
|
|
for (body) |inst| {
|
|
const air_inst = switch (tags[@intFromEnum(inst)]) {
|
|
.err_union_code => continue,
|
|
.dbg_stmt => {
|
|
try sema.zirDbgStmt(block, inst);
|
|
continue;
|
|
},
|
|
.save_err_ret_index => {
|
|
try sema.zirSaveErrRetIndex(block, inst);
|
|
continue;
|
|
},
|
|
.str => try sema.zirStr(inst),
|
|
.as_node => try sema.zirAsNode(block, inst),
|
|
.@"unreachable" => {
|
|
try safetyPanicUnwrapError(sema, block, operand_src, operand);
|
|
return true;
|
|
},
|
|
.panic => {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const msg_inst = try sema.resolveInst(inst_data.operand);
|
|
|
|
const panic_fn = try getBuiltin(sema, operand_src, .@"panic.call");
|
|
const args: [2]Air.Inst.Ref = .{ msg_inst, .null_value };
|
|
try sema.callBuiltin(block, operand_src, Air.internedToRef(panic_fn), .auto, &args, .@"safety check");
|
|
return true;
|
|
},
|
|
else => unreachable,
|
|
};
|
|
if (sema.typeOf(air_inst).isNoReturn(zcu))
|
|
return true;
|
|
sema.inst_map.putAssumeCapacity(inst, air_inst);
|
|
}
|
|
unreachable;
|
|
}
|
|
|
|
fn maybeErrorUnwrapCondbr(sema: *Sema, block: *Block, body: []const Zir.Inst.Index, cond: Zir.Inst.Ref, cond_src: LazySrcLoc) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const index = cond.toIndex() orelse return;
|
|
if (sema.code.instructions.items(.tag)[@intFromEnum(index)] != .is_non_err) return;
|
|
|
|
const err_inst_data = sema.code.instructions.items(.data)[@intFromEnum(index)].un_node;
|
|
const err_operand = try sema.resolveInst(err_inst_data.operand);
|
|
const operand_ty = sema.typeOf(err_operand);
|
|
if (operand_ty.zigTypeTag(zcu) == .error_set) {
|
|
try sema.maybeErrorUnwrapComptime(block, body, err_operand);
|
|
return;
|
|
}
|
|
if (try sema.resolveDefinedValue(block, cond_src, err_operand)) |val| {
|
|
if (!operand_ty.isError(zcu)) return;
|
|
if (val.getErrorName(zcu) == .none) return;
|
|
try sema.maybeErrorUnwrapComptime(block, body, err_operand);
|
|
}
|
|
}
|
|
|
|
fn maybeErrorUnwrapComptime(sema: *Sema, block: *Block, body: []const Zir.Inst.Index, operand: Air.Inst.Ref) !void {
|
|
const tags = sema.code.instructions.items(.tag);
|
|
const inst = for (body) |inst| {
|
|
switch (tags[@intFromEnum(inst)]) {
|
|
.dbg_stmt,
|
|
.save_err_ret_index,
|
|
=> {},
|
|
.@"unreachable" => break inst,
|
|
else => return,
|
|
}
|
|
} else return;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"unreachable";
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
if (try sema.resolveDefinedValue(block, src, operand)) |val| {
|
|
if (val.getErrorName(sema.pt.zcu).unwrap()) |name| {
|
|
return sema.failWithComptimeErrorRetTrace(block, src, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn zirHasField(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const name_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const ty = try sema.resolveType(block, ty_src, extra.lhs);
|
|
const field_name = try sema.resolveConstStringIntern(block, name_src, extra.rhs, .{ .simple = .field_name });
|
|
try ty.resolveFields(pt);
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const has_field = hf: {
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.slice => {
|
|
if (field_name.eqlSlice("ptr", ip)) break :hf true;
|
|
if (field_name.eqlSlice("len", ip)) break :hf true;
|
|
break :hf false;
|
|
},
|
|
else => {},
|
|
},
|
|
.tuple_type => |tuple| {
|
|
const field_index = field_name.toUnsigned(ip) orelse break :hf false;
|
|
break :hf field_index < tuple.types.len;
|
|
},
|
|
.struct_type => {
|
|
break :hf ip.loadStructType(ty.toIntern()).nameIndex(ip, field_name) != null;
|
|
},
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
break :hf union_type.loadTagType(ip).nameIndex(ip, field_name) != null;
|
|
},
|
|
.enum_type => {
|
|
break :hf ip.loadEnumType(ty.toIntern()).nameIndex(ip, field_name) != null;
|
|
},
|
|
.array_type => break :hf field_name.eqlSlice("len", ip),
|
|
else => {},
|
|
}
|
|
return sema.fail(block, ty_src, "type '{f}' does not support '@hasField'", .{
|
|
ty.fmt(pt),
|
|
});
|
|
};
|
|
return if (has_field) .bool_true else .bool_false;
|
|
}
|
|
|
|
fn zirHasDecl(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const container_type = try sema.resolveType(block, lhs_src, extra.lhs);
|
|
const decl_name = try sema.resolveConstStringIntern(block, rhs_src, extra.rhs, .{ .simple = .decl_name });
|
|
|
|
try sema.checkNamespaceType(block, lhs_src, container_type);
|
|
|
|
const namespace = container_type.getNamespace(zcu).unwrap() orelse return .bool_false;
|
|
if (try sema.lookupInNamespace(block, namespace, decl_name)) |lookup| {
|
|
if (lookup.accessible) {
|
|
return .bool_true;
|
|
}
|
|
}
|
|
return .bool_false;
|
|
}
|
|
|
|
fn zirImport(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_tok;
|
|
const extra = sema.code.extraData(Zir.Inst.Import, inst_data.payload_index).data;
|
|
const operand_src = block.tokenOffset(inst_data.src_tok);
|
|
const operand = sema.code.nullTerminatedString(extra.path);
|
|
|
|
const result = pt.doImport(block.getFileScope(zcu), operand) catch |err| switch (err) {
|
|
error.ModuleNotFound => return sema.fail(block, operand_src, "no module named '{s}' available within module '{s}'", .{
|
|
operand, block.getFileScope(zcu).mod.?.fully_qualified_name,
|
|
}),
|
|
error.IllegalZigImport => unreachable, // caught before semantic analysis
|
|
error.OutOfMemory => |e| return e,
|
|
};
|
|
const file_index = result.file;
|
|
const file = zcu.fileByIndex(file_index);
|
|
switch (file.getMode()) {
|
|
.zig => {
|
|
try pt.ensureFileAnalyzed(file_index);
|
|
const ty = zcu.fileRootType(file_index);
|
|
try sema.declareDependency(.{ .interned = ty });
|
|
try sema.addTypeReferenceEntry(operand_src, ty);
|
|
return Air.internedToRef(ty);
|
|
},
|
|
.zon => {
|
|
const res_ty: InternPool.Index = b: {
|
|
if (extra.res_ty == .none) break :b .none;
|
|
const res_ty_inst = try sema.resolveInst(extra.res_ty);
|
|
const res_ty = try sema.analyzeAsType(block, operand_src, res_ty_inst);
|
|
if (res_ty.isGenericPoison()) break :b .none;
|
|
break :b res_ty.toIntern();
|
|
};
|
|
|
|
try sema.declareDependency(.{ .zon_file = file_index });
|
|
const interned = try LowerZon.run(
|
|
sema,
|
|
file,
|
|
file_index,
|
|
res_ty,
|
|
operand_src,
|
|
block,
|
|
);
|
|
return Air.internedToRef(interned);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn zirEmbedFile(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const name = try sema.resolveConstString(block, operand_src, inst_data.operand, .{ .simple = .operand_embedFile });
|
|
|
|
if (name.len == 0) {
|
|
return sema.fail(block, operand_src, "file path name cannot be empty", .{});
|
|
}
|
|
|
|
const ef_idx = pt.embedFile(block.getFileScope(zcu), name) catch |err| switch (err) {
|
|
error.ImportOutsideModulePath => {
|
|
return sema.fail(block, operand_src, "embed of file outside package path: '{s}'", .{name});
|
|
},
|
|
error.CurrentWorkingDirectoryUnlinked => {
|
|
// TODO: this should be some kind of retryable failure, in case the cwd is put back
|
|
return sema.fail(block, operand_src, "unable to resolve '{s}': working directory has been unlinked", .{name});
|
|
},
|
|
error.OutOfMemory => |e| return e,
|
|
};
|
|
try sema.declareDependency(.{ .embed_file = ef_idx });
|
|
|
|
const result = ef_idx.get(zcu);
|
|
if (result.val == .none) {
|
|
return sema.fail(block, operand_src, "unable to open '{s}': {s}", .{ name, @errorName(result.err.?) });
|
|
}
|
|
|
|
return Air.internedToRef(result.val);
|
|
}
|
|
|
|
fn zirRetErrValueCode(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
|
|
const name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
inst_data.get(sema.code),
|
|
.no_embedded_nulls,
|
|
);
|
|
_ = try pt.getErrorValue(name);
|
|
const error_set_type = try pt.singleErrorSetType(name);
|
|
return Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = error_set_type.toIntern(),
|
|
.name = name,
|
|
} })));
|
|
}
|
|
|
|
fn zirShl(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
air_tag: Air.Inst.Tag,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src, const rhs_src = switch (air_tag) {
|
|
.shl, .shl_sat => .{
|
|
block.src(.{ .node_offset_bin_lhs = inst_data.src_node }),
|
|
block.src(.{ .node_offset_bin_rhs = inst_data.src_node }),
|
|
},
|
|
.shl_exact => .{
|
|
block.builtinCallArgSrc(inst_data.src_node, 0),
|
|
block.builtinCallArgSrc(inst_data.src_node, 1),
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
|
|
const scalar_ty = lhs_ty.scalarType(zcu);
|
|
const scalar_rhs_ty = rhs_ty.scalarType(zcu);
|
|
|
|
// AstGen currently forces the rhs of `<<` to coerce to the correct type before the `.shl` instruction, so
|
|
// we already know `scalar_rhs_ty` is valid for `.shl` -- we only need to validate for `.shl_sat`.
|
|
if (air_tag == .shl_sat) _ = try sema.checkIntType(block, rhs_src, scalar_rhs_ty);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(rhs);
|
|
|
|
const runtime_src = rs: {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
return .fromValue(try arith.shl(sema, block, lhs_ty, lhs_val, rhs_val, src, lhs_src, rhs_src, switch (air_tag) {
|
|
.shl => .shl,
|
|
.shl_sat => .shl_sat,
|
|
.shl_exact => .shl_exact,
|
|
else => unreachable,
|
|
}));
|
|
}
|
|
if (rhs_val.isUndef(zcu)) switch (air_tag) {
|
|
.shl_sat => return pt.undefRef(lhs_ty),
|
|
.shl, .shl_exact => return sema.failWithUseOfUndef(block, rhs_src, null),
|
|
else => unreachable,
|
|
};
|
|
const bits = scalar_ty.intInfo(zcu).bits;
|
|
switch (rhs_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => {
|
|
switch (try rhs_val.orderAgainstZeroSema(pt)) {
|
|
.gt => {
|
|
if (air_tag != .shl_sat) {
|
|
var rhs_space: Value.BigIntSpace = undefined;
|
|
const rhs_bigint = try rhs_val.toBigIntSema(&rhs_space, pt);
|
|
if (rhs_bigint.orderAgainstScalar(bits) != .lt) {
|
|
return sema.failWithTooLargeShiftAmount(block, lhs_ty, rhs_val, rhs_src, null);
|
|
}
|
|
}
|
|
},
|
|
.eq => return lhs,
|
|
.lt => return sema.failWithNegativeShiftAmount(block, rhs_src, rhs_val, null),
|
|
}
|
|
},
|
|
.vector => {
|
|
var any_positive: bool = false;
|
|
for (0..rhs_ty.vectorLen(zcu)) |elem_idx| {
|
|
const rhs_elem = try rhs_val.elemValue(pt, elem_idx);
|
|
if (rhs_elem.isUndef(zcu)) switch (air_tag) {
|
|
.shl_sat => continue,
|
|
.shl, .shl_exact => return sema.failWithUseOfUndef(block, rhs_src, elem_idx),
|
|
else => unreachable,
|
|
};
|
|
switch (try rhs_elem.orderAgainstZeroSema(pt)) {
|
|
.gt => {
|
|
if (air_tag != .shl_sat) {
|
|
var rhs_elem_space: Value.BigIntSpace = undefined;
|
|
const rhs_elem_bigint = try rhs_elem.toBigIntSema(&rhs_elem_space, pt);
|
|
if (rhs_elem_bigint.orderAgainstScalar(bits) != .lt) {
|
|
return sema.failWithTooLargeShiftAmount(block, lhs_ty, rhs_elem, rhs_src, elem_idx);
|
|
}
|
|
}
|
|
any_positive = true;
|
|
},
|
|
.eq => {},
|
|
.lt => return sema.failWithNegativeShiftAmount(block, rhs_src, rhs_elem, elem_idx),
|
|
}
|
|
}
|
|
if (!any_positive) return lhs;
|
|
},
|
|
else => unreachable,
|
|
}
|
|
break :rs lhs_src;
|
|
} else {
|
|
if (air_tag == .shl_sat and scalar_rhs_ty.isSignedInt(zcu)) {
|
|
return sema.fail(block, rhs_src, "shift by signed type '{f}'", .{rhs_ty.fmt(pt)});
|
|
}
|
|
if (scalar_ty.toIntern() == .comptime_int_type) {
|
|
return sema.fail(block, src, "LHS of shift must be a fixed-width integer type, or RHS must be comptime-known", .{});
|
|
}
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
switch (air_tag) {
|
|
.shl_sat => if (lhs_val.isUndef(zcu)) return pt.undefRef(lhs_ty),
|
|
.shl, .shl_exact => try sema.checkAllScalarsDefined(block, lhs_src, lhs_val),
|
|
else => unreachable,
|
|
}
|
|
if (try lhs_val.compareAllWithZeroSema(.eq, pt)) return lhs;
|
|
}
|
|
}
|
|
break :rs rhs_src;
|
|
};
|
|
const rt_rhs: Air.Inst.Ref = switch (air_tag) {
|
|
else => unreachable,
|
|
.shl, .shl_exact => rhs,
|
|
// The backend can handle a large runtime rhs better than we can, but
|
|
// we can limit a large comptime rhs better here. This also has the
|
|
// necessary side effect of preventing rhs from being a `comptime_int`.
|
|
.shl_sat => if (maybe_rhs_val) |rhs_val| .fromValue(rt_rhs: {
|
|
const bit_count = scalar_ty.intInfo(zcu).bits;
|
|
const rt_rhs_scalar_ty = try pt.smallestUnsignedInt(bit_count);
|
|
if (!rhs_ty.isVector(zcu)) break :rt_rhs try pt.intValue(
|
|
rt_rhs_scalar_ty,
|
|
@min(try rhs_val.getUnsignedIntSema(pt) orelse bit_count, bit_count),
|
|
);
|
|
const rhs_len = rhs_ty.vectorLen(zcu);
|
|
const rhs_elems = try sema.arena.alloc(InternPool.Index, rhs_len);
|
|
for (rhs_elems, 0..) |*rhs_elem, i| rhs_elem.* = (try pt.intValue(
|
|
rt_rhs_scalar_ty,
|
|
@min(try (try rhs_val.elemValue(pt, i)).getUnsignedIntSema(pt) orelse bit_count, bit_count),
|
|
)).toIntern();
|
|
break :rt_rhs try pt.aggregateValue(try pt.vectorType(.{
|
|
.len = rhs_len,
|
|
.child = rt_rhs_scalar_ty.toIntern(),
|
|
}), rhs_elems);
|
|
}) else rhs,
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
if (block.wantSafety()) {
|
|
const bit_count = scalar_ty.intInfo(zcu).bits;
|
|
if (air_tag != .shl_sat and !std.math.isPowerOfTwo(bit_count)) {
|
|
const bit_count_val = try pt.intValue(scalar_rhs_ty, bit_count);
|
|
const ok = if (rhs_ty.zigTypeTag(zcu) == .vector) ok: {
|
|
const bit_count_inst = Air.internedToRef((try sema.splat(rhs_ty, bit_count_val)).toIntern());
|
|
const lt = try block.addCmpVector(rhs, bit_count_inst, .lt);
|
|
break :ok try block.addReduce(lt, .And);
|
|
} else ok: {
|
|
const bit_count_inst = Air.internedToRef(bit_count_val.toIntern());
|
|
break :ok try block.addBinOp(.cmp_lt, rhs, bit_count_inst);
|
|
};
|
|
try sema.addSafetyCheck(block, src, ok, .shift_rhs_too_big);
|
|
}
|
|
|
|
if (air_tag == .shl_exact) {
|
|
const op_ov_tuple_ty = try pt.overflowArithmeticTupleType(lhs_ty);
|
|
const op_ov = try block.addInst(.{
|
|
.tag = .shl_with_overflow,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = .fromIntern(op_ov_tuple_ty.toIntern()),
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = lhs,
|
|
.rhs = rhs,
|
|
}),
|
|
} },
|
|
});
|
|
const ov_bit = try sema.tupleFieldValByIndex(block, op_ov, 1, op_ov_tuple_ty);
|
|
const any_ov_bit = if (lhs_ty.zigTypeTag(zcu) == .vector)
|
|
try block.addReduce(ov_bit, .Or)
|
|
else
|
|
ov_bit;
|
|
const no_ov = try block.addBinOp(.cmp_eq, any_ov_bit, .zero_u1);
|
|
|
|
try sema.addSafetyCheck(block, src, no_ov, .shl_overflow);
|
|
return sema.tupleFieldValByIndex(block, op_ov, 0, op_ov_tuple_ty);
|
|
}
|
|
}
|
|
return block.addBinOp(air_tag, lhs, rt_rhs);
|
|
}
|
|
|
|
fn zirShr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
air_tag: Air.Inst.Tag,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src = switch (air_tag) {
|
|
.shr => block.src(.{ .node_offset_bin_lhs = inst_data.src_node }),
|
|
.shr_exact => block.builtinCallArgSrc(inst_data.src_node, 0),
|
|
else => unreachable,
|
|
};
|
|
const rhs_src = switch (air_tag) {
|
|
.shr => block.src(.{ .node_offset_bin_rhs = inst_data.src_node }),
|
|
.shr_exact => block.builtinCallArgSrc(inst_data.src_node, 1),
|
|
else => unreachable,
|
|
};
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
const scalar_ty = lhs_ty.scalarType(zcu);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(rhs);
|
|
|
|
const runtime_src = rs: {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
return .fromValue(try arith.shr(sema, block, lhs_ty, rhs_ty, lhs_val, rhs_val, src, lhs_src, rhs_src, switch (air_tag) {
|
|
.shr => .shr,
|
|
.shr_exact => .shr_exact,
|
|
else => unreachable,
|
|
}));
|
|
}
|
|
if (rhs_val.isUndef(zcu)) {
|
|
return sema.failWithUseOfUndef(block, rhs_src, null);
|
|
}
|
|
const bits = scalar_ty.intInfo(zcu).bits;
|
|
switch (rhs_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => {
|
|
switch (try rhs_val.orderAgainstZeroSema(pt)) {
|
|
.gt => {
|
|
var rhs_space: Value.BigIntSpace = undefined;
|
|
const rhs_bigint = try rhs_val.toBigIntSema(&rhs_space, pt);
|
|
if (rhs_bigint.orderAgainstScalar(bits) != .lt) {
|
|
return sema.failWithTooLargeShiftAmount(block, lhs_ty, rhs_val, rhs_src, null);
|
|
}
|
|
},
|
|
.eq => return lhs,
|
|
.lt => return sema.failWithNegativeShiftAmount(block, rhs_src, rhs_val, null),
|
|
}
|
|
},
|
|
.vector => {
|
|
var any_positive: bool = false;
|
|
for (0..rhs_ty.vectorLen(zcu)) |elem_idx| {
|
|
const rhs_elem = try rhs_val.elemValue(pt, elem_idx);
|
|
if (rhs_elem.isUndef(zcu)) {
|
|
return sema.failWithUseOfUndef(block, rhs_src, elem_idx);
|
|
}
|
|
switch (try rhs_elem.orderAgainstZeroSema(pt)) {
|
|
.gt => {
|
|
var rhs_elem_space: Value.BigIntSpace = undefined;
|
|
const rhs_elem_bigint = try rhs_elem.toBigIntSema(&rhs_elem_space, pt);
|
|
if (rhs_elem_bigint.orderAgainstScalar(bits) != .lt) {
|
|
return sema.failWithTooLargeShiftAmount(block, lhs_ty, rhs_elem, rhs_src, elem_idx);
|
|
}
|
|
any_positive = true;
|
|
},
|
|
.eq => {},
|
|
.lt => return sema.failWithNegativeShiftAmount(block, rhs_src, rhs_elem, elem_idx),
|
|
}
|
|
}
|
|
if (!any_positive) return lhs;
|
|
},
|
|
else => unreachable,
|
|
}
|
|
break :rs lhs_src;
|
|
} else {
|
|
if (scalar_ty.toIntern() == .comptime_int_type) {
|
|
return sema.fail(block, src, "LHS of shift must be a fixed-width integer type, or RHS must be comptime-known", .{});
|
|
}
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
if (try lhs_val.compareAllWithZeroSema(.eq, pt)) return lhs;
|
|
}
|
|
}
|
|
break :rs rhs_src;
|
|
};
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
const result = try block.addBinOp(air_tag, lhs, rhs);
|
|
if (block.wantSafety()) {
|
|
const bit_count = scalar_ty.intInfo(zcu).bits;
|
|
if (!std.math.isPowerOfTwo(bit_count)) {
|
|
const bit_count_val = try pt.intValue(rhs_ty.scalarType(zcu), bit_count);
|
|
|
|
const ok = if (rhs_ty.zigTypeTag(zcu) == .vector) ok: {
|
|
const bit_count_inst = Air.internedToRef((try sema.splat(rhs_ty, bit_count_val)).toIntern());
|
|
const lt = try block.addCmpVector(rhs, bit_count_inst, .lt);
|
|
break :ok try block.addReduce(lt, .And);
|
|
} else ok: {
|
|
const bit_count_inst = Air.internedToRef(bit_count_val.toIntern());
|
|
break :ok try block.addBinOp(.cmp_lt, rhs, bit_count_inst);
|
|
};
|
|
try sema.addSafetyCheck(block, src, ok, .shift_rhs_too_big);
|
|
}
|
|
|
|
if (air_tag == .shr_exact) {
|
|
const back = try block.addBinOp(.shl, result, rhs);
|
|
|
|
const ok = if (rhs_ty.zigTypeTag(zcu) == .vector) ok: {
|
|
const eql = try block.addCmpVector(lhs, back, .eq);
|
|
break :ok try block.addReduce(eql, .And);
|
|
} else try block.addBinOp(.cmp_eq, lhs, back);
|
|
try sema.addSafetyCheck(block, src, ok, .shr_overflow);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
fn zirBitwise(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
air_tag: Air.Inst.Tag,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
|
|
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src } });
|
|
const scalar_type = resolved_type.scalarType(zcu);
|
|
const scalar_tag = scalar_type.zigTypeTag(zcu);
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const is_int_or_bool = scalar_tag == .int or scalar_tag == .comptime_int or scalar_tag == .bool;
|
|
|
|
if (!is_int_or_bool) {
|
|
return sema.fail(block, src, "invalid operands to binary bitwise expression: '{s}' and '{s}'", .{ @tagName(lhs_ty.zigTypeTag(zcu)), @tagName(rhs_ty.zigTypeTag(zcu)) });
|
|
}
|
|
|
|
const runtime_src = runtime: {
|
|
// TODO: ask the linker what kind of relocations are available, and
|
|
// in some cases emit a Value that means "this decl's address AND'd with this operand".
|
|
if (try sema.resolveValueResolveLazy(casted_lhs)) |lhs_val| {
|
|
if (try sema.resolveValueResolveLazy(casted_rhs)) |rhs_val| {
|
|
const result_val = switch (air_tag) {
|
|
// zig fmt: off
|
|
.bit_and => try arith.bitwiseBin(sema, resolved_type, lhs_val, rhs_val, .@"and"),
|
|
.bit_or => try arith.bitwiseBin(sema, resolved_type, lhs_val, rhs_val, .@"or"),
|
|
.xor => try arith.bitwiseBin(sema, resolved_type, lhs_val, rhs_val, .xor),
|
|
else => unreachable,
|
|
// zig fmt: on
|
|
};
|
|
return Air.internedToRef(result_val.toIntern());
|
|
} else {
|
|
break :runtime rhs_src;
|
|
}
|
|
} else {
|
|
break :runtime lhs_src;
|
|
}
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn zirBitNot(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.src(.{ .node_offset_un_op = inst_data.src_node });
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const scalar_ty = operand_ty.scalarType(zcu);
|
|
const scalar_tag = scalar_ty.zigTypeTag(zcu);
|
|
|
|
if (scalar_tag != .int and scalar_tag != .bool)
|
|
return sema.fail(block, operand_src, "bitwise not operation on type '{f}'", .{operand_ty.fmt(pt)});
|
|
|
|
return analyzeBitNot(sema, block, operand, src);
|
|
}
|
|
|
|
fn analyzeBitNot(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
operand: Air.Inst.Ref,
|
|
src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const operand_ty = sema.typeOf(operand);
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
const result_val = try arith.bitwiseNot(sema, operand_ty, operand_val);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addTyOp(.not, operand_ty, operand);
|
|
}
|
|
|
|
fn analyzeTupleCat(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src_node: std.zig.Ast.Node.Offset,
|
|
lhs: Air.Inst.Ref,
|
|
rhs: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const src = block.nodeOffset(src_node);
|
|
|
|
const lhs_len = lhs_ty.structFieldCount(zcu);
|
|
const rhs_len = rhs_ty.structFieldCount(zcu);
|
|
const dest_fields = lhs_len + rhs_len;
|
|
|
|
if (dest_fields == 0) {
|
|
return .empty_tuple;
|
|
}
|
|
if (lhs_len == 0) {
|
|
return rhs;
|
|
}
|
|
if (rhs_len == 0) {
|
|
return lhs;
|
|
}
|
|
const final_len = try sema.usizeCast(block, src, dest_fields);
|
|
|
|
const types = try sema.arena.alloc(InternPool.Index, final_len);
|
|
const values = try sema.arena.alloc(InternPool.Index, final_len);
|
|
|
|
const opt_runtime_src = rs: {
|
|
var runtime_src: ?LazySrcLoc = null;
|
|
var i: u32 = 0;
|
|
while (i < lhs_len) : (i += 1) {
|
|
types[i] = lhs_ty.fieldType(i, zcu).toIntern();
|
|
const default_val = lhs_ty.structFieldDefaultValue(i, zcu);
|
|
values[i] = default_val.toIntern();
|
|
const operand_src = block.src(.{ .array_cat_lhs = .{
|
|
.array_cat_offset = src_node,
|
|
.elem_index = i,
|
|
} });
|
|
if (default_val.toIntern() == .unreachable_value) {
|
|
runtime_src = operand_src;
|
|
values[i] = .none;
|
|
}
|
|
}
|
|
i = 0;
|
|
while (i < rhs_len) : (i += 1) {
|
|
types[i + lhs_len] = rhs_ty.fieldType(i, zcu).toIntern();
|
|
const default_val = rhs_ty.structFieldDefaultValue(i, zcu);
|
|
values[i + lhs_len] = default_val.toIntern();
|
|
const operand_src = block.src(.{ .array_cat_rhs = .{
|
|
.array_cat_offset = src_node,
|
|
.elem_index = i,
|
|
} });
|
|
if (default_val.toIntern() == .unreachable_value) {
|
|
runtime_src = operand_src;
|
|
values[i + lhs_len] = .none;
|
|
}
|
|
}
|
|
break :rs runtime_src;
|
|
};
|
|
|
|
const tuple_ty: Type = .fromInterned(try zcu.intern_pool.getTupleType(zcu.gpa, pt.tid, .{
|
|
.types = types,
|
|
.values = values,
|
|
}));
|
|
|
|
const runtime_src = opt_runtime_src orelse {
|
|
const tuple_val = try pt.aggregateValue(tuple_ty, values);
|
|
return Air.internedToRef(tuple_val.toIntern());
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, final_len);
|
|
var i: u32 = 0;
|
|
while (i < lhs_len) : (i += 1) {
|
|
element_refs[i] = try sema.tupleFieldValByIndex(block, lhs, i, lhs_ty);
|
|
}
|
|
i = 0;
|
|
while (i < rhs_len) : (i += 1) {
|
|
element_refs[i + lhs_len] =
|
|
try sema.tupleFieldValByIndex(block, rhs, i, rhs_ty);
|
|
}
|
|
|
|
return block.addAggregateInit(tuple_ty, element_refs);
|
|
}
|
|
|
|
fn zirArrayCat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
const lhs_is_tuple = lhs_ty.isTuple(zcu);
|
|
const rhs_is_tuple = rhs_ty.isTuple(zcu);
|
|
if (lhs_is_tuple and rhs_is_tuple) {
|
|
return sema.analyzeTupleCat(block, inst_data.src_node, lhs, rhs);
|
|
}
|
|
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
|
|
const lhs_info = try sema.getArrayCatInfo(block, lhs_src, lhs, rhs_ty) orelse lhs_info: {
|
|
if (lhs_is_tuple) break :lhs_info undefined;
|
|
return sema.fail(block, lhs_src, "expected indexable; found '{f}'", .{lhs_ty.fmt(pt)});
|
|
};
|
|
const rhs_info = try sema.getArrayCatInfo(block, rhs_src, rhs, lhs_ty) orelse {
|
|
assert(!rhs_is_tuple);
|
|
return sema.fail(block, rhs_src, "expected indexable; found '{f}'", .{rhs_ty.fmt(pt)});
|
|
};
|
|
|
|
const resolved_elem_ty = t: {
|
|
var trash_block = block.makeSubBlock();
|
|
trash_block.comptime_reason = null;
|
|
defer trash_block.instructions.deinit(sema.gpa);
|
|
|
|
const instructions = [_]Air.Inst.Ref{
|
|
try trash_block.addBitCast(lhs_info.elem_type, .void_value),
|
|
try trash_block.addBitCast(rhs_info.elem_type, .void_value),
|
|
};
|
|
break :t try sema.resolvePeerTypes(block, src, &instructions, .{
|
|
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
|
|
});
|
|
};
|
|
|
|
// When there is a sentinel mismatch, no sentinel on the result.
|
|
// Otherwise, use the sentinel value provided by either operand,
|
|
// coercing it to the peer-resolved element type.
|
|
const res_sent_val: ?Value = s: {
|
|
if (lhs_info.sentinel) |lhs_sent_val| {
|
|
const lhs_sent = Air.internedToRef(lhs_sent_val.toIntern());
|
|
if (rhs_info.sentinel) |rhs_sent_val| {
|
|
const rhs_sent = Air.internedToRef(rhs_sent_val.toIntern());
|
|
const lhs_sent_casted = try sema.coerce(block, resolved_elem_ty, lhs_sent, lhs_src);
|
|
const rhs_sent_casted = try sema.coerce(block, resolved_elem_ty, rhs_sent, rhs_src);
|
|
const lhs_sent_casted_val = (try sema.resolveDefinedValue(block, lhs_src, lhs_sent_casted)).?;
|
|
const rhs_sent_casted_val = (try sema.resolveDefinedValue(block, rhs_src, rhs_sent_casted)).?;
|
|
if (try sema.valuesEqual(lhs_sent_casted_val, rhs_sent_casted_val, resolved_elem_ty)) {
|
|
break :s lhs_sent_casted_val;
|
|
} else {
|
|
break :s null;
|
|
}
|
|
} else {
|
|
const lhs_sent_casted = try sema.coerce(block, resolved_elem_ty, lhs_sent, lhs_src);
|
|
const lhs_sent_casted_val = (try sema.resolveDefinedValue(block, lhs_src, lhs_sent_casted)).?;
|
|
break :s lhs_sent_casted_val;
|
|
}
|
|
} else {
|
|
if (rhs_info.sentinel) |rhs_sent_val| {
|
|
const rhs_sent = Air.internedToRef(rhs_sent_val.toIntern());
|
|
const rhs_sent_casted = try sema.coerce(block, resolved_elem_ty, rhs_sent, rhs_src);
|
|
const rhs_sent_casted_val = (try sema.resolveDefinedValue(block, rhs_src, rhs_sent_casted)).?;
|
|
break :s rhs_sent_casted_val;
|
|
} else {
|
|
break :s null;
|
|
}
|
|
}
|
|
};
|
|
|
|
const lhs_len = try sema.usizeCast(block, lhs_src, lhs_info.len);
|
|
const rhs_len = try sema.usizeCast(block, rhs_src, rhs_info.len);
|
|
const result_len = std.math.add(usize, lhs_len, rhs_len) catch |err| switch (err) {
|
|
error.Overflow => return sema.fail(
|
|
block,
|
|
src,
|
|
"concatenating arrays of length {d} and {d} produces an array too large for this compiler implementation to handle",
|
|
.{ lhs_len, rhs_len },
|
|
),
|
|
};
|
|
|
|
const result_ty = try pt.arrayType(.{
|
|
.len = result_len,
|
|
.sentinel = if (res_sent_val) |v| v.toIntern() else .none,
|
|
.child = resolved_elem_ty.toIntern(),
|
|
});
|
|
const ptr_addrspace = p: {
|
|
if (lhs_ty.zigTypeTag(zcu) == .pointer) break :p lhs_ty.ptrAddressSpace(zcu);
|
|
if (rhs_ty.zigTypeTag(zcu) == .pointer) break :p rhs_ty.ptrAddressSpace(zcu);
|
|
break :p null;
|
|
};
|
|
|
|
const runtime_src = if (switch (lhs_ty.zigTypeTag(zcu)) {
|
|
.array, .@"struct" => try sema.resolveValue(lhs),
|
|
.pointer => try sema.resolveDefinedValue(block, lhs_src, lhs),
|
|
else => unreachable,
|
|
}) |lhs_val| rs: {
|
|
if (switch (rhs_ty.zigTypeTag(zcu)) {
|
|
.array, .@"struct" => try sema.resolveValue(rhs),
|
|
.pointer => try sema.resolveDefinedValue(block, rhs_src, rhs),
|
|
else => unreachable,
|
|
}) |rhs_val| {
|
|
const lhs_sub_val = if (lhs_ty.isSinglePointer(zcu))
|
|
try sema.pointerDeref(block, lhs_src, lhs_val, lhs_ty) orelse break :rs lhs_src
|
|
else if (lhs_ty.isSlice(zcu))
|
|
try sema.maybeDerefSliceAsArray(block, lhs_src, lhs_val) orelse break :rs lhs_src
|
|
else
|
|
lhs_val;
|
|
|
|
const rhs_sub_val = if (rhs_ty.isSinglePointer(zcu))
|
|
try sema.pointerDeref(block, rhs_src, rhs_val, rhs_ty) orelse break :rs rhs_src
|
|
else if (rhs_ty.isSlice(zcu))
|
|
try sema.maybeDerefSliceAsArray(block, rhs_src, rhs_val) orelse break :rs rhs_src
|
|
else
|
|
rhs_val;
|
|
|
|
const element_vals = try sema.arena.alloc(InternPool.Index, result_len);
|
|
var elem_i: u32 = 0;
|
|
while (elem_i < lhs_len) : (elem_i += 1) {
|
|
const lhs_elem_i = elem_i;
|
|
const elem_default_val = if (lhs_is_tuple) lhs_ty.structFieldDefaultValue(lhs_elem_i, zcu) else Value.@"unreachable";
|
|
const elem_val = if (elem_default_val.toIntern() == .unreachable_value) try lhs_sub_val.elemValue(pt, lhs_elem_i) else elem_default_val;
|
|
const elem_val_inst = Air.internedToRef(elem_val.toIntern());
|
|
const operand_src = block.src(.{ .array_cat_lhs = .{
|
|
.array_cat_offset = inst_data.src_node,
|
|
.elem_index = elem_i,
|
|
} });
|
|
const coerced_elem_val_inst = try sema.coerce(block, resolved_elem_ty, elem_val_inst, operand_src);
|
|
const coerced_elem_val = try sema.resolveConstValue(block, operand_src, coerced_elem_val_inst, undefined);
|
|
element_vals[elem_i] = coerced_elem_val.toIntern();
|
|
}
|
|
while (elem_i < result_len) : (elem_i += 1) {
|
|
const rhs_elem_i = elem_i - lhs_len;
|
|
const elem_default_val = if (rhs_is_tuple) rhs_ty.structFieldDefaultValue(rhs_elem_i, zcu) else Value.@"unreachable";
|
|
const elem_val = if (elem_default_val.toIntern() == .unreachable_value) try rhs_sub_val.elemValue(pt, rhs_elem_i) else elem_default_val;
|
|
const elem_val_inst = Air.internedToRef(elem_val.toIntern());
|
|
const operand_src = block.src(.{ .array_cat_rhs = .{
|
|
.array_cat_offset = inst_data.src_node,
|
|
.elem_index = @intCast(rhs_elem_i),
|
|
} });
|
|
const coerced_elem_val_inst = try sema.coerce(block, resolved_elem_ty, elem_val_inst, operand_src);
|
|
const coerced_elem_val = try sema.resolveConstValue(block, operand_src, coerced_elem_val_inst, undefined);
|
|
element_vals[elem_i] = coerced_elem_val.toIntern();
|
|
}
|
|
return sema.addConstantMaybeRef(
|
|
(try pt.aggregateValue(result_ty, element_vals)).toIntern(),
|
|
ptr_addrspace != null,
|
|
);
|
|
} else break :rs rhs_src;
|
|
} else lhs_src;
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
|
|
if (ptr_addrspace) |ptr_as| {
|
|
const constant_alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = result_ty.toIntern(),
|
|
.flags = .{
|
|
.address_space = ptr_as,
|
|
.is_const = true,
|
|
},
|
|
});
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = result_ty.toIntern(),
|
|
.flags = .{ .address_space = ptr_as },
|
|
});
|
|
const elem_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = resolved_elem_ty.toIntern(),
|
|
.flags = .{ .address_space = ptr_as },
|
|
});
|
|
|
|
const mutable_alloc = try block.addTy(.alloc, alloc_ty);
|
|
|
|
// if both the source and destination are arrays
|
|
// we can hotpath via a memcpy.
|
|
if (lhs_ty.zigTypeTag(zcu) == .pointer and
|
|
rhs_ty.zigTypeTag(zcu) == .pointer)
|
|
{
|
|
const slice_ty = try pt.ptrTypeSema(.{
|
|
.child = resolved_elem_ty.toIntern(),
|
|
.flags = .{
|
|
.size = .slice,
|
|
.address_space = ptr_as,
|
|
},
|
|
});
|
|
|
|
const many_ty = slice_ty.slicePtrFieldType(zcu);
|
|
const many_alloc = try block.addBitCast(many_ty, mutable_alloc);
|
|
|
|
// lhs_dest_slice = dest[0..lhs.len]
|
|
const slice_ty_ref = Air.internedToRef(slice_ty.toIntern());
|
|
const lhs_len_ref = try pt.intRef(.usize, lhs_len);
|
|
const lhs_dest_slice = try block.addInst(.{
|
|
.tag = .slice,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = slice_ty_ref,
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = many_alloc,
|
|
.rhs = lhs_len_ref,
|
|
}),
|
|
} },
|
|
});
|
|
|
|
_ = try block.addBinOp(.memcpy, lhs_dest_slice, lhs);
|
|
|
|
// rhs_dest_slice = dest[lhs.len..][0..rhs.len]
|
|
const rhs_len_ref = try pt.intRef(.usize, rhs_len);
|
|
const rhs_dest_offset = try block.addInst(.{
|
|
.tag = .ptr_add,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(many_ty.toIntern()),
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = many_alloc,
|
|
.rhs = lhs_len_ref,
|
|
}),
|
|
} },
|
|
});
|
|
const rhs_dest_slice = try block.addInst(.{
|
|
.tag = .slice,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = slice_ty_ref,
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = rhs_dest_offset,
|
|
.rhs = rhs_len_ref,
|
|
}),
|
|
} },
|
|
});
|
|
|
|
_ = try block.addBinOp(.memcpy, rhs_dest_slice, rhs);
|
|
|
|
if (res_sent_val) |sent_val| {
|
|
const elem_index = try pt.intRef(.usize, result_len);
|
|
const elem_ptr = try block.addPtrElemPtr(mutable_alloc, elem_index, elem_ptr_ty);
|
|
const init = Air.internedToRef((try pt.getCoerced(sent_val, lhs_info.elem_type)).toIntern());
|
|
try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store);
|
|
}
|
|
|
|
return block.addBitCast(constant_alloc_ty, mutable_alloc);
|
|
}
|
|
|
|
var elem_i: u32 = 0;
|
|
while (elem_i < lhs_len) : (elem_i += 1) {
|
|
const elem_index = try pt.intRef(.usize, elem_i);
|
|
const elem_ptr = try block.addPtrElemPtr(mutable_alloc, elem_index, elem_ptr_ty);
|
|
const operand_src = block.src(.{ .array_cat_lhs = .{
|
|
.array_cat_offset = inst_data.src_node,
|
|
.elem_index = elem_i,
|
|
} });
|
|
const init = try sema.elemVal(block, operand_src, lhs, elem_index, src, true);
|
|
try sema.storePtr2(block, src, elem_ptr, src, init, operand_src, .store);
|
|
}
|
|
while (elem_i < result_len) : (elem_i += 1) {
|
|
const rhs_elem_i = elem_i - lhs_len;
|
|
const elem_index = try pt.intRef(.usize, elem_i);
|
|
const rhs_index = try pt.intRef(.usize, rhs_elem_i);
|
|
const elem_ptr = try block.addPtrElemPtr(mutable_alloc, elem_index, elem_ptr_ty);
|
|
const operand_src = block.src(.{ .array_cat_rhs = .{
|
|
.array_cat_offset = inst_data.src_node,
|
|
.elem_index = @intCast(rhs_elem_i),
|
|
} });
|
|
const init = try sema.elemVal(block, operand_src, rhs, rhs_index, src, true);
|
|
try sema.storePtr2(block, src, elem_ptr, src, init, operand_src, .store);
|
|
}
|
|
if (res_sent_val) |sent_val| {
|
|
const elem_index = try pt.intRef(.usize, result_len);
|
|
const elem_ptr = try block.addPtrElemPtr(mutable_alloc, elem_index, elem_ptr_ty);
|
|
const init = Air.internedToRef((try pt.getCoerced(sent_val, lhs_info.elem_type)).toIntern());
|
|
try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store);
|
|
}
|
|
|
|
return block.addBitCast(constant_alloc_ty, mutable_alloc);
|
|
}
|
|
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, result_len);
|
|
{
|
|
var elem_i: u32 = 0;
|
|
while (elem_i < lhs_len) : (elem_i += 1) {
|
|
const index = try pt.intRef(.usize, elem_i);
|
|
const operand_src = block.src(.{ .array_cat_lhs = .{
|
|
.array_cat_offset = inst_data.src_node,
|
|
.elem_index = elem_i,
|
|
} });
|
|
const init = try sema.elemVal(block, operand_src, lhs, index, src, true);
|
|
element_refs[elem_i] = try sema.coerce(block, resolved_elem_ty, init, operand_src);
|
|
}
|
|
while (elem_i < result_len) : (elem_i += 1) {
|
|
const rhs_elem_i = elem_i - lhs_len;
|
|
const index = try pt.intRef(.usize, rhs_elem_i);
|
|
const operand_src = block.src(.{ .array_cat_rhs = .{
|
|
.array_cat_offset = inst_data.src_node,
|
|
.elem_index = @intCast(rhs_elem_i),
|
|
} });
|
|
const init = try sema.elemVal(block, operand_src, rhs, index, src, true);
|
|
element_refs[elem_i] = try sema.coerce(block, resolved_elem_ty, init, operand_src);
|
|
}
|
|
}
|
|
|
|
return block.addAggregateInit(result_ty, element_refs);
|
|
}
|
|
|
|
fn getArrayCatInfo(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, peer_ty: Type) !?Type.ArrayInfo {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.array => return operand_ty.arrayInfo(zcu),
|
|
.pointer => {
|
|
const ptr_info = operand_ty.ptrInfo(zcu);
|
|
switch (ptr_info.flags.size) {
|
|
.slice => {
|
|
const val = try sema.resolveConstDefinedValue(block, src, operand, .{ .simple = .slice_cat_operand });
|
|
return .{
|
|
.elem_type = .fromInterned(ptr_info.child),
|
|
.sentinel = switch (ptr_info.sentinel) {
|
|
.none => null,
|
|
else => Value.fromInterned(ptr_info.sentinel),
|
|
},
|
|
.len = try val.sliceLen(pt),
|
|
};
|
|
},
|
|
.one => {
|
|
if (Type.fromInterned(ptr_info.child).zigTypeTag(zcu) == .array) {
|
|
return Type.fromInterned(ptr_info.child).arrayInfo(zcu);
|
|
}
|
|
},
|
|
.c, .many => {},
|
|
}
|
|
},
|
|
.@"struct" => {
|
|
if (operand_ty.isTuple(zcu) and peer_ty.isIndexable(zcu)) {
|
|
assert(!peer_ty.isTuple(zcu));
|
|
return .{
|
|
.elem_type = peer_ty.elemType2(zcu),
|
|
.sentinel = null,
|
|
.len = operand_ty.arrayLen(zcu),
|
|
};
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
return null;
|
|
}
|
|
|
|
fn analyzeTupleMul(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src_node: std.zig.Ast.Node.Offset,
|
|
operand: Air.Inst.Ref,
|
|
factor: usize,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
const src = block.nodeOffset(src_node);
|
|
const len_src = block.src(.{ .node_offset_bin_rhs = src_node });
|
|
|
|
const tuple_len = operand_ty.structFieldCount(zcu);
|
|
const final_len = std.math.mul(usize, tuple_len, factor) catch
|
|
return sema.fail(block, len_src, "operation results in overflow", .{});
|
|
|
|
if (final_len == 0) {
|
|
return .empty_tuple;
|
|
}
|
|
const types = try sema.arena.alloc(InternPool.Index, final_len);
|
|
const values = try sema.arena.alloc(InternPool.Index, final_len);
|
|
|
|
const opt_runtime_src = rs: {
|
|
var runtime_src: ?LazySrcLoc = null;
|
|
for (0..tuple_len) |i| {
|
|
types[i] = operand_ty.fieldType(i, zcu).toIntern();
|
|
values[i] = operand_ty.structFieldDefaultValue(i, zcu).toIntern();
|
|
const operand_src = block.src(.{ .array_cat_lhs = .{
|
|
.array_cat_offset = src_node,
|
|
.elem_index = @intCast(i),
|
|
} });
|
|
if (values[i] == .unreachable_value) {
|
|
runtime_src = operand_src;
|
|
values[i] = .none; // TODO don't treat unreachable_value as special
|
|
}
|
|
}
|
|
for (0..factor) |i| {
|
|
@memmove(types[tuple_len * i ..][0..tuple_len], types[0..tuple_len]);
|
|
@memmove(values[tuple_len * i ..][0..tuple_len], values[0..tuple_len]);
|
|
}
|
|
break :rs runtime_src;
|
|
};
|
|
|
|
const tuple_ty: Type = .fromInterned(try zcu.intern_pool.getTupleType(zcu.gpa, pt.tid, .{
|
|
.types = types,
|
|
.values = values,
|
|
}));
|
|
|
|
const runtime_src = opt_runtime_src orelse {
|
|
const tuple_val = try pt.aggregateValue(tuple_ty, values);
|
|
return Air.internedToRef(tuple_val.toIntern());
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, final_len);
|
|
var i: u32 = 0;
|
|
while (i < tuple_len) : (i += 1) {
|
|
element_refs[i] = try sema.tupleFieldValByIndex(block, operand, @intCast(i), operand_ty);
|
|
}
|
|
i = 1;
|
|
while (i < factor) : (i += 1) {
|
|
@memcpy(element_refs[tuple_len * i ..][0..tuple_len], element_refs[0..tuple_len]);
|
|
}
|
|
|
|
return block.addAggregateInit(tuple_ty, element_refs);
|
|
}
|
|
|
|
fn zirArrayMul(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.ArrayMul, inst_data.payload_index).data;
|
|
const uncoerced_lhs = try sema.resolveInst(extra.lhs);
|
|
const uncoerced_lhs_ty = sema.typeOf(uncoerced_lhs);
|
|
const src: LazySrcLoc = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const operator_src = block.src(.{ .node_offset_main_token = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
|
|
const lhs, const lhs_ty = coerced_lhs: {
|
|
// If we have a result type, we might be able to do this more efficiently
|
|
// by coercing the LHS first. Specifically, if we want an array or vector
|
|
// and have a tuple, coerce the tuple immediately.
|
|
no_coerce: {
|
|
if (extra.res_ty == .none) break :no_coerce;
|
|
const res_ty = try sema.resolveTypeOrPoison(block, src, extra.res_ty) orelse break :no_coerce;
|
|
if (!uncoerced_lhs_ty.isTuple(zcu)) break :no_coerce;
|
|
const lhs_len = uncoerced_lhs_ty.structFieldCount(zcu);
|
|
const lhs_dest_ty = switch (res_ty.zigTypeTag(zcu)) {
|
|
else => break :no_coerce,
|
|
.array => try pt.arrayType(.{
|
|
.child = res_ty.childType(zcu).toIntern(),
|
|
.len = lhs_len,
|
|
.sentinel = if (res_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
}),
|
|
.vector => try pt.vectorType(.{
|
|
.child = res_ty.childType(zcu).toIntern(),
|
|
.len = lhs_len,
|
|
}),
|
|
};
|
|
// Attempt to coerce to this type, but don't emit an error if it fails. Instead,
|
|
// just exit out of this path and let the usual error happen later, so that error
|
|
// messages are consistent.
|
|
const coerced = sema.coerceExtra(block, lhs_dest_ty, uncoerced_lhs, lhs_src, .{ .report_err = false }) catch |err| switch (err) {
|
|
error.NotCoercible => break :no_coerce,
|
|
else => |e| return e,
|
|
};
|
|
break :coerced_lhs .{ coerced, lhs_dest_ty };
|
|
}
|
|
break :coerced_lhs .{ uncoerced_lhs, uncoerced_lhs_ty };
|
|
};
|
|
|
|
if (lhs_ty.isTuple(zcu)) {
|
|
// In `**` rhs must be comptime-known, but lhs can be runtime-known
|
|
const factor = try sema.resolveInt(block, rhs_src, extra.rhs, .usize, .{ .simple = .array_mul_factor });
|
|
const factor_casted = try sema.usizeCast(block, rhs_src, factor);
|
|
return sema.analyzeTupleMul(block, inst_data.src_node, lhs, factor_casted);
|
|
}
|
|
|
|
// Analyze the lhs first, to catch the case that someone tried to do exponentiation
|
|
const lhs_info = try sema.getArrayCatInfo(block, lhs_src, lhs, lhs_ty) orelse {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(lhs_src, "expected indexable; found '{f}'", .{lhs_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
switch (lhs_ty.zigTypeTag(zcu)) {
|
|
.int, .float, .comptime_float, .comptime_int, .vector => {
|
|
try sema.errNote(operator_src, msg, "this operator multiplies arrays; use std.math.pow for exponentiation", .{});
|
|
},
|
|
else => {},
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
};
|
|
|
|
// In `**` rhs must be comptime-known, but lhs can be runtime-known
|
|
const factor = try sema.resolveInt(block, rhs_src, extra.rhs, .usize, .{ .simple = .array_mul_factor });
|
|
|
|
const result_len_u64 = std.math.mul(u64, lhs_info.len, factor) catch
|
|
return sema.fail(block, rhs_src, "operation results in overflow", .{});
|
|
const result_len = try sema.usizeCast(block, src, result_len_u64);
|
|
|
|
const result_ty = try pt.arrayType(.{
|
|
.len = result_len,
|
|
.sentinel = if (lhs_info.sentinel) |s| s.toIntern() else .none,
|
|
.child = lhs_info.elem_type.toIntern(),
|
|
});
|
|
|
|
const ptr_addrspace = if (lhs_ty.zigTypeTag(zcu) == .pointer) lhs_ty.ptrAddressSpace(zcu) else null;
|
|
const lhs_len = try sema.usizeCast(block, lhs_src, lhs_info.len);
|
|
|
|
if (try sema.resolveValue(lhs)) |lhs_val| ct: {
|
|
const lhs_sub_val = if (lhs_ty.isSinglePointer(zcu))
|
|
try sema.pointerDeref(block, lhs_src, lhs_val, lhs_ty) orelse break :ct
|
|
else if (lhs_ty.isSlice(zcu))
|
|
try sema.maybeDerefSliceAsArray(block, lhs_src, lhs_val) orelse break :ct
|
|
else
|
|
lhs_val;
|
|
|
|
const val = v: {
|
|
// Optimization for the common pattern of a single element repeated N times, such
|
|
// as zero-filling a byte array.
|
|
if (lhs_len == 1 and lhs_info.sentinel == null) {
|
|
const elem_val = try lhs_sub_val.elemValue(pt, 0);
|
|
break :v try pt.aggregateSplatValue(result_ty, elem_val);
|
|
}
|
|
|
|
const element_vals = try sema.arena.alloc(InternPool.Index, result_len);
|
|
var elem_i: usize = 0;
|
|
while (elem_i < result_len) {
|
|
var lhs_i: usize = 0;
|
|
while (lhs_i < lhs_len) : (lhs_i += 1) {
|
|
const elem_val = try lhs_sub_val.elemValue(pt, lhs_i);
|
|
element_vals[elem_i] = elem_val.toIntern();
|
|
elem_i += 1;
|
|
}
|
|
}
|
|
break :v try pt.aggregateValue(result_ty, element_vals);
|
|
};
|
|
return sema.addConstantMaybeRef(val.toIntern(), ptr_addrspace != null);
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, lhs_src);
|
|
|
|
// Grab all the LHS values ahead of time, rather than repeatedly emitting instructions
|
|
// to get the same elem values.
|
|
const lhs_vals = try sema.arena.alloc(Air.Inst.Ref, lhs_len);
|
|
for (lhs_vals, 0..) |*lhs_val, idx| {
|
|
const idx_ref = try pt.intRef(.usize, idx);
|
|
lhs_val.* = try sema.elemVal(block, lhs_src, lhs, idx_ref, src, false);
|
|
}
|
|
|
|
if (ptr_addrspace) |ptr_as| {
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = result_ty.toIntern(),
|
|
.flags = .{
|
|
.address_space = ptr_as,
|
|
.is_const = true,
|
|
},
|
|
});
|
|
const alloc = try block.addTy(.alloc, alloc_ty);
|
|
const elem_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = lhs_info.elem_type.toIntern(),
|
|
.flags = .{ .address_space = ptr_as },
|
|
});
|
|
|
|
var elem_i: usize = 0;
|
|
while (elem_i < result_len) {
|
|
for (lhs_vals) |lhs_val| {
|
|
const elem_index = try pt.intRef(.usize, elem_i);
|
|
const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty);
|
|
try sema.storePtr2(block, src, elem_ptr, src, lhs_val, lhs_src, .store);
|
|
elem_i += 1;
|
|
}
|
|
}
|
|
if (lhs_info.sentinel) |sent_val| {
|
|
const elem_index = try pt.intRef(.usize, result_len);
|
|
const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty);
|
|
const init = Air.internedToRef(sent_val.toIntern());
|
|
try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store);
|
|
}
|
|
|
|
return alloc;
|
|
}
|
|
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, result_len);
|
|
for (0..try sema.usizeCast(block, rhs_src, factor)) |i| {
|
|
@memcpy(element_refs[i * lhs_len ..][0..lhs_len], lhs_vals);
|
|
}
|
|
return block.addAggregateInit(result_ty, element_refs);
|
|
}
|
|
|
|
fn zirNegate(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src = src;
|
|
const rhs_src = block.src(.{ .node_offset_un_op = inst_data.src_node });
|
|
|
|
const rhs = try sema.resolveInst(inst_data.operand);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const rhs_scalar_ty = rhs_ty.scalarType(zcu);
|
|
|
|
if (rhs_scalar_ty.isUnsignedInt(zcu) or switch (rhs_scalar_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int, .float, .comptime_float => false,
|
|
else => true,
|
|
}) {
|
|
return sema.fail(block, src, "negation of type '{f}'", .{rhs_ty.fmt(pt)});
|
|
}
|
|
|
|
if (rhs_scalar_ty.isAnyFloat()) {
|
|
// We handle float negation here to ensure negative zero is represented in the bits.
|
|
if (try sema.resolveValue(rhs)) |rhs_val| {
|
|
const result = try arith.negateFloat(sema, rhs_ty, rhs_val);
|
|
return Air.internedToRef(result.toIntern());
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addUnOp(if (block.float_mode == .optimized) .neg_optimized else .neg, rhs);
|
|
}
|
|
|
|
const lhs = Air.internedToRef((try sema.splat(rhs_ty, try pt.intValue(rhs_scalar_ty, 0))).toIntern());
|
|
return sema.analyzeArithmetic(block, .sub, lhs, rhs, src, lhs_src, rhs_src, true);
|
|
}
|
|
|
|
fn zirNegateWrap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src = src;
|
|
const rhs_src = block.src(.{ .node_offset_un_op = inst_data.src_node });
|
|
|
|
const rhs = try sema.resolveInst(inst_data.operand);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const rhs_scalar_ty = rhs_ty.scalarType(zcu);
|
|
|
|
switch (rhs_scalar_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int, .float, .comptime_float => {},
|
|
else => return sema.fail(block, src, "negation of type '{f}'", .{rhs_ty.fmt(pt)}),
|
|
}
|
|
|
|
const lhs = Air.internedToRef((try sema.splat(rhs_ty, try pt.intValue(rhs_scalar_ty, 0))).toIntern());
|
|
return sema.analyzeArithmetic(block, .subwrap, lhs, rhs, src, lhs_src, rhs_src, true);
|
|
}
|
|
|
|
fn zirArithmetic(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
zir_tag: Zir.Inst.Tag,
|
|
safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
|
|
return sema.analyzeArithmetic(block, zir_tag, lhs, rhs, src, lhs_src, rhs_src, safety);
|
|
}
|
|
|
|
fn zirDiv(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
try sema.checkInvalidPtrIntArithmetic(block, src, lhs_ty);
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const lhs_scalar_ty = lhs_ty.scalarType(zcu);
|
|
const scalar_tag = resolved_type.scalarType(zcu).zigTypeTag(zcu);
|
|
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
if ((lhs_ty.zigTypeTag(zcu) == .comptime_float and rhs_ty.zigTypeTag(zcu) == .comptime_int) or
|
|
(lhs_ty.zigTypeTag(zcu) == .comptime_int and rhs_ty.zigTypeTag(zcu) == .comptime_float))
|
|
{
|
|
// If it makes a difference whether we coerce to ints or floats before doing the division, error.
|
|
// If lhs % rhs is 0, it doesn't matter.
|
|
const lhs_val = maybe_lhs_val orelse unreachable;
|
|
const rhs_val = maybe_rhs_val orelse unreachable;
|
|
const rem = arith.modRem(sema, block, resolved_type, lhs_val, rhs_val, lhs_src, rhs_src, .rem) catch unreachable;
|
|
if (!rem.compareAllWithZero(.eq, zcu)) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"ambiguous coercion of division operands '{f}' and '{f}'; non-zero remainder '{f}'",
|
|
.{ lhs_ty.fmt(pt), rhs_ty.fmt(pt), rem.fmtValueSema(pt, sema) },
|
|
);
|
|
}
|
|
}
|
|
|
|
// TODO: emit compile error when .div is used on integers and there would be an
|
|
// ambiguous result between div_floor and div_trunc.
|
|
|
|
// The rules here are like those in `analyzeArithmetic`:
|
|
//
|
|
// * If both operands are comptime-known, call the corresponding function in `arith`.
|
|
// Inputs which would be IB at runtime are compile errors.
|
|
//
|
|
// * Otherwise, if one operand is comptime-known `undefined`, we either trigger a compile error
|
|
// or return `undefined`, depending on whether this operator can trigger IB.
|
|
//
|
|
// * No other comptime operand determines a comptime result, so remaining cases are runtime ops.
|
|
|
|
const allow_div_zero = !is_int and
|
|
resolved_type.toIntern() != .comptime_float_type and
|
|
block.float_mode == .strict;
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
return .fromValue(try arith.div(sema, block, resolved_type, lhs_val, rhs_val, src, lhs_src, rhs_src, .div));
|
|
}
|
|
if (allow_div_zero) {
|
|
if (lhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
}
|
|
} else if (maybe_rhs_val) |rhs_val| {
|
|
if (allow_div_zero) {
|
|
if (rhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
if (rhs_val.anyScalarIsZero(zcu)) return sema.failWithDivideByZero(block, rhs_src);
|
|
}
|
|
}
|
|
|
|
if (block.wantSafety()) {
|
|
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
|
|
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
|
|
}
|
|
|
|
const air_tag: Air.Inst.Tag = if (is_int) blk: {
|
|
if (lhs_ty.isSignedInt(zcu) or rhs_ty.isSignedInt(zcu)) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"division with '{f}' and '{f}': signed integers must use @divTrunc, @divFloor, or @divExact",
|
|
.{ lhs_ty.fmt(pt), rhs_ty.fmt(pt) },
|
|
);
|
|
}
|
|
break :blk .div_trunc;
|
|
} else switch (block.float_mode) {
|
|
.optimized => .div_float_optimized,
|
|
.strict => .div_float,
|
|
};
|
|
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn zirDivExact(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
try sema.checkInvalidPtrIntArithmetic(block, src, lhs_ty);
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const lhs_scalar_ty = lhs_ty.scalarType(zcu);
|
|
const scalar_tag = resolved_type.scalarType(zcu).zigTypeTag(zcu);
|
|
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_exact);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
// Because `@divExact` can trigger Illegal Behavior, undefined operands trigger Illegal Behavior.
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const result = try arith.div(sema, block, resolved_type, lhs_val, rhs_val, src, lhs_src, rhs_src, .div_exact);
|
|
return Air.internedToRef(result.toIntern());
|
|
}
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
} else if (maybe_rhs_val) |rhs_val| {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
if (rhs_val.anyScalarIsZero(zcu)) return sema.failWithDivideByZero(block, rhs_src);
|
|
}
|
|
|
|
// Depending on whether safety is enabled, we will have a slightly different strategy
|
|
// here. The `div_exact` AIR instruction causes illegal behavior if a remainder
|
|
// is produced, so in the safety check case, it cannot be used. Instead we do a
|
|
// div_trunc and check for remainder.
|
|
|
|
if (block.wantSafety()) {
|
|
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
|
|
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
|
|
|
|
const result = try block.addBinOp(.div_trunc, casted_lhs, casted_rhs);
|
|
const ok = if (!is_int) ok: {
|
|
const floored = try block.addUnOp(.floor, result);
|
|
|
|
if (resolved_type.zigTypeTag(zcu) == .vector) {
|
|
const eql = try block.addCmpVector(result, floored, .eq);
|
|
break :ok try block.addReduce(eql, .And);
|
|
} else {
|
|
const is_in_range = try block.addBinOp(switch (block.float_mode) {
|
|
.strict => .cmp_eq,
|
|
.optimized => .cmp_eq_optimized,
|
|
}, result, floored);
|
|
break :ok is_in_range;
|
|
}
|
|
} else ok: {
|
|
const remainder = try block.addBinOp(.rem, casted_lhs, casted_rhs);
|
|
|
|
const scalar_zero = switch (scalar_tag) {
|
|
.comptime_float, .float => try pt.floatValue(resolved_type.scalarType(zcu), 0.0),
|
|
.comptime_int, .int => try pt.intValue(resolved_type.scalarType(zcu), 0),
|
|
else => unreachable,
|
|
};
|
|
if (resolved_type.zigTypeTag(zcu) == .vector) {
|
|
const zero_val = try sema.splat(resolved_type, scalar_zero);
|
|
const zero = Air.internedToRef(zero_val.toIntern());
|
|
const eql = try block.addCmpVector(remainder, zero, .eq);
|
|
break :ok try block.addReduce(eql, .And);
|
|
} else {
|
|
const zero = Air.internedToRef(scalar_zero.toIntern());
|
|
const is_in_range = try block.addBinOp(.cmp_eq, remainder, zero);
|
|
break :ok is_in_range;
|
|
}
|
|
};
|
|
try sema.addSafetyCheck(block, src, ok, .exact_division_remainder);
|
|
return result;
|
|
}
|
|
|
|
return block.addBinOp(airTag(block, is_int, .div_exact, .div_exact_optimized), casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn zirDivFloor(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
try sema.checkInvalidPtrIntArithmetic(block, src, lhs_ty);
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const lhs_scalar_ty = lhs_ty.scalarType(zcu);
|
|
const scalar_tag = resolved_type.scalarType(zcu).zigTypeTag(zcu);
|
|
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_floor);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
const allow_div_zero = !is_int and
|
|
resolved_type.toIntern() != .comptime_float_type and
|
|
block.float_mode == .strict;
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const result = try arith.div(sema, block, resolved_type, lhs_val, rhs_val, src, lhs_src, rhs_src, .div_floor);
|
|
return Air.internedToRef(result.toIntern());
|
|
}
|
|
if (allow_div_zero) {
|
|
if (lhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
}
|
|
} else if (maybe_rhs_val) |rhs_val| {
|
|
if (allow_div_zero) {
|
|
if (rhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
if (rhs_val.anyScalarIsZero(zcu)) return sema.failWithDivideByZero(block, rhs_src);
|
|
}
|
|
}
|
|
|
|
if (block.wantSafety()) {
|
|
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
|
|
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
|
|
}
|
|
|
|
return block.addBinOp(airTag(block, is_int, .div_floor, .div_floor_optimized), casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn zirDivTrunc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
try sema.checkInvalidPtrIntArithmetic(block, src, lhs_ty);
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const lhs_scalar_ty = lhs_ty.scalarType(zcu);
|
|
const scalar_tag = resolved_type.scalarType(zcu).zigTypeTag(zcu);
|
|
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_trunc);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
const allow_div_zero = !is_int and
|
|
resolved_type.toIntern() != .comptime_float_type and
|
|
block.float_mode == .strict;
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const result = try arith.div(sema, block, resolved_type, lhs_val, rhs_val, src, lhs_src, rhs_src, .div_trunc);
|
|
return Air.internedToRef(result.toIntern());
|
|
}
|
|
if (allow_div_zero) {
|
|
if (lhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
}
|
|
} else if (maybe_rhs_val) |rhs_val| {
|
|
if (allow_div_zero) {
|
|
if (rhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
if (rhs_val.anyScalarIsZero(zcu)) return sema.failWithDivideByZero(block, rhs_src);
|
|
}
|
|
}
|
|
|
|
if (block.wantSafety()) {
|
|
try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int);
|
|
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
|
|
}
|
|
|
|
return block.addBinOp(airTag(block, is_int, .div_trunc, .div_trunc_optimized), casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn addDivIntOverflowSafety(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
resolved_type: Type,
|
|
lhs_scalar_ty: Type,
|
|
maybe_lhs_val: ?Value,
|
|
maybe_rhs_val: ?Value,
|
|
casted_lhs: Air.Inst.Ref,
|
|
casted_rhs: Air.Inst.Ref,
|
|
is_int: bool,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (!is_int) return;
|
|
|
|
// If the LHS is unsigned, it cannot cause overflow.
|
|
if (!lhs_scalar_ty.isSignedInt(zcu)) return;
|
|
|
|
// If the LHS is widened to a larger integer type, no overflow is possible.
|
|
if (lhs_scalar_ty.intInfo(zcu).bits < resolved_type.intInfo(zcu).bits) {
|
|
return;
|
|
}
|
|
|
|
const min_int = try resolved_type.minInt(pt, resolved_type);
|
|
const neg_one_scalar = try pt.intValue(lhs_scalar_ty, -1);
|
|
const neg_one = try sema.splat(resolved_type, neg_one_scalar);
|
|
|
|
// If the LHS is comptime-known to be not equal to the min int,
|
|
// no overflow is possible.
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (try lhs_val.compareAll(.neq, min_int, resolved_type, pt)) return;
|
|
}
|
|
|
|
// If the RHS is comptime-known to not be equal to -1, no overflow is possible.
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (try rhs_val.compareAll(.neq, neg_one, resolved_type, pt)) return;
|
|
}
|
|
|
|
if (resolved_type.zigTypeTag(zcu) == .vector) {
|
|
const vec_len = resolved_type.vectorLen(zcu);
|
|
|
|
// This is a bool vector whose elements are true if the LHS element does NOT equal `min_int`.
|
|
const lhs_ok: Air.Inst.Ref = if (maybe_lhs_val) |lhs_val| ok: {
|
|
// The operand is comptime-known; intern a constant bool vector for the potentially unsafe elements.
|
|
const min_int_scalar = try min_int.elemValue(pt, 0);
|
|
const elems_ok = try sema.arena.alloc(InternPool.Index, vec_len);
|
|
for (elems_ok, 0..) |*elem_ok, elem_idx| {
|
|
const elem_val = try lhs_val.elemValue(pt, elem_idx);
|
|
elem_ok.* = if (elem_val.eqlScalarNum(min_int_scalar, zcu)) .bool_false else .bool_true;
|
|
}
|
|
break :ok .fromValue(try pt.aggregateValue(try pt.vectorType(.{
|
|
.len = vec_len,
|
|
.child = .bool_type,
|
|
}), elems_ok));
|
|
} else ok: {
|
|
// The operand isn't comptime-known; add a runtime comparison.
|
|
const min_int_ref = Air.internedToRef(min_int.toIntern());
|
|
break :ok try block.addCmpVector(casted_lhs, min_int_ref, .neq);
|
|
};
|
|
|
|
// This is a bool vector whose elements are true if the RHS element does NOT equal -1.
|
|
const rhs_ok: Air.Inst.Ref = if (maybe_rhs_val) |rhs_val| ok: {
|
|
// The operand is comptime-known; intern a constant bool vector for the potentially unsafe elements.
|
|
const elems_ok = try sema.arena.alloc(InternPool.Index, vec_len);
|
|
for (elems_ok, 0..) |*elem_ok, elem_idx| {
|
|
const elem_val = try rhs_val.elemValue(pt, elem_idx);
|
|
elem_ok.* = if (elem_val.eqlScalarNum(neg_one_scalar, zcu)) .bool_false else .bool_true;
|
|
}
|
|
break :ok .fromValue(try pt.aggregateValue(try pt.vectorType(.{
|
|
.len = vec_len,
|
|
.child = .bool_type,
|
|
}), elems_ok));
|
|
} else ok: {
|
|
// The operand isn't comptime-known; add a runtime comparison.
|
|
const neg_one_ref = Air.internedToRef(neg_one.toIntern());
|
|
break :ok try block.addCmpVector(casted_rhs, neg_one_ref, .neq);
|
|
};
|
|
|
|
const ok = try block.addReduce(try block.addBinOp(.bool_or, lhs_ok, rhs_ok), .And);
|
|
try sema.addSafetyCheck(block, src, ok, .integer_overflow);
|
|
} else {
|
|
const lhs_ok: Air.Inst.Ref = if (maybe_lhs_val == null) ok: {
|
|
const min_int_ref = Air.internedToRef(min_int.toIntern());
|
|
break :ok try block.addBinOp(.cmp_neq, casted_lhs, min_int_ref);
|
|
} else .none; // means false
|
|
const rhs_ok: Air.Inst.Ref = if (maybe_rhs_val == null) ok: {
|
|
const neg_one_ref = Air.internedToRef(neg_one.toIntern());
|
|
break :ok try block.addBinOp(.cmp_neq, casted_rhs, neg_one_ref);
|
|
} else .none; // means false
|
|
|
|
const ok = if (lhs_ok != .none and rhs_ok != .none)
|
|
try block.addBinOp(.bool_or, lhs_ok, rhs_ok)
|
|
else if (lhs_ok != .none)
|
|
lhs_ok
|
|
else if (rhs_ok != .none)
|
|
rhs_ok
|
|
else
|
|
unreachable;
|
|
|
|
try sema.addSafetyCheck(block, src, ok, .integer_overflow);
|
|
}
|
|
}
|
|
|
|
fn addDivByZeroSafety(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
resolved_type: Type,
|
|
maybe_rhs_val: ?Value,
|
|
casted_rhs: Air.Inst.Ref,
|
|
is_int: bool,
|
|
) CompileError!void {
|
|
// Strict IEEE floats have well-defined division by zero.
|
|
if (!is_int and block.float_mode == .strict) return;
|
|
|
|
// If rhs was comptime-known to be zero a compile error would have been
|
|
// emitted above.
|
|
if (maybe_rhs_val != null) return;
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const scalar_zero = if (is_int)
|
|
try pt.intValue(resolved_type.scalarType(zcu), 0)
|
|
else
|
|
try pt.floatValue(resolved_type.scalarType(zcu), 0.0);
|
|
const ok = if (resolved_type.zigTypeTag(zcu) == .vector) ok: {
|
|
const zero_val = try sema.splat(resolved_type, scalar_zero);
|
|
const zero = Air.internedToRef(zero_val.toIntern());
|
|
const ok = try block.addCmpVector(casted_rhs, zero, .neq);
|
|
break :ok try block.addReduce(ok, .And);
|
|
} else ok: {
|
|
const zero = Air.internedToRef(scalar_zero.toIntern());
|
|
break :ok try block.addBinOp(if (is_int) .cmp_neq else .cmp_neq_optimized, casted_rhs, zero);
|
|
};
|
|
try sema.addSafetyCheck(block, src, ok, .divide_by_zero);
|
|
}
|
|
|
|
fn airTag(block: *Block, is_int: bool, normal: Air.Inst.Tag, optimized: Air.Inst.Tag) Air.Inst.Tag {
|
|
if (is_int) return normal;
|
|
return switch (block.float_mode) {
|
|
.strict => normal,
|
|
.optimized => optimized,
|
|
};
|
|
}
|
|
|
|
fn zirModRem(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
try sema.checkInvalidPtrIntArithmetic(block, src, lhs_ty);
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const lhs_scalar_ty = lhs_ty.scalarType(zcu);
|
|
const rhs_scalar_ty = rhs_ty.scalarType(zcu);
|
|
const scalar_tag = resolved_type.scalarType(zcu).zigTypeTag(zcu);
|
|
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .mod_rem);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
const lhs_maybe_negative = a: {
|
|
if (lhs_scalar_ty.isUnsignedInt(zcu)) break :a false;
|
|
const lhs_val = maybe_lhs_val orelse break :a true;
|
|
if (lhs_val.compareAllWithZero(.gte, zcu)) break :a false;
|
|
break :a true;
|
|
};
|
|
const rhs_maybe_negative = a: {
|
|
if (rhs_scalar_ty.isUnsignedInt(zcu)) break :a false;
|
|
const rhs_val = maybe_rhs_val orelse break :a true;
|
|
if (rhs_val.compareAllWithZero(.gte, zcu)) break :a false;
|
|
break :a true;
|
|
};
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const result = try arith.modRem(sema, block, resolved_type, lhs_val, rhs_val, lhs_src, rhs_src, .rem);
|
|
if (lhs_maybe_negative or rhs_maybe_negative) {
|
|
if (!result.compareAllWithZero(.eq, zcu)) {
|
|
// Non-zero result means ambiguity between mod and rem
|
|
return sema.failWithModRemNegative(block, src: {
|
|
if (lhs_maybe_negative) break :src lhs_src;
|
|
if (rhs_maybe_negative) break :src rhs_src;
|
|
unreachable;
|
|
}, lhs_ty, rhs_ty);
|
|
}
|
|
}
|
|
return Air.internedToRef(result.toIntern());
|
|
}
|
|
}
|
|
|
|
// Result not comptime-known, so floats and signed integers are illegal due to mod/rem ambiguity
|
|
if (lhs_maybe_negative or rhs_maybe_negative) {
|
|
return sema.failWithModRemNegative(block, src: {
|
|
if (lhs_maybe_negative) break :src lhs_src;
|
|
if (rhs_maybe_negative) break :src rhs_src;
|
|
unreachable;
|
|
}, lhs_ty, rhs_ty);
|
|
}
|
|
|
|
const allow_div_zero = !is_int and
|
|
resolved_type.toIntern() != .comptime_float_type and
|
|
block.float_mode == .strict;
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (allow_div_zero) {
|
|
if (lhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
}
|
|
} else if (maybe_rhs_val) |rhs_val| {
|
|
if (allow_div_zero) {
|
|
if (rhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
if (rhs_val.anyScalarIsZero(zcu)) return sema.failWithDivideByZero(block, rhs_src);
|
|
}
|
|
}
|
|
|
|
if (block.wantSafety()) {
|
|
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
|
|
}
|
|
|
|
const air_tag = airTag(block, is_int, .rem, .rem_optimized);
|
|
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn zirMod(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
try sema.checkInvalidPtrIntArithmetic(block, src, lhs_ty);
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const scalar_tag = resolved_type.scalarType(zcu).zigTypeTag(zcu);
|
|
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .mod);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
const allow_div_zero = !is_int and
|
|
resolved_type.toIntern() != .comptime_float_type and
|
|
block.float_mode == .strict;
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const result = try arith.modRem(sema, block, resolved_type, lhs_val, rhs_val, lhs_src, rhs_src, .mod);
|
|
return Air.internedToRef(result.toIntern());
|
|
}
|
|
if (allow_div_zero) {
|
|
if (lhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
}
|
|
} else if (maybe_rhs_val) |rhs_val| {
|
|
if (allow_div_zero) {
|
|
if (rhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
if (rhs_val.anyScalarIsZero(zcu)) return sema.failWithDivideByZero(block, rhs_src);
|
|
}
|
|
}
|
|
|
|
if (block.wantSafety()) {
|
|
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
|
|
}
|
|
|
|
const air_tag = airTag(block, is_int, .mod, .mod_optimized);
|
|
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn zirRem(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const lhs_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
try sema.checkInvalidPtrIntArithmetic(block, src, lhs_ty);
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const scalar_tag = resolved_type.scalarType(zcu).zigTypeTag(zcu);
|
|
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .rem);
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
const allow_div_zero = !is_int and
|
|
resolved_type.toIntern() != .comptime_float_type and
|
|
block.float_mode == .strict;
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const result = try arith.modRem(sema, block, resolved_type, lhs_val, rhs_val, lhs_src, rhs_src, .rem);
|
|
return Air.internedToRef(result.toIntern());
|
|
}
|
|
if (allow_div_zero) {
|
|
if (lhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
}
|
|
} else if (maybe_rhs_val) |rhs_val| {
|
|
if (allow_div_zero) {
|
|
if (rhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
} else {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
if (rhs_val.anyScalarIsZero(zcu)) return sema.failWithDivideByZero(block, rhs_src);
|
|
}
|
|
}
|
|
|
|
if (block.wantSafety()) {
|
|
try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int);
|
|
}
|
|
|
|
const air_tag = airTag(block, is_int, .rem, .rem_optimized);
|
|
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn zirOverflowArithmetic(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
zir_tag: Zir.Inst.Extended,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
|
|
const lhs_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(extra.node, 1);
|
|
|
|
const uncasted_lhs = try sema.resolveInst(extra.lhs);
|
|
const uncasted_rhs = try sema.resolveInst(extra.rhs);
|
|
|
|
const lhs_ty = sema.typeOf(uncasted_lhs);
|
|
const rhs_ty = sema.typeOf(uncasted_rhs);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
|
|
const instructions = &[_]Air.Inst.Ref{ uncasted_lhs, uncasted_rhs };
|
|
const dest_ty = if (zir_tag == .shl_with_overflow)
|
|
lhs_ty
|
|
else
|
|
try sema.resolvePeerTypes(block, src, instructions, .{
|
|
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const rhs_dest_ty = if (zir_tag == .shl_with_overflow)
|
|
try sema.log2IntType(block, lhs_ty, src)
|
|
else
|
|
dest_ty;
|
|
|
|
const lhs = try sema.coerce(block, dest_ty, uncasted_lhs, lhs_src);
|
|
const rhs = try sema.coerce(block, rhs_dest_ty, uncasted_rhs, rhs_src);
|
|
|
|
if (dest_ty.scalarType(zcu).zigTypeTag(zcu) != .int) {
|
|
return sema.fail(block, src, "expected vector of integers or integer tag type, found '{f}'", .{dest_ty.fmt(pt)});
|
|
}
|
|
|
|
const maybe_lhs_val = try sema.resolveValue(lhs);
|
|
const maybe_rhs_val = try sema.resolveValue(rhs);
|
|
|
|
const tuple_ty = try pt.overflowArithmeticTupleType(dest_ty);
|
|
const overflow_ty: Type = .fromInterned(ip.indexToKey(tuple_ty.toIntern()).tuple_type.types.get(ip)[1]);
|
|
|
|
var result: struct {
|
|
inst: Air.Inst.Ref = .none,
|
|
wrapped: Value = Value.@"unreachable",
|
|
overflow_bit: Value,
|
|
} = result: {
|
|
switch (zir_tag) {
|
|
.add_with_overflow => {
|
|
// If either of the arguments is zero, `false` is returned and the other is stored
|
|
// to the result, even if it is undefined..
|
|
// Otherwise, if either of the argument is undefined, undefined is returned.
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (!lhs_val.isUndef(zcu) and (try lhs_val.compareAllWithZeroSema(.eq, pt))) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = rhs };
|
|
}
|
|
}
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (!rhs_val.isUndef(zcu) and (try rhs_val.compareAllWithZeroSema(.eq, pt))) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = lhs };
|
|
}
|
|
}
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (lhs_val.isUndef(zcu) or rhs_val.isUndef(zcu)) {
|
|
break :result .{ .overflow_bit = .undef, .wrapped = .undef };
|
|
}
|
|
|
|
const result = try arith.addWithOverflow(sema, dest_ty, lhs_val, rhs_val);
|
|
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
|
|
}
|
|
}
|
|
},
|
|
.sub_with_overflow => {
|
|
// If the rhs is zero, then the result is lhs and no overflow occured.
|
|
// Otherwise, if either result is undefined, both results are undefined.
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (rhs_val.isUndef(zcu)) {
|
|
break :result .{ .overflow_bit = .undef, .wrapped = .undef };
|
|
} else if (try rhs_val.compareAllWithZeroSema(.eq, pt)) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = lhs };
|
|
} else if (maybe_lhs_val) |lhs_val| {
|
|
if (lhs_val.isUndef(zcu)) {
|
|
break :result .{ .overflow_bit = .undef, .wrapped = .undef };
|
|
}
|
|
|
|
const result = try arith.subWithOverflow(sema, dest_ty, lhs_val, rhs_val);
|
|
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
|
|
}
|
|
}
|
|
},
|
|
.mul_with_overflow => {
|
|
// If either of the arguments is zero, the result is zero and no overflow occured.
|
|
// If either of the arguments is one, the result is the other and no overflow occured.
|
|
// Otherwise, if either of the arguments is undefined, both results are undefined.
|
|
const scalar_one = try pt.intValue(dest_ty.scalarType(zcu), 1);
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (!lhs_val.isUndef(zcu)) {
|
|
if (try lhs_val.compareAllWithZeroSema(.eq, pt)) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = lhs };
|
|
} else if (try sema.compareAll(lhs_val, .eq, try sema.splat(dest_ty, scalar_one), dest_ty)) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = rhs };
|
|
}
|
|
}
|
|
}
|
|
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (!rhs_val.isUndef(zcu)) {
|
|
if (try rhs_val.compareAllWithZeroSema(.eq, pt)) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = rhs };
|
|
} else if (try sema.compareAll(rhs_val, .eq, try sema.splat(dest_ty, scalar_one), dest_ty)) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = lhs };
|
|
}
|
|
}
|
|
}
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (lhs_val.isUndef(zcu) or rhs_val.isUndef(zcu)) {
|
|
break :result .{ .overflow_bit = .undef, .wrapped = .undef };
|
|
}
|
|
|
|
const result = try arith.mulWithOverflow(sema, dest_ty, lhs_val, rhs_val);
|
|
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
|
|
}
|
|
}
|
|
},
|
|
.shl_with_overflow => {
|
|
// If either of the arguments is undefined, IB is possible and we return an error.
|
|
// If lhs is zero, the result is zero and no overflow occurred.
|
|
// If rhs is zero, the result is lhs and no overflow occurred.
|
|
const scalar_ty = lhs_ty.scalarType(zcu);
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
const result = try arith.shlWithOverflow(sema, block, lhs_ty, lhs_val, rhs_val, lhs_src, rhs_src);
|
|
break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result };
|
|
}
|
|
if (rhs_val.isUndef(zcu)) return sema.failWithUseOfUndef(block, rhs_src, null);
|
|
const bits = scalar_ty.intInfo(zcu).bits;
|
|
switch (rhs_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => {
|
|
switch (try rhs_val.orderAgainstZeroSema(pt)) {
|
|
.gt => {
|
|
var rhs_space: Value.BigIntSpace = undefined;
|
|
const rhs_bigint = try rhs_val.toBigIntSema(&rhs_space, pt);
|
|
if (rhs_bigint.orderAgainstScalar(bits) != .lt) {
|
|
return sema.failWithTooLargeShiftAmount(block, lhs_ty, rhs_val, rhs_src, null);
|
|
}
|
|
},
|
|
.eq => break :result .{ .overflow_bit = .zero_u1, .inst = lhs },
|
|
.lt => return sema.failWithNegativeShiftAmount(block, rhs_src, rhs_val, null),
|
|
}
|
|
},
|
|
.vector => {
|
|
var any_positive: bool = false;
|
|
for (0..rhs_ty.vectorLen(zcu)) |elem_idx| {
|
|
const rhs_elem = try rhs_val.elemValue(pt, elem_idx);
|
|
if (rhs_elem.isUndef(zcu)) return sema.failWithUseOfUndef(block, rhs_src, elem_idx);
|
|
switch (try rhs_elem.orderAgainstZeroSema(pt)) {
|
|
.gt => {
|
|
var rhs_elem_space: Value.BigIntSpace = undefined;
|
|
const rhs_elem_bigint = try rhs_elem.toBigIntSema(&rhs_elem_space, pt);
|
|
if (rhs_elem_bigint.orderAgainstScalar(bits) != .lt) {
|
|
return sema.failWithTooLargeShiftAmount(block, lhs_ty, rhs_elem, rhs_src, elem_idx);
|
|
}
|
|
any_positive = true;
|
|
},
|
|
.eq => {},
|
|
.lt => return sema.failWithNegativeShiftAmount(block, rhs_src, rhs_elem, elem_idx),
|
|
}
|
|
}
|
|
if (!any_positive) break :result .{ .overflow_bit = try pt.aggregateSplatValue(overflow_ty, .zero_u1), .inst = lhs };
|
|
},
|
|
else => unreachable,
|
|
}
|
|
if (try rhs_val.compareAllWithZeroSema(.eq, pt)) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = lhs };
|
|
}
|
|
} else {
|
|
if (scalar_ty.toIntern() == .comptime_int_type) {
|
|
return sema.fail(block, src, "LHS of shift must be a fixed-width integer type, or RHS must be comptime-known", .{});
|
|
}
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
if (try lhs_val.compareAllWithZeroSema(.eq, pt)) {
|
|
break :result .{ .overflow_bit = try sema.splat(overflow_ty, .zero_u1), .inst = lhs };
|
|
}
|
|
}
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
|
|
const air_tag: Air.Inst.Tag = switch (zir_tag) {
|
|
.add_with_overflow => .add_with_overflow,
|
|
.mul_with_overflow => .mul_with_overflow,
|
|
.sub_with_overflow => .sub_with_overflow,
|
|
.shl_with_overflow => .shl_with_overflow,
|
|
else => unreachable,
|
|
};
|
|
|
|
return block.addInst(.{
|
|
.tag = air_tag,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(tuple_ty.toIntern()),
|
|
.payload = try block.sema.addExtra(Air.Bin{
|
|
.lhs = lhs,
|
|
.rhs = rhs,
|
|
}),
|
|
} },
|
|
});
|
|
};
|
|
|
|
if (result.inst != .none) {
|
|
if (try sema.resolveValue(result.inst)) |some| {
|
|
result.wrapped = some;
|
|
result.inst = .none;
|
|
}
|
|
}
|
|
|
|
if (result.inst == .none) {
|
|
return Air.internedToRef((try pt.aggregateValue(tuple_ty, &.{
|
|
result.wrapped.toIntern(),
|
|
result.overflow_bit.toIntern(),
|
|
})).toIntern());
|
|
}
|
|
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, 2);
|
|
element_refs[0] = result.inst;
|
|
element_refs[1] = Air.internedToRef(result.overflow_bit.toIntern());
|
|
return block.addAggregateInit(tuple_ty, element_refs);
|
|
}
|
|
|
|
fn splat(sema: *Sema, ty: Type, val: Value) !Value {
|
|
const pt = sema.pt;
|
|
if (ty.zigTypeTag(pt.zcu) != .vector) return val;
|
|
return pt.aggregateSplatValue(ty, val);
|
|
}
|
|
|
|
fn analyzeArithmetic(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
zir_tag: Zir.Inst.Tag,
|
|
lhs: Air.Inst.Ref,
|
|
rhs: Air.Inst.Ref,
|
|
src: LazySrcLoc,
|
|
lhs_src: LazySrcLoc,
|
|
rhs_src: LazySrcLoc,
|
|
want_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
|
|
if (lhs_zig_ty_tag == .pointer) {
|
|
if (rhs_zig_ty_tag == .pointer) {
|
|
if (lhs_ty.ptrSize(zcu) != .slice and rhs_ty.ptrSize(zcu) != .slice) {
|
|
if (zir_tag != .sub) {
|
|
return sema.failWithInvalidPtrArithmetic(block, src, "pointer-pointer", "subtraction");
|
|
}
|
|
if (!lhs_ty.elemType2(zcu).eql(rhs_ty.elemType2(zcu), zcu)) {
|
|
return sema.fail(block, src, "incompatible pointer arithmetic operands '{f}' and '{f}'", .{
|
|
lhs_ty.fmt(pt), rhs_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
const elem_size = lhs_ty.elemType2(zcu).abiSize(zcu);
|
|
if (elem_size == 0) {
|
|
return sema.fail(block, src, "pointer arithmetic requires element type '{f}' to have runtime bits", .{
|
|
lhs_ty.elemType2(zcu).fmt(pt),
|
|
});
|
|
}
|
|
|
|
const runtime_src = runtime_src: {
|
|
if (try sema.resolveValue(lhs)) |lhs_value| {
|
|
if (try sema.resolveValue(rhs)) |rhs_value| {
|
|
const lhs_ptr = switch (zcu.intern_pool.indexToKey(lhs_value.toIntern())) {
|
|
.undef => return sema.failWithUseOfUndef(block, lhs_src, null),
|
|
.ptr => |ptr| ptr,
|
|
else => unreachable,
|
|
};
|
|
const rhs_ptr = switch (zcu.intern_pool.indexToKey(rhs_value.toIntern())) {
|
|
.undef => return sema.failWithUseOfUndef(block, rhs_src, null),
|
|
.ptr => |ptr| ptr,
|
|
else => unreachable,
|
|
};
|
|
// Make sure the pointers point to the same data.
|
|
if (!lhs_ptr.base_addr.eql(rhs_ptr.base_addr)) break :runtime_src src;
|
|
const address = std.math.sub(u64, lhs_ptr.byte_offset, rhs_ptr.byte_offset) catch
|
|
return sema.fail(block, src, "operation results in overflow", .{});
|
|
const result = address / elem_size;
|
|
return try pt.intRef(.usize, result);
|
|
} else {
|
|
break :runtime_src lhs_src;
|
|
}
|
|
} else {
|
|
break :runtime_src rhs_src;
|
|
}
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
try sema.checkLogicalPtrOperation(block, src, lhs_ty);
|
|
try sema.checkLogicalPtrOperation(block, src, rhs_ty);
|
|
const lhs_int = try block.addBitCast(.usize, lhs);
|
|
const rhs_int = try block.addBitCast(.usize, rhs);
|
|
const address = try block.addBinOp(.sub_wrap, lhs_int, rhs_int);
|
|
return try block.addBinOp(.div_exact, address, try pt.intRef(.usize, elem_size));
|
|
}
|
|
} else {
|
|
switch (lhs_ty.ptrSize(zcu)) {
|
|
.one, .slice => {},
|
|
.many, .c => {
|
|
const air_tag: Air.Inst.Tag = switch (zir_tag) {
|
|
.add => .ptr_add,
|
|
.sub => .ptr_sub,
|
|
else => return sema.failWithInvalidPtrArithmetic(block, src, "pointer-integer", "addition and subtraction"),
|
|
};
|
|
|
|
if (!try lhs_ty.elemType2(zcu).hasRuntimeBitsSema(pt)) {
|
|
return sema.fail(block, src, "pointer arithmetic requires element type '{f}' to have runtime bits", .{
|
|
lhs_ty.elemType2(zcu).fmt(pt),
|
|
});
|
|
}
|
|
return sema.analyzePtrArithmetic(block, src, lhs, rhs, air_tag, lhs_src, rhs_src);
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{
|
|
.override = &.{ lhs_src, rhs_src },
|
|
});
|
|
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
|
|
const scalar_type = resolved_type.scalarType(zcu);
|
|
const scalar_tag = scalar_type.zigTypeTag(zcu);
|
|
|
|
try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, zir_tag);
|
|
|
|
// The rules we'll implement below are as follows:
|
|
//
|
|
// * If both operands are comptime-known, we call the corresponding function in `arith` to get
|
|
// the comptime-known result. Inputs which would be IB at runtime are compile errors.
|
|
//
|
|
// * Otherwise, if one operand is comptime-known `undefined`, we trigger a compile error if this
|
|
// operator can ever possibly trigger IB, or otherwise return comptime-known `undefined`.
|
|
//
|
|
// * No other comptime operand detemines a comptime result; e.g. `0 * x` isn't always `0` because
|
|
// of `undefined`. Therefore, the remaining cases all become runtime operations.
|
|
|
|
const is_int = switch (scalar_tag) {
|
|
.int, .comptime_int => true,
|
|
.float, .comptime_float => false,
|
|
else => unreachable,
|
|
};
|
|
|
|
const maybe_lhs_val = try sema.resolveValueResolveLazy(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValueResolveLazy(casted_rhs);
|
|
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const result_val = switch (zir_tag) {
|
|
.add, .add_unsafe => try arith.add(sema, block, resolved_type, lhs_val, rhs_val, src, lhs_src, rhs_src),
|
|
.addwrap => try arith.addWrap(sema, resolved_type, lhs_val, rhs_val),
|
|
.add_sat => try arith.addSat(sema, resolved_type, lhs_val, rhs_val),
|
|
.sub => try arith.sub(sema, block, resolved_type, lhs_val, rhs_val, src, lhs_src, rhs_src),
|
|
.subwrap => try arith.subWrap(sema, resolved_type, lhs_val, rhs_val),
|
|
.sub_sat => try arith.subSat(sema, resolved_type, lhs_val, rhs_val),
|
|
.mul => try arith.mul(sema, block, resolved_type, lhs_val, rhs_val, src, lhs_src, rhs_src),
|
|
.mulwrap => try arith.mulWrap(sema, resolved_type, lhs_val, rhs_val),
|
|
.mul_sat => try arith.mulSat(sema, resolved_type, lhs_val, rhs_val),
|
|
else => unreachable,
|
|
};
|
|
return Air.internedToRef(result_val.toIntern());
|
|
}
|
|
}
|
|
|
|
const air_tag: Air.Inst.Tag, const air_tag_safe: Air.Inst.Tag, const allow_undef: bool = switch (zir_tag) {
|
|
.add, .add_unsafe => .{ if (block.float_mode == .optimized) .add_optimized else .add, .add_safe, !is_int },
|
|
.addwrap => .{ .add_wrap, .add_wrap, true },
|
|
.add_sat => .{ .add_sat, .add_sat, true },
|
|
.sub => .{ if (block.float_mode == .optimized) .sub_optimized else .sub, .sub_safe, !is_int },
|
|
.subwrap => .{ .sub_wrap, .sub_wrap, true },
|
|
.sub_sat => .{ .sub_sat, .sub_sat, true },
|
|
.mul => .{ if (block.float_mode == .optimized) .mul_optimized else .mul, .mul_safe, !is_int },
|
|
.mulwrap => .{ .mul_wrap, .mul_wrap, true },
|
|
.mul_sat => .{ .mul_sat, .mul_sat, true },
|
|
else => unreachable,
|
|
};
|
|
|
|
if (allow_undef) {
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (lhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
}
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (rhs_val.isUndef(zcu)) return pt.undefRef(resolved_type);
|
|
}
|
|
} else {
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
try sema.checkAllScalarsDefined(block, lhs_src, lhs_val);
|
|
}
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
try sema.checkAllScalarsDefined(block, rhs_src, rhs_val);
|
|
}
|
|
}
|
|
|
|
if (block.wantSafety() and want_safety and scalar_tag == .int) {
|
|
if (air_tag != air_tag_safe) try sema.preparePanicId(src, .integer_overflow);
|
|
return block.addBinOp(air_tag_safe, casted_lhs, casted_rhs);
|
|
}
|
|
return block.addBinOp(air_tag, casted_lhs, casted_rhs);
|
|
}
|
|
|
|
fn analyzePtrArithmetic(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
op_src: LazySrcLoc,
|
|
ptr: Air.Inst.Ref,
|
|
uncasted_offset: Air.Inst.Ref,
|
|
air_tag: Air.Inst.Tag,
|
|
ptr_src: LazySrcLoc,
|
|
offset_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
// TODO if the operand is comptime-known to be negative, or is a negative int,
|
|
// coerce to isize instead of usize.
|
|
const offset = try sema.coerce(block, .usize, uncasted_offset, offset_src);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const opt_ptr_val = try sema.resolveValue(ptr);
|
|
const opt_off_val = try sema.resolveDefinedValue(block, offset_src, offset);
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
const ptr_info = ptr_ty.ptrInfo(zcu);
|
|
assert(ptr_info.flags.size == .many or ptr_info.flags.size == .c);
|
|
|
|
if ((try sema.typeHasOnePossibleValue(.fromInterned(ptr_info.child))) != null) {
|
|
// Offset will be multiplied by zero, so result is the same as the base pointer.
|
|
return ptr;
|
|
}
|
|
|
|
const new_ptr_ty = t: {
|
|
// Calculate the new pointer alignment.
|
|
// This code is duplicated in `Type.elemPtrType`.
|
|
if (ptr_info.flags.alignment == .none) {
|
|
// ABI-aligned pointer. Any pointer arithmetic maintains the same ABI-alignedness.
|
|
break :t ptr_ty;
|
|
}
|
|
// If the addend is not a comptime-known value we can still count on
|
|
// it being a multiple of the type size.
|
|
const elem_size = try Type.fromInterned(ptr_info.child).abiSizeSema(pt);
|
|
const addend = if (opt_off_val) |off_val| a: {
|
|
const off_int = try sema.usizeCast(block, offset_src, try off_val.toUnsignedIntSema(pt));
|
|
break :a elem_size * off_int;
|
|
} else elem_size;
|
|
|
|
// The resulting pointer is aligned to the lcd between the offset (an
|
|
// arbitrary number) and the alignment factor (always a power of two,
|
|
// non zero).
|
|
const new_align: Alignment = @enumFromInt(@min(
|
|
@ctz(addend),
|
|
@intFromEnum(ptr_info.flags.alignment),
|
|
));
|
|
assert(new_align != .none);
|
|
|
|
break :t try pt.ptrTypeSema(.{
|
|
.child = ptr_info.child,
|
|
.sentinel = ptr_info.sentinel,
|
|
.flags = .{
|
|
.size = ptr_info.flags.size,
|
|
.alignment = new_align,
|
|
.is_const = ptr_info.flags.is_const,
|
|
.is_volatile = ptr_info.flags.is_volatile,
|
|
.is_allowzero = ptr_info.flags.is_allowzero,
|
|
.address_space = ptr_info.flags.address_space,
|
|
},
|
|
});
|
|
};
|
|
|
|
const runtime_src = rs: {
|
|
if (opt_ptr_val) |ptr_val| {
|
|
if (opt_off_val) |offset_val| {
|
|
if (ptr_val.isUndef(zcu)) return pt.undefRef(new_ptr_ty);
|
|
|
|
const offset_int = try sema.usizeCast(block, offset_src, try offset_val.toUnsignedIntSema(pt));
|
|
if (offset_int == 0) return ptr;
|
|
if (air_tag == .ptr_sub) {
|
|
const elem_size = try Type.fromInterned(ptr_info.child).abiSizeSema(pt);
|
|
const new_ptr_val = try sema.ptrSubtract(block, op_src, ptr_val, offset_int * elem_size, new_ptr_ty);
|
|
return Air.internedToRef(new_ptr_val.toIntern());
|
|
} else {
|
|
const new_ptr_val = try pt.getCoerced(try ptr_val.ptrElem(offset_int, pt), new_ptr_ty);
|
|
return Air.internedToRef(new_ptr_val.toIntern());
|
|
}
|
|
} else break :rs offset_src;
|
|
} else break :rs ptr_src;
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, op_src, runtime_src);
|
|
try sema.checkLogicalPtrOperation(block, op_src, ptr_ty);
|
|
|
|
return block.addInst(.{
|
|
.tag = air_tag,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(new_ptr_ty.toIntern()),
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = ptr,
|
|
.rhs = offset,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ptr_src = src; // TODO better source location
|
|
const ptr = try sema.resolveInst(inst_data.operand);
|
|
return sema.analyzeLoad(block, src, ptr, ptr_src);
|
|
}
|
|
|
|
fn zirAsm(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
tmpl_is_expr: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const extra = sema.code.extraData(Zir.Inst.Asm, extended.operand);
|
|
const src = block.nodeOffset(extra.data.src_node);
|
|
const ret_ty_src = block.src(.{ .node_offset_asm_ret_ty = extra.data.src_node });
|
|
const small: Zir.Inst.Asm.Small = @bitCast(extended.small);
|
|
const outputs_len = small.outputs_len;
|
|
const inputs_len = small.inputs_len;
|
|
const is_volatile = small.is_volatile;
|
|
const is_global_assembly = sema.func_index == .none;
|
|
const zir_tags = sema.code.instructions.items(.tag);
|
|
|
|
const asm_source: []const u8 = if (tmpl_is_expr) s: {
|
|
const tmpl: Zir.Inst.Ref = @enumFromInt(@intFromEnum(extra.data.asm_source));
|
|
break :s try sema.resolveConstString(block, src, tmpl, .{ .simple = .inline_assembly_code });
|
|
} else sema.code.nullTerminatedString(extra.data.asm_source);
|
|
|
|
if (is_global_assembly) {
|
|
if (outputs_len != 0) {
|
|
return sema.fail(block, src, "module-level assembly does not support outputs", .{});
|
|
}
|
|
if (inputs_len != 0) {
|
|
return sema.fail(block, src, "module-level assembly does not support inputs", .{});
|
|
}
|
|
if (extra.data.clobbers != .none) {
|
|
return sema.fail(block, src, "module-level assembly does not support clobbers", .{});
|
|
}
|
|
if (is_volatile) {
|
|
return sema.fail(block, src, "volatile keyword is redundant on module-level assembly", .{});
|
|
}
|
|
try zcu.addGlobalAssembly(sema.owner, asm_source);
|
|
return .void_value;
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
|
|
var extra_i = extra.end;
|
|
var output_type_bits = extra.data.output_type_bits;
|
|
var needed_capacity: usize = @typeInfo(Air.Asm).@"struct".fields.len + outputs_len + inputs_len;
|
|
|
|
const ConstraintName = struct { c: []const u8, n: []const u8 };
|
|
const out_args = try sema.arena.alloc(Air.Inst.Ref, outputs_len);
|
|
const outputs = try sema.arena.alloc(ConstraintName, outputs_len);
|
|
var expr_ty = Air.Inst.Ref.void_type;
|
|
|
|
for (out_args, 0..) |*arg, out_i| {
|
|
const output = sema.code.extraData(Zir.Inst.Asm.Output, extra_i);
|
|
extra_i = output.end;
|
|
|
|
const is_type = @as(u1, @truncate(output_type_bits)) != 0;
|
|
output_type_bits >>= 1;
|
|
|
|
if (is_type) {
|
|
// Indicate the output is the asm instruction return value.
|
|
arg.* = .none;
|
|
const out_ty = try sema.resolveType(block, ret_ty_src, output.data.operand);
|
|
expr_ty = Air.internedToRef(out_ty.toIntern());
|
|
} else {
|
|
arg.* = try sema.resolveInst(output.data.operand);
|
|
}
|
|
|
|
const constraint = sema.code.nullTerminatedString(output.data.constraint);
|
|
const name = sema.code.nullTerminatedString(output.data.name);
|
|
needed_capacity += (constraint.len + name.len + (2 + 3)) / 4;
|
|
|
|
if (output.data.operand.toIndex()) |index| {
|
|
if (zir_tags[@intFromEnum(index)] == .ref) {
|
|
// TODO: better error location; it would be even nicer if there were notes that pointed at the output and the variable definition
|
|
return sema.fail(block, src, "asm cannot output to const local '{s}'", .{name});
|
|
}
|
|
}
|
|
|
|
outputs[out_i] = .{ .c = constraint, .n = name };
|
|
}
|
|
|
|
const args = try sema.arena.alloc(Air.Inst.Ref, inputs_len);
|
|
const inputs = try sema.arena.alloc(ConstraintName, inputs_len);
|
|
|
|
for (args, 0..) |*arg, arg_i| {
|
|
const input = sema.code.extraData(Zir.Inst.Asm.Input, extra_i);
|
|
extra_i = input.end;
|
|
|
|
const uncasted_arg = try sema.resolveInst(input.data.operand);
|
|
const uncasted_arg_ty = sema.typeOf(uncasted_arg);
|
|
switch (uncasted_arg_ty.zigTypeTag(zcu)) {
|
|
.comptime_int => arg.* = try sema.coerce(block, .usize, uncasted_arg, src),
|
|
.comptime_float => arg.* = try sema.coerce(block, .f64, uncasted_arg, src),
|
|
else => {
|
|
arg.* = uncasted_arg;
|
|
},
|
|
}
|
|
|
|
const constraint = sema.code.nullTerminatedString(input.data.constraint);
|
|
const name = sema.code.nullTerminatedString(input.data.name);
|
|
needed_capacity += (constraint.len + name.len + (2 + 3)) / 4;
|
|
inputs[arg_i] = .{ .c = constraint, .n = name };
|
|
}
|
|
|
|
const clobbers = if (extra.data.clobbers == .none) empty: {
|
|
const clobbers_ty = try sema.getBuiltinType(src, .@"assembly.Clobbers");
|
|
break :empty try sema.structInitEmpty(block, clobbers_ty, src, src);
|
|
} else try sema.resolveInst(extra.data.clobbers); // Already coerced by AstGen.
|
|
const clobbers_val = try sema.resolveConstDefinedValue(block, src, clobbers, .{ .simple = .clobber });
|
|
needed_capacity += asm_source.len / 4 + 1;
|
|
|
|
const gpa = sema.gpa;
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, needed_capacity);
|
|
const asm_air = try block.addInst(.{
|
|
.tag = .assembly,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = expr_ty,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Asm{
|
|
.source_len = @intCast(asm_source.len),
|
|
.inputs_len = @intCast(args.len),
|
|
.clobbers = clobbers_val.toIntern(),
|
|
.flags = .{
|
|
.is_volatile = is_volatile,
|
|
.outputs_len = outputs_len,
|
|
},
|
|
}),
|
|
} },
|
|
});
|
|
sema.appendRefsAssumeCapacity(out_args);
|
|
sema.appendRefsAssumeCapacity(args);
|
|
for (outputs) |o| {
|
|
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
|
|
@memcpy(buffer[0..o.c.len], o.c);
|
|
buffer[o.c.len] = 0;
|
|
@memcpy(buffer[o.c.len + 1 ..][0..o.n.len], o.n);
|
|
buffer[o.c.len + 1 + o.n.len] = 0;
|
|
sema.air_extra.items.len += (o.c.len + o.n.len + (2 + 3)) / 4;
|
|
}
|
|
for (inputs) |input| {
|
|
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
|
|
@memcpy(buffer[0..input.c.len], input.c);
|
|
buffer[input.c.len] = 0;
|
|
@memcpy(buffer[input.c.len + 1 ..][0..input.n.len], input.n);
|
|
buffer[input.c.len + 1 + input.n.len] = 0;
|
|
sema.air_extra.items.len += (input.c.len + input.n.len + (2 + 3)) / 4;
|
|
}
|
|
{
|
|
const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice());
|
|
@memcpy(buffer[0..asm_source.len], asm_source);
|
|
buffer[asm_source.len] = 0;
|
|
sema.air_extra.items.len += asm_source.len / 4 + 1;
|
|
}
|
|
return asm_air;
|
|
}
|
|
|
|
/// Only called for equality operators. See also `zirCmp`.
|
|
fn zirCmpEq(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
op: std.math.CompareOperator,
|
|
air_tag: Air.Inst.Tag,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src: LazySrcLoc = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
const lhs_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
if (lhs_ty_tag == .null and rhs_ty_tag == .null) {
|
|
// null == null, null != null
|
|
return if (op == .eq) .bool_true else .bool_false;
|
|
}
|
|
|
|
// comparing null with optionals
|
|
if (lhs_ty_tag == .null and (rhs_ty_tag == .optional or rhs_ty.isCPtr(zcu))) {
|
|
return sema.analyzeIsNull(block, rhs, op == .neq);
|
|
}
|
|
if (rhs_ty_tag == .null and (lhs_ty_tag == .optional or lhs_ty.isCPtr(zcu))) {
|
|
return sema.analyzeIsNull(block, lhs, op == .neq);
|
|
}
|
|
|
|
if (lhs_ty_tag == .null or rhs_ty_tag == .null) {
|
|
const non_null_type = if (lhs_ty_tag == .null) rhs_ty else lhs_ty;
|
|
return sema.fail(block, src, "comparison of '{f}' with null", .{non_null_type.fmt(pt)});
|
|
}
|
|
|
|
if (lhs_ty_tag == .@"union" and (rhs_ty_tag == .enum_literal or rhs_ty_tag == .@"enum")) {
|
|
return sema.analyzeCmpUnionTag(block, src, lhs, lhs_src, rhs, rhs_src, op);
|
|
}
|
|
if (rhs_ty_tag == .@"union" and (lhs_ty_tag == .enum_literal or lhs_ty_tag == .@"enum")) {
|
|
return sema.analyzeCmpUnionTag(block, src, rhs, rhs_src, lhs, lhs_src, op);
|
|
}
|
|
|
|
if (lhs_ty_tag == .error_set and rhs_ty_tag == .error_set) {
|
|
const runtime_src: LazySrcLoc = src: {
|
|
if (try sema.resolveValue(lhs)) |lval| {
|
|
if (try sema.resolveValue(rhs)) |rval| {
|
|
if (lval.isUndef(zcu) or rval.isUndef(zcu)) return .undef_bool;
|
|
const lkey = zcu.intern_pool.indexToKey(lval.toIntern());
|
|
const rkey = zcu.intern_pool.indexToKey(rval.toIntern());
|
|
return if ((lkey.err.name == rkey.err.name) == (op == .eq))
|
|
.bool_true
|
|
else
|
|
.bool_false;
|
|
} else {
|
|
break :src rhs_src;
|
|
}
|
|
} else {
|
|
break :src lhs_src;
|
|
}
|
|
};
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addBinOp(air_tag, lhs, rhs);
|
|
}
|
|
if (lhs_ty_tag == .type and rhs_ty_tag == .type) {
|
|
const lhs_as_type = try sema.analyzeAsType(block, lhs_src, lhs);
|
|
const rhs_as_type = try sema.analyzeAsType(block, rhs_src, rhs);
|
|
return if (lhs_as_type.eql(rhs_as_type, zcu) == (op == .eq)) .bool_true else .bool_false;
|
|
}
|
|
return sema.analyzeCmp(block, src, lhs, rhs, op, lhs_src, rhs_src, true);
|
|
}
|
|
|
|
fn analyzeCmpUnionTag(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
un: Air.Inst.Ref,
|
|
un_src: LazySrcLoc,
|
|
tag: Air.Inst.Ref,
|
|
tag_src: LazySrcLoc,
|
|
op: std.math.CompareOperator,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const union_ty = sema.typeOf(un);
|
|
try union_ty.resolveFields(pt);
|
|
const union_tag_ty = union_ty.unionTagType(zcu) orelse {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(un_src, "comparison of union and enum literal is only valid for tagged union types", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(union_ty.srcLoc(zcu), msg, "union '{f}' is not a tagged union", .{union_ty.fmt(pt)});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
};
|
|
// Coerce both the union and the tag to the union's tag type, and then execute the
|
|
// enum comparison codepath.
|
|
const coerced_tag = try sema.coerce(block, union_tag_ty, tag, tag_src);
|
|
const coerced_union = try sema.coerce(block, union_tag_ty, un, un_src);
|
|
|
|
if (try sema.resolveValue(coerced_tag)) |enum_val| {
|
|
if (enum_val.isUndef(zcu)) return .undef_bool;
|
|
const field_ty = union_ty.unionFieldType(enum_val, zcu).?;
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
return .bool_false;
|
|
}
|
|
}
|
|
|
|
return sema.cmpSelf(block, src, coerced_union, coerced_tag, op, un_src, tag_src);
|
|
}
|
|
|
|
/// Only called for non-equality operators. See also `zirCmpEq`.
|
|
fn zirCmp(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
op: std.math.CompareOperator,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src: LazySrcLoc = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src = block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
return sema.analyzeCmp(block, src, lhs, rhs, op, lhs_src, rhs_src, false);
|
|
}
|
|
|
|
fn analyzeCmp(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
lhs: Air.Inst.Ref,
|
|
rhs: Air.Inst.Ref,
|
|
op: std.math.CompareOperator,
|
|
lhs_src: LazySrcLoc,
|
|
rhs_src: LazySrcLoc,
|
|
is_equality_cmp: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
if (lhs_ty.zigTypeTag(zcu) != .optional and rhs_ty.zigTypeTag(zcu) != .optional) {
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
}
|
|
|
|
if (lhs_ty.zigTypeTag(zcu) == .vector and rhs_ty.zigTypeTag(zcu) == .vector) {
|
|
return sema.cmpVector(block, src, lhs, rhs, op, lhs_src, rhs_src);
|
|
}
|
|
if (lhs_ty.isNumeric(zcu) and rhs_ty.isNumeric(zcu)) {
|
|
// This operation allows any combination of integer and float types, regardless of the
|
|
// signed-ness, comptime-ness, and bit-width. So peer type resolution is incorrect for
|
|
// numeric types.
|
|
return sema.cmpNumeric(block, src, lhs, rhs, op, lhs_src, rhs_src);
|
|
}
|
|
if (is_equality_cmp and lhs_ty.zigTypeTag(zcu) == .error_union and rhs_ty.zigTypeTag(zcu) == .error_set) {
|
|
if (try sema.resolveDefinedValue(block, lhs_src, lhs)) |lhs_val| {
|
|
if (lhs_val.errorUnionIsPayload(zcu)) return .bool_false;
|
|
}
|
|
const casted_lhs = try sema.analyzeErrUnionCode(block, lhs_src, lhs);
|
|
return sema.cmpSelf(block, src, casted_lhs, rhs, op, lhs_src, rhs_src);
|
|
}
|
|
if (is_equality_cmp and lhs_ty.zigTypeTag(zcu) == .error_set and rhs_ty.zigTypeTag(zcu) == .error_union) {
|
|
if (try sema.resolveDefinedValue(block, rhs_src, rhs)) |rhs_val| {
|
|
if (rhs_val.errorUnionIsPayload(zcu)) return .bool_false;
|
|
}
|
|
const casted_rhs = try sema.analyzeErrUnionCode(block, rhs_src, rhs);
|
|
return sema.cmpSelf(block, src, lhs, casted_rhs, op, lhs_src, rhs_src);
|
|
}
|
|
const instructions = &[_]Air.Inst.Ref{ lhs, rhs };
|
|
const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src } });
|
|
if (!resolved_type.isSelfComparable(zcu, is_equality_cmp)) {
|
|
return sema.fail(block, src, "operator {s} not allowed for type '{f}'", .{
|
|
compareOperatorName(op), resolved_type.fmt(pt),
|
|
});
|
|
}
|
|
const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
|
|
return sema.cmpSelf(block, src, casted_lhs, casted_rhs, op, lhs_src, rhs_src);
|
|
}
|
|
|
|
fn compareOperatorName(comp: std.math.CompareOperator) []const u8 {
|
|
return switch (comp) {
|
|
.lt => "<",
|
|
.lte => "<=",
|
|
.eq => "==",
|
|
.gte => ">=",
|
|
.gt => ">",
|
|
.neq => "!=",
|
|
};
|
|
}
|
|
|
|
fn cmpSelf(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
casted_lhs: Air.Inst.Ref,
|
|
casted_rhs: Air.Inst.Ref,
|
|
op: std.math.CompareOperator,
|
|
lhs_src: LazySrcLoc,
|
|
rhs_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const resolved_type = sema.typeOf(casted_lhs);
|
|
|
|
const maybe_lhs_val = try sema.resolveValue(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValue(casted_rhs);
|
|
if (maybe_lhs_val) |v| if (v.isUndef(zcu)) return .undef_bool;
|
|
if (maybe_rhs_val) |v| if (v.isUndef(zcu)) return .undef_bool;
|
|
|
|
const runtime_src: LazySrcLoc = src: {
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
if (resolved_type.zigTypeTag(zcu) == .vector) {
|
|
const cmp_val = try sema.compareVector(lhs_val, op, rhs_val, resolved_type);
|
|
return Air.internedToRef(cmp_val.toIntern());
|
|
}
|
|
|
|
return if (try sema.compareAll(lhs_val, op, rhs_val, resolved_type))
|
|
.bool_true
|
|
else
|
|
.bool_false;
|
|
} else {
|
|
if (resolved_type.zigTypeTag(zcu) == .bool) {
|
|
// We can lower bool eq/neq more efficiently.
|
|
return sema.runtimeBoolCmp(block, src, op, casted_rhs, lhs_val.toBool(), rhs_src);
|
|
}
|
|
break :src rhs_src;
|
|
}
|
|
} else {
|
|
// For bools, we still check the other operand, because we can lower
|
|
// bool eq/neq more efficiently.
|
|
if (resolved_type.zigTypeTag(zcu) == .bool) {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
return sema.runtimeBoolCmp(block, src, op, casted_lhs, rhs_val.toBool(), lhs_src);
|
|
}
|
|
}
|
|
break :src lhs_src;
|
|
}
|
|
};
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
if (resolved_type.zigTypeTag(zcu) == .vector) {
|
|
return block.addCmpVector(casted_lhs, casted_rhs, op);
|
|
}
|
|
const tag = Air.Inst.Tag.fromCmpOp(op, block.float_mode == .optimized);
|
|
return block.addBinOp(tag, casted_lhs, casted_rhs);
|
|
}
|
|
|
|
/// cmp_eq (x, false) => not(x)
|
|
/// cmp_eq (x, true ) => x
|
|
/// cmp_neq(x, false) => x
|
|
/// cmp_neq(x, true ) => not(x)
|
|
fn runtimeBoolCmp(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
op: std.math.CompareOperator,
|
|
lhs: Air.Inst.Ref,
|
|
rhs: bool,
|
|
runtime_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
if ((op == .neq) == rhs) {
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addTyOp(.not, .bool, lhs);
|
|
} else {
|
|
return lhs;
|
|
}
|
|
}
|
|
|
|
fn zirSizeOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const ty = try sema.resolveType(block, operand_src, inst_data.operand);
|
|
switch (ty.zigTypeTag(pt.zcu)) {
|
|
.@"fn",
|
|
.noreturn,
|
|
.undefined,
|
|
.null,
|
|
.@"opaque",
|
|
=> return sema.fail(block, operand_src, "no size available for type '{f}'", .{ty.fmt(pt)}),
|
|
|
|
.type,
|
|
.enum_literal,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.void,
|
|
=> return .zero,
|
|
|
|
.bool,
|
|
.int,
|
|
.float,
|
|
.pointer,
|
|
.array,
|
|
.@"struct",
|
|
.optional,
|
|
.error_union,
|
|
.error_set,
|
|
.@"enum",
|
|
.@"union",
|
|
.vector,
|
|
.frame,
|
|
.@"anyframe",
|
|
=> {},
|
|
}
|
|
const val = try ty.abiSizeLazy(pt);
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
fn zirBitSizeOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand_ty = try sema.resolveType(block, operand_src, inst_data.operand);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.@"fn",
|
|
.noreturn,
|
|
.undefined,
|
|
.null,
|
|
.@"opaque",
|
|
=> return sema.fail(block, operand_src, "no size available for type '{f}'", .{operand_ty.fmt(pt)}),
|
|
|
|
.type,
|
|
.enum_literal,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.void,
|
|
=> return .zero,
|
|
|
|
.bool,
|
|
.int,
|
|
.float,
|
|
.pointer,
|
|
.array,
|
|
.@"struct",
|
|
.optional,
|
|
.error_union,
|
|
.error_set,
|
|
.@"enum",
|
|
.@"union",
|
|
.vector,
|
|
.frame,
|
|
.@"anyframe",
|
|
=> {},
|
|
}
|
|
const bit_size = try operand_ty.bitSizeSema(pt);
|
|
return pt.intRef(.comptime_int, bit_size);
|
|
}
|
|
|
|
fn zirThis(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
_ = extended;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const namespace = pt.zcu.namespacePtr(block.namespace);
|
|
|
|
switch (pt.zcu.intern_pool.indexToKey(namespace.owner_type)) {
|
|
.opaque_type => {
|
|
// Opaque types are never outdated since they don't undergo type resolution, so nothing to do!
|
|
return Air.internedToRef(namespace.owner_type);
|
|
},
|
|
.struct_type, .union_type => {
|
|
const new_ty = try pt.ensureTypeUpToDate(namespace.owner_type);
|
|
try sema.declareDependency(.{ .interned = new_ty });
|
|
return Air.internedToRef(new_ty);
|
|
},
|
|
.enum_type => {
|
|
const new_ty = try pt.ensureTypeUpToDate(namespace.owner_type);
|
|
try sema.declareDependency(.{ .interned = new_ty });
|
|
// Since this is an enum, it has to be resolved immediately.
|
|
// `ensureTypeUpToDate` has resolved the new type if necessary.
|
|
// We just need to check for resolution failures.
|
|
const ty_unit: AnalUnit = .wrap(.{ .type = new_ty });
|
|
if (zcu.failed_analysis.contains(ty_unit) or zcu.transitive_failed_analysis.contains(ty_unit)) {
|
|
return error.AnalysisFail;
|
|
}
|
|
return Air.internedToRef(new_ty);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn zirClosureGet(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const captures = Type.fromInterned(zcu.namespacePtr(block.namespace).owner_type).getCaptures(zcu);
|
|
|
|
const src_node: std.zig.Ast.Node.Offset = @enumFromInt(@as(i32, @bitCast(extended.operand)));
|
|
const src = block.nodeOffset(src_node);
|
|
|
|
const capture_ty = switch (captures.get(ip)[extended.small].unwrap()) {
|
|
.@"comptime" => |index| return Air.internedToRef(index),
|
|
.runtime => |index| index,
|
|
.nav_val => |nav| return sema.analyzeNavVal(block, src, nav),
|
|
.nav_ref => |nav| return sema.analyzeNavRef(block, src, nav),
|
|
};
|
|
|
|
// The comptime case is handled already above. Runtime case below.
|
|
|
|
if (!block.is_typeof and sema.func_index == .none) {
|
|
const msg = msg: {
|
|
const name = name: {
|
|
// TODO: we should probably store this name in the ZIR to avoid this complexity.
|
|
const file, const src_base_node = Zcu.LazySrcLoc.resolveBaseNode(block.src_base_inst, zcu).?;
|
|
const tree = file.getTree(zcu) catch |err| {
|
|
// In this case we emit a warning + a less precise source location.
|
|
log.warn("unable to load {f}: {s}", .{
|
|
file.path.fmt(zcu.comp), @errorName(err),
|
|
});
|
|
break :name null;
|
|
};
|
|
const node = src_node.toAbsolute(src_base_node);
|
|
const token = tree.nodeMainToken(node);
|
|
break :name tree.tokenSlice(token);
|
|
};
|
|
|
|
const msg = if (name) |some|
|
|
try sema.errMsg(src, "'{s}' not accessible outside function scope", .{some})
|
|
else
|
|
try sema.errMsg(src, "variable not accessible outside function scope", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
// TODO add "declared here" note
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
if (!block.is_typeof and !block.isComptime() and sema.func_index != .none) {
|
|
const msg = msg: {
|
|
const name = name: {
|
|
const file, const src_base_node = Zcu.LazySrcLoc.resolveBaseNode(block.src_base_inst, zcu).?;
|
|
const tree = file.getTree(zcu) catch |err| {
|
|
// In this case we emit a warning + a less precise source location.
|
|
log.warn("unable to load {f}: {s}", .{
|
|
file.path.fmt(zcu.comp), @errorName(err),
|
|
});
|
|
break :name null;
|
|
};
|
|
const node = src_node.toAbsolute(src_base_node);
|
|
const token = tree.nodeMainToken(node);
|
|
break :name tree.tokenSlice(token);
|
|
};
|
|
|
|
const msg = if (name) |some|
|
|
try sema.errMsg(src, "'{s}' not accessible from inner function", .{some})
|
|
else
|
|
try sema.errMsg(src, "variable not accessible from inner function", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.errNote(block.nodeOffset(.zero), msg, "crossed function definition here", .{});
|
|
|
|
// TODO add "declared here" note
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
assert(block.is_typeof);
|
|
// We need a dummy runtime instruction with the correct type.
|
|
return block.addTy(.alloc, .fromInterned(capture_ty));
|
|
}
|
|
|
|
fn zirRetAddr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
_ = sema;
|
|
_ = extended;
|
|
if (block.isComptime()) {
|
|
// TODO: we could give a meaningful lazy value here. #14938
|
|
return .zero_usize;
|
|
} else {
|
|
return block.addNoOp(.ret_addr);
|
|
}
|
|
}
|
|
|
|
fn zirFrameAddress(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const src_node: std.zig.Ast.Node.Offset = @enumFromInt(@as(i32, @bitCast(extended.operand)));
|
|
const src = block.nodeOffset(src_node);
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return try block.addNoOp(.frame_addr);
|
|
}
|
|
|
|
fn zirBuiltinSrc(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const extra = sema.code.extraData(Zir.Inst.Src, extended.operand).data;
|
|
const fn_name = ip.getNav(zcu.funcInfo(sema.func_index).owner_nav).name;
|
|
const gpa = sema.gpa;
|
|
const file_scope = block.getFileScope(zcu);
|
|
|
|
const func_name_val = v: {
|
|
const func_name_len = fn_name.length(ip);
|
|
const array_ty = try pt.intern(.{ .array_type = .{
|
|
.len = func_name_len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
.val = try pt.intern(.{ .aggregate = .{
|
|
.ty = array_ty,
|
|
.storage = .{ .bytes = fn_name.toString() },
|
|
} }),
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, func_name_len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const module_name_val = v: {
|
|
const module_name = file_scope.mod.?.fully_qualified_name;
|
|
const array_ty = try pt.intern(.{ .array_type = .{
|
|
.len = module_name.len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
.val = try pt.intern(.{ .aggregate = .{
|
|
.ty = array_ty,
|
|
.storage = .{
|
|
.bytes = try ip.getOrPutString(gpa, pt.tid, module_name, .maybe_embedded_nulls),
|
|
},
|
|
} }),
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, module_name.len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const file_name_val = v: {
|
|
const file_name = file_scope.sub_file_path;
|
|
const array_ty = try pt.intern(.{ .array_type = .{
|
|
.len = file_name.len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
.val = try pt.intern(.{ .aggregate = .{
|
|
.ty = array_ty,
|
|
.storage = .{
|
|
.bytes = try ip.getOrPutString(gpa, pt.tid, file_name, .maybe_embedded_nulls),
|
|
},
|
|
} }),
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, file_name.len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const src_loc_ty = try sema.getBuiltinType(block.nodeOffset(.zero), .SourceLocation);
|
|
const fields = .{
|
|
// module: [:0]const u8,
|
|
module_name_val,
|
|
// file: [:0]const u8,
|
|
file_name_val,
|
|
// fn_name: [:0]const u8,
|
|
func_name_val,
|
|
// line: u32,
|
|
(try pt.intValue(.u32, extra.line + 1)).toIntern(),
|
|
// column: u32,
|
|
(try pt.intValue(.u32, extra.column + 1)).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.aggregateValue(src_loc_ty, &fields)).toIntern());
|
|
}
|
|
|
|
fn zirTypeInfo(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ty = try sema.resolveType(block, src, inst_data.operand);
|
|
const type_info_ty = try sema.getBuiltinType(src, .Type);
|
|
const type_info_tag_ty = type_info_ty.unionTagType(zcu).?;
|
|
|
|
if (ty.typeDeclInst(zcu)) |type_decl_inst| {
|
|
try sema.declareDependency(.{ .namespace = type_decl_inst });
|
|
}
|
|
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.type,
|
|
.void,
|
|
.bool,
|
|
.noreturn,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.undefined,
|
|
.null,
|
|
.enum_literal,
|
|
=> |type_info_tag| return unionInitFromEnumTag(sema, block, src, type_info_ty, @intFromEnum(type_info_tag), .void_value),
|
|
|
|
.@"fn" => {
|
|
const fn_info_ty = try sema.getBuiltinType(src, .@"Type.Fn");
|
|
const param_info_ty = try sema.getBuiltinType(src, .@"Type.Fn.Param");
|
|
|
|
const func_ty_info = zcu.typeToFunc(ty).?;
|
|
const param_vals = try sema.arena.alloc(InternPool.Index, func_ty_info.param_types.len);
|
|
for (param_vals, 0..) |*param_val, i| {
|
|
const param_ty = func_ty_info.param_types.get(ip)[i];
|
|
const is_generic = param_ty == .generic_poison_type;
|
|
const param_ty_val = try pt.intern(.{ .opt = .{
|
|
.ty = try pt.intern(.{ .opt_type = .type_type }),
|
|
.val = if (is_generic) .none else param_ty,
|
|
} });
|
|
|
|
const is_noalias = blk: {
|
|
const index = std.math.cast(u5, i) orelse break :blk false;
|
|
break :blk @as(u1, @truncate(func_ty_info.noalias_bits >> index)) != 0;
|
|
};
|
|
|
|
const param_fields = .{
|
|
// is_generic: bool,
|
|
Value.makeBool(is_generic).toIntern(),
|
|
// is_noalias: bool,
|
|
Value.makeBool(is_noalias).toIntern(),
|
|
// type: ?type,
|
|
param_ty_val,
|
|
};
|
|
param_val.* = (try pt.aggregateValue(param_info_ty, ¶m_fields)).toIntern();
|
|
}
|
|
|
|
const args_val = v: {
|
|
const new_decl_ty = try pt.arrayType(.{
|
|
.len = param_vals.len,
|
|
.child = param_info_ty.toIntern(),
|
|
});
|
|
const new_decl_val = (try pt.aggregateValue(new_decl_ty, param_vals)).toIntern();
|
|
const slice_ty = (try pt.ptrTypeSema(.{
|
|
.child = param_info_ty.toIntern(),
|
|
.flags = .{
|
|
.size = .slice,
|
|
.is_const = true,
|
|
},
|
|
})).toIntern();
|
|
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(zcu).toIntern();
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = slice_ty,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = manyptr_ty,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = manyptr_ty,
|
|
.val = new_decl_val,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, param_vals.len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const ret_ty_opt = try pt.intern(.{ .opt = .{
|
|
.ty = try pt.intern(.{ .opt_type = .type_type }),
|
|
.val = opt_val: {
|
|
const ret_ty: Type = .fromInterned(func_ty_info.return_type);
|
|
if (ret_ty.toIntern() == .generic_poison_type) break :opt_val .none;
|
|
if (ret_ty.zigTypeTag(zcu) == .error_union) {
|
|
if (ret_ty.errorUnionPayload(zcu).toIntern() == .generic_poison_type) {
|
|
break :opt_val .none;
|
|
}
|
|
}
|
|
break :opt_val ret_ty.toIntern();
|
|
},
|
|
} });
|
|
|
|
const callconv_ty = try sema.getBuiltinType(src, .CallingConvention);
|
|
const callconv_val = Value.uninterpret(func_ty_info.cc, callconv_ty, pt) catch |err| switch (err) {
|
|
error.TypeMismatch => @panic("std.builtin is corrupt"),
|
|
error.OutOfMemory => |e| return e,
|
|
};
|
|
|
|
const field_values: [5]InternPool.Index = .{
|
|
// calling_convention: CallingConvention,
|
|
callconv_val.toIntern(),
|
|
// is_generic: bool,
|
|
Value.makeBool(func_ty_info.is_generic).toIntern(),
|
|
// is_var_args: bool,
|
|
Value.makeBool(func_ty_info.is_var_args).toIntern(),
|
|
// return_type: ?type,
|
|
ret_ty_opt,
|
|
// args: []const Fn.Param,
|
|
args_val,
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.@"fn"))).toIntern(),
|
|
.val = (try pt.aggregateValue(fn_info_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.int => {
|
|
const int_info_ty = try sema.getBuiltinType(src, .@"Type.Int");
|
|
const signedness_ty = try sema.getBuiltinType(src, .Signedness);
|
|
const info = ty.intInfo(zcu);
|
|
const field_values = .{
|
|
// signedness: Signedness,
|
|
(try pt.enumValueFieldIndex(signedness_ty, @intFromEnum(info.signedness))).toIntern(),
|
|
// bits: u16,
|
|
(try pt.intValue(.u16, info.bits)).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.int))).toIntern(),
|
|
.val = (try pt.aggregateValue(int_info_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.float => {
|
|
const float_info_ty = try sema.getBuiltinType(src, .@"Type.Float");
|
|
|
|
const field_vals = .{
|
|
// bits: u16,
|
|
(try pt.intValue(.u16, ty.bitSize(zcu))).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.float))).toIntern(),
|
|
.val = (try pt.aggregateValue(float_info_ty, &field_vals)).toIntern(),
|
|
})));
|
|
},
|
|
.pointer => {
|
|
const info = ty.ptrInfo(zcu);
|
|
const alignment = if (info.flags.alignment.toByteUnits()) |alignment|
|
|
try pt.intValue(.comptime_int, alignment)
|
|
else
|
|
try Type.fromInterned(info.child).lazyAbiAlignment(pt);
|
|
|
|
const addrspace_ty = try sema.getBuiltinType(src, .AddressSpace);
|
|
const pointer_ty = try sema.getBuiltinType(src, .@"Type.Pointer");
|
|
const ptr_size_ty = try sema.getBuiltinType(src, .@"Type.Pointer.Size");
|
|
|
|
const field_values = .{
|
|
// size: Size,
|
|
(try pt.enumValueFieldIndex(ptr_size_ty, @intFromEnum(info.flags.size))).toIntern(),
|
|
// is_const: bool,
|
|
Value.makeBool(info.flags.is_const).toIntern(),
|
|
// is_volatile: bool,
|
|
Value.makeBool(info.flags.is_volatile).toIntern(),
|
|
// alignment: comptime_int,
|
|
alignment.toIntern(),
|
|
// address_space: AddressSpace
|
|
(try pt.enumValueFieldIndex(addrspace_ty, @intFromEnum(info.flags.address_space))).toIntern(),
|
|
// child: type,
|
|
info.child,
|
|
// is_allowzero: bool,
|
|
Value.makeBool(info.flags.is_allowzero).toIntern(),
|
|
// sentinel: ?*const anyopaque,
|
|
(try sema.optRefValue(switch (info.sentinel) {
|
|
.none => null,
|
|
else => Value.fromInterned(info.sentinel),
|
|
})).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.pointer))).toIntern(),
|
|
.val = (try pt.aggregateValue(pointer_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.array => {
|
|
const array_field_ty = try sema.getBuiltinType(src, .@"Type.Array");
|
|
|
|
const info = ty.arrayInfo(zcu);
|
|
const field_values = .{
|
|
// len: comptime_int,
|
|
(try pt.intValue(.comptime_int, info.len)).toIntern(),
|
|
// child: type,
|
|
info.elem_type.toIntern(),
|
|
// sentinel: ?*const anyopaque,
|
|
(try sema.optRefValue(info.sentinel)).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.array))).toIntern(),
|
|
.val = (try pt.aggregateValue(array_field_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.vector => {
|
|
const vector_field_ty = try sema.getBuiltinType(src, .@"Type.Vector");
|
|
|
|
const info = ty.arrayInfo(zcu);
|
|
const field_values = .{
|
|
// len: comptime_int,
|
|
(try pt.intValue(.comptime_int, info.len)).toIntern(),
|
|
// child: type,
|
|
info.elem_type.toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.vector))).toIntern(),
|
|
.val = (try pt.aggregateValue(vector_field_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.optional => {
|
|
const optional_field_ty = try sema.getBuiltinType(src, .@"Type.Optional");
|
|
|
|
const field_values = .{
|
|
// child: type,
|
|
ty.optionalChild(zcu).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.optional))).toIntern(),
|
|
.val = (try pt.aggregateValue(optional_field_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.error_set => {
|
|
// Get the Error type
|
|
const error_field_ty = try sema.getBuiltinType(src, .@"Type.Error");
|
|
|
|
// Build our list of Error values
|
|
// Optional value is only null if anyerror
|
|
// Value can be zero-length slice otherwise
|
|
const error_field_vals = switch (try sema.resolveInferredErrorSetTy(block, src, ty.toIntern())) {
|
|
.anyerror_type => null,
|
|
else => |err_set_ty_index| blk: {
|
|
const names = ip.indexToKey(err_set_ty_index).error_set_type.names;
|
|
const vals = try sema.arena.alloc(InternPool.Index, names.len);
|
|
for (vals, 0..) |*field_val, error_index| {
|
|
const error_name = names.get(ip)[error_index];
|
|
const error_name_len = error_name.length(ip);
|
|
const error_name_val = v: {
|
|
const new_decl_ty = try pt.arrayType(.{
|
|
.len = error_name_len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
});
|
|
const new_decl_val = try pt.intern(.{ .aggregate = .{
|
|
.ty = new_decl_ty.toIntern(),
|
|
.storage = .{ .bytes = error_name.toString() },
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.val = new_decl_val,
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, error_name_len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const error_field_fields = .{
|
|
// name: [:0]const u8,
|
|
error_name_val,
|
|
};
|
|
field_val.* = (try pt.aggregateValue(error_field_ty, &error_field_fields)).toIntern();
|
|
}
|
|
|
|
break :blk vals;
|
|
},
|
|
};
|
|
|
|
// Build our ?[]const Error value
|
|
const slice_errors_ty = try pt.ptrTypeSema(.{
|
|
.child = error_field_ty.toIntern(),
|
|
.flags = .{
|
|
.size = .slice,
|
|
.is_const = true,
|
|
},
|
|
});
|
|
const opt_slice_errors_ty = try pt.optionalType(slice_errors_ty.toIntern());
|
|
const errors_payload_val: InternPool.Index = if (error_field_vals) |vals| v: {
|
|
const array_errors_ty = try pt.arrayType(.{
|
|
.len = vals.len,
|
|
.child = error_field_ty.toIntern(),
|
|
});
|
|
const new_decl_val = (try pt.aggregateValue(array_errors_ty, vals)).toIntern();
|
|
const manyptr_errors_ty = slice_errors_ty.slicePtrFieldType(zcu).toIntern();
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = slice_errors_ty.toIntern(),
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = manyptr_errors_ty,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = manyptr_errors_ty,
|
|
.val = new_decl_val,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, vals.len)).toIntern(),
|
|
} });
|
|
} else .none;
|
|
const errors_val = try pt.intern(.{ .opt = .{
|
|
.ty = opt_slice_errors_ty.toIntern(),
|
|
.val = errors_payload_val,
|
|
} });
|
|
|
|
// Construct Type{ .error_set = errors_val }
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.error_set))).toIntern(),
|
|
.val = errors_val,
|
|
})));
|
|
},
|
|
.error_union => {
|
|
const error_union_field_ty = try sema.getBuiltinType(src, .@"Type.ErrorUnion");
|
|
|
|
const field_values = .{
|
|
// error_set: type,
|
|
ty.errorUnionSet(zcu).toIntern(),
|
|
// payload: type,
|
|
ty.errorUnionPayload(zcu).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.error_union))).toIntern(),
|
|
.val = (try pt.aggregateValue(error_union_field_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.@"enum" => {
|
|
const is_exhaustive = Value.makeBool(ip.loadEnumType(ty.toIntern()).tag_mode != .nonexhaustive);
|
|
|
|
const enum_field_ty = try sema.getBuiltinType(src, .@"Type.EnumField");
|
|
|
|
const enum_field_vals = try sema.arena.alloc(InternPool.Index, ip.loadEnumType(ty.toIntern()).names.len);
|
|
for (enum_field_vals, 0..) |*field_val, tag_index| {
|
|
const enum_type = ip.loadEnumType(ty.toIntern());
|
|
const value_val = if (enum_type.values.len > 0)
|
|
try ip.getCoercedInts(
|
|
zcu.gpa,
|
|
pt.tid,
|
|
ip.indexToKey(enum_type.values.get(ip)[tag_index]).int,
|
|
.comptime_int_type,
|
|
)
|
|
else
|
|
(try pt.intValue(.comptime_int, tag_index)).toIntern();
|
|
|
|
// TODO: write something like getCoercedInts to avoid needing to dupe
|
|
const name_val = v: {
|
|
const tag_name = enum_type.names.get(ip)[tag_index];
|
|
const tag_name_len = tag_name.length(ip);
|
|
const new_decl_ty = try pt.arrayType(.{
|
|
.len = tag_name_len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
});
|
|
const new_decl_val = try pt.intern(.{ .aggregate = .{
|
|
.ty = new_decl_ty.toIntern(),
|
|
.storage = .{ .bytes = tag_name.toString() },
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.val = new_decl_val,
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, tag_name_len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const enum_field_fields = .{
|
|
// name: [:0]const u8,
|
|
name_val,
|
|
// value: comptime_int,
|
|
value_val,
|
|
};
|
|
field_val.* = (try pt.aggregateValue(enum_field_ty, &enum_field_fields)).toIntern();
|
|
}
|
|
|
|
const fields_val = v: {
|
|
const fields_array_ty = try pt.arrayType(.{
|
|
.len = enum_field_vals.len,
|
|
.child = enum_field_ty.toIntern(),
|
|
});
|
|
const new_decl_val = (try pt.aggregateValue(fields_array_ty, enum_field_vals)).toIntern();
|
|
const slice_ty = (try pt.ptrTypeSema(.{
|
|
.child = enum_field_ty.toIntern(),
|
|
.flags = .{
|
|
.size = .slice,
|
|
.is_const = true,
|
|
},
|
|
})).toIntern();
|
|
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(zcu).toIntern();
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = slice_ty,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = manyptr_ty,
|
|
.base_addr = .{ .uav = .{
|
|
.val = new_decl_val,
|
|
.orig_ty = manyptr_ty,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, enum_field_vals.len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const decls_val = try sema.typeInfoDecls(src, ip.loadEnumType(ty.toIntern()).namespace.toOptional());
|
|
|
|
const type_enum_ty = try sema.getBuiltinType(src, .@"Type.Enum");
|
|
|
|
const field_values = .{
|
|
// tag_type: type,
|
|
ip.loadEnumType(ty.toIntern()).tag_ty,
|
|
// fields: []const EnumField,
|
|
fields_val,
|
|
// decls: []const Declaration,
|
|
decls_val,
|
|
// is_exhaustive: bool,
|
|
is_exhaustive.toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.@"enum"))).toIntern(),
|
|
.val = (try pt.aggregateValue(type_enum_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.@"union" => {
|
|
const type_union_ty = try sema.getBuiltinType(src, .@"Type.Union");
|
|
const union_field_ty = try sema.getBuiltinType(src, .@"Type.UnionField");
|
|
|
|
try ty.resolveLayout(pt); // Getting alignment requires type layout
|
|
const union_obj = zcu.typeToUnion(ty).?;
|
|
const tag_type = union_obj.loadTagType(ip);
|
|
const layout = union_obj.flagsUnordered(ip).layout;
|
|
|
|
const union_field_vals = try gpa.alloc(InternPool.Index, tag_type.names.len);
|
|
defer gpa.free(union_field_vals);
|
|
|
|
for (union_field_vals, 0..) |*field_val, field_index| {
|
|
const name_val = v: {
|
|
const field_name = tag_type.names.get(ip)[field_index];
|
|
const field_name_len = field_name.length(ip);
|
|
const new_decl_ty = try pt.arrayType(.{
|
|
.len = field_name_len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
});
|
|
const new_decl_val = try pt.intern(.{ .aggregate = .{
|
|
.ty = new_decl_ty.toIntern(),
|
|
.storage = .{ .bytes = field_name.toString() },
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.val = new_decl_val,
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, field_name_len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const alignment = switch (layout) {
|
|
.auto, .@"extern" => try ty.fieldAlignmentSema(field_index, pt),
|
|
.@"packed" => .none,
|
|
};
|
|
|
|
const field_ty = union_obj.field_types.get(ip)[field_index];
|
|
const union_field_fields = .{
|
|
// name: [:0]const u8,
|
|
name_val,
|
|
// type: type,
|
|
field_ty,
|
|
// alignment: comptime_int,
|
|
(try pt.intValue(.comptime_int, alignment.toByteUnits() orelse 0)).toIntern(),
|
|
};
|
|
field_val.* = (try pt.aggregateValue(union_field_ty, &union_field_fields)).toIntern();
|
|
}
|
|
|
|
const fields_val = v: {
|
|
const array_fields_ty = try pt.arrayType(.{
|
|
.len = union_field_vals.len,
|
|
.child = union_field_ty.toIntern(),
|
|
});
|
|
const new_decl_val = (try pt.aggregateValue(array_fields_ty, union_field_vals)).toIntern();
|
|
const slice_ty = (try pt.ptrTypeSema(.{
|
|
.child = union_field_ty.toIntern(),
|
|
.flags = .{
|
|
.size = .slice,
|
|
.is_const = true,
|
|
},
|
|
})).toIntern();
|
|
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(zcu).toIntern();
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = slice_ty,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = manyptr_ty,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = manyptr_ty,
|
|
.val = new_decl_val,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, union_field_vals.len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const decls_val = try sema.typeInfoDecls(src, ty.getNamespaceIndex(zcu).toOptional());
|
|
|
|
const enum_tag_ty_val = try pt.intern(.{ .opt = .{
|
|
.ty = (try pt.optionalType(.type_type)).toIntern(),
|
|
.val = if (ty.unionTagType(zcu)) |tag_ty| tag_ty.toIntern() else .none,
|
|
} });
|
|
|
|
const container_layout_ty = try sema.getBuiltinType(src, .@"Type.ContainerLayout");
|
|
|
|
const field_values = .{
|
|
// layout: ContainerLayout,
|
|
(try pt.enumValueFieldIndex(container_layout_ty, @intFromEnum(layout))).toIntern(),
|
|
|
|
// tag_type: ?type,
|
|
enum_tag_ty_val,
|
|
// fields: []const UnionField,
|
|
fields_val,
|
|
// decls: []const Declaration,
|
|
decls_val,
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.@"union"))).toIntern(),
|
|
.val = (try pt.aggregateValue(type_union_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.@"struct" => {
|
|
const type_struct_ty = try sema.getBuiltinType(src, .@"Type.Struct");
|
|
const struct_field_ty = try sema.getBuiltinType(src, .@"Type.StructField");
|
|
|
|
try ty.resolveLayout(pt); // Getting alignment requires type layout
|
|
|
|
var struct_field_vals: []InternPool.Index = &.{};
|
|
defer gpa.free(struct_field_vals);
|
|
fv: {
|
|
const struct_type = switch (ip.indexToKey(ty.toIntern())) {
|
|
.tuple_type => |tuple_type| {
|
|
struct_field_vals = try gpa.alloc(InternPool.Index, tuple_type.types.len);
|
|
for (struct_field_vals, 0..) |*struct_field_val, field_index| {
|
|
const field_ty = tuple_type.types.get(ip)[field_index];
|
|
const field_val = tuple_type.values.get(ip)[field_index];
|
|
const name_val = v: {
|
|
const field_name = try ip.getOrPutStringFmt(gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
|
|
const field_name_len = field_name.length(ip);
|
|
const new_decl_ty = try pt.arrayType(.{
|
|
.len = field_name_len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
});
|
|
const new_decl_val = try pt.intern(.{ .aggregate = .{
|
|
.ty = new_decl_ty.toIntern(),
|
|
.storage = .{ .bytes = field_name.toString() },
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.val = new_decl_val,
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, field_name_len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
try Type.fromInterned(field_ty).resolveLayout(pt);
|
|
|
|
const is_comptime = field_val != .none;
|
|
const opt_default_val = if (is_comptime) Value.fromInterned(field_val) else null;
|
|
const default_val_ptr = try sema.optRefValue(opt_default_val);
|
|
const struct_field_fields = .{
|
|
// name: [:0]const u8,
|
|
name_val,
|
|
// type: type,
|
|
field_ty,
|
|
// default_value: ?*const anyopaque,
|
|
default_val_ptr.toIntern(),
|
|
// is_comptime: bool,
|
|
Value.makeBool(is_comptime).toIntern(),
|
|
// alignment: comptime_int,
|
|
(try pt.intValue(.comptime_int, Type.fromInterned(field_ty).abiAlignment(zcu).toByteUnits() orelse 0)).toIntern(),
|
|
};
|
|
struct_field_val.* = (try pt.aggregateValue(struct_field_ty, &struct_field_fields)).toIntern();
|
|
}
|
|
break :fv;
|
|
},
|
|
.struct_type => ip.loadStructType(ty.toIntern()),
|
|
else => unreachable,
|
|
};
|
|
struct_field_vals = try gpa.alloc(InternPool.Index, struct_type.field_types.len);
|
|
|
|
try ty.resolveStructFieldInits(pt);
|
|
|
|
for (struct_field_vals, 0..) |*field_val, field_index| {
|
|
const field_name = if (struct_type.fieldName(ip, field_index).unwrap()) |field_name|
|
|
field_name
|
|
else
|
|
try ip.getOrPutStringFmt(gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
|
|
const field_name_len = field_name.length(ip);
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]);
|
|
const field_init = struct_type.fieldInit(ip, field_index);
|
|
const field_is_comptime = struct_type.fieldIsComptime(ip, field_index);
|
|
const name_val = v: {
|
|
const new_decl_ty = try pt.arrayType(.{
|
|
.len = field_name_len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
});
|
|
const new_decl_val = try pt.intern(.{ .aggregate = .{
|
|
.ty = new_decl_ty.toIntern(),
|
|
.storage = .{ .bytes = field_name.toString() },
|
|
} });
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type,
|
|
.base_addr = .{ .uav = .{
|
|
.val = new_decl_val,
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, field_name_len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const opt_default_val = if (field_init == .none) null else Value.fromInterned(field_init);
|
|
const default_val_ptr = try sema.optRefValue(opt_default_val);
|
|
const alignment = switch (struct_type.layout) {
|
|
.@"packed" => .none,
|
|
else => try field_ty.structFieldAlignmentSema(
|
|
struct_type.fieldAlign(ip, field_index),
|
|
struct_type.layout,
|
|
pt,
|
|
),
|
|
};
|
|
|
|
const struct_field_fields = .{
|
|
// name: [:0]const u8,
|
|
name_val,
|
|
// type: type,
|
|
field_ty.toIntern(),
|
|
// default_value: ?*const anyopaque,
|
|
default_val_ptr.toIntern(),
|
|
// is_comptime: bool,
|
|
Value.makeBool(field_is_comptime).toIntern(),
|
|
// alignment: comptime_int,
|
|
(try pt.intValue(.comptime_int, alignment.toByteUnits() orelse 0)).toIntern(),
|
|
};
|
|
field_val.* = (try pt.aggregateValue(struct_field_ty, &struct_field_fields)).toIntern();
|
|
}
|
|
}
|
|
|
|
const fields_val = v: {
|
|
const array_fields_ty = try pt.arrayType(.{
|
|
.len = struct_field_vals.len,
|
|
.child = struct_field_ty.toIntern(),
|
|
});
|
|
const new_decl_val = (try pt.aggregateValue(array_fields_ty, struct_field_vals)).toIntern();
|
|
const slice_ty = (try pt.ptrTypeSema(.{
|
|
.child = struct_field_ty.toIntern(),
|
|
.flags = .{
|
|
.size = .slice,
|
|
.is_const = true,
|
|
},
|
|
})).toIntern();
|
|
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(zcu).toIntern();
|
|
break :v try pt.intern(.{ .slice = .{
|
|
.ty = slice_ty,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = manyptr_ty,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = manyptr_ty,
|
|
.val = new_decl_val,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, struct_field_vals.len)).toIntern(),
|
|
} });
|
|
};
|
|
|
|
const decls_val = try sema.typeInfoDecls(src, ty.getNamespace(zcu));
|
|
|
|
const backing_integer_val = try pt.intern(.{ .opt = .{
|
|
.ty = (try pt.optionalType(.type_type)).toIntern(),
|
|
.val = if (zcu.typeToPackedStruct(ty)) |packed_struct| val: {
|
|
assert(Type.fromInterned(packed_struct.backingIntTypeUnordered(ip)).isInt(zcu));
|
|
break :val packed_struct.backingIntTypeUnordered(ip);
|
|
} else .none,
|
|
} });
|
|
|
|
const container_layout_ty = try sema.getBuiltinType(src, .@"Type.ContainerLayout");
|
|
|
|
const layout = ty.containerLayout(zcu);
|
|
|
|
const field_values = [_]InternPool.Index{
|
|
// layout: ContainerLayout,
|
|
(try pt.enumValueFieldIndex(container_layout_ty, @intFromEnum(layout))).toIntern(),
|
|
// backing_integer: ?type,
|
|
backing_integer_val,
|
|
// fields: []const StructField,
|
|
fields_val,
|
|
// decls: []const Declaration,
|
|
decls_val,
|
|
// is_tuple: bool,
|
|
Value.makeBool(ty.isTuple(zcu)).toIntern(),
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.@"struct"))).toIntern(),
|
|
.val = (try pt.aggregateValue(type_struct_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.@"opaque" => {
|
|
const type_opaque_ty = try sema.getBuiltinType(src, .@"Type.Opaque");
|
|
|
|
try ty.resolveFields(pt);
|
|
const decls_val = try sema.typeInfoDecls(src, ty.getNamespace(zcu));
|
|
|
|
const field_values = .{
|
|
// decls: []const Declaration,
|
|
decls_val,
|
|
};
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = type_info_ty.toIntern(),
|
|
.tag = (try pt.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.@"opaque"))).toIntern(),
|
|
.val = (try pt.aggregateValue(type_opaque_ty, &field_values)).toIntern(),
|
|
})));
|
|
},
|
|
.frame => return sema.failWithUseOfAsync(block, src),
|
|
.@"anyframe" => return sema.failWithUseOfAsync(block, src),
|
|
}
|
|
}
|
|
|
|
fn typeInfoDecls(
|
|
sema: *Sema,
|
|
src: LazySrcLoc,
|
|
opt_namespace: InternPool.OptionalNamespaceIndex,
|
|
) CompileError!InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
|
|
const declaration_ty = try sema.getBuiltinType(src, .@"Type.Declaration");
|
|
|
|
var decl_vals = std.array_list.Managed(InternPool.Index).init(gpa);
|
|
defer decl_vals.deinit();
|
|
|
|
var seen_namespaces = std.AutoHashMap(*Namespace, void).init(gpa);
|
|
defer seen_namespaces.deinit();
|
|
|
|
try sema.typeInfoNamespaceDecls(opt_namespace, declaration_ty, &decl_vals, &seen_namespaces);
|
|
|
|
const array_decl_ty = try pt.arrayType(.{
|
|
.len = decl_vals.items.len,
|
|
.child = declaration_ty.toIntern(),
|
|
});
|
|
const new_decl_val = (try pt.aggregateValue(array_decl_ty, decl_vals.items)).toIntern();
|
|
const slice_ty = (try pt.ptrTypeSema(.{
|
|
.child = declaration_ty.toIntern(),
|
|
.flags = .{
|
|
.size = .slice,
|
|
.is_const = true,
|
|
},
|
|
})).toIntern();
|
|
const manyptr_ty = Type.fromInterned(slice_ty).slicePtrFieldType(zcu).toIntern();
|
|
return try pt.intern(.{ .slice = .{
|
|
.ty = slice_ty,
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = manyptr_ty,
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = manyptr_ty,
|
|
.val = new_decl_val,
|
|
} },
|
|
.byte_offset = 0,
|
|
} }),
|
|
.len = (try pt.intValue(.usize, decl_vals.items.len)).toIntern(),
|
|
} });
|
|
}
|
|
|
|
fn typeInfoNamespaceDecls(
|
|
sema: *Sema,
|
|
opt_namespace_index: InternPool.OptionalNamespaceIndex,
|
|
declaration_ty: Type,
|
|
decl_vals: *std.array_list.Managed(InternPool.Index),
|
|
seen_namespaces: *std.AutoHashMap(*Namespace, void),
|
|
) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const namespace_index = opt_namespace_index.unwrap() orelse return;
|
|
try pt.ensureNamespaceUpToDate(namespace_index);
|
|
const namespace = zcu.namespacePtr(namespace_index);
|
|
|
|
const gop = try seen_namespaces.getOrPut(namespace);
|
|
if (gop.found_existing) return;
|
|
|
|
for (namespace.pub_decls.keys()) |nav| {
|
|
const name = ip.getNav(nav).name;
|
|
const name_val = name_val: {
|
|
const name_len = name.length(ip);
|
|
const array_ty = try pt.arrayType(.{
|
|
.len = name_len,
|
|
.sentinel = .zero_u8,
|
|
.child = .u8_type,
|
|
});
|
|
const array_val = try pt.intern(.{ .aggregate = .{
|
|
.ty = array_ty.toIntern(),
|
|
.storage = .{ .bytes = name.toString() },
|
|
} });
|
|
break :name_val try pt.intern(.{
|
|
.slice = .{
|
|
.ty = .slice_const_u8_sentinel_0_type, // [:0]const u8
|
|
.ptr = try pt.intern(.{
|
|
.ptr = .{
|
|
.ty = .manyptr_const_u8_sentinel_0_type, // [*:0]const u8
|
|
.base_addr = .{ .uav = .{
|
|
.orig_ty = .slice_const_u8_sentinel_0_type,
|
|
.val = array_val,
|
|
} },
|
|
.byte_offset = 0,
|
|
},
|
|
}),
|
|
.len = (try pt.intValue(.usize, name_len)).toIntern(),
|
|
},
|
|
});
|
|
};
|
|
const fields = [_]InternPool.Index{
|
|
// name: [:0]const u8,
|
|
name_val,
|
|
};
|
|
try decl_vals.append((try pt.aggregateValue(declaration_ty, &fields)).toIntern());
|
|
}
|
|
}
|
|
|
|
fn zirTypeof(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
_ = block;
|
|
const zir_datas = sema.code.instructions.items(.data);
|
|
const inst_data = zir_datas[@intFromEnum(inst)].un_node;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
return Air.internedToRef(operand_ty.toIntern());
|
|
}
|
|
|
|
fn zirTypeofBuiltin(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pl_node = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
|
|
var child_block: Block = .{
|
|
.parent = block,
|
|
.sema = sema,
|
|
.namespace = block.namespace,
|
|
.instructions = .{},
|
|
.inlining = block.inlining,
|
|
.comptime_reason = null,
|
|
.is_typeof = true,
|
|
.want_safety = false,
|
|
.error_return_trace_index = block.error_return_trace_index,
|
|
.src_base_inst = block.src_base_inst,
|
|
.type_name_ctx = block.type_name_ctx,
|
|
};
|
|
defer child_block.instructions.deinit(sema.gpa);
|
|
|
|
const operand = try sema.resolveInlineBody(&child_block, body, inst);
|
|
return Air.internedToRef(sema.typeOf(operand).toIntern());
|
|
}
|
|
|
|
fn zirTypeofLog2IntType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const res_ty = try sema.log2IntType(block, operand_ty, src);
|
|
return Air.internedToRef(res_ty.toIntern());
|
|
}
|
|
|
|
fn log2IntType(sema: *Sema, block: *Block, operand: Type, src: LazySrcLoc) CompileError!Type {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (operand.zigTypeTag(zcu)) {
|
|
.comptime_int => return .comptime_int,
|
|
.int => {
|
|
const bits = operand.bitSize(zcu);
|
|
const count = if (bits == 0)
|
|
0
|
|
else blk: {
|
|
var count: u16 = 0;
|
|
var s = bits - 1;
|
|
while (s != 0) : (s >>= 1) {
|
|
count += 1;
|
|
}
|
|
break :blk count;
|
|
};
|
|
return pt.intType(.unsigned, count);
|
|
},
|
|
.vector => {
|
|
const elem_ty = operand.elemType2(zcu);
|
|
const log2_elem_ty = try sema.log2IntType(block, elem_ty, src);
|
|
return pt.vectorType(.{
|
|
.len = operand.vectorLen(zcu),
|
|
.child = log2_elem_ty.toIntern(),
|
|
});
|
|
},
|
|
else => {},
|
|
}
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"bit shifting operation expected integer type, found '{f}'",
|
|
.{operand.fmt(pt)},
|
|
);
|
|
}
|
|
|
|
fn zirTypeofPeer(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.TypeOfPeer, extended.operand);
|
|
const src = block.nodeOffset(extra.data.src_node);
|
|
const body = sema.code.bodySlice(extra.data.body_index, extra.data.body_len);
|
|
|
|
var child_block: Block = .{
|
|
.parent = block,
|
|
.sema = sema,
|
|
.namespace = block.namespace,
|
|
.instructions = .{},
|
|
.inlining = block.inlining,
|
|
.comptime_reason = null,
|
|
.is_typeof = true,
|
|
.runtime_cond = block.runtime_cond,
|
|
.runtime_loop = block.runtime_loop,
|
|
.runtime_index = block.runtime_index,
|
|
.src_base_inst = block.src_base_inst,
|
|
.type_name_ctx = block.type_name_ctx,
|
|
};
|
|
defer child_block.instructions.deinit(sema.gpa);
|
|
// Ignore the result, we only care about the instructions in `args`.
|
|
_ = try sema.analyzeInlineBody(&child_block, body, inst);
|
|
|
|
const args = sema.code.refSlice(extra.end, extended.small);
|
|
|
|
const inst_list = try sema.gpa.alloc(Air.Inst.Ref, args.len);
|
|
defer sema.gpa.free(inst_list);
|
|
|
|
for (args, 0..) |arg_ref, i| {
|
|
inst_list[i] = try sema.resolveInst(arg_ref);
|
|
}
|
|
|
|
const result_type = try sema.resolvePeerTypes(block, src, inst_list, .{ .typeof_builtin_call_node_offset = extra.data.src_node });
|
|
return Air.internedToRef(result_type.toIntern());
|
|
}
|
|
|
|
fn zirBoolNot(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.src(.{ .node_offset_un_op = inst_data.src_node });
|
|
const uncasted_operand = try sema.resolveInst(inst_data.operand);
|
|
const uncasted_ty = sema.typeOf(uncasted_operand);
|
|
if (uncasted_ty.isVector(zcu)) {
|
|
if (uncasted_ty.scalarType(zcu).zigTypeTag(zcu) != .bool) {
|
|
return sema.fail(block, operand_src, "boolean not operation on type '{f}'", .{
|
|
uncasted_ty.fmt(pt),
|
|
});
|
|
}
|
|
return analyzeBitNot(sema, block, uncasted_operand, src);
|
|
}
|
|
const operand = try sema.coerce(block, .bool, uncasted_operand, operand_src);
|
|
if (try sema.resolveValue(operand)) |val| {
|
|
return if (val.isUndef(zcu)) .undef_bool else if (val.toBool()) .bool_false else .bool_true;
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addTyOp(.not, .bool, operand);
|
|
}
|
|
|
|
fn zirBoolBr(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
is_bool_or: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
|
|
const datas = sema.code.instructions.items(.data);
|
|
const inst_data = datas[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.BoolBr, inst_data.payload_index);
|
|
|
|
const uncoerced_lhs = try sema.resolveInst(extra.data.lhs);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const lhs_src = parent_block.src(.{ .node_offset_bin_lhs = inst_data.src_node });
|
|
const rhs_src = parent_block.src(.{ .node_offset_bin_rhs = inst_data.src_node });
|
|
|
|
const lhs = try sema.coerce(parent_block, .bool, uncoerced_lhs, lhs_src);
|
|
|
|
if (try sema.resolveDefinedValue(parent_block, lhs_src, lhs)) |lhs_val| {
|
|
if (is_bool_or and lhs_val.toBool()) {
|
|
return .bool_true;
|
|
} else if (!is_bool_or and !lhs_val.toBool()) {
|
|
return .bool_false;
|
|
}
|
|
// comptime-known left-hand side. No need for a block here; the result
|
|
// is simply the rhs expression. Here we rely on there only being 1
|
|
// break instruction (`break_inline`).
|
|
const rhs_result = try sema.resolveInlineBody(parent_block, body, inst);
|
|
if (sema.typeOf(rhs_result).isNoReturn(zcu)) {
|
|
return rhs_result;
|
|
}
|
|
return sema.coerce(parent_block, .bool, rhs_result, rhs_src);
|
|
}
|
|
|
|
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
try sema.air_instructions.append(gpa, .{
|
|
.tag = .block,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = .bool_type,
|
|
.payload = undefined,
|
|
} },
|
|
});
|
|
|
|
var child_block = parent_block.makeSubBlock();
|
|
child_block.runtime_loop = null;
|
|
child_block.runtime_cond = lhs_src;
|
|
child_block.runtime_index.increment();
|
|
defer child_block.instructions.deinit(gpa);
|
|
|
|
var then_block = child_block.makeSubBlock();
|
|
defer then_block.instructions.deinit(gpa);
|
|
|
|
var else_block = child_block.makeSubBlock();
|
|
defer else_block.instructions.deinit(gpa);
|
|
|
|
const lhs_block = if (is_bool_or) &then_block else &else_block;
|
|
const rhs_block = if (is_bool_or) &else_block else &then_block;
|
|
|
|
const lhs_result: Air.Inst.Ref = if (is_bool_or) .bool_true else .bool_false;
|
|
_ = try lhs_block.addBr(block_inst, lhs_result);
|
|
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint;
|
|
sema.branch_hint = null;
|
|
|
|
const rhs_result = try sema.resolveInlineBody(rhs_block, body, inst);
|
|
const rhs_noret = sema.typeOf(rhs_result).isNoReturn(zcu);
|
|
const coerced_rhs_result = if (!rhs_noret) rhs: {
|
|
const coerced_result = try sema.coerce(rhs_block, .bool, rhs_result, rhs_src);
|
|
_ = try rhs_block.addBr(block_inst, coerced_result);
|
|
break :rhs coerced_result;
|
|
} else rhs_result;
|
|
|
|
const rhs_hint = sema.branch_hint orelse .none;
|
|
|
|
const result = try sema.finishCondBr(
|
|
parent_block,
|
|
&child_block,
|
|
&then_block,
|
|
&else_block,
|
|
lhs,
|
|
block_inst,
|
|
if (is_bool_or) .{
|
|
.true = .none,
|
|
.false = rhs_hint,
|
|
.then_cov = .poi,
|
|
.else_cov = .poi,
|
|
} else .{
|
|
.true = rhs_hint,
|
|
.false = .none,
|
|
.then_cov = .poi,
|
|
.else_cov = .poi,
|
|
},
|
|
);
|
|
if (!rhs_noret) {
|
|
if (try sema.resolveDefinedValue(rhs_block, rhs_src, coerced_rhs_result)) |rhs_val| {
|
|
if (is_bool_or and rhs_val.toBool()) {
|
|
return .bool_true;
|
|
} else if (!is_bool_or and !rhs_val.toBool()) {
|
|
return .bool_false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
fn finishCondBr(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
child_block: *Block,
|
|
then_block: *Block,
|
|
else_block: *Block,
|
|
cond: Air.Inst.Ref,
|
|
block_inst: Air.Inst.Index,
|
|
branch_hints: Air.CondBr.BranchHints,
|
|
) !Air.Inst.Ref {
|
|
const gpa = sema.gpa;
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).@"struct".fields.len +
|
|
then_block.instructions.items.len + else_block.instructions.items.len +
|
|
@typeInfo(Air.Block).@"struct".fields.len + child_block.instructions.items.len + 1);
|
|
|
|
const cond_br_payload = sema.addExtraAssumeCapacity(Air.CondBr{
|
|
.then_body_len = @intCast(then_block.instructions.items.len),
|
|
.else_body_len = @intCast(else_block.instructions.items.len),
|
|
.branch_hints = branch_hints,
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(then_block.instructions.items));
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(else_block.instructions.items));
|
|
|
|
_ = try child_block.addInst(.{ .tag = .cond_br, .data = .{ .pl_op = .{
|
|
.operand = cond,
|
|
.payload = cond_br_payload,
|
|
} } });
|
|
|
|
sema.air_instructions.items(.data)[@intFromEnum(block_inst)].ty_pl.payload = sema.addExtraAssumeCapacity(
|
|
Air.Block{ .body_len = @intCast(child_block.instructions.items.len) },
|
|
);
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(child_block.instructions.items));
|
|
|
|
try parent_block.instructions.append(gpa, block_inst);
|
|
return block_inst.toRef();
|
|
}
|
|
|
|
fn checkNullableType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.optional, .null, .undefined => return,
|
|
.pointer => if (ty.isPtrLikeOptional(zcu)) return,
|
|
else => {},
|
|
}
|
|
return sema.failWithExpectedOptionalType(block, src, ty);
|
|
}
|
|
|
|
fn checkSentinelType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (!ty.isSelfComparable(zcu, true)) {
|
|
return sema.fail(block, src, "non-scalar sentinel type '{f}'", .{ty.fmt(pt)});
|
|
}
|
|
}
|
|
|
|
fn zirIsNonNull(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
try sema.checkNullableType(block, src, sema.typeOf(operand));
|
|
return sema.analyzeIsNull(block, operand, true);
|
|
}
|
|
|
|
fn zirIsNonNullPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ptr = try sema.resolveInst(inst_data.operand);
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
try sema.checkNullableType(block, src, sema.typeOf(ptr).elemType2(zcu));
|
|
if (try sema.resolveValue(ptr)) |ptr_val| {
|
|
if (try sema.pointerDeref(block, src, ptr_val, ptr_ty)) |loaded_val| {
|
|
return sema.analyzeIsNull(block, Air.internedToRef(loaded_val.toIntern()), true);
|
|
}
|
|
}
|
|
if (ptr_ty.childType(zcu).isNullFromType(zcu)) |is_null| {
|
|
return if (is_null) .bool_false else .bool_true;
|
|
}
|
|
return block.addUnOp(.is_non_null_ptr, ptr);
|
|
}
|
|
|
|
fn checkErrorType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.error_set, .error_union, .undefined => return,
|
|
else => return sema.fail(block, src, "expected error union type, found '{f}'", .{
|
|
ty.fmt(pt),
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn zirIsNonErr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
try sema.checkErrorType(block, src, sema.typeOf(operand));
|
|
return sema.analyzeIsNonErr(block, src, operand);
|
|
}
|
|
|
|
fn zirIsNonErrPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ptr = try sema.resolveInst(inst_data.operand);
|
|
try sema.checkErrorType(block, src, sema.typeOf(ptr).elemType2(zcu));
|
|
const loaded = try sema.analyzeLoad(block, src, ptr, src);
|
|
return sema.analyzeIsNonErr(block, src, loaded);
|
|
}
|
|
|
|
fn zirRetIsNonErr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
return sema.analyzeIsNonErr(block, src, operand);
|
|
}
|
|
|
|
fn zirCondbr(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const cond_src = parent_block.src(.{ .node_offset_if_cond = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index);
|
|
|
|
const then_body = sema.code.bodySlice(extra.end, extra.data.then_body_len);
|
|
const else_body = sema.code.bodySlice(extra.end + then_body.len, extra.data.else_body_len);
|
|
|
|
const uncasted_cond = try sema.resolveInst(extra.data.condition);
|
|
const cond = try sema.coerce(parent_block, .bool, uncasted_cond, cond_src);
|
|
|
|
if (try sema.resolveDefinedValue(parent_block, cond_src, cond)) |cond_val| {
|
|
const body = if (cond_val.toBool()) then_body else else_body;
|
|
|
|
// We can propagate `.cold` hints from this branch since it's comptime-known
|
|
// to be taken from the parent branch.
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint orelse if (sema.branch_hint == .cold) .cold else null;
|
|
|
|
try sema.maybeErrorUnwrapCondbr(parent_block, body, extra.data.condition, cond_src);
|
|
// We use `analyzeBodyInner` since we want to propagate any comptime control flow to the caller.
|
|
return sema.analyzeBodyInner(parent_block, body);
|
|
}
|
|
|
|
const gpa = sema.gpa;
|
|
|
|
// We'll re-use the sub block to save on memory bandwidth, and yank out the
|
|
// instructions array in between using it for the then block and else block.
|
|
var sub_block = parent_block.makeSubBlock();
|
|
sub_block.runtime_loop = null;
|
|
sub_block.runtime_cond = cond_src;
|
|
sub_block.runtime_index.increment();
|
|
sub_block.need_debug_scope = null; // this body is emitted regardless
|
|
defer sub_block.instructions.deinit(gpa);
|
|
|
|
const true_hint = try sema.analyzeBodyRuntimeBreak(&sub_block, then_body);
|
|
const true_instructions = try sub_block.instructions.toOwnedSlice(gpa);
|
|
defer gpa.free(true_instructions);
|
|
|
|
const err_cond = blk: {
|
|
const index = extra.data.condition.toIndex() orelse break :blk null;
|
|
if (sema.code.instructions.items(.tag)[@intFromEnum(index)] != .is_non_err) break :blk null;
|
|
|
|
const err_inst_data = sema.code.instructions.items(.data)[@intFromEnum(index)].un_node;
|
|
const err_operand = try sema.resolveInst(err_inst_data.operand);
|
|
const operand_ty = sema.typeOf(err_operand);
|
|
assert(operand_ty.zigTypeTag(zcu) == .error_union);
|
|
const result_ty = operand_ty.errorUnionSet(zcu);
|
|
break :blk try sub_block.addTyOp(.unwrap_errunion_err, result_ty, err_operand);
|
|
};
|
|
|
|
const false_hint: std.builtin.BranchHint = if (err_cond != null and
|
|
try sema.maybeErrorUnwrap(&sub_block, else_body, err_cond.?, cond_src, false))
|
|
h: {
|
|
// nothing to do here. weight against error branch
|
|
break :h .unlikely;
|
|
} else try sema.analyzeBodyRuntimeBreak(&sub_block, else_body);
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).@"struct".fields.len +
|
|
true_instructions.len + sub_block.instructions.items.len);
|
|
_ = try parent_block.addInst(.{
|
|
.tag = .cond_br,
|
|
.data = .{
|
|
.pl_op = .{
|
|
.operand = cond,
|
|
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
|
|
.then_body_len = @intCast(true_instructions.len),
|
|
.else_body_len = @intCast(sub_block.instructions.items.len),
|
|
.branch_hints = .{
|
|
.true = true_hint,
|
|
.false = false_hint,
|
|
// Code coverage is desired for error handling.
|
|
.then_cov = .poi,
|
|
.else_cov = .poi,
|
|
},
|
|
}),
|
|
},
|
|
},
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(true_instructions));
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
|
|
}
|
|
|
|
fn zirTry(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = parent_block.nodeOffset(inst_data.src_node);
|
|
const operand_src = parent_block.src(.{ .node_offset_try_operand = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const err_union = try sema.resolveInst(extra.data.operand);
|
|
const err_union_ty = sema.typeOf(err_union);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (err_union_ty.zigTypeTag(zcu) != .error_union) {
|
|
return sema.failWithOwnedErrorMsg(parent_block, msg: {
|
|
const msg = try sema.errMsg(operand_src, "expected error union type, found '{f}'", .{err_union_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.addDeclaredHereNote(msg, err_union_ty);
|
|
try sema.errNote(operand_src, msg, "consider omitting 'try'", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(parent_block, operand_src, err_union);
|
|
if (is_non_err != .none) {
|
|
// We can propagate `.cold` hints from this branch since it's comptime-known
|
|
// to be taken from the parent branch.
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint orelse if (sema.branch_hint == .cold) .cold else null;
|
|
|
|
const is_non_err_val = (try sema.resolveDefinedValue(parent_block, operand_src, is_non_err)).?;
|
|
if (is_non_err_val.toBool()) {
|
|
return sema.analyzeErrUnionPayload(parent_block, src, err_union_ty, err_union, operand_src, false);
|
|
}
|
|
// We can analyze the body directly in the parent block because we know there are
|
|
// no breaks from the body possible, and that the body is noreturn.
|
|
try sema.analyzeBodyInner(parent_block, body);
|
|
return .unreachable_value;
|
|
}
|
|
|
|
var sub_block = parent_block.makeSubBlock();
|
|
defer sub_block.instructions.deinit(sema.gpa);
|
|
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint;
|
|
|
|
// This body is guaranteed to end with noreturn and has no breaks.
|
|
try sema.analyzeBodyInner(&sub_block, body);
|
|
|
|
// The only interesting hint here is `.cold`, which can come from e.g. `errdefer @panic`.
|
|
const is_cold = sema.branch_hint == .cold;
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.Try).@"struct".fields.len +
|
|
sub_block.instructions.items.len);
|
|
const try_inst = try parent_block.addInst(.{
|
|
.tag = if (is_cold) .try_cold else .@"try",
|
|
.data = .{ .pl_op = .{
|
|
.operand = err_union,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Try{
|
|
.body_len = @intCast(sub_block.instructions.items.len),
|
|
}),
|
|
} },
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
|
|
return try_inst;
|
|
}
|
|
|
|
fn zirTryPtr(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = parent_block.nodeOffset(inst_data.src_node);
|
|
const operand_src = parent_block.src(.{ .node_offset_try_operand = inst_data.src_node });
|
|
const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index);
|
|
const body = sema.code.bodySlice(extra.end, extra.data.body_len);
|
|
const operand = try sema.resolveInst(extra.data.operand);
|
|
const err_union = try sema.analyzeLoad(parent_block, src, operand, operand_src);
|
|
const err_union_ty = sema.typeOf(err_union);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (err_union_ty.zigTypeTag(zcu) != .error_union) {
|
|
return sema.failWithOwnedErrorMsg(parent_block, msg: {
|
|
const msg = try sema.errMsg(operand_src, "expected error union type, found '{f}'", .{err_union_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.addDeclaredHereNote(msg, err_union_ty);
|
|
try sema.errNote(operand_src, msg, "consider omitting 'try'", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
const is_non_err = try sema.analyzeIsNonErrComptimeOnly(parent_block, operand_src, err_union);
|
|
if (is_non_err != .none) {
|
|
// We can propagate `.cold` hints from this branch since it's comptime-known
|
|
// to be taken from the parent branch.
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint orelse if (sema.branch_hint == .cold) .cold else null;
|
|
|
|
const is_non_err_val = (try sema.resolveDefinedValue(parent_block, operand_src, is_non_err)).?;
|
|
if (is_non_err_val.toBool()) {
|
|
return sema.analyzeErrUnionPayloadPtr(parent_block, src, operand, false, false);
|
|
}
|
|
// We can analyze the body directly in the parent block because we know there are
|
|
// no breaks from the body possible, and that the body is noreturn.
|
|
try sema.analyzeBodyInner(parent_block, body);
|
|
return .unreachable_value;
|
|
}
|
|
|
|
var sub_block = parent_block.makeSubBlock();
|
|
defer sub_block.instructions.deinit(sema.gpa);
|
|
|
|
const parent_hint = sema.branch_hint;
|
|
defer sema.branch_hint = parent_hint;
|
|
|
|
// This body is guaranteed to end with noreturn and has no breaks.
|
|
try sema.analyzeBodyInner(&sub_block, body);
|
|
|
|
// The only interesting hint here is `.cold`, which can come from e.g. `errdefer @panic`.
|
|
const is_cold = sema.branch_hint == .cold;
|
|
|
|
const operand_ty = sema.typeOf(operand);
|
|
const ptr_info = operand_ty.ptrInfo(zcu);
|
|
const res_ty = try pt.ptrTypeSema(.{
|
|
.child = err_union_ty.errorUnionPayload(zcu).toIntern(),
|
|
.flags = .{
|
|
.is_const = ptr_info.flags.is_const,
|
|
.is_volatile = ptr_info.flags.is_volatile,
|
|
.is_allowzero = ptr_info.flags.is_allowzero,
|
|
.address_space = ptr_info.flags.address_space,
|
|
},
|
|
});
|
|
const res_ty_ref = Air.internedToRef(res_ty.toIntern());
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.TryPtr).@"struct".fields.len +
|
|
sub_block.instructions.items.len);
|
|
const try_inst = try parent_block.addInst(.{
|
|
.tag = if (is_cold) .try_ptr_cold else .try_ptr,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = res_ty_ref,
|
|
.payload = sema.addExtraAssumeCapacity(Air.TryPtr{
|
|
.ptr = operand,
|
|
.body_len = @intCast(sub_block.instructions.items.len),
|
|
}),
|
|
} },
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(sub_block.instructions.items));
|
|
return try_inst;
|
|
}
|
|
|
|
fn ensurePostHoc(sema: *Sema, block: *Block, dest_block: Zir.Inst.Index) !*LabeledBlock {
|
|
const gop = sema.inst_map.getOrPutAssumeCapacity(dest_block);
|
|
if (gop.found_existing) existing: {
|
|
// This may be a *result* from an earlier iteration of an inline loop.
|
|
// In this case, there will not be a post-hoc block entry, and we can
|
|
// continue with the logic below.
|
|
const new_block_inst = gop.value_ptr.*.toIndex() orelse break :existing;
|
|
return sema.post_hoc_blocks.get(new_block_inst) orelse break :existing;
|
|
}
|
|
|
|
try sema.post_hoc_blocks.ensureUnusedCapacity(sema.gpa, 1);
|
|
|
|
const new_block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
gop.value_ptr.* = new_block_inst.toRef();
|
|
try sema.air_instructions.append(sema.gpa, .{
|
|
.tag = .block,
|
|
.data = undefined,
|
|
});
|
|
const labeled_block = try sema.gpa.create(LabeledBlock);
|
|
labeled_block.* = .{
|
|
.label = .{
|
|
.zir_block = dest_block,
|
|
.merges = .{
|
|
.src_locs = .{},
|
|
.results = .{},
|
|
.br_list = .{},
|
|
.block_inst = new_block_inst,
|
|
},
|
|
},
|
|
.block = .{
|
|
.parent = block,
|
|
.sema = sema,
|
|
.namespace = block.namespace,
|
|
.instructions = .{},
|
|
.label = &labeled_block.label,
|
|
.inlining = block.inlining,
|
|
.comptime_reason = block.comptime_reason,
|
|
.src_base_inst = block.src_base_inst,
|
|
.type_name_ctx = block.type_name_ctx,
|
|
},
|
|
};
|
|
sema.post_hoc_blocks.putAssumeCapacityNoClobber(new_block_inst, labeled_block);
|
|
return labeled_block;
|
|
}
|
|
|
|
/// A `break` statement is inside a runtime condition, but trying to
|
|
/// break from an inline loop. In such case we must convert it to
|
|
/// a runtime break.
|
|
fn addRuntimeBreak(sema: *Sema, child_block: *Block, block_inst: Zir.Inst.Index, break_operand: Zir.Inst.Ref) !void {
|
|
const labeled_block = try sema.ensurePostHoc(child_block, block_inst);
|
|
|
|
const operand = try sema.resolveInst(break_operand);
|
|
const br_ref = try child_block.addBr(labeled_block.label.merges.block_inst, operand);
|
|
|
|
try labeled_block.label.merges.results.append(sema.gpa, operand);
|
|
try labeled_block.label.merges.br_list.append(sema.gpa, br_ref.toIndex().?);
|
|
try labeled_block.label.merges.src_locs.append(sema.gpa, null);
|
|
|
|
labeled_block.block.runtime_index.increment();
|
|
if (labeled_block.block.runtime_cond == null and labeled_block.block.runtime_loop == null) {
|
|
labeled_block.block.runtime_cond = child_block.runtime_cond orelse child_block.runtime_loop;
|
|
labeled_block.block.runtime_loop = child_block.runtime_loop;
|
|
}
|
|
}
|
|
|
|
fn zirUnreachable(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].@"unreachable";
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
if (block.isComptime()) {
|
|
return sema.fail(block, src, "reached unreachable code", .{});
|
|
}
|
|
// TODO Add compile error for @optimizeFor occurring too late in a scope.
|
|
sema.analyzeUnreachable(block, src, true) catch |err| switch (err) {
|
|
error.AnalysisFail => {
|
|
const msg = sema.err orelse return err;
|
|
if (!mem.eql(u8, msg.msg, "runtime safety check not allowed in naked function")) return err;
|
|
try sema.errNote(src, msg, "the end of a naked function is implicitly unreachable", .{});
|
|
return err;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
|
|
fn zirRetErrValue(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].str_tok;
|
|
const src = block.tokenOffset(inst_data.src_tok);
|
|
const err_name = try zcu.intern_pool.getOrPutString(
|
|
sema.gpa,
|
|
pt.tid,
|
|
inst_data.get(sema.code),
|
|
.no_embedded_nulls,
|
|
);
|
|
_ = try pt.getErrorValue(err_name);
|
|
// Return the error code from the function.
|
|
const error_set_type = try pt.singleErrorSetType(err_name);
|
|
const result_inst = Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = error_set_type.toIntern(),
|
|
.name = err_name,
|
|
} })));
|
|
return sema.analyzeRet(block, result_inst, src, src);
|
|
}
|
|
|
|
fn zirRetImplicit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_tok;
|
|
const r_brace_src = block.tokenOffset(inst_data.src_tok);
|
|
if (block.inlining == null and sema.func_is_naked) {
|
|
assert(!block.isComptime());
|
|
if (block.wantSafety()) {
|
|
// Calling a safety function from a naked function would not be legal.
|
|
_ = try block.addNoOp(.trap);
|
|
} else {
|
|
try sema.analyzeUnreachable(block, r_brace_src, false);
|
|
}
|
|
return;
|
|
}
|
|
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const ret_ty_src = block.src(.{ .node_offset_fn_type_ret_ty = .zero });
|
|
const base_tag = sema.fn_ret_ty.baseZigTypeTag(zcu);
|
|
if (base_tag == .noreturn) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ret_ty_src, "function declared '{f}' implicitly returns", .{
|
|
sema.fn_ret_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(r_brace_src, msg, "control flow reaches end of body here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
} else if (base_tag != .void) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ret_ty_src, "function with non-void return type '{f}' implicitly returns", .{
|
|
sema.fn_ret_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(r_brace_src, msg, "control flow reaches end of body here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
return sema.analyzeRet(block, operand, r_brace_src, r_brace_src);
|
|
}
|
|
|
|
fn zirRetNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
return sema.analyzeRet(block, operand, src, block.src(.{ .node_offset_return_operand = inst_data.src_node }));
|
|
}
|
|
|
|
fn zirRetLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ret_ptr = try sema.resolveInst(inst_data.operand);
|
|
|
|
if (block.isComptime() or block.inlining != null or sema.func_is_naked) {
|
|
const operand = try sema.analyzeLoad(block, src, ret_ptr, src);
|
|
return sema.analyzeRet(block, operand, src, block.src(.{ .node_offset_return_operand = inst_data.src_node }));
|
|
}
|
|
|
|
if (sema.wantErrorReturnTracing(sema.fn_ret_ty)) {
|
|
const is_non_err = try sema.analyzePtrIsNonErr(block, src, ret_ptr);
|
|
return sema.retWithErrTracing(block, src, is_non_err, .ret_load, ret_ptr);
|
|
}
|
|
|
|
_ = try block.addUnOp(.ret_load, ret_ptr);
|
|
}
|
|
|
|
fn retWithErrTracing(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
is_non_err: Air.Inst.Ref,
|
|
ret_tag: Air.Inst.Tag,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const need_check = switch (is_non_err) {
|
|
.bool_true => {
|
|
_ = try block.addUnOp(ret_tag, operand);
|
|
return;
|
|
},
|
|
.bool_false => false,
|
|
else => true,
|
|
};
|
|
|
|
// This means we're returning something that might be an error!
|
|
// This should only be possible with the `auto` cc, so we definitely have an error trace.
|
|
assert(pt.zcu.intern_pool.funcAnalysisUnordered(sema.owner.unwrap().func).has_error_trace);
|
|
|
|
const gpa = sema.gpa;
|
|
const return_err_fn = Air.internedToRef(try sema.getBuiltin(src, .returnError));
|
|
|
|
if (!need_check) {
|
|
try sema.callBuiltin(block, src, return_err_fn, .never_tail, &.{}, .@"error return");
|
|
_ = try block.addUnOp(ret_tag, operand);
|
|
return;
|
|
}
|
|
|
|
var then_block = block.makeSubBlock();
|
|
defer then_block.instructions.deinit(gpa);
|
|
_ = try then_block.addUnOp(ret_tag, operand);
|
|
|
|
var else_block = block.makeSubBlock();
|
|
defer else_block.instructions.deinit(gpa);
|
|
try sema.callBuiltin(&else_block, src, return_err_fn, .never_tail, &.{}, .@"error return");
|
|
_ = try else_block.addUnOp(ret_tag, operand);
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).@"struct".fields.len +
|
|
then_block.instructions.items.len + else_block.instructions.items.len +
|
|
@typeInfo(Air.Block).@"struct".fields.len + 1);
|
|
|
|
const cond_br_payload = sema.addExtraAssumeCapacity(Air.CondBr{
|
|
.then_body_len = @intCast(then_block.instructions.items.len),
|
|
.else_body_len = @intCast(else_block.instructions.items.len),
|
|
.branch_hints = .{
|
|
// Weight against error branch.
|
|
.true = .likely,
|
|
.false = .unlikely,
|
|
// Code coverage is not valuable on either branch.
|
|
.then_cov = .none,
|
|
.else_cov = .none,
|
|
},
|
|
});
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(then_block.instructions.items));
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(else_block.instructions.items));
|
|
|
|
_ = try block.addInst(.{ .tag = .cond_br, .data = .{ .pl_op = .{
|
|
.operand = is_non_err,
|
|
.payload = cond_br_payload,
|
|
} } });
|
|
}
|
|
|
|
fn wantErrorReturnTracing(sema: *Sema, fn_ret_ty: Type) bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
return fn_ret_ty.isError(zcu) and zcu.comp.config.any_error_tracing;
|
|
}
|
|
|
|
fn zirSaveErrRetIndex(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].save_err_ret_index;
|
|
|
|
if (!block.ownerModule().error_tracing) return;
|
|
|
|
// This is only relevant at runtime.
|
|
if (block.isComptime() or block.is_typeof) return;
|
|
|
|
const save_index = inst_data.operand == .none or b: {
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
break :b operand_ty.isError(zcu);
|
|
};
|
|
|
|
if (save_index)
|
|
block.error_return_trace_index = try sema.analyzeSaveErrRetIndex(block);
|
|
}
|
|
|
|
fn zirRestoreErrRetIndex(sema: *Sema, start_block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
|
|
const extra = sema.code.extraData(Zir.Inst.RestoreErrRetIndex, extended.operand).data;
|
|
return sema.restoreErrRetIndex(start_block, start_block.nodeOffset(extra.src_node), extra.block, extra.operand);
|
|
}
|
|
|
|
/// If `operand` is non-error (or is `none`), restores the error return trace to
|
|
/// its state at the point `block` was reached (or, if `block` is `none`, the
|
|
/// point this function began execution).
|
|
fn restoreErrRetIndex(sema: *Sema, start_block: *Block, src: LazySrcLoc, target_block: Zir.Inst.Ref, operand_zir: Zir.Inst.Ref) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const saved_index = if (target_block.toIndexAllowNone()) |zir_block| b: {
|
|
var block = start_block;
|
|
while (true) {
|
|
if (block.label) |label| {
|
|
if (label.zir_block == zir_block) {
|
|
const target_trace_index = if (block.parent) |parent_block| tgt: {
|
|
break :tgt parent_block.error_return_trace_index;
|
|
} else sema.error_return_trace_index_on_fn_entry;
|
|
|
|
if (start_block.error_return_trace_index != target_trace_index)
|
|
break :b target_trace_index;
|
|
|
|
return; // No need to restore
|
|
}
|
|
}
|
|
block = block.parent.?;
|
|
}
|
|
} else b: {
|
|
if (start_block.error_return_trace_index != sema.error_return_trace_index_on_fn_entry)
|
|
break :b sema.error_return_trace_index_on_fn_entry;
|
|
|
|
return; // No need to restore
|
|
};
|
|
|
|
const operand = try sema.resolveInstAllowNone(operand_zir);
|
|
|
|
if (start_block.isComptime() or start_block.is_typeof) {
|
|
const is_non_error = if (operand != .none) blk: {
|
|
const is_non_error_inst = try sema.analyzeIsNonErr(start_block, src, operand);
|
|
const cond_val = try sema.resolveDefinedValue(start_block, src, is_non_error_inst);
|
|
break :blk cond_val.?.toBool();
|
|
} else true; // no operand means pop unconditionally
|
|
|
|
if (is_non_error) return;
|
|
|
|
const saved_index_val = try sema.resolveDefinedValue(start_block, src, saved_index);
|
|
const saved_index_int = saved_index_val.?.toUnsignedInt(zcu);
|
|
assert(saved_index_int <= sema.comptime_err_ret_trace.items.len);
|
|
sema.comptime_err_ret_trace.items.len = @intCast(saved_index_int);
|
|
return;
|
|
}
|
|
|
|
if (!zcu.intern_pool.funcAnalysisUnordered(sema.owner.unwrap().func).has_error_trace) return;
|
|
if (!start_block.ownerModule().error_tracing) return;
|
|
|
|
assert(saved_index != .none); // The .error_return_trace_index field was dropped somewhere
|
|
|
|
return sema.popErrorReturnTrace(start_block, src, operand, saved_index);
|
|
}
|
|
|
|
fn addToInferredErrorSet(sema: *Sema, uncasted_operand: Air.Inst.Ref) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
assert(sema.fn_ret_ty.zigTypeTag(zcu) == .error_union);
|
|
const err_set_ty = sema.fn_ret_ty.errorUnionSet(zcu).toIntern();
|
|
switch (err_set_ty) {
|
|
.adhoc_inferred_error_set_type => {
|
|
const ies = sema.fn_ret_ty_ies.?;
|
|
assert(ies.func == .none);
|
|
try sema.addToInferredErrorSetPtr(ies, sema.typeOf(uncasted_operand));
|
|
},
|
|
else => if (ip.isInferredErrorSetType(err_set_ty)) {
|
|
const ies = sema.fn_ret_ty_ies.?;
|
|
assert(ies.func == sema.owner.unwrap().func);
|
|
try sema.addToInferredErrorSetPtr(ies, sema.typeOf(uncasted_operand));
|
|
},
|
|
}
|
|
}
|
|
|
|
fn addToInferredErrorSetPtr(sema: *Sema, ies: *InferredErrorSet, op_ty: Type) !void {
|
|
const arena = sema.arena;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
switch (op_ty.zigTypeTag(zcu)) {
|
|
.error_set => try ies.addErrorSet(op_ty, ip, arena),
|
|
.error_union => try ies.addErrorSet(op_ty.errorUnionSet(zcu), ip, arena),
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
fn analyzeRet(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
uncasted_operand: Air.Inst.Ref,
|
|
src: LazySrcLoc,
|
|
operand_src: LazySrcLoc,
|
|
) CompileError!void {
|
|
// Special case for returning an error to an inferred error set; we need to
|
|
// add the error tag to the inferred error set of the in-scope function, so
|
|
// that the coercion below works correctly.
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (sema.fn_ret_ty_ies != null and sema.fn_ret_ty.zigTypeTag(zcu) == .error_union) {
|
|
try sema.addToInferredErrorSet(uncasted_operand);
|
|
}
|
|
const operand = sema.coerceExtra(block, sema.fn_ret_ty, uncasted_operand, operand_src, .{ .is_ret = true }) catch |err| switch (err) {
|
|
error.NotCoercible => unreachable,
|
|
else => |e| return e,
|
|
};
|
|
|
|
if (block.inlining) |inlining| {
|
|
assert(!inlining.is_generic_instantiation); // can't `return` in a generic param/ret ty expr
|
|
if (block.isComptime()) {
|
|
const ret_val = try sema.resolveConstValue(block, operand_src, operand, null);
|
|
inlining.comptime_result = operand;
|
|
|
|
if (sema.fn_ret_ty.isError(zcu) and ret_val.getErrorName(zcu) != .none) {
|
|
try sema.comptime_err_ret_trace.append(src);
|
|
}
|
|
return error.ComptimeReturn;
|
|
}
|
|
// We are inlining a function call; rewrite the `ret` as a `break`.
|
|
const br_inst = try block.addBr(inlining.merges.block_inst, operand);
|
|
try inlining.merges.results.append(sema.gpa, operand);
|
|
try inlining.merges.br_list.append(sema.gpa, br_inst.toIndex().?);
|
|
try inlining.merges.src_locs.append(sema.gpa, operand_src);
|
|
return;
|
|
} else if (block.isComptime()) {
|
|
return sema.fail(block, src, "function called at runtime cannot return value at comptime", .{});
|
|
} else if (sema.func_is_naked) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "cannot return from naked function", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.errNote(src, msg, "can only return using assembly", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
try sema.fn_ret_ty.resolveLayout(pt);
|
|
|
|
try sema.validateRuntimeValue(block, operand_src, operand);
|
|
|
|
const air_tag: Air.Inst.Tag = if (block.wantSafety()) .ret_safe else .ret;
|
|
if (sema.wantErrorReturnTracing(sema.fn_ret_ty)) {
|
|
// Avoid adding a frame to the error return trace in case the value is comptime-known
|
|
// to be not an error.
|
|
const is_non_err = try sema.analyzeIsNonErr(block, operand_src, operand);
|
|
return sema.retWithErrTracing(block, src, is_non_err, air_tag, operand);
|
|
}
|
|
|
|
_ = try block.addUnOp(air_tag, operand);
|
|
}
|
|
|
|
fn floatOpAllowed(tag: Zir.Inst.Tag) bool {
|
|
// extend this swich as additional operators are implemented
|
|
return switch (tag) {
|
|
.add, .sub, .mul, .div, .div_exact, .div_trunc, .div_floor, .mod, .rem, .mod_rem => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
fn zirPtrType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].ptr_type;
|
|
const extra = sema.code.extraData(Zir.Inst.PtrType, inst_data.payload_index);
|
|
const elem_ty_src = block.src(.{ .node_offset_ptr_elem = extra.data.src_node });
|
|
const sentinel_src = block.src(.{ .node_offset_ptr_sentinel = extra.data.src_node });
|
|
const align_src = block.src(.{ .node_offset_ptr_align = extra.data.src_node });
|
|
const addrspace_src = block.src(.{ .node_offset_ptr_addrspace = extra.data.src_node });
|
|
const bitoffset_src = block.src(.{ .node_offset_ptr_bitoffset = extra.data.src_node });
|
|
const hostsize_src = block.src(.{ .node_offset_ptr_hostsize = extra.data.src_node });
|
|
|
|
const elem_ty = blk: {
|
|
const air_inst = try sema.resolveInst(extra.data.elem_type);
|
|
const ty = sema.analyzeAsType(block, elem_ty_src, air_inst) catch |err| {
|
|
if (err == error.AnalysisFail and sema.err != null and sema.typeOf(air_inst).isSinglePointer(zcu)) {
|
|
try sema.errNote(elem_ty_src, sema.err.?, "use '.*' to dereference pointer", .{});
|
|
}
|
|
return err;
|
|
};
|
|
assert(!ty.isGenericPoison());
|
|
break :blk ty;
|
|
};
|
|
|
|
if (elem_ty.zigTypeTag(zcu) == .noreturn)
|
|
return sema.fail(block, elem_ty_src, "pointer to noreturn not allowed", .{});
|
|
|
|
const target = zcu.getTarget();
|
|
|
|
var extra_i = extra.end;
|
|
|
|
const sentinel = if (inst_data.flags.has_sentinel) blk: {
|
|
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
|
|
extra_i += 1;
|
|
const coerced = try sema.coerce(block, elem_ty, try sema.resolveInst(ref), sentinel_src);
|
|
const val = try sema.resolveConstDefinedValue(block, sentinel_src, coerced, .{ .simple = .pointer_sentinel });
|
|
try checkSentinelType(sema, block, sentinel_src, elem_ty);
|
|
if (val.canMutateComptimeVarState(zcu)) {
|
|
const sentinel_name = try ip.getOrPutString(sema.gpa, pt.tid, "sentinel", .no_embedded_nulls);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, sentinel_src, sentinel_name, "sentinel", val);
|
|
}
|
|
break :blk val.toIntern();
|
|
} else .none;
|
|
|
|
const abi_align: Alignment = if (inst_data.flags.has_align) blk: {
|
|
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
|
|
extra_i += 1;
|
|
const coerced = try sema.coerce(block, align_ty, try sema.resolveInst(ref), align_src);
|
|
const val = try sema.resolveConstDefinedValue(block, align_src, coerced, .{ .simple = .@"align" });
|
|
// Check if this happens to be the lazy alignment of our element type, in
|
|
// which case we can make this 0 without resolving it.
|
|
switch (zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
.int => |int| switch (int.storage) {
|
|
.lazy_align => |lazy_ty| if (lazy_ty == elem_ty.toIntern()) break :blk .none,
|
|
else => {},
|
|
},
|
|
else => {},
|
|
}
|
|
const align_bytes = (try val.getUnsignedIntSema(pt)).?;
|
|
break :blk try sema.validateAlign(block, align_src, align_bytes);
|
|
} else .none;
|
|
|
|
const address_space: std.builtin.AddressSpace = if (inst_data.flags.has_addrspace) blk: {
|
|
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
|
|
extra_i += 1;
|
|
break :blk try sema.resolveAddressSpace(block, addrspace_src, ref, .pointer);
|
|
} else if (elem_ty.zigTypeTag(zcu) == .@"fn" and target.cpu.arch == .avr) .flash else .generic;
|
|
|
|
const bit_offset: u16 = if (inst_data.flags.has_bit_range) blk: {
|
|
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
|
|
extra_i += 1;
|
|
const bit_offset = try sema.resolveInt(block, bitoffset_src, ref, .u16, .{ .simple = .type });
|
|
break :blk @intCast(bit_offset);
|
|
} else 0;
|
|
|
|
const host_size: u16 = if (inst_data.flags.has_bit_range) blk: {
|
|
const ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_i]);
|
|
extra_i += 1;
|
|
const host_size = try sema.resolveInt(block, hostsize_src, ref, .u16, .{ .simple = .type });
|
|
break :blk @intCast(host_size);
|
|
} else 0;
|
|
|
|
if (host_size != 0) {
|
|
if (bit_offset >= host_size * 8) {
|
|
return sema.fail(block, bitoffset_src, "packed type '{f}' at bit offset {d} starts {d} bits after the end of a {d} byte host integer", .{
|
|
elem_ty.fmt(pt), bit_offset, bit_offset - host_size * 8, host_size,
|
|
});
|
|
}
|
|
const elem_bit_size = try elem_ty.bitSizeSema(pt);
|
|
if (elem_bit_size > host_size * 8 - bit_offset) {
|
|
return sema.fail(block, bitoffset_src, "packed type '{f}' at bit offset {d} ends {d} bits after the end of a {d} byte host integer", .{
|
|
elem_ty.fmt(pt), bit_offset, elem_bit_size - (host_size * 8 - bit_offset), host_size,
|
|
});
|
|
}
|
|
}
|
|
|
|
if (elem_ty.zigTypeTag(zcu) == .@"fn") {
|
|
if (inst_data.size != .one) {
|
|
return sema.fail(block, elem_ty_src, "function pointers must be single pointers", .{});
|
|
}
|
|
} else if (inst_data.size != .one and elem_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.fail(block, elem_ty_src, "indexable pointer to opaque type '{f}' not allowed", .{elem_ty.fmt(pt)});
|
|
} else if (inst_data.size == .c) {
|
|
if (!try sema.validateExternType(elem_ty, .other)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(elem_ty_src, "C pointers cannot point to non-C-ABI-compatible type '{f}'", .{elem_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, elem_ty_src, elem_ty, .other);
|
|
|
|
try sema.addDeclaredHereNote(msg, elem_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
if (host_size != 0 and !try sema.validatePackedType(elem_ty)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(elem_ty_src, "bit-pointer cannot refer to value of type '{f}'", .{elem_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.explainWhyTypeIsNotPacked(msg, elem_ty_src, elem_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
const ty = try pt.ptrTypeSema(.{
|
|
.child = elem_ty.toIntern(),
|
|
.sentinel = sentinel,
|
|
.flags = .{
|
|
.alignment = abi_align,
|
|
.address_space = address_space,
|
|
.is_const = !inst_data.flags.is_mutable,
|
|
.is_allowzero = inst_data.flags.is_allowzero,
|
|
.is_volatile = inst_data.flags.is_volatile,
|
|
.size = inst_data.size,
|
|
},
|
|
.packed_offset = .{
|
|
.bit_offset = bit_offset,
|
|
.host_size = host_size,
|
|
},
|
|
});
|
|
return Air.internedToRef(ty.toIntern());
|
|
}
|
|
|
|
fn zirStructInitEmpty(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const ty_src = block.src(.{ .node_offset_init_ty = inst_data.src_node });
|
|
const obj_ty = try sema.resolveType(block, ty_src, inst_data.operand);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
switch (obj_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => return sema.structInitEmpty(block, obj_ty, src, src),
|
|
.array, .vector => return sema.arrayInitEmpty(block, src, obj_ty),
|
|
.void => return Air.internedToRef(Value.void.toIntern()),
|
|
.@"union" => return sema.fail(block, src, "union initializer must initialize one field", .{}),
|
|
else => return sema.failWithArrayInitNotSupported(block, src, obj_ty),
|
|
}
|
|
}
|
|
|
|
fn zirStructInitEmptyResult(sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_byref: bool) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
// Generic poison means this is an untyped anonymous empty struct/array init
|
|
const ty_operand = try sema.resolveTypeOrPoison(block, src, inst_data.operand) orelse {
|
|
if (is_byref) {
|
|
return sema.uavRef(.empty_tuple);
|
|
} else {
|
|
return .empty_tuple;
|
|
}
|
|
};
|
|
|
|
const init_ty = if (is_byref) ty: {
|
|
const ptr_ty = ty_operand.optEuBaseType(zcu);
|
|
assert(ptr_ty.zigTypeTag(zcu) == .pointer); // validated by a previous instruction
|
|
switch (ptr_ty.ptrSize(zcu)) {
|
|
// Use a zero-length array for a slice or many-ptr result
|
|
.slice, .many => break :ty try pt.arrayType(.{
|
|
.len = 0,
|
|
.child = ptr_ty.childType(zcu).toIntern(),
|
|
.sentinel = if (ptr_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
}),
|
|
// Just use the child type for a single-pointer or C-pointer result
|
|
.one, .c => {
|
|
const child = ptr_ty.childType(zcu);
|
|
if (child.toIntern() == .anyopaque_type) {
|
|
// ...unless that child is anyopaque, in which case this is equivalent to an untyped init.
|
|
// `.{}` is an empty tuple.
|
|
if (is_byref) {
|
|
return sema.uavRef(.empty_tuple);
|
|
} else {
|
|
return .empty_tuple;
|
|
}
|
|
}
|
|
break :ty child;
|
|
},
|
|
}
|
|
if (!ptr_ty.isSlice(zcu)) {
|
|
break :ty ptr_ty.childType(zcu);
|
|
}
|
|
// To make `&.{}` a `[:s]T`, the init should be a `[0:s]T`.
|
|
break :ty try pt.arrayType(.{
|
|
.len = 0,
|
|
.sentinel = if (ptr_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
.child = ptr_ty.childType(zcu).toIntern(),
|
|
});
|
|
} else ty_operand;
|
|
const obj_ty = init_ty.optEuBaseType(zcu);
|
|
|
|
const empty_ref = switch (obj_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => try sema.structInitEmpty(block, obj_ty, src, src),
|
|
.array, .vector => try sema.arrayInitEmpty(block, src, obj_ty),
|
|
.@"union" => return sema.fail(block, src, "union initializer must initialize one field", .{}),
|
|
else => return sema.failWithArrayInitNotSupported(block, src, obj_ty),
|
|
};
|
|
const init_ref = try sema.coerce(block, init_ty, empty_ref, src);
|
|
|
|
if (is_byref) {
|
|
const init_val = (try sema.resolveValue(init_ref)).?;
|
|
return sema.uavRef(init_val.toIntern());
|
|
} else {
|
|
return init_ref;
|
|
}
|
|
}
|
|
|
|
fn structInitEmpty(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
struct_ty: Type,
|
|
dest_src: LazySrcLoc,
|
|
init_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
// This logic must be synchronized with that in `zirStructInit`.
|
|
try struct_ty.resolveFields(pt);
|
|
|
|
// The init values to use for the struct instance.
|
|
const field_inits = try gpa.alloc(Air.Inst.Ref, struct_ty.structFieldCount(zcu));
|
|
defer gpa.free(field_inits);
|
|
@memset(field_inits, .none);
|
|
|
|
// Maps field index in the struct declaration to the field index in the initialization expression.
|
|
const field_assign_idxs = try gpa.alloc(?usize, struct_ty.structFieldCount(zcu));
|
|
defer gpa.free(field_assign_idxs);
|
|
@memset(field_assign_idxs, null);
|
|
|
|
return sema.finishStructInit(block, init_src, dest_src, field_inits, field_assign_idxs, struct_ty, struct_ty, false);
|
|
}
|
|
|
|
fn arrayInitEmpty(sema: *Sema, block: *Block, src: LazySrcLoc, obj_ty: Type) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const arr_len = obj_ty.arrayLen(zcu);
|
|
if (arr_len != 0) {
|
|
if (obj_ty.zigTypeTag(zcu) == .array) {
|
|
return sema.fail(block, src, "expected {d} array elements; found 0", .{arr_len});
|
|
} else {
|
|
return sema.fail(block, src, "expected {d} vector elements; found 0", .{arr_len});
|
|
}
|
|
}
|
|
return .fromValue(try pt.aggregateValue(obj_ty, &.{}));
|
|
}
|
|
|
|
fn zirUnionInit(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const field_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const init_src = block.builtinCallArgSrc(inst_data.src_node, 2);
|
|
const extra = sema.code.extraData(Zir.Inst.UnionInit, inst_data.payload_index).data;
|
|
const union_ty = try sema.resolveType(block, ty_src, extra.union_type);
|
|
if (union_ty.zigTypeTag(pt.zcu) != .@"union") {
|
|
return sema.fail(block, ty_src, "expected union type, found '{f}'", .{union_ty.fmt(pt)});
|
|
}
|
|
const field_name = try sema.resolveConstStringIntern(block, field_src, extra.field_name, .{ .simple = .union_field_name });
|
|
const init = try sema.resolveInst(extra.init);
|
|
return sema.unionInit(block, init, init_src, union_ty, ty_src, field_name, field_src);
|
|
}
|
|
|
|
fn unionInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
uncasted_init: Air.Inst.Ref,
|
|
init_src: LazySrcLoc,
|
|
union_ty: Type,
|
|
union_ty_src: LazySrcLoc,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_src);
|
|
const field_ty: Type = .fromInterned(zcu.typeToUnion(union_ty).?.field_types.get(ip)[field_index]);
|
|
const init = try sema.coerce(block, field_ty, uncasted_init, init_src);
|
|
_ = union_ty_src;
|
|
return unionInitFromEnumTag(sema, block, init_src, union_ty, field_index, init);
|
|
}
|
|
|
|
fn unionInitFromEnumTag(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
init_src: LazySrcLoc,
|
|
union_ty: Type,
|
|
field_index: u32,
|
|
init: Air.Inst.Ref,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (try sema.resolveValue(init)) |init_val| {
|
|
const tag_ty = union_ty.unionTagTypeHypothetical(zcu);
|
|
const tag_val = try pt.enumValueFieldIndex(tag_ty, field_index);
|
|
return Air.internedToRef((try pt.internUnion(.{
|
|
.ty = union_ty.toIntern(),
|
|
.tag = tag_val.toIntern(),
|
|
.val = init_val.toIntern(),
|
|
})));
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, init_src, null);
|
|
return block.addUnionInit(union_ty, field_index, init);
|
|
}
|
|
|
|
fn zirStructInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
is_ref: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const gpa = sema.gpa;
|
|
const zir_datas = sema.code.instructions.items(.data);
|
|
const inst_data = zir_datas[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.StructInit, inst_data.payload_index);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const first_item = sema.code.extraData(Zir.Inst.StructInit.Item, extra.end).data;
|
|
const first_field_type_data = zir_datas[@intFromEnum(first_item.field_type)].pl_node;
|
|
const first_field_type_extra = sema.code.extraData(Zir.Inst.FieldType, first_field_type_data.payload_index).data;
|
|
const result_ty = try sema.resolveTypeOrPoison(block, src, first_field_type_extra.container_type) orelse {
|
|
// The type wasn't actually known, so treat this as an anon struct init.
|
|
return sema.structInitAnon(block, src, inst, .typed_init, extra.data, extra.end, is_ref);
|
|
};
|
|
const resolved_ty = result_ty.optEuBaseType(zcu);
|
|
try resolved_ty.resolveLayout(pt);
|
|
|
|
if (resolved_ty.zigTypeTag(zcu) == .@"struct") {
|
|
// This logic must be synchronized with that in `zirStructInitEmpty`.
|
|
|
|
// Maps field index to field_type index of where it was already initialized.
|
|
// For making sure all fields are accounted for and no fields are duplicated.
|
|
const found_fields = try gpa.alloc(Zir.Inst.Index, resolved_ty.structFieldCount(zcu));
|
|
defer gpa.free(found_fields);
|
|
|
|
// The init values to use for the struct instance.
|
|
const field_inits = try gpa.alloc(Air.Inst.Ref, resolved_ty.structFieldCount(zcu));
|
|
defer gpa.free(field_inits);
|
|
@memset(field_inits, .none);
|
|
|
|
// Maps field index in the struct declaration to the field index in the initialization expression.
|
|
const field_assign_idxs = try gpa.alloc(?usize, resolved_ty.structFieldCount(zcu));
|
|
defer gpa.free(field_assign_idxs);
|
|
@memset(field_assign_idxs, null);
|
|
|
|
var field_i: u32 = 0;
|
|
var extra_index = extra.end;
|
|
|
|
const is_packed = resolved_ty.containerLayout(zcu) == .@"packed";
|
|
while (field_i < extra.data.fields_len) : (field_i += 1) {
|
|
const item = sema.code.extraData(Zir.Inst.StructInit.Item, extra_index);
|
|
extra_index = item.end;
|
|
|
|
const field_type_data = zir_datas[@intFromEnum(item.data.field_type)].pl_node;
|
|
const field_src = block.src(.{ .node_offset_initializer = field_type_data.src_node });
|
|
const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index).data;
|
|
const field_name = try ip.getOrPutString(
|
|
gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(field_type_extra.name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
const field_index = if (resolved_ty.isTuple(zcu))
|
|
try sema.tupleFieldIndex(block, resolved_ty, field_name, field_src)
|
|
else
|
|
try sema.structFieldIndex(block, resolved_ty, field_name, field_src);
|
|
assert(field_inits[field_index] == .none);
|
|
field_assign_idxs[field_index] = field_i;
|
|
found_fields[field_index] = item.data.field_type;
|
|
const uncoerced_init = try sema.resolveInst(item.data.init);
|
|
const field_ty = resolved_ty.fieldType(field_index, zcu);
|
|
field_inits[field_index] = try sema.coerce(block, field_ty, uncoerced_init, field_src);
|
|
if (!is_packed) {
|
|
try resolved_ty.resolveStructFieldInits(pt);
|
|
if (try resolved_ty.structFieldValueComptime(pt, field_index)) |default_value| {
|
|
const init_val = (try sema.resolveValue(field_inits[field_index])) orelse {
|
|
return sema.failWithNeededComptime(block, field_src, .{ .simple = .stored_to_comptime_field });
|
|
};
|
|
|
|
if (!init_val.eql(default_value, resolved_ty.fieldType(field_index, zcu), zcu)) {
|
|
return sema.failWithInvalidComptimeFieldStore(block, field_src, resolved_ty, field_index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return sema.finishStructInit(block, src, src, field_inits, field_assign_idxs, resolved_ty, result_ty, is_ref);
|
|
} else if (resolved_ty.zigTypeTag(zcu) == .@"union") {
|
|
if (extra.data.fields_len != 1) {
|
|
return sema.fail(block, src, "union initialization expects exactly one field", .{});
|
|
}
|
|
|
|
const item = sema.code.extraData(Zir.Inst.StructInit.Item, extra.end);
|
|
|
|
const field_type_data = zir_datas[@intFromEnum(item.data.field_type)].pl_node;
|
|
const field_src = block.src(.{ .node_offset_initializer = field_type_data.src_node });
|
|
const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index).data;
|
|
const field_name = try ip.getOrPutString(
|
|
gpa,
|
|
pt.tid,
|
|
sema.code.nullTerminatedString(field_type_extra.name_start),
|
|
.no_embedded_nulls,
|
|
);
|
|
const field_index = try sema.unionFieldIndex(block, resolved_ty, field_name, field_src);
|
|
const tag_ty = resolved_ty.unionTagTypeHypothetical(zcu);
|
|
const tag_val = try pt.enumValueFieldIndex(tag_ty, field_index);
|
|
const field_ty: Type = .fromInterned(zcu.typeToUnion(resolved_ty).?.field_types.get(ip)[field_index]);
|
|
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "cannot initialize 'noreturn' field of union", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.addFieldErrNote(resolved_ty, field_index, msg, "field '{f}' declared here", .{
|
|
field_name.fmt(ip),
|
|
});
|
|
try sema.addDeclaredHereNote(msg, resolved_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
const uncoerced_init_inst = try sema.resolveInst(item.data.init);
|
|
const init_inst = try sema.coerce(block, field_ty, uncoerced_init_inst, field_src);
|
|
|
|
if (try sema.resolveValue(init_inst)) |val| {
|
|
const struct_val = Value.fromInterned(try pt.internUnion(.{
|
|
.ty = resolved_ty.toIntern(),
|
|
.tag = tag_val.toIntern(),
|
|
.val = val.toIntern(),
|
|
}));
|
|
const final_val_inst = try sema.coerce(block, result_ty, Air.internedToRef(struct_val.toIntern()), src);
|
|
const final_val = (try sema.resolveValue(final_val_inst)).?;
|
|
return sema.addConstantMaybeRef(final_val.toIntern(), is_ref);
|
|
}
|
|
|
|
if (try resolved_ty.comptimeOnlySema(pt)) {
|
|
return sema.failWithNeededComptime(block, field_src, .{ .comptime_only = .{
|
|
.ty = resolved_ty,
|
|
.msg = .union_init,
|
|
} });
|
|
}
|
|
|
|
try sema.validateRuntimeValue(block, field_src, init_inst);
|
|
|
|
if (is_ref) {
|
|
const target = zcu.getTarget();
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = result_ty.toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const alloc = try block.addTy(.alloc, alloc_ty);
|
|
const base_ptr = try sema.optEuBasePtrInit(block, alloc, src);
|
|
const field_ptr = try sema.unionFieldPtr(block, field_src, base_ptr, field_name, field_src, resolved_ty, true);
|
|
try sema.storePtr(block, src, field_ptr, init_inst);
|
|
if ((try sema.typeHasOnePossibleValue(tag_ty)) == null) {
|
|
const new_tag = Air.internedToRef(tag_val.toIntern());
|
|
_ = try block.addBinOp(.set_union_tag, base_ptr, new_tag);
|
|
}
|
|
return sema.makePtrConst(block, alloc);
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
const union_val = try block.addUnionInit(resolved_ty, field_index, init_inst);
|
|
return sema.coerce(block, result_ty, union_val, src);
|
|
}
|
|
unreachable;
|
|
}
|
|
|
|
fn finishStructInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
init_src: LazySrcLoc,
|
|
dest_src: LazySrcLoc,
|
|
field_inits: []Air.Inst.Ref,
|
|
field_assign_idxs: []?usize,
|
|
struct_ty: Type,
|
|
result_ty: Type,
|
|
is_ref: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
var root_msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
|
|
|
|
switch (ip.indexToKey(struct_ty.toIntern())) {
|
|
.tuple_type => |tuple| {
|
|
// We can't get the slices, as the coercion may invalidate them.
|
|
for (0..tuple.types.len) |i| {
|
|
if (field_inits[i] != .none) {
|
|
// Coerce the init value to the field type.
|
|
const field_src = block.src(.{ .init_elem = .{
|
|
.init_node_offset = init_src.offset.node_offset.x,
|
|
.elem_index = @intCast(i),
|
|
} });
|
|
const field_ty: Type = .fromInterned(tuple.types.get(ip)[i]);
|
|
field_inits[i] = try sema.coerce(block, field_ty, field_inits[i], field_src);
|
|
continue;
|
|
}
|
|
|
|
const default_val = tuple.values.get(ip)[i];
|
|
|
|
if (default_val == .none) {
|
|
const template = "missing tuple field with index {d}";
|
|
if (root_msg) |msg| {
|
|
try sema.errNote(init_src, msg, template, .{i});
|
|
} else {
|
|
root_msg = try sema.errMsg(init_src, template, .{i});
|
|
}
|
|
} else {
|
|
field_inits[i] = Air.internedToRef(default_val);
|
|
}
|
|
}
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(struct_ty.toIntern());
|
|
for (0..struct_type.field_types.len) |i| {
|
|
if (field_inits[i] != .none) {
|
|
// Coerce the init value to the field type.
|
|
const field_src = block.src(.{ .init_elem = .{
|
|
.init_node_offset = init_src.offset.node_offset.x,
|
|
.elem_index = @intCast(i),
|
|
} });
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
field_inits[i] = try sema.coerce(block, field_ty, field_inits[i], field_src);
|
|
continue;
|
|
}
|
|
|
|
try struct_ty.resolveStructFieldInits(pt);
|
|
|
|
const field_init = struct_type.fieldInit(ip, i);
|
|
if (field_init == .none) {
|
|
const field_name = struct_type.field_names.get(ip)[i];
|
|
const template = "missing struct field: {f}";
|
|
const args = .{field_name.fmt(ip)};
|
|
if (root_msg) |msg| {
|
|
try sema.errNote(init_src, msg, template, args);
|
|
} else {
|
|
root_msg = try sema.errMsg(init_src, template, args);
|
|
}
|
|
} else {
|
|
field_inits[i] = Air.internedToRef(field_init);
|
|
}
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
|
|
if (root_msg) |msg| {
|
|
try sema.addDeclaredHereNote(msg, struct_ty);
|
|
root_msg = null;
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
// Find which field forces the expression to be runtime, if any.
|
|
const opt_runtime_index = for (field_inits, field_assign_idxs) |field_init, field_assign| {
|
|
if (!(try sema.isComptimeKnown(field_init))) {
|
|
break field_assign;
|
|
}
|
|
} else null;
|
|
|
|
const runtime_index = opt_runtime_index orelse {
|
|
const elems = try sema.arena.alloc(InternPool.Index, field_inits.len);
|
|
for (elems, field_inits) |*elem, field_init| {
|
|
elem.* = (sema.resolveValue(field_init) catch unreachable).?.toIntern();
|
|
}
|
|
const struct_val = try pt.aggregateValue(struct_ty, elems);
|
|
const final_val_inst = try sema.coerce(block, result_ty, Air.internedToRef(struct_val.toIntern()), init_src);
|
|
const final_val = (try sema.resolveValue(final_val_inst)).?;
|
|
return sema.addConstantMaybeRef(final_val.toIntern(), is_ref);
|
|
};
|
|
|
|
if (try struct_ty.comptimeOnlySema(pt)) {
|
|
return sema.failWithNeededComptime(block, block.src(.{ .init_elem = .{
|
|
.init_node_offset = init_src.offset.node_offset.x,
|
|
.elem_index = @intCast(runtime_index),
|
|
} }), .{ .comptime_only = .{
|
|
.ty = struct_ty,
|
|
.msg = .struct_init,
|
|
} });
|
|
}
|
|
|
|
for (field_inits) |field_init| {
|
|
try sema.validateRuntimeValue(block, dest_src, field_init);
|
|
}
|
|
|
|
if (is_ref) {
|
|
try struct_ty.resolveLayout(pt);
|
|
const target = zcu.getTarget();
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = result_ty.toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const alloc = try block.addTy(.alloc, alloc_ty);
|
|
const base_ptr = try sema.optEuBasePtrInit(block, alloc, init_src);
|
|
for (field_inits, 0..) |field_init, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
const field_ptr = try sema.structFieldPtrByIndex(block, dest_src, base_ptr, i, struct_ty);
|
|
try sema.storePtr(block, dest_src, field_ptr, field_init);
|
|
}
|
|
|
|
return sema.makePtrConst(block, alloc);
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, dest_src, block.src(.{ .init_elem = .{
|
|
.init_node_offset = init_src.offset.node_offset.x,
|
|
.elem_index = @intCast(runtime_index),
|
|
} }));
|
|
try struct_ty.resolveStructFieldInits(pt);
|
|
const struct_val = try block.addAggregateInit(struct_ty, field_inits);
|
|
return sema.coerce(block, result_ty, struct_val, init_src);
|
|
}
|
|
|
|
fn zirStructInitAnon(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.StructInitAnon, inst_data.payload_index);
|
|
return sema.structInitAnon(block, src, inst, .anon_init, extra.data, extra.end, false);
|
|
}
|
|
|
|
fn structInitAnon(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
inst: Zir.Inst.Index,
|
|
/// It is possible for a typed struct_init to be downgraded to an anonymous init due to a
|
|
/// generic poison type. In this case, we need to know to interpret the extra data differently.
|
|
comptime kind: enum { anon_init, typed_init },
|
|
extra_data: switch (kind) {
|
|
.anon_init => Zir.Inst.StructInitAnon,
|
|
.typed_init => Zir.Inst.StructInit,
|
|
},
|
|
extra_end: usize,
|
|
is_ref: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const zir_datas = sema.code.instructions.items(.data);
|
|
|
|
const types = try sema.arena.alloc(InternPool.Index, extra_data.fields_len);
|
|
const values = try sema.arena.alloc(InternPool.Index, types.len);
|
|
const names = try sema.arena.alloc(InternPool.NullTerminatedString, types.len);
|
|
|
|
var any_values = false;
|
|
|
|
// Find which field forces the expression to be runtime, if any.
|
|
const opt_runtime_index = rs: {
|
|
var runtime_index: ?usize = null;
|
|
var extra_index = extra_end;
|
|
for (types, values, names, 0..) |*field_ty, *field_val, *field_name, i_usize| {
|
|
const item = switch (kind) {
|
|
.anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index),
|
|
.typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index),
|
|
};
|
|
extra_index = item.end;
|
|
|
|
const name = switch (kind) {
|
|
.anon_init => sema.code.nullTerminatedString(item.data.field_name),
|
|
.typed_init => name: {
|
|
// `item.data.field_type` references a `field_type` instruction
|
|
const field_type_data = zir_datas[@intFromEnum(item.data.field_type)].pl_node;
|
|
const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index);
|
|
break :name sema.code.nullTerminatedString(field_type_extra.data.name_start);
|
|
},
|
|
};
|
|
|
|
field_name.* = try zcu.intern_pool.getOrPutString(gpa, pt.tid, name, .no_embedded_nulls);
|
|
|
|
const init = try sema.resolveInst(item.data.init);
|
|
field_ty.* = sema.typeOf(init).toIntern();
|
|
if (Type.fromInterned(field_ty.*).zigTypeTag(zcu) == .@"opaque") {
|
|
const msg = msg: {
|
|
const field_src = block.src(.{ .init_elem = .{
|
|
.init_node_offset = src.offset.node_offset.x,
|
|
.elem_index = @intCast(i_usize),
|
|
} });
|
|
const msg = try sema.errMsg(field_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, .fromInterned(field_ty.*));
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
if (try sema.resolveValue(init)) |init_val| {
|
|
field_val.* = init_val.toIntern();
|
|
any_values = true;
|
|
} else {
|
|
field_val.* = .none;
|
|
runtime_index = @intCast(i_usize);
|
|
}
|
|
}
|
|
break :rs runtime_index;
|
|
};
|
|
|
|
// We treat anonymous struct types as reified types, because there are similarities:
|
|
// * They use a form of structural equivalence, which we can easily model using a custom hash
|
|
// * They do not have captures
|
|
// * They immediately have their fields resolved
|
|
// In general, other code should treat anon struct types and reified struct types identically,
|
|
// so there's no point having a separate `InternPool.NamespaceType` field for them.
|
|
const type_hash: u64 = hash: {
|
|
var hasher = std.hash.Wyhash.init(0);
|
|
hasher.update(std.mem.sliceAsBytes(types));
|
|
hasher.update(std.mem.sliceAsBytes(values));
|
|
hasher.update(std.mem.sliceAsBytes(names));
|
|
break :hash hasher.final();
|
|
};
|
|
const tracked_inst = try block.trackZir(inst);
|
|
const struct_ty = switch (try ip.getStructType(gpa, pt.tid, .{
|
|
.layout = .auto,
|
|
.fields_len = extra_data.fields_len,
|
|
.known_non_opv = false,
|
|
.requires_comptime = .unknown,
|
|
.any_comptime_fields = any_values,
|
|
.any_default_inits = any_values,
|
|
.inits_resolved = true,
|
|
.any_aligned_fields = false,
|
|
.key = .{ .reified = .{
|
|
.zir_index = tracked_inst,
|
|
.type_hash = type_hash,
|
|
} },
|
|
}, false)) {
|
|
.wip => |wip| ty: {
|
|
errdefer wip.cancel(ip, pt.tid);
|
|
const type_name = try sema.createTypeName(block, .anon, "struct", inst, wip.index);
|
|
wip.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const struct_type = ip.loadStructType(wip.index);
|
|
|
|
for (names, values, 0..) |name, init_val, field_idx| {
|
|
assert(struct_type.addFieldName(ip, name) == null);
|
|
if (init_val != .none) struct_type.setFieldComptime(ip, field_idx);
|
|
}
|
|
|
|
@memcpy(struct_type.field_types.get(ip), types);
|
|
if (any_values) {
|
|
@memcpy(struct_type.field_inits.get(ip), values);
|
|
}
|
|
|
|
const new_namespace_index = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
try zcu.comp.queueJob(.{ .resolve_type_fully = wip.index });
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip.index });
|
|
}
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip.index);
|
|
break :ty wip.finish(ip, new_namespace_index);
|
|
},
|
|
.existing => |ty| ty,
|
|
};
|
|
try sema.declareDependency(.{ .interned = struct_ty });
|
|
try sema.addTypeReferenceEntry(src, struct_ty);
|
|
|
|
_ = opt_runtime_index orelse {
|
|
const struct_val = try pt.aggregateValue(.fromInterned(struct_ty), values);
|
|
return sema.addConstantMaybeRef(struct_val.toIntern(), is_ref);
|
|
};
|
|
|
|
if (is_ref) {
|
|
const target = zcu.getTarget();
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = struct_ty,
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const alloc = try block.addTy(.alloc, alloc_ty);
|
|
var extra_index = extra_end;
|
|
for (types, 0..) |field_ty, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
const item = switch (kind) {
|
|
.anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index),
|
|
.typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index),
|
|
};
|
|
extra_index = item.end;
|
|
|
|
const field_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = field_ty,
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
if (values[i] == .none) {
|
|
const init = try sema.resolveInst(item.data.init);
|
|
const field_ptr = try block.addStructFieldPtr(alloc, i, field_ptr_ty);
|
|
_ = try block.addBinOp(.store, field_ptr, init);
|
|
}
|
|
}
|
|
|
|
return sema.makePtrConst(block, alloc);
|
|
}
|
|
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, types.len);
|
|
var extra_index = extra_end;
|
|
for (types, 0..) |_, i| {
|
|
const item = switch (kind) {
|
|
.anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index),
|
|
.typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index),
|
|
};
|
|
extra_index = item.end;
|
|
element_refs[i] = try sema.resolveInst(item.data.init);
|
|
}
|
|
|
|
return block.addAggregateInit(.fromInterned(struct_ty), element_refs);
|
|
}
|
|
|
|
fn zirArrayInit(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
is_ref: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index);
|
|
const args = sema.code.refSlice(extra.end, extra.data.operands_len);
|
|
assert(args.len >= 2); // array_ty + at least one element
|
|
|
|
const result_ty = try sema.resolveTypeOrPoison(block, src, args[0]) orelse {
|
|
// The type wasn't actually known, so treat this as an anon array init.
|
|
return sema.arrayInitAnon(block, src, args[1..], is_ref);
|
|
};
|
|
const array_ty = result_ty.optEuBaseType(zcu);
|
|
const is_tuple = array_ty.zigTypeTag(zcu) == .@"struct";
|
|
const sentinel_val = array_ty.sentinel(zcu);
|
|
|
|
var root_msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
|
|
|
|
const final_len = try sema.usizeCast(block, src, array_ty.arrayLenIncludingSentinel(zcu));
|
|
const resolved_args = try gpa.alloc(Air.Inst.Ref, final_len);
|
|
defer gpa.free(resolved_args);
|
|
for (resolved_args, 0..) |*dest, i| {
|
|
const elem_src = block.src(.{ .init_elem = .{
|
|
.init_node_offset = src.offset.node_offset.x,
|
|
.elem_index = @intCast(i),
|
|
} });
|
|
// Less inits than needed.
|
|
if (i + 2 > args.len) if (is_tuple) {
|
|
const default_val = array_ty.structFieldDefaultValue(i, zcu).toIntern();
|
|
if (default_val == .unreachable_value) {
|
|
const template = "missing tuple field with index {d}";
|
|
if (root_msg) |msg| {
|
|
try sema.errNote(src, msg, template, .{i});
|
|
} else {
|
|
root_msg = try sema.errMsg(src, template, .{i});
|
|
}
|
|
} else {
|
|
dest.* = Air.internedToRef(default_val);
|
|
}
|
|
continue;
|
|
} else {
|
|
dest.* = Air.internedToRef(sentinel_val.?.toIntern());
|
|
break;
|
|
};
|
|
|
|
const arg = args[i + 1];
|
|
const resolved_arg = try sema.resolveInst(arg);
|
|
const elem_ty = if (is_tuple)
|
|
array_ty.fieldType(i, zcu)
|
|
else
|
|
array_ty.elemType2(zcu);
|
|
dest.* = try sema.coerce(block, elem_ty, resolved_arg, elem_src);
|
|
if (is_tuple) {
|
|
if (array_ty.structFieldIsComptime(i, zcu))
|
|
try array_ty.resolveStructFieldInits(pt);
|
|
if (try array_ty.structFieldValueComptime(pt, i)) |field_val| {
|
|
const init_val = try sema.resolveConstValue(block, elem_src, dest.*, .{ .simple = .stored_to_comptime_field });
|
|
if (!field_val.eql(init_val, elem_ty, zcu)) {
|
|
return sema.failWithInvalidComptimeFieldStore(block, elem_src, array_ty, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (root_msg) |msg| {
|
|
try sema.addDeclaredHereNote(msg, array_ty);
|
|
root_msg = null;
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const opt_runtime_index: ?u32 = for (resolved_args, 0..) |arg, i| {
|
|
const comptime_known = try sema.isComptimeKnown(arg);
|
|
if (!comptime_known) break @intCast(i);
|
|
} else null;
|
|
|
|
_ = opt_runtime_index orelse {
|
|
const elem_vals = try sema.arena.alloc(InternPool.Index, resolved_args.len);
|
|
for (elem_vals, resolved_args) |*val, arg| {
|
|
// We checked that all args are comptime above.
|
|
val.* = (sema.resolveValue(arg) catch unreachable).?.toIntern();
|
|
}
|
|
const arr_val = try pt.aggregateValue(array_ty, elem_vals);
|
|
const result_ref = try sema.coerce(block, result_ty, Air.internedToRef(arr_val.toIntern()), src);
|
|
const result_val = (try sema.resolveValue(result_ref)).?;
|
|
return sema.addConstantMaybeRef(result_val.toIntern(), is_ref);
|
|
};
|
|
|
|
if (is_ref) {
|
|
const target = zcu.getTarget();
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = result_ty.toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const alloc = try block.addTy(.alloc, alloc_ty);
|
|
const base_ptr = try sema.optEuBasePtrInit(block, alloc, src);
|
|
|
|
if (is_tuple) {
|
|
for (resolved_args, 0..) |arg, i| {
|
|
const elem_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = array_ty.fieldType(i, zcu).toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const elem_ptr_ty_ref = Air.internedToRef(elem_ptr_ty.toIntern());
|
|
|
|
const index = try pt.intRef(.usize, i);
|
|
const elem_ptr = try block.addPtrElemPtrTypeRef(base_ptr, index, elem_ptr_ty_ref);
|
|
_ = try block.addBinOp(.store, elem_ptr, arg);
|
|
}
|
|
return sema.makePtrConst(block, alloc);
|
|
}
|
|
|
|
const elem_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = array_ty.elemType2(zcu).toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const elem_ptr_ty_ref = Air.internedToRef(elem_ptr_ty.toIntern());
|
|
|
|
for (resolved_args, 0..) |arg, i| {
|
|
const index = try pt.intRef(.usize, i);
|
|
const elem_ptr = try block.addPtrElemPtrTypeRef(base_ptr, index, elem_ptr_ty_ref);
|
|
_ = try block.addBinOp(.store, elem_ptr, arg);
|
|
}
|
|
return sema.makePtrConst(block, alloc);
|
|
}
|
|
|
|
const arr_ref = try block.addAggregateInit(array_ty, resolved_args);
|
|
return sema.coerce(block, result_ty, arr_ref, src);
|
|
}
|
|
|
|
fn zirArrayInitAnon(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index);
|
|
const operands = sema.code.refSlice(extra.end, extra.data.operands_len);
|
|
return sema.arrayInitAnon(block, src, operands, false);
|
|
}
|
|
|
|
fn arrayInitAnon(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operands: []const Zir.Inst.Ref,
|
|
is_ref: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const types = try sema.arena.alloc(InternPool.Index, operands.len);
|
|
const values = try sema.arena.alloc(InternPool.Index, operands.len);
|
|
|
|
var any_comptime = false;
|
|
const opt_runtime_src = rs: {
|
|
var runtime_src: ?LazySrcLoc = null;
|
|
for (operands, 0..) |operand, i| {
|
|
const operand_src = block.src(.{ .init_elem = .{
|
|
.init_node_offset = src.offset.node_offset.x,
|
|
.elem_index = @intCast(i),
|
|
} });
|
|
const elem = try sema.resolveInst(operand);
|
|
types[i] = sema.typeOf(elem).toIntern();
|
|
if (Type.fromInterned(types[i]).zigTypeTag(zcu) == .@"opaque") {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(operand_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, .fromInterned(types[i]));
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
if (try sema.resolveValue(elem)) |val| {
|
|
values[i] = val.toIntern();
|
|
any_comptime = true;
|
|
} else {
|
|
values[i] = .none;
|
|
runtime_src = operand_src;
|
|
}
|
|
}
|
|
break :rs runtime_src;
|
|
};
|
|
|
|
// A field can't be `comptime` if it references a `comptime var` but the aggregate can still be comptime-known.
|
|
// Replace these fields with `.none` only for generating the type.
|
|
const values_no_comptime = if (!any_comptime) values else blk: {
|
|
const new_values = try sema.arena.alloc(InternPool.Index, operands.len);
|
|
for (values, new_values) |val, *new_val| {
|
|
if (val != .none and Value.fromInterned(val).canMutateComptimeVarState(zcu)) {
|
|
new_val.* = .none;
|
|
} else new_val.* = val;
|
|
}
|
|
break :blk new_values;
|
|
};
|
|
|
|
const tuple_ty: Type = .fromInterned(try ip.getTupleType(gpa, pt.tid, .{
|
|
.types = types,
|
|
.values = values_no_comptime,
|
|
}));
|
|
|
|
const runtime_src = opt_runtime_src orelse {
|
|
const tuple_val = try pt.aggregateValue(tuple_ty, values);
|
|
return sema.addConstantMaybeRef(tuple_val.toIntern(), is_ref);
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
|
|
for (operands, 0..) |operand, i| {
|
|
const operand_src = block.src(.{ .init_elem = .{
|
|
.init_node_offset = src.offset.node_offset.x,
|
|
.elem_index = @intCast(i),
|
|
} });
|
|
try sema.validateRuntimeValue(block, operand_src, try sema.resolveInst(operand));
|
|
}
|
|
|
|
if (is_ref) {
|
|
const target = sema.pt.zcu.getTarget();
|
|
const alloc_ty = try pt.ptrTypeSema(.{
|
|
.child = tuple_ty.toIntern(),
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
const alloc = try block.addTy(.alloc, alloc_ty);
|
|
for (operands, 0..) |operand, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
const field_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = types[i],
|
|
.flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) },
|
|
});
|
|
if (values[i] == .none) {
|
|
const field_ptr = try block.addStructFieldPtr(alloc, i, field_ptr_ty);
|
|
_ = try block.addBinOp(.store, field_ptr, try sema.resolveInst(operand));
|
|
}
|
|
}
|
|
|
|
return sema.makePtrConst(block, alloc);
|
|
}
|
|
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, operands.len);
|
|
for (operands, 0..) |operand, i| {
|
|
element_refs[i] = try sema.resolveInst(operand);
|
|
}
|
|
|
|
return block.addAggregateInit(tuple_ty, element_refs);
|
|
}
|
|
|
|
fn addConstantMaybeRef(sema: *Sema, val: InternPool.Index, is_ref: bool) !Air.Inst.Ref {
|
|
return if (is_ref) sema.uavRef(val) else Air.internedToRef(val);
|
|
}
|
|
|
|
fn zirFieldTypeRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.FieldTypeRef, inst_data.payload_index).data;
|
|
const ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const field_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const aggregate_ty = try sema.resolveType(block, ty_src, extra.container_type);
|
|
const field_name = try sema.resolveConstStringIntern(block, field_src, extra.field_name, .{ .simple = .field_name });
|
|
return sema.fieldType(block, aggregate_ty, field_name, field_src, ty_src);
|
|
}
|
|
|
|
fn zirStructInitFieldType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.FieldType, inst_data.payload_index).data;
|
|
const ty_src = block.nodeOffset(inst_data.src_node);
|
|
const field_name_src = block.src(.{ .node_offset_field_name_init = inst_data.src_node });
|
|
const wrapped_aggregate_ty = try sema.resolveTypeOrPoison(block, ty_src, extra.container_type) orelse return .generic_poison_type;
|
|
const aggregate_ty = wrapped_aggregate_ty.optEuBaseType(zcu);
|
|
const zir_field_name = sema.code.nullTerminatedString(extra.name_start);
|
|
const field_name = try ip.getOrPutString(sema.gpa, pt.tid, zir_field_name, .no_embedded_nulls);
|
|
return sema.fieldType(block, aggregate_ty, field_name, field_name_src, ty_src);
|
|
}
|
|
|
|
fn fieldType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
aggregate_ty: Type,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_src: LazySrcLoc,
|
|
ty_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
var cur_ty = aggregate_ty;
|
|
while (true) {
|
|
try cur_ty.resolveFields(pt);
|
|
switch (cur_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => switch (ip.indexToKey(cur_ty.toIntern())) {
|
|
.tuple_type => |tuple| {
|
|
const field_index = try sema.tupleFieldIndex(block, cur_ty, field_name, field_src);
|
|
return Air.internedToRef(tuple.types.get(ip)[field_index]);
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(cur_ty.toIntern());
|
|
const field_index = struct_type.nameIndex(ip, field_name) orelse
|
|
return sema.failWithBadStructFieldAccess(block, cur_ty, struct_type, field_src, field_name);
|
|
const field_ty = struct_type.field_types.get(ip)[field_index];
|
|
return Air.internedToRef(field_ty);
|
|
},
|
|
else => unreachable,
|
|
},
|
|
.@"union" => {
|
|
const union_obj = zcu.typeToUnion(cur_ty).?;
|
|
const field_index = union_obj.loadTagType(ip).nameIndex(ip, field_name) orelse
|
|
return sema.failWithBadUnionFieldAccess(block, cur_ty, union_obj, field_src, field_name);
|
|
const field_ty = union_obj.field_types.get(ip)[field_index];
|
|
return Air.internedToRef(field_ty);
|
|
},
|
|
.optional => {
|
|
// Struct/array init through optional requires the child type to not be a pointer.
|
|
// If the child of .optional is a pointer it'll error on the next loop.
|
|
cur_ty = .fromInterned(ip.indexToKey(cur_ty.toIntern()).opt_type);
|
|
continue;
|
|
},
|
|
.error_union => {
|
|
cur_ty = cur_ty.errorUnionPayload(zcu);
|
|
continue;
|
|
},
|
|
else => {},
|
|
}
|
|
return sema.fail(block, ty_src, "expected struct or union; found '{f}'", .{
|
|
cur_ty.fmt(pt),
|
|
});
|
|
}
|
|
}
|
|
|
|
fn zirErrorReturnTrace(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref {
|
|
return sema.getErrorReturnTrace(block);
|
|
}
|
|
|
|
fn getErrorReturnTrace(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const stack_trace_ty = try sema.getBuiltinType(block.nodeOffset(.zero), .StackTrace);
|
|
try stack_trace_ty.resolveFields(pt);
|
|
const ptr_stack_trace_ty = try pt.singleMutPtrType(stack_trace_ty);
|
|
const opt_ptr_stack_trace_ty = try pt.optionalType(ptr_stack_trace_ty.toIntern());
|
|
|
|
switch (sema.owner.unwrap()) {
|
|
.func => |func| if (ip.funcAnalysisUnordered(func).has_error_trace and block.ownerModule().error_tracing) {
|
|
return block.addTy(.err_return_trace, opt_ptr_stack_trace_ty);
|
|
},
|
|
.@"comptime", .nav_ty, .nav_val, .type, .memoized_state => {},
|
|
}
|
|
return Air.internedToRef(try pt.intern(.{ .opt = .{
|
|
.ty = opt_ptr_stack_trace_ty.toIntern(),
|
|
.val = .none,
|
|
} }));
|
|
}
|
|
|
|
fn zirFrame(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const src_node: std.zig.Ast.Node.Offset = @enumFromInt(@as(i32, @bitCast(extended.operand)));
|
|
const src = block.nodeOffset(src_node);
|
|
return sema.failWithUseOfAsync(block, src);
|
|
}
|
|
|
|
fn zirAlignOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const zcu = sema.pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const ty = try sema.resolveType(block, operand_src, inst_data.operand);
|
|
if (ty.isNoReturn(zcu)) {
|
|
return sema.fail(block, operand_src, "no align available for type '{f}'", .{ty.fmt(sema.pt)});
|
|
}
|
|
const val = try ty.lazyAbiAlignment(sema.pt);
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
fn zirIntFromBool(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const is_vector = operand_ty.zigTypeTag(zcu) == .vector;
|
|
const operand_scalar_ty = operand_ty.scalarType(zcu);
|
|
if (operand_scalar_ty.toIntern() != .bool_type) {
|
|
return sema.fail(block, src, "expected 'bool', found '{t}'", .{operand_scalar_ty.zigTypeTag(zcu)});
|
|
}
|
|
const len = if (is_vector) operand_ty.vectorLen(zcu) else undefined;
|
|
const dest_ty: Type = if (is_vector) try pt.vectorType(.{ .child = .u1_type, .len = len }) else .u1;
|
|
if (try sema.resolveValue(operand)) |val| {
|
|
if (!is_vector) {
|
|
return if (val.isUndef(zcu)) .undef_u1 else if (val.toBool()) .one_u1 else .zero_u1;
|
|
}
|
|
if (val.isUndef(zcu)) return pt.undefRef(dest_ty);
|
|
const new_elems = try sema.arena.alloc(InternPool.Index, len);
|
|
for (new_elems, 0..) |*new_elem, i| {
|
|
const old_elem = try val.elemValue(pt, i);
|
|
new_elem.* = if (old_elem.isUndef(zcu))
|
|
.undef_u1
|
|
else if (old_elem.toBool())
|
|
.one_u1
|
|
else
|
|
.zero_u1;
|
|
}
|
|
return Air.internedToRef((try pt.aggregateValue(dest_ty, new_elems)).toIntern());
|
|
}
|
|
return block.addBitCast(dest_ty, operand);
|
|
}
|
|
|
|
fn zirErrorName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const uncoerced_operand = try sema.resolveInst(inst_data.operand);
|
|
const operand = try sema.coerce(block, .anyerror, uncoerced_operand, operand_src);
|
|
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand)) |val| {
|
|
const err_name = sema.pt.zcu.intern_pool.indexToKey(val.toIntern()).err.name;
|
|
return sema.addNullTerminatedStrLit(err_name);
|
|
}
|
|
|
|
// Similar to zirTagName, we have special AIR instruction for the error name in case an optimimzation pass
|
|
// might be able to resolve the result at compile time.
|
|
return block.addUnOp(.error_name, operand);
|
|
}
|
|
|
|
fn zirAbs(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const scalar_ty = operand_ty.scalarType(zcu);
|
|
|
|
const result_ty = switch (scalar_ty.zigTypeTag(zcu)) {
|
|
.comptime_float, .float, .comptime_int => operand_ty,
|
|
.int => if (scalar_ty.isSignedInt(zcu)) try operand_ty.toUnsigned(pt) else return operand,
|
|
else => return sema.fail(
|
|
block,
|
|
operand_src,
|
|
"expected integer, float, or vector of either integers or floats, found '{f}'",
|
|
.{operand_ty.fmt(pt)},
|
|
),
|
|
};
|
|
|
|
return (try sema.maybeConstantUnaryMath(operand, result_ty, Value.abs)) orelse {
|
|
try sema.requireRuntimeBlock(block, operand_src, null);
|
|
return block.addTyOp(.abs, result_ty, operand);
|
|
};
|
|
}
|
|
|
|
fn maybeConstantUnaryMath(
|
|
sema: *Sema,
|
|
operand: Air.Inst.Ref,
|
|
result_ty: Type,
|
|
comptime eval: fn (Value, Type, Allocator, Zcu.PerThread) Allocator.Error!Value,
|
|
) CompileError!?Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (result_ty.zigTypeTag(zcu)) {
|
|
.vector => if (try sema.resolveValue(operand)) |val| {
|
|
const scalar_ty = result_ty.scalarType(zcu);
|
|
const vec_len = result_ty.vectorLen(zcu);
|
|
if (val.isUndef(zcu))
|
|
return try pt.undefRef(result_ty);
|
|
|
|
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
|
|
for (elems, 0..) |*elem, i| {
|
|
const elem_val = try val.elemValue(pt, i);
|
|
elem.* = (try eval(elem_val, scalar_ty, sema.arena, pt)).toIntern();
|
|
}
|
|
return Air.internedToRef((try pt.aggregateValue(result_ty, elems)).toIntern());
|
|
},
|
|
else => if (try sema.resolveValue(operand)) |operand_val| {
|
|
if (operand_val.isUndef(zcu))
|
|
return try pt.undefRef(result_ty);
|
|
const result_val = try eval(operand_val, result_ty, sema.arena, pt);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
},
|
|
}
|
|
return null;
|
|
}
|
|
|
|
fn zirUnaryMath(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
air_tag: Air.Inst.Tag,
|
|
comptime eval: fn (Value, Type, Allocator, Zcu.PerThread) Allocator.Error!Value,
|
|
) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const scalar_ty = operand_ty.scalarType(zcu);
|
|
|
|
switch (scalar_ty.zigTypeTag(zcu)) {
|
|
.comptime_float, .float => {},
|
|
else => return sema.fail(
|
|
block,
|
|
operand_src,
|
|
"expected vector of floats or float type, found '{f}'",
|
|
.{operand_ty.fmt(pt)},
|
|
),
|
|
}
|
|
|
|
return (try sema.maybeConstantUnaryMath(operand, operand_ty, eval)) orelse {
|
|
try sema.requireRuntimeBlock(block, operand_src, null);
|
|
return block.addUnOp(air_tag, operand);
|
|
};
|
|
}
|
|
|
|
fn zirTagName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
try operand_ty.resolveLayout(pt);
|
|
const enum_ty = switch (operand_ty.zigTypeTag(zcu)) {
|
|
.enum_literal => {
|
|
const val = (try sema.resolveDefinedValue(block, operand_src, operand)).?;
|
|
const tag_name = ip.indexToKey(val.toIntern()).enum_literal;
|
|
return sema.addNullTerminatedStrLit(tag_name);
|
|
},
|
|
.@"enum" => operand_ty,
|
|
.@"union" => operand_ty.unionTagType(zcu) orelse
|
|
return sema.fail(block, src, "union '{f}' is untagged", .{operand_ty.fmt(pt)}),
|
|
else => return sema.fail(block, operand_src, "expected enum or union; found '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
}),
|
|
};
|
|
if (enum_ty.enumFieldCount(zcu) == 0) {
|
|
// TODO I don't think this is the correct way to handle this but
|
|
// it prevents a crash.
|
|
// https://github.com/ziglang/zig/issues/15909
|
|
return sema.fail(block, operand_src, "cannot get @tagName of empty enum '{f}'", .{
|
|
enum_ty.fmt(pt),
|
|
});
|
|
}
|
|
const casted_operand = try sema.coerce(block, enum_ty, operand, operand_src);
|
|
if (try sema.resolveDefinedValue(block, operand_src, casted_operand)) |val| {
|
|
const field_index = enum_ty.enumTagFieldIndex(val, zcu) orelse {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "no field with value '{f}' in enum '{f}'", .{
|
|
val.fmtValueSema(pt, sema), enum_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(enum_ty.srcLoc(zcu), msg, "declared here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
};
|
|
// TODO: write something like getCoercedInts to avoid needing to dupe
|
|
const field_name = enum_ty.enumFieldName(field_index, zcu);
|
|
return sema.addNullTerminatedStrLit(field_name);
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
if (block.wantSafety() and zcu.backendSupportsFeature(.is_named_enum_value)) {
|
|
const ok = try block.addUnOp(.is_named_enum_value, casted_operand);
|
|
try sema.addSafetyCheck(block, src, ok, .invalid_enum_value);
|
|
}
|
|
// In case the value is runtime-known, we have an AIR instruction for this instead
|
|
// of trying to lower it in Sema because an optimization pass may result in the operand
|
|
// being comptime-known, which would let us elide the `tag_name` AIR instruction.
|
|
return block.addUnOp(.tag_name, casted_operand);
|
|
}
|
|
|
|
fn zirReify(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
inst: Zir.Inst.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const name_strategy: Zir.Inst.NameStrategy = @enumFromInt(extended.small);
|
|
const extra = sema.code.extraData(Zir.Inst.Reify, extended.operand).data;
|
|
const tracked_inst = try block.trackZir(inst);
|
|
const src: LazySrcLoc = .{
|
|
.base_node_inst = tracked_inst,
|
|
.offset = LazySrcLoc.Offset.nodeOffset(.zero),
|
|
};
|
|
const operand_src: LazySrcLoc = .{
|
|
.base_node_inst = tracked_inst,
|
|
.offset = .{
|
|
.node_offset_builtin_call_arg = .{
|
|
.builtin_call_node = .zero, // `tracked_inst` is precisely the `reify` instruction, so offset is 0
|
|
.arg_index = 0,
|
|
},
|
|
},
|
|
};
|
|
const type_info_ty = try sema.getBuiltinType(src, .Type);
|
|
const uncasted_operand = try sema.resolveInst(extra.operand);
|
|
const type_info = try sema.coerce(block, type_info_ty, uncasted_operand, operand_src);
|
|
const val = try sema.resolveConstDefinedValue(block, operand_src, type_info, .{ .simple = .operand_Type });
|
|
const union_val = ip.indexToKey(val.toIntern()).un;
|
|
if (try sema.anyUndef(block, operand_src, Value.fromInterned(union_val.val))) {
|
|
return sema.failWithUseOfUndef(block, operand_src, null);
|
|
}
|
|
const tag_index = type_info_ty.unionTagFieldIndex(Value.fromInterned(union_val.tag), zcu).?;
|
|
switch (@as(std.builtin.TypeId, @enumFromInt(tag_index))) {
|
|
.type => return .type_type,
|
|
.void => return .void_type,
|
|
.bool => return .bool_type,
|
|
.noreturn => return .noreturn_type,
|
|
.comptime_float => return .comptime_float_type,
|
|
.comptime_int => return .comptime_int_type,
|
|
.undefined => return .undefined_type,
|
|
.null => return .null_type,
|
|
.@"anyframe" => return sema.failWithUseOfAsync(block, src),
|
|
.enum_literal => return .enum_literal_type,
|
|
.int => {
|
|
const int = try sema.interpretBuiltinType(block, operand_src, .fromInterned(union_val.val), std.builtin.Type.Int);
|
|
const ty = try pt.intType(int.signedness, int.bits);
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.vector => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const len_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "len", .no_embedded_nulls),
|
|
).?);
|
|
const child_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "child", .no_embedded_nulls),
|
|
).?);
|
|
|
|
const len: u32 = @intCast(try len_val.toUnsignedIntSema(pt));
|
|
const child_ty = child_val.toType();
|
|
|
|
try sema.checkVectorElemType(block, src, child_ty);
|
|
|
|
const ty = try pt.vectorType(.{
|
|
.len = len,
|
|
.child = child_ty.toIntern(),
|
|
});
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.float => {
|
|
const float = try sema.interpretBuiltinType(block, operand_src, .fromInterned(union_val.val), std.builtin.Type.Float);
|
|
|
|
const ty: Type = switch (float.bits) {
|
|
16 => .f16,
|
|
32 => .f32,
|
|
64 => .f64,
|
|
80 => .f80,
|
|
128 => .f128,
|
|
else => return sema.fail(block, src, "{d}-bit float unsupported", .{float.bits}),
|
|
};
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.pointer => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const size_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "size", .no_embedded_nulls),
|
|
).?);
|
|
const is_const_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_const", .no_embedded_nulls),
|
|
).?);
|
|
const is_volatile_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_volatile", .no_embedded_nulls),
|
|
).?);
|
|
const alignment_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "alignment", .no_embedded_nulls),
|
|
).?);
|
|
const address_space_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "address_space", .no_embedded_nulls),
|
|
).?);
|
|
const child_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "child", .no_embedded_nulls),
|
|
).?);
|
|
const is_allowzero_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_allowzero", .no_embedded_nulls),
|
|
).?);
|
|
const sentinel_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "sentinel_ptr", .no_embedded_nulls),
|
|
).?);
|
|
|
|
if (!try sema.intFitsInType(alignment_val, align_ty, null)) {
|
|
return sema.fail(block, src, "alignment must fit in '{f}'", .{align_ty.fmt(pt)});
|
|
}
|
|
const alignment_val_int = try alignment_val.toUnsignedIntSema(pt);
|
|
const abi_align = try sema.validateAlign(block, src, alignment_val_int);
|
|
|
|
const elem_ty = child_val.toType();
|
|
if (abi_align != .none) {
|
|
try elem_ty.resolveLayout(pt);
|
|
}
|
|
|
|
const ptr_size = try sema.interpretBuiltinType(block, operand_src, size_val, std.builtin.Type.Pointer.Size);
|
|
|
|
const actual_sentinel: InternPool.Index = s: {
|
|
if (!sentinel_val.isNull(zcu)) {
|
|
if (ptr_size == .one or ptr_size == .c) {
|
|
return sema.fail(block, src, "sentinels are only allowed on slices and unknown-length pointers", .{});
|
|
}
|
|
const sentinel_ptr_val = sentinel_val.optionalValue(zcu).?;
|
|
const ptr_ty = try pt.singleMutPtrType(elem_ty);
|
|
const sent_val = (try sema.pointerDeref(block, src, sentinel_ptr_val, ptr_ty)).?;
|
|
try sema.checkSentinelType(block, src, elem_ty);
|
|
if (sent_val.canMutateComptimeVarState(zcu)) {
|
|
const sentinel_name = try ip.getOrPutString(gpa, pt.tid, "sentinel_ptr", .no_embedded_nulls);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, src, sentinel_name, "sentinel", sent_val);
|
|
}
|
|
break :s sent_val.toIntern();
|
|
}
|
|
break :s .none;
|
|
};
|
|
|
|
if (elem_ty.zigTypeTag(zcu) == .noreturn) {
|
|
return sema.fail(block, src, "pointer to noreturn not allowed", .{});
|
|
} else if (elem_ty.zigTypeTag(zcu) == .@"fn") {
|
|
if (ptr_size != .one) {
|
|
return sema.fail(block, src, "function pointers must be single pointers", .{});
|
|
}
|
|
} else if (ptr_size != .one and elem_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.fail(block, src, "indexable pointer to opaque type '{f}' not allowed", .{elem_ty.fmt(pt)});
|
|
} else if (ptr_size == .c) {
|
|
if (!try sema.validateExternType(elem_ty, .other)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "C pointers cannot point to non-C-ABI-compatible type '{f}'", .{elem_ty.fmt(pt)});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, src, elem_ty, .other);
|
|
|
|
try sema.addDeclaredHereNote(msg, elem_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
const ty = try pt.ptrTypeSema(.{
|
|
.child = elem_ty.toIntern(),
|
|
.sentinel = actual_sentinel,
|
|
.flags = .{
|
|
.size = ptr_size,
|
|
.is_const = is_const_val.toBool(),
|
|
.is_volatile = is_volatile_val.toBool(),
|
|
.alignment = abi_align,
|
|
.address_space = try sema.interpretBuiltinType(block, operand_src, address_space_val, std.builtin.AddressSpace),
|
|
.is_allowzero = is_allowzero_val.toBool(),
|
|
},
|
|
});
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.array => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const len_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "len", .no_embedded_nulls),
|
|
).?);
|
|
const child_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "child", .no_embedded_nulls),
|
|
).?);
|
|
const sentinel_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "sentinel_ptr", .no_embedded_nulls),
|
|
).?);
|
|
|
|
const len = try len_val.toUnsignedIntSema(pt);
|
|
const child_ty = child_val.toType();
|
|
const sentinel = if (sentinel_val.optionalValue(zcu)) |p| blk: {
|
|
const ptr_ty = try pt.singleMutPtrType(child_ty);
|
|
try sema.checkSentinelType(block, src, child_ty);
|
|
const sentinel = (try sema.pointerDeref(block, src, p, ptr_ty)).?;
|
|
if (sentinel.canMutateComptimeVarState(zcu)) {
|
|
const sentinel_name = try ip.getOrPutString(gpa, pt.tid, "sentinel_ptr", .no_embedded_nulls);
|
|
return sema.failWithContainsReferenceToComptimeVar(block, src, sentinel_name, "sentinel", sentinel);
|
|
}
|
|
break :blk sentinel;
|
|
} else null;
|
|
|
|
const ty = try pt.arrayType(.{
|
|
.len = len,
|
|
.sentinel = if (sentinel) |s| s.toIntern() else .none,
|
|
.child = child_ty.toIntern(),
|
|
});
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.optional => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const child_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "child", .no_embedded_nulls),
|
|
).?);
|
|
|
|
const child_ty = child_val.toType();
|
|
|
|
const ty = try pt.optionalType(child_ty.toIntern());
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.error_union => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const error_set_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "error_set", .no_embedded_nulls),
|
|
).?);
|
|
const payload_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "payload", .no_embedded_nulls),
|
|
).?);
|
|
|
|
const error_set_ty = error_set_val.toType();
|
|
const payload_ty = payload_val.toType();
|
|
|
|
if (error_set_ty.zigTypeTag(zcu) != .error_set) {
|
|
return sema.fail(block, src, "Type.ErrorUnion.error_set must be an error set type", .{});
|
|
}
|
|
|
|
const ty = try pt.errorUnionType(error_set_ty, payload_ty);
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.error_set => {
|
|
const payload_val = Value.fromInterned(union_val.val).optionalValue(zcu) orelse
|
|
return .anyerror_type;
|
|
|
|
const names_val = try sema.derefSliceAsArray(block, src, payload_val, .{ .simple = .error_set_contents });
|
|
|
|
const len = try sema.usizeCast(block, src, names_val.typeOf(zcu).arrayLen(zcu));
|
|
var names: InferredErrorSet.NameMap = .{};
|
|
try names.ensureUnusedCapacity(sema.arena, len);
|
|
for (0..len) |i| {
|
|
const elem_val = try names_val.elemValue(pt, i);
|
|
const elem_struct_type = ip.loadStructType(ip.typeOf(elem_val.toIntern()));
|
|
const name_val = try elem_val.fieldValue(pt, elem_struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "name", .no_embedded_nulls),
|
|
).?);
|
|
|
|
const name = try sema.sliceToIpString(block, src, name_val, .{ .simple = .error_set_contents });
|
|
_ = try pt.getErrorValue(name);
|
|
const gop = names.getOrPutAssumeCapacity(name);
|
|
if (gop.found_existing) {
|
|
return sema.fail(block, src, "duplicate error '{f}'", .{
|
|
name.fmt(ip),
|
|
});
|
|
}
|
|
}
|
|
|
|
const ty = try pt.errorSetFromUnsortedNames(names.keys());
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.@"struct" => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const layout_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "layout", .no_embedded_nulls),
|
|
).?);
|
|
const backing_integer_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "backing_integer", .no_embedded_nulls),
|
|
).?);
|
|
const fields_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "fields", .no_embedded_nulls),
|
|
).?);
|
|
const decls_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "decls", .no_embedded_nulls),
|
|
).?);
|
|
const is_tuple_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_tuple", .no_embedded_nulls),
|
|
).?);
|
|
|
|
const layout = try sema.interpretBuiltinType(block, operand_src, layout_val, std.builtin.Type.ContainerLayout);
|
|
|
|
// Decls
|
|
if (try decls_val.sliceLen(pt) > 0) {
|
|
return sema.fail(block, src, "reified structs must have no decls", .{});
|
|
}
|
|
|
|
if (layout != .@"packed" and !backing_integer_val.isNull(zcu)) {
|
|
return sema.fail(block, src, "non-packed struct does not support backing integer type", .{});
|
|
}
|
|
|
|
const fields_arr = try sema.derefSliceAsArray(block, operand_src, fields_val, .{ .simple = .struct_fields });
|
|
|
|
if (is_tuple_val.toBool()) {
|
|
switch (layout) {
|
|
.@"extern" => return sema.fail(block, src, "extern tuples are not supported", .{}),
|
|
.@"packed" => return sema.fail(block, src, "packed tuples are not supported", .{}),
|
|
.auto => {},
|
|
}
|
|
return sema.reifyTuple(block, src, fields_arr);
|
|
} else {
|
|
return sema.reifyStruct(block, inst, src, layout, backing_integer_val, fields_arr, name_strategy);
|
|
}
|
|
},
|
|
.@"enum" => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const tag_type_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "tag_type", .no_embedded_nulls),
|
|
).?);
|
|
const fields_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "fields", .no_embedded_nulls),
|
|
).?);
|
|
const decls_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "decls", .no_embedded_nulls),
|
|
).?);
|
|
const is_exhaustive_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_exhaustive", .no_embedded_nulls),
|
|
).?);
|
|
|
|
if (try decls_val.sliceLen(pt) > 0) {
|
|
return sema.fail(block, src, "reified enums must have no decls", .{});
|
|
}
|
|
|
|
const fields_arr = try sema.derefSliceAsArray(block, operand_src, fields_val, .{ .simple = .enum_fields });
|
|
|
|
return sema.reifyEnum(block, inst, src, tag_type_val.toType(), is_exhaustive_val.toBool(), fields_arr, name_strategy);
|
|
},
|
|
.@"opaque" => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const decls_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "decls", .no_embedded_nulls),
|
|
).?);
|
|
|
|
// Decls
|
|
if (try decls_val.sliceLen(pt) > 0) {
|
|
return sema.fail(block, src, "reified opaque must have no decls", .{});
|
|
}
|
|
|
|
const wip_ty = switch (try ip.getOpaqueType(gpa, pt.tid, .{
|
|
.key = .{ .reified = .{
|
|
.zir_index = try block.trackZir(inst),
|
|
} },
|
|
})) {
|
|
.existing => |ty| {
|
|
try sema.addTypeReferenceEntry(src, ty);
|
|
return Air.internedToRef(ty);
|
|
},
|
|
.wip => |wip| wip,
|
|
};
|
|
errdefer wip_ty.cancel(ip, pt.tid);
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
name_strategy,
|
|
"opaque",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const new_namespace_index = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
return Air.internedToRef(wip_ty.finish(ip, new_namespace_index));
|
|
},
|
|
.@"union" => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const layout_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "layout", .no_embedded_nulls),
|
|
).?);
|
|
const tag_type_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "tag_type", .no_embedded_nulls),
|
|
).?);
|
|
const fields_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "fields", .no_embedded_nulls),
|
|
).?);
|
|
const decls_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "decls", .no_embedded_nulls),
|
|
).?);
|
|
|
|
if (try decls_val.sliceLen(pt) > 0) {
|
|
return sema.fail(block, src, "reified unions must have no decls", .{});
|
|
}
|
|
const layout = try sema.interpretBuiltinType(block, operand_src, layout_val, std.builtin.Type.ContainerLayout);
|
|
|
|
const has_tag = tag_type_val.optionalValue(zcu) != null;
|
|
|
|
if (has_tag) {
|
|
switch (layout) {
|
|
.@"extern" => return sema.fail(block, src, "extern union does not support enum tag type", .{}),
|
|
.@"packed" => return sema.fail(block, src, "packed union does not support enum tag type", .{}),
|
|
.auto => {},
|
|
}
|
|
}
|
|
|
|
const fields_arr = try sema.derefSliceAsArray(block, operand_src, fields_val, .{ .simple = .union_fields });
|
|
|
|
return sema.reifyUnion(block, inst, src, layout, tag_type_val, fields_arr, name_strategy);
|
|
},
|
|
.@"fn" => {
|
|
const struct_type = ip.loadStructType(ip.typeOf(union_val.val));
|
|
const calling_convention_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "calling_convention", .no_embedded_nulls),
|
|
).?);
|
|
const is_generic_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_generic", .no_embedded_nulls),
|
|
).?);
|
|
const is_var_args_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_var_args", .no_embedded_nulls),
|
|
).?);
|
|
const return_type_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "return_type", .no_embedded_nulls),
|
|
).?);
|
|
const params_slice_val = try Value.fromInterned(union_val.val).fieldValue(pt, struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "params", .no_embedded_nulls),
|
|
).?);
|
|
|
|
const is_generic = is_generic_val.toBool();
|
|
if (is_generic) {
|
|
return sema.fail(block, src, "Type.Fn.is_generic must be false for @Type", .{});
|
|
}
|
|
|
|
const is_var_args = is_var_args_val.toBool();
|
|
const cc = try sema.analyzeValueAsCallconv(block, src, calling_convention_val);
|
|
if (is_var_args) {
|
|
try sema.checkCallConvSupportsVarArgs(block, src, cc);
|
|
}
|
|
|
|
const return_type = return_type_val.optionalValue(zcu) orelse
|
|
return sema.fail(block, src, "Type.Fn.return_type must be non-null for @Type", .{});
|
|
|
|
const params_val = try sema.derefSliceAsArray(block, operand_src, params_slice_val, .{ .simple = .function_parameters });
|
|
|
|
const args_len = try sema.usizeCast(block, src, params_val.typeOf(zcu).arrayLen(zcu));
|
|
const param_types = try sema.arena.alloc(InternPool.Index, args_len);
|
|
|
|
var noalias_bits: u32 = 0;
|
|
for (param_types, 0..) |*param_type, i| {
|
|
const elem_val = try params_val.elemValue(pt, i);
|
|
const elem_struct_type = ip.loadStructType(ip.typeOf(elem_val.toIntern()));
|
|
const param_is_generic_val = try elem_val.fieldValue(pt, elem_struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_generic", .no_embedded_nulls),
|
|
).?);
|
|
const param_is_noalias_val = try elem_val.fieldValue(pt, elem_struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "is_noalias", .no_embedded_nulls),
|
|
).?);
|
|
const opt_param_type_val = try elem_val.fieldValue(pt, elem_struct_type.nameIndex(
|
|
ip,
|
|
try ip.getOrPutString(gpa, pt.tid, "type", .no_embedded_nulls),
|
|
).?);
|
|
|
|
if (param_is_generic_val.toBool()) {
|
|
return sema.fail(block, src, "Type.Fn.Param.is_generic must be false for @Type", .{});
|
|
}
|
|
|
|
const param_type_val = opt_param_type_val.optionalValue(zcu) orelse
|
|
return sema.fail(block, src, "Type.Fn.Param.type must be non-null for @Type", .{});
|
|
param_type.* = param_type_val.toIntern();
|
|
|
|
if (param_is_noalias_val.toBool()) {
|
|
if (!Type.fromInterned(param_type.*).isPtrAtRuntime(zcu)) {
|
|
return sema.fail(block, src, "non-pointer parameter declared noalias", .{});
|
|
}
|
|
noalias_bits |= @as(u32, 1) << (std.math.cast(u5, i) orelse
|
|
return sema.fail(block, src, "this compiler implementation only supports 'noalias' on the first 32 parameters", .{}));
|
|
}
|
|
}
|
|
|
|
const ty = try pt.funcType(.{
|
|
.param_types = param_types,
|
|
.noalias_bits = noalias_bits,
|
|
.return_type = return_type.toIntern(),
|
|
.cc = cc,
|
|
.is_var_args = is_var_args,
|
|
});
|
|
return Air.internedToRef(ty.toIntern());
|
|
},
|
|
.frame => return sema.failWithUseOfAsync(block, src),
|
|
}
|
|
}
|
|
|
|
fn reifyEnum(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
src: LazySrcLoc,
|
|
tag_ty: Type,
|
|
is_exhaustive: bool,
|
|
fields_val: Value,
|
|
name_strategy: Zir.Inst.NameStrategy,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
// This logic must stay in sync with the structure of `std.builtin.Type.Enum` - search for `fieldValue`.
|
|
|
|
const fields_len: u32 = @intCast(fields_val.typeOf(zcu).arrayLen(zcu));
|
|
|
|
// The validation work here is non-trivial, and it's possible the type already exists.
|
|
// So in this first pass, let's just construct a hash to optimize for this case. If the
|
|
// inputs turn out to be invalid, we can cancel the WIP type later.
|
|
|
|
// For deduplication purposes, we must create a hash including all details of this type.
|
|
// TODO: use a longer hash!
|
|
var hasher = std.hash.Wyhash.init(0);
|
|
std.hash.autoHash(&hasher, tag_ty.toIntern());
|
|
std.hash.autoHash(&hasher, is_exhaustive);
|
|
std.hash.autoHash(&hasher, fields_len);
|
|
|
|
for (0..fields_len) |field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_value_val = try sema.resolveLazyValue(try field_info.fieldValue(pt, 1));
|
|
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, .{ .simple = .enum_field_name });
|
|
|
|
std.hash.autoHash(&hasher, .{
|
|
field_name,
|
|
field_value_val.toIntern(),
|
|
});
|
|
}
|
|
|
|
const tracked_inst = try block.trackZir(inst);
|
|
|
|
const wip_ty = switch (try ip.getEnumType(gpa, pt.tid, .{
|
|
.has_values = true,
|
|
.tag_mode = if (is_exhaustive) .explicit else .nonexhaustive,
|
|
.fields_len = fields_len,
|
|
.key = .{ .reified = .{
|
|
.zir_index = tracked_inst,
|
|
.type_hash = hasher.final(),
|
|
} },
|
|
}, false)) {
|
|
.wip => |wip| wip,
|
|
.existing => |ty| {
|
|
try sema.declareDependency(.{ .interned = ty });
|
|
try sema.addTypeReferenceEntry(src, ty);
|
|
return Air.internedToRef(ty);
|
|
},
|
|
};
|
|
var done = false;
|
|
errdefer if (!done) wip_ty.cancel(ip, pt.tid);
|
|
|
|
if (tag_ty.zigTypeTag(zcu) != .int) {
|
|
return sema.fail(block, src, "Type.Enum.tag_type must be an integer type", .{});
|
|
}
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
name_strategy,
|
|
"enum",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const new_namespace_index = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
|
|
try sema.declareDependency(.{ .interned = wip_ty.index });
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
wip_ty.prepare(ip, new_namespace_index);
|
|
wip_ty.setTagTy(ip, tag_ty.toIntern());
|
|
done = true;
|
|
|
|
for (0..fields_len) |field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_value_val = try sema.resolveLazyValue(try field_info.fieldValue(pt, 1));
|
|
|
|
// Don't pass a reason; first loop acts as an assertion that this is valid.
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
|
|
|
|
if (!try sema.intFitsInType(field_value_val, tag_ty, null)) {
|
|
// TODO: better source location
|
|
return sema.fail(block, src, "field '{f}' with enumeration value '{f}' is too large for backing int type '{f}'", .{
|
|
field_name.fmt(ip),
|
|
field_value_val.fmtValueSema(pt, sema),
|
|
tag_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
const coerced_field_val = try pt.getCoerced(field_value_val, tag_ty);
|
|
if (wip_ty.nextField(ip, field_name, coerced_field_val.toIntern())) |conflict| {
|
|
return sema.failWithOwnedErrorMsg(block, switch (conflict.kind) {
|
|
.name => msg: {
|
|
const msg = try sema.errMsg(src, "duplicate enum field '{f}'", .{field_name.fmt(ip)});
|
|
errdefer msg.destroy(gpa);
|
|
_ = conflict.prev_field_idx; // TODO: this note is incorrect
|
|
try sema.errNote(src, msg, "other field here", .{});
|
|
break :msg msg;
|
|
},
|
|
.value => msg: {
|
|
const msg = try sema.errMsg(src, "enum tag value {f} already taken", .{field_value_val.fmtValueSema(pt, sema)});
|
|
errdefer msg.destroy(gpa);
|
|
_ = conflict.prev_field_idx; // TODO: this note is incorrect
|
|
try sema.errNote(src, msg, "other enum tag value here", .{});
|
|
break :msg msg;
|
|
},
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!is_exhaustive and fields_len > 1 and std.math.log2_int(u64, fields_len) == tag_ty.bitSize(zcu)) {
|
|
return sema.fail(block, src, "non-exhaustive enum specified every value", .{});
|
|
}
|
|
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
// This job depends on any resolve_type_fully jobs queued up before it.
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
|
|
}
|
|
return Air.internedToRef(wip_ty.index);
|
|
}
|
|
|
|
fn reifyUnion(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
src: LazySrcLoc,
|
|
layout: std.builtin.Type.ContainerLayout,
|
|
opt_tag_type_val: Value,
|
|
fields_val: Value,
|
|
name_strategy: Zir.Inst.NameStrategy,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
// This logic must stay in sync with the structure of `std.builtin.Type.Union` - search for `fieldValue`.
|
|
|
|
const fields_len: u32 = @intCast(fields_val.typeOf(zcu).arrayLen(zcu));
|
|
|
|
// The validation work here is non-trivial, and it's possible the type already exists.
|
|
// So in this first pass, let's just construct a hash to optimize for this case. If the
|
|
// inputs turn out to be invalid, we can cancel the WIP type later.
|
|
|
|
// For deduplication purposes, we must create a hash including all details of this type.
|
|
// TODO: use a longer hash!
|
|
var hasher = std.hash.Wyhash.init(0);
|
|
std.hash.autoHash(&hasher, layout);
|
|
std.hash.autoHash(&hasher, opt_tag_type_val.toIntern());
|
|
std.hash.autoHash(&hasher, fields_len);
|
|
|
|
for (0..fields_len) |field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_type_val = try field_info.fieldValue(pt, 1);
|
|
const field_align_val = try sema.resolveLazyValue(try field_info.fieldValue(pt, 2));
|
|
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, .{ .simple = .union_field_name });
|
|
std.hash.autoHash(&hasher, .{
|
|
field_name,
|
|
field_type_val.toIntern(),
|
|
field_align_val.toIntern(),
|
|
});
|
|
}
|
|
|
|
const tracked_inst = try block.trackZir(inst);
|
|
|
|
const wip_ty = switch (try ip.getUnionType(gpa, pt.tid, .{
|
|
.flags = .{
|
|
.layout = layout,
|
|
.status = .none,
|
|
.runtime_tag = if (opt_tag_type_val.optionalValue(zcu) != null)
|
|
.tagged
|
|
else if (layout != .auto)
|
|
.none
|
|
else switch (block.wantSafeTypes()) {
|
|
true => .safety,
|
|
false => .none,
|
|
},
|
|
.any_aligned_fields = layout != .@"packed",
|
|
.requires_comptime = .unknown,
|
|
.assumed_runtime_bits = false,
|
|
.assumed_pointer_aligned = false,
|
|
.alignment = .none,
|
|
},
|
|
.fields_len = fields_len,
|
|
.enum_tag_ty = .none, // set later because not yet validated
|
|
.field_types = &.{}, // set later
|
|
.field_aligns = &.{}, // set later
|
|
.key = .{ .reified = .{
|
|
.zir_index = tracked_inst,
|
|
.type_hash = hasher.final(),
|
|
} },
|
|
}, false)) {
|
|
.wip => |wip| wip,
|
|
.existing => |ty| {
|
|
try sema.declareDependency(.{ .interned = ty });
|
|
try sema.addTypeReferenceEntry(src, ty);
|
|
return Air.internedToRef(ty);
|
|
},
|
|
};
|
|
errdefer wip_ty.cancel(ip, pt.tid);
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
name_strategy,
|
|
"union",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const loaded_union = ip.loadUnionType(wip_ty.index);
|
|
|
|
const enum_tag_ty, const has_explicit_tag = if (opt_tag_type_val.optionalValue(zcu)) |tag_type_val| tag_ty: {
|
|
switch (ip.indexToKey(tag_type_val.toIntern())) {
|
|
.enum_type => {},
|
|
else => return sema.fail(block, src, "Type.Union.tag_type must be an enum type", .{}),
|
|
}
|
|
const enum_tag_ty = tag_type_val.toType();
|
|
|
|
// We simply track which fields of the tag type have been seen.
|
|
const tag_ty_fields_len = enum_tag_ty.enumFieldCount(zcu);
|
|
var seen_tags = try std.DynamicBitSetUnmanaged.initEmpty(sema.arena, tag_ty_fields_len);
|
|
|
|
for (0..fields_len) |field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_type_val = try field_info.fieldValue(pt, 1);
|
|
const field_alignment_val = try field_info.fieldValue(pt, 2);
|
|
|
|
// Don't pass a reason; first loop acts as an assertion that this is valid.
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
|
|
|
|
const enum_index = enum_tag_ty.enumFieldIndex(field_name, zcu) orelse {
|
|
// TODO: better source location
|
|
return sema.fail(block, src, "no field named '{f}' in enum '{f}'", .{
|
|
field_name.fmt(ip), enum_tag_ty.fmt(pt),
|
|
});
|
|
};
|
|
if (seen_tags.isSet(enum_index)) {
|
|
// TODO: better source location
|
|
return sema.fail(block, src, "duplicate union field {f}", .{field_name.fmt(ip)});
|
|
}
|
|
seen_tags.set(enum_index);
|
|
|
|
loaded_union.field_types.get(ip)[field_idx] = field_type_val.toIntern();
|
|
const byte_align = try field_alignment_val.toUnsignedIntSema(pt);
|
|
if (layout == .@"packed") {
|
|
if (byte_align != 0) return sema.fail(block, src, "alignment of a packed union field must be set to 0", .{});
|
|
} else {
|
|
loaded_union.field_aligns.get(ip)[field_idx] = try sema.validateAlign(block, src, byte_align);
|
|
}
|
|
}
|
|
|
|
if (tag_ty_fields_len > fields_len) return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "enum fields missing in union", .{});
|
|
errdefer msg.destroy(gpa);
|
|
var it = seen_tags.iterator(.{ .kind = .unset });
|
|
while (it.next()) |enum_index| {
|
|
const field_name = enum_tag_ty.enumFieldName(enum_index, zcu);
|
|
try sema.addFieldErrNote(enum_tag_ty, enum_index, msg, "field '{f}' missing, declared here", .{
|
|
field_name.fmt(ip),
|
|
});
|
|
}
|
|
try sema.addDeclaredHereNote(msg, enum_tag_ty);
|
|
break :msg msg;
|
|
});
|
|
|
|
break :tag_ty .{ enum_tag_ty.toIntern(), true };
|
|
} else tag_ty: {
|
|
// We must track field names and set up the tag type ourselves.
|
|
var field_names: std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, void) = .empty;
|
|
try field_names.ensureTotalCapacity(sema.arena, fields_len);
|
|
|
|
for (0..fields_len) |field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_type_val = try field_info.fieldValue(pt, 1);
|
|
const field_alignment_val = try field_info.fieldValue(pt, 2);
|
|
|
|
// Don't pass a reason; first loop acts as an assertion that this is valid.
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
|
|
const gop = field_names.getOrPutAssumeCapacity(field_name);
|
|
if (gop.found_existing) {
|
|
// TODO: better source location
|
|
return sema.fail(block, src, "duplicate union field {f}", .{field_name.fmt(ip)});
|
|
}
|
|
|
|
loaded_union.field_types.get(ip)[field_idx] = field_type_val.toIntern();
|
|
const byte_align = try field_alignment_val.toUnsignedIntSema(pt);
|
|
if (layout == .@"packed") {
|
|
if (byte_align != 0) return sema.fail(block, src, "alignment of a packed union field must be set to 0", .{});
|
|
} else {
|
|
loaded_union.field_aligns.get(ip)[field_idx] = try sema.validateAlign(block, src, byte_align);
|
|
}
|
|
}
|
|
|
|
const enum_tag_ty = try sema.generateUnionTagTypeSimple(block, field_names.keys(), wip_ty.index, type_name.name);
|
|
break :tag_ty .{ enum_tag_ty, false };
|
|
};
|
|
errdefer if (!has_explicit_tag) ip.remove(pt.tid, enum_tag_ty); // remove generated tag type on error
|
|
|
|
for (loaded_union.field_types.get(ip)) |field_ty_ip| {
|
|
const field_ty: Type = .fromInterned(field_ty_ip);
|
|
if (field_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "opaque types have unknown size and therefore cannot be directly embedded in unions", .{});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
if (layout == .@"extern" and !try sema.validateExternType(field_ty, .union_field)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "extern unions cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, src, field_ty, .union_field);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
} else if (layout == .@"packed" and !try sema.validatePackedType(field_ty)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "packed unions cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.explainWhyTypeIsNotPacked(msg, src, field_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
loaded_union.setTagType(ip, enum_tag_ty);
|
|
loaded_union.setStatus(ip, .have_field_types);
|
|
|
|
const new_namespace_index = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
|
|
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
// This job depends on any resolve_type_fully jobs queued up before it.
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
|
|
}
|
|
try sema.declareDependency(.{ .interned = wip_ty.index });
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
return Air.internedToRef(wip_ty.finish(ip, new_namespace_index));
|
|
}
|
|
|
|
fn reifyTuple(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
fields_val: Value,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const fields_len: u32 = @intCast(fields_val.typeOf(zcu).arrayLen(zcu));
|
|
|
|
const types = try sema.arena.alloc(InternPool.Index, fields_len);
|
|
const inits = try sema.arena.alloc(InternPool.Index, fields_len);
|
|
|
|
for (types, inits, 0..) |*field_ty, *field_init, field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_type_val = try field_info.fieldValue(pt, 1);
|
|
const field_default_value_val = try field_info.fieldValue(pt, 2);
|
|
const field_is_comptime_val = try field_info.fieldValue(pt, 3);
|
|
const field_alignment_val = try sema.resolveLazyValue(try field_info.fieldValue(pt, 4));
|
|
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, .{ .simple = .tuple_field_name });
|
|
const field_type = field_type_val.toType();
|
|
const field_default_value: InternPool.Index = if (field_default_value_val.optionalValue(zcu)) |ptr_val| d: {
|
|
const ptr_ty = try pt.singleConstPtrType(field_type_val.toType());
|
|
// We need to do this deref here, so we won't check for this error case later on.
|
|
const val = try sema.pointerDeref(block, src, ptr_val, ptr_ty) orelse return sema.failWithNeededComptime(
|
|
block,
|
|
src,
|
|
.{ .simple = .tuple_field_default_value },
|
|
);
|
|
if (val.canMutateComptimeVarState(zcu)) {
|
|
return sema.failWithContainsReferenceToComptimeVar(block, src, field_name, "field default value", val);
|
|
}
|
|
// Resolve the value so that lazy values do not create distinct types.
|
|
break :d (try sema.resolveLazyValue(val)).toIntern();
|
|
} else .none;
|
|
|
|
const field_name_index = field_name.toUnsigned(ip) orelse return sema.fail(
|
|
block,
|
|
src,
|
|
"tuple cannot have non-numeric field '{f}'",
|
|
.{field_name.fmt(ip)},
|
|
);
|
|
if (field_name_index != field_idx) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"tuple field name '{d}' does not match field index {d}",
|
|
.{ field_name_index, field_idx },
|
|
);
|
|
}
|
|
|
|
try sema.validateTupleFieldType(block, field_type, src);
|
|
|
|
{
|
|
const alignment_ok = ok: {
|
|
if (field_alignment_val.toIntern() == .zero) break :ok true;
|
|
const given_align = try field_alignment_val.getUnsignedIntSema(pt) orelse break :ok false;
|
|
const abi_align = (try field_type.abiAlignmentSema(pt)).toByteUnits() orelse 0;
|
|
break :ok abi_align == given_align;
|
|
};
|
|
if (!alignment_ok) {
|
|
return sema.fail(block, src, "tuple fields cannot specify alignment", .{});
|
|
}
|
|
}
|
|
|
|
if (field_is_comptime_val.toBool() and field_default_value == .none) {
|
|
return sema.fail(block, src, "comptime field without default initialization value", .{});
|
|
}
|
|
|
|
if (!field_is_comptime_val.toBool() and field_default_value != .none) {
|
|
return sema.fail(block, src, "non-comptime tuple fields cannot specify default initialization value", .{});
|
|
}
|
|
|
|
field_ty.* = field_type.toIntern();
|
|
field_init.* = field_default_value;
|
|
}
|
|
|
|
return Air.internedToRef(try zcu.intern_pool.getTupleType(gpa, pt.tid, .{
|
|
.types = types,
|
|
.values = inits,
|
|
}));
|
|
}
|
|
|
|
fn reifyStruct(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
src: LazySrcLoc,
|
|
layout: std.builtin.Type.ContainerLayout,
|
|
opt_backing_int_val: Value,
|
|
fields_val: Value,
|
|
name_strategy: Zir.Inst.NameStrategy,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
// This logic must stay in sync with the structure of `std.builtin.Type.Struct` - search for `fieldValue`.
|
|
|
|
const fields_len: u32 = @intCast(fields_val.typeOf(zcu).arrayLen(zcu));
|
|
|
|
// The validation work here is non-trivial, and it's possible the type already exists.
|
|
// So in this first pass, let's just construct a hash to optimize for this case. If the
|
|
// inputs turn out to be invalid, we can cancel the WIP type later.
|
|
|
|
// For deduplication purposes, we must create a hash including all details of this type.
|
|
// TODO: use a longer hash!
|
|
var hasher = std.hash.Wyhash.init(0);
|
|
std.hash.autoHash(&hasher, layout);
|
|
std.hash.autoHash(&hasher, opt_backing_int_val.toIntern());
|
|
std.hash.autoHash(&hasher, fields_len);
|
|
|
|
var any_comptime_fields = false;
|
|
var any_default_inits = false;
|
|
|
|
for (0..fields_len) |field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_type_val = try field_info.fieldValue(pt, 1);
|
|
const field_default_value_val = try field_info.fieldValue(pt, 2);
|
|
const field_is_comptime_val = try field_info.fieldValue(pt, 3);
|
|
const field_alignment_val = try sema.resolveLazyValue(try field_info.fieldValue(pt, 4));
|
|
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, .{ .simple = .struct_field_name });
|
|
const field_is_comptime = field_is_comptime_val.toBool();
|
|
const field_default_value: InternPool.Index = if (field_default_value_val.optionalValue(zcu)) |ptr_val| d: {
|
|
const ptr_ty = try pt.singleConstPtrType(field_type_val.toType());
|
|
// We need to do this deref here, so we won't check for this error case later on.
|
|
const val = try sema.pointerDeref(block, src, ptr_val, ptr_ty) orelse return sema.failWithNeededComptime(
|
|
block,
|
|
src,
|
|
.{ .simple = .struct_field_default_value },
|
|
);
|
|
if (val.canMutateComptimeVarState(zcu)) {
|
|
return sema.failWithContainsReferenceToComptimeVar(block, src, field_name, "field default value", val);
|
|
}
|
|
// Resolve the value so that lazy values do not create distinct types.
|
|
break :d (try sema.resolveLazyValue(val)).toIntern();
|
|
} else .none;
|
|
|
|
std.hash.autoHash(&hasher, .{
|
|
field_name,
|
|
field_type_val.toIntern(),
|
|
field_default_value,
|
|
field_is_comptime,
|
|
field_alignment_val.toIntern(),
|
|
});
|
|
|
|
if (field_is_comptime) any_comptime_fields = true;
|
|
if (field_default_value != .none) any_default_inits = true;
|
|
}
|
|
|
|
const tracked_inst = try block.trackZir(inst);
|
|
|
|
const wip_ty = switch (try ip.getStructType(gpa, pt.tid, .{
|
|
.layout = layout,
|
|
.fields_len = fields_len,
|
|
.known_non_opv = false,
|
|
.requires_comptime = .unknown,
|
|
.any_comptime_fields = any_comptime_fields,
|
|
.any_default_inits = any_default_inits,
|
|
.any_aligned_fields = layout != .@"packed",
|
|
.inits_resolved = true,
|
|
.key = .{ .reified = .{
|
|
.zir_index = tracked_inst,
|
|
.type_hash = hasher.final(),
|
|
} },
|
|
}, false)) {
|
|
.wip => |wip| wip,
|
|
.existing => |ty| {
|
|
try sema.declareDependency(.{ .interned = ty });
|
|
try sema.addTypeReferenceEntry(src, ty);
|
|
return Air.internedToRef(ty);
|
|
},
|
|
};
|
|
errdefer wip_ty.cancel(ip, pt.tid);
|
|
|
|
const type_name = try sema.createTypeName(
|
|
block,
|
|
name_strategy,
|
|
"struct",
|
|
inst,
|
|
wip_ty.index,
|
|
);
|
|
wip_ty.setName(ip, type_name.name, type_name.nav);
|
|
|
|
const struct_type = ip.loadStructType(wip_ty.index);
|
|
|
|
for (0..fields_len) |field_idx| {
|
|
const field_info = try fields_val.elemValue(pt, field_idx);
|
|
|
|
const field_name_val = try field_info.fieldValue(pt, 0);
|
|
const field_type_val = try field_info.fieldValue(pt, 1);
|
|
const field_default_value_val = try field_info.fieldValue(pt, 2);
|
|
const field_is_comptime_val = try field_info.fieldValue(pt, 3);
|
|
const field_alignment_val = try field_info.fieldValue(pt, 4);
|
|
|
|
const field_ty = field_type_val.toType();
|
|
// Don't pass a reason; first loop acts as an assertion that this is valid.
|
|
const field_name = try sema.sliceToIpString(block, src, field_name_val, undefined);
|
|
if (struct_type.addFieldName(ip, field_name)) |prev_index| {
|
|
_ = prev_index; // TODO: better source location
|
|
return sema.fail(block, src, "duplicate struct field name {f}", .{field_name.fmt(ip)});
|
|
}
|
|
|
|
if (!try sema.intFitsInType(field_alignment_val, align_ty, null)) {
|
|
return sema.fail(block, src, "alignment must fit in '{f}'", .{align_ty.fmt(pt)});
|
|
}
|
|
const byte_align = try field_alignment_val.toUnsignedIntSema(pt);
|
|
if (layout == .@"packed") {
|
|
if (byte_align != 0) return sema.fail(block, src, "alignment of a packed struct field must be set to 0", .{});
|
|
} else {
|
|
struct_type.field_aligns.get(ip)[field_idx] = try sema.validateAlign(block, src, byte_align);
|
|
}
|
|
|
|
const field_is_comptime = field_is_comptime_val.toBool();
|
|
if (field_is_comptime) {
|
|
assert(any_comptime_fields);
|
|
switch (layout) {
|
|
.@"extern" => return sema.fail(block, src, "extern struct fields cannot be marked comptime", .{}),
|
|
.@"packed" => return sema.fail(block, src, "packed struct fields cannot be marked comptime", .{}),
|
|
.auto => struct_type.setFieldComptime(ip, field_idx),
|
|
}
|
|
}
|
|
|
|
const field_default: InternPool.Index = d: {
|
|
if (!any_default_inits) break :d .none;
|
|
const ptr_val = field_default_value_val.optionalValue(zcu) orelse break :d .none;
|
|
const ptr_ty = try pt.singleConstPtrType(field_ty);
|
|
// Asserted comptime-dereferencable above.
|
|
const val = (try sema.pointerDeref(block, src, ptr_val, ptr_ty)).?;
|
|
// We already resolved this for deduplication, so we may as well do it now.
|
|
break :d (try sema.resolveLazyValue(val)).toIntern();
|
|
};
|
|
|
|
if (field_is_comptime and field_default == .none) {
|
|
return sema.fail(block, src, "comptime field without default initialization value", .{});
|
|
}
|
|
|
|
struct_type.field_types.get(ip)[field_idx] = field_type_val.toIntern();
|
|
if (field_default != .none) {
|
|
struct_type.field_inits.get(ip)[field_idx] = field_default;
|
|
}
|
|
|
|
if (field_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "struct fields cannot be 'noreturn'", .{});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
if (layout == .@"extern" and !try sema.validateExternType(field_ty, .struct_field)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "extern structs cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, src, field_ty, .struct_field);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
} else if (layout == .@"packed" and !try sema.validatePackedType(field_ty)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "packed structs cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(gpa);
|
|
|
|
try sema.explainWhyTypeIsNotPacked(msg, src, field_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
if (layout == .@"packed") {
|
|
var fields_bit_sum: u64 = 0;
|
|
for (0..struct_type.field_types.len) |field_idx| {
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_idx]);
|
|
field_ty.resolveLayout(pt) catch |err| switch (err) {
|
|
error.AnalysisFail => {
|
|
const msg = sema.err orelse return err;
|
|
try sema.errNote(src, msg, "while checking a field of this struct", .{});
|
|
return err;
|
|
},
|
|
else => return err,
|
|
};
|
|
fields_bit_sum += field_ty.bitSize(zcu);
|
|
}
|
|
|
|
if (opt_backing_int_val.optionalValue(zcu)) |backing_int_val| {
|
|
const backing_int_ty = backing_int_val.toType();
|
|
try sema.checkBackingIntType(block, src, backing_int_ty, fields_bit_sum);
|
|
struct_type.setBackingIntType(ip, backing_int_ty.toIntern());
|
|
} else {
|
|
const backing_int_ty = try pt.intType(.unsigned, @intCast(fields_bit_sum));
|
|
struct_type.setBackingIntType(ip, backing_int_ty.toIntern());
|
|
}
|
|
}
|
|
|
|
const new_namespace_index = try pt.createNamespace(.{
|
|
.parent = block.namespace.toOptional(),
|
|
.owner_type = wip_ty.index,
|
|
.file_scope = block.getFileScopeIndex(zcu),
|
|
.generation = zcu.generation,
|
|
});
|
|
|
|
try zcu.comp.queueJob(.{ .resolve_type_fully = wip_ty.index });
|
|
codegen_type: {
|
|
if (zcu.comp.config.use_llvm) break :codegen_type;
|
|
if (block.ownerModule().strip) break :codegen_type;
|
|
// This job depends on any resolve_type_fully jobs queued up before it.
|
|
zcu.comp.link_prog_node.increaseEstimatedTotalItems(1);
|
|
try zcu.comp.queueJob(.{ .link_type = wip_ty.index });
|
|
}
|
|
try sema.declareDependency(.{ .interned = wip_ty.index });
|
|
try sema.addTypeReferenceEntry(src, wip_ty.index);
|
|
if (zcu.comp.debugIncremental()) try zcu.incremental_debug_state.newType(zcu, wip_ty.index);
|
|
return Air.internedToRef(wip_ty.finish(ip, new_namespace_index));
|
|
}
|
|
|
|
fn resolveVaListRef(sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const va_list_ty = try sema.getBuiltinType(src, .VaList);
|
|
const va_list_ptr = try pt.singleMutPtrType(va_list_ty);
|
|
|
|
const inst = try sema.resolveInst(zir_ref);
|
|
return sema.coerce(block, va_list_ptr, inst, src);
|
|
}
|
|
|
|
fn zirCVaArg(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const va_list_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const ty_src = block.builtinCallArgSrc(extra.node, 1);
|
|
|
|
const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.lhs);
|
|
const arg_ty = try sema.resolveType(block, ty_src, extra.rhs);
|
|
|
|
if (!try sema.validateExternType(arg_ty, .param_ty)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ty_src, "cannot get '{f}' from variadic argument", .{arg_ty.fmt(sema.pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, ty_src, arg_ty, .param_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, arg_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addTyOp(.c_va_arg, arg_ty, va_list_ref);
|
|
}
|
|
|
|
fn zirCVaCopy(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const va_list_src = block.builtinCallArgSrc(extra.node, 0);
|
|
|
|
const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.operand);
|
|
const va_list_ty = try sema.getBuiltinType(src, .VaList);
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addTyOp(.c_va_copy, va_list_ty, va_list_ref);
|
|
}
|
|
|
|
fn zirCVaEnd(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const va_list_src = block.builtinCallArgSrc(extra.node, 0);
|
|
|
|
const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.operand);
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addUnOp(.c_va_end, va_list_ref);
|
|
}
|
|
|
|
fn zirCVaStart(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const src_node: std.zig.Ast.Node.Offset = @enumFromInt(@as(i32, @bitCast(extended.operand)));
|
|
const src = block.nodeOffset(src_node);
|
|
|
|
const va_list_ty = try sema.getBuiltinType(src, .VaList);
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addInst(.{
|
|
.tag = .c_va_start,
|
|
.data = .{ .ty = va_list_ty },
|
|
});
|
|
}
|
|
|
|
fn zirTypeName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const ty = try sema.resolveType(block, ty_src, inst_data.operand);
|
|
|
|
const type_name = try ip.getOrPutStringFmt(sema.gpa, pt.tid, "{f}", .{ty.fmt(pt)}, .no_embedded_nulls);
|
|
return sema.addNullTerminatedStrLit(type_name);
|
|
}
|
|
|
|
fn zirFrameType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
return sema.failWithUseOfAsync(block, src);
|
|
}
|
|
|
|
fn zirIntFromFloat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@intFromFloat");
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, src, operand_src);
|
|
const is_vector = dest_ty.zigTypeTag(zcu) == .vector;
|
|
|
|
const dest_scalar_ty = dest_ty.scalarType(zcu);
|
|
const operand_scalar_ty = operand_ty.scalarType(zcu);
|
|
|
|
_ = try sema.checkIntType(block, src, dest_scalar_ty);
|
|
try sema.checkFloatType(block, operand_src, operand_scalar_ty);
|
|
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
const result_val = try sema.intFromFloat(block, operand_src, operand_val, operand_ty, dest_ty, .truncate);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
} else if (dest_scalar_ty.zigTypeTag(zcu) == .comptime_int) {
|
|
return sema.failWithNeededComptime(block, operand_src, .{ .simple = .casted_to_comptime_int });
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
if (dest_scalar_ty.intInfo(zcu).bits == 0) {
|
|
if (block.wantSafety()) {
|
|
// Emit an explicit safety check. We can do this one like `abs(x) < 1`.
|
|
const abs_ref = try block.addTyOp(.abs, operand_ty, operand);
|
|
const max_abs_ref = if (is_vector) try block.addReduce(abs_ref, .Max) else abs_ref;
|
|
const one_ref = Air.internedToRef((try pt.floatValue(operand_scalar_ty, 1.0)).toIntern());
|
|
const ok_ref = try block.addBinOp(.cmp_lt, max_abs_ref, one_ref);
|
|
try sema.addSafetyCheck(block, src, ok_ref, .integer_part_out_of_bounds);
|
|
}
|
|
const scalar_val = try pt.intValue(dest_scalar_ty, 0);
|
|
return Air.internedToRef((try sema.splat(dest_ty, scalar_val)).toIntern());
|
|
}
|
|
if (block.wantSafety()) {
|
|
try sema.preparePanicId(src, .integer_part_out_of_bounds);
|
|
return block.addTyOp(switch (block.float_mode) {
|
|
.optimized => .int_from_float_optimized_safe,
|
|
.strict => .int_from_float_safe,
|
|
}, dest_ty, operand);
|
|
}
|
|
return block.addTyOp(switch (block.float_mode) {
|
|
.optimized => .int_from_float_optimized,
|
|
.strict => .int_from_float,
|
|
}, dest_ty, operand);
|
|
}
|
|
|
|
fn zirFloatFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@floatFromInt");
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, src, operand_src);
|
|
|
|
const dest_scalar_ty = dest_ty.scalarType(zcu);
|
|
const operand_scalar_ty = operand_ty.scalarType(zcu);
|
|
|
|
try sema.checkFloatType(block, src, dest_scalar_ty);
|
|
_ = try sema.checkIntType(block, operand_src, operand_scalar_ty);
|
|
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
const result_val = try operand_val.floatFromIntAdvanced(sema.arena, operand_ty, dest_ty, pt, .sema);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
} else if (dest_scalar_ty.zigTypeTag(zcu) == .comptime_float) {
|
|
return sema.failWithNeededComptime(block, operand_src, .{ .simple = .casted_to_comptime_float });
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
return block.addTyOp(.float_from_int, dest_ty, operand);
|
|
}
|
|
|
|
fn zirPtrFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand_res = try sema.resolveInst(extra.rhs);
|
|
|
|
const uncoerced_operand_ty = sema.typeOf(operand_res);
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, "@ptrFromInt");
|
|
try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, uncoerced_operand_ty, src, operand_src);
|
|
|
|
const is_vector = dest_ty.zigTypeTag(zcu) == .vector;
|
|
const operand_ty: Type = if (is_vector) operand_ty: {
|
|
const len = dest_ty.vectorLen(zcu);
|
|
break :operand_ty try pt.vectorType(.{ .child = .usize_type, .len = len });
|
|
} else .usize;
|
|
|
|
const operand_coerced = try sema.coerce(block, operand_ty, operand_res, operand_src);
|
|
|
|
const ptr_ty = dest_ty.scalarType(zcu);
|
|
try sema.checkPtrType(block, src, ptr_ty, true);
|
|
|
|
const elem_ty = ptr_ty.elemType2(zcu);
|
|
const ptr_align = try ptr_ty.ptrAlignmentSema(pt);
|
|
|
|
if (ptr_ty.isSlice(zcu)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "integer cannot be converted to slice type '{f}'", .{ptr_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "slice length cannot be inferred from address", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand_coerced)) |val| {
|
|
if (!is_vector) {
|
|
const ptr_val = try sema.ptrFromIntVal(block, operand_src, val, ptr_ty, ptr_align, null);
|
|
return Air.internedToRef(ptr_val.toIntern());
|
|
}
|
|
const len = dest_ty.vectorLen(zcu);
|
|
const new_elems = try sema.arena.alloc(InternPool.Index, len);
|
|
for (new_elems, 0..) |*new_elem, elem_idx| {
|
|
const elem = try val.elemValue(pt, elem_idx);
|
|
const ptr_val = try sema.ptrFromIntVal(block, operand_src, elem, ptr_ty, ptr_align, elem_idx);
|
|
new_elem.* = ptr_val.toIntern();
|
|
}
|
|
return Air.internedToRef((try pt.aggregateValue(dest_ty, new_elems)).toIntern());
|
|
}
|
|
if (try ptr_ty.comptimeOnlySema(pt)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "pointer to comptime-only type '{f}' must be comptime-known, but operand is runtime-known", .{ptr_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsComptime(msg, src, ptr_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
try sema.checkLogicalPtrOperation(block, src, ptr_ty);
|
|
if (block.wantSafety() and (try elem_ty.hasRuntimeBitsSema(pt) or elem_ty.zigTypeTag(zcu) == .@"fn")) {
|
|
if (!ptr_ty.isAllowzeroPtr(zcu)) {
|
|
const is_non_zero = if (is_vector) all_non_zero: {
|
|
const zero_usize = Air.internedToRef((try sema.splat(operand_ty, .zero_usize)).toIntern());
|
|
const is_non_zero = try block.addCmpVector(operand_coerced, zero_usize, .neq);
|
|
break :all_non_zero try block.addReduce(is_non_zero, .And);
|
|
} else try block.addBinOp(.cmp_neq, operand_coerced, .zero_usize);
|
|
try sema.addSafetyCheck(block, src, is_non_zero, .cast_to_null);
|
|
}
|
|
if (ptr_align.compare(.gt, .@"1")) {
|
|
const align_bytes_minus_1 = ptr_align.toByteUnits().? - 1;
|
|
const align_mask = Air.internedToRef((try sema.splat(operand_ty, try pt.intValue(
|
|
.usize,
|
|
if (elem_ty.fnPtrMaskOrNull(zcu)) |mask|
|
|
align_bytes_minus_1 & mask
|
|
else
|
|
align_bytes_minus_1,
|
|
))).toIntern());
|
|
const remainder = try block.addBinOp(.bit_and, operand_coerced, align_mask);
|
|
const is_aligned = if (is_vector) all_aligned: {
|
|
const splat_zero_usize = Air.internedToRef((try sema.splat(operand_ty, .zero_usize)).toIntern());
|
|
const is_aligned = try block.addCmpVector(remainder, splat_zero_usize, .eq);
|
|
break :all_aligned try block.addReduce(is_aligned, .And);
|
|
} else try block.addBinOp(.cmp_eq, remainder, .zero_usize);
|
|
try sema.addSafetyCheck(block, src, is_aligned, .incorrect_alignment);
|
|
}
|
|
}
|
|
return block.addBitCast(dest_ty, operand_coerced);
|
|
}
|
|
|
|
fn ptrFromIntVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
operand_src: LazySrcLoc,
|
|
operand_val: Value,
|
|
ptr_ty: Type,
|
|
ptr_align: Alignment,
|
|
vec_idx: ?usize,
|
|
) !Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (operand_val.isUndef(zcu)) {
|
|
if (ptr_ty.isAllowzeroPtr(zcu) and ptr_align == .@"1") {
|
|
return pt.undefValue(ptr_ty);
|
|
}
|
|
return sema.failWithUseOfUndef(block, operand_src, vec_idx);
|
|
}
|
|
const addr = try operand_val.toUnsignedIntSema(pt);
|
|
if (!ptr_ty.isAllowzeroPtr(zcu) and addr == 0)
|
|
return sema.fail(block, operand_src, "pointer type '{f}' does not allow address zero", .{ptr_ty.fmt(pt)});
|
|
if (addr != 0 and ptr_align != .none) {
|
|
const masked_addr = if (ptr_ty.childType(zcu).fnPtrMaskOrNull(zcu)) |mask|
|
|
addr & mask
|
|
else
|
|
addr;
|
|
|
|
if (!ptr_align.check(masked_addr)) {
|
|
return sema.fail(block, operand_src, "pointer type '{f}' requires aligned address", .{ptr_ty.fmt(pt)});
|
|
}
|
|
}
|
|
|
|
return switch (ptr_ty.zigTypeTag(zcu)) {
|
|
.optional => Value.fromInterned(try pt.intern(.{ .opt = .{
|
|
.ty = ptr_ty.toIntern(),
|
|
.val = if (addr == 0) .none else (try pt.ptrIntValue(ptr_ty.childType(zcu), addr)).toIntern(),
|
|
} })),
|
|
.pointer => try pt.ptrIntValue(ptr_ty, addr),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
fn zirErrorCast(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const operand_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_opt, "@errorCast");
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
const dest_tag = dest_ty.zigTypeTag(zcu);
|
|
const operand_tag = operand_ty.zigTypeTag(zcu);
|
|
|
|
if (dest_tag != .error_set and dest_tag != .error_union) {
|
|
return sema.fail(block, src, "expected error set or error union type, found '{s}'", .{@tagName(dest_tag)});
|
|
}
|
|
if (operand_tag != .error_set and operand_tag != .error_union) {
|
|
return sema.fail(block, src, "expected error set or error union type, found '{s}'", .{@tagName(operand_tag)});
|
|
}
|
|
if (dest_tag == .error_set and operand_tag == .error_union) {
|
|
return sema.fail(block, src, "cannot cast an error union type to error set", .{});
|
|
}
|
|
if (dest_tag == .error_union and operand_tag == .error_union and
|
|
dest_ty.errorUnionPayload(zcu).toIntern() != operand_ty.errorUnionPayload(zcu).toIntern())
|
|
{
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "payload types of error unions must match", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
const dest_payload_ty = dest_ty.errorUnionPayload(zcu);
|
|
const operand_payload_ty = operand_ty.errorUnionPayload(zcu);
|
|
try sema.errNote(src, msg, "destination payload is '{f}'", .{dest_payload_ty.fmt(pt)});
|
|
try sema.errNote(src, msg, "operand payload is '{f}'", .{operand_payload_ty.fmt(pt)});
|
|
try addDeclaredHereNote(sema, msg, dest_ty);
|
|
try addDeclaredHereNote(sema, msg, operand_ty);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
const dest_err_ty = switch (dest_tag) {
|
|
.error_union => dest_ty.errorUnionSet(zcu),
|
|
.error_set => dest_ty,
|
|
else => unreachable,
|
|
};
|
|
const operand_err_ty = switch (operand_tag) {
|
|
.error_union => operand_ty.errorUnionSet(zcu),
|
|
.error_set => operand_ty,
|
|
else => unreachable,
|
|
};
|
|
|
|
const disjoint = disjoint: {
|
|
// Try avoiding resolving inferred error sets if we can
|
|
if (!dest_err_ty.isAnyError(zcu) and dest_err_ty.errorSetIsEmpty(zcu)) break :disjoint true;
|
|
if (!operand_err_ty.isAnyError(zcu) and operand_err_ty.errorSetIsEmpty(zcu)) break :disjoint true;
|
|
if (dest_err_ty.isAnyError(zcu)) break :disjoint false;
|
|
if (operand_err_ty.isAnyError(zcu)) break :disjoint false;
|
|
const dest_err_names = dest_err_ty.errorSetNames(zcu);
|
|
for (0..dest_err_names.len) |dest_err_index| {
|
|
if (Type.errorSetHasFieldIp(ip, operand_err_ty.toIntern(), dest_err_names.get(ip)[dest_err_index]))
|
|
break :disjoint false;
|
|
}
|
|
|
|
if (!ip.isInferredErrorSetType(dest_err_ty.toIntern()) and
|
|
!ip.isInferredErrorSetType(operand_err_ty.toIntern()))
|
|
{
|
|
break :disjoint true;
|
|
}
|
|
|
|
_ = try sema.resolveInferredErrorSetTy(block, src, dest_err_ty.toIntern());
|
|
_ = try sema.resolveInferredErrorSetTy(block, operand_src, operand_err_ty.toIntern());
|
|
for (0..dest_err_names.len) |dest_err_index| {
|
|
if (Type.errorSetHasFieldIp(ip, operand_err_ty.toIntern(), dest_err_names.get(ip)[dest_err_index]))
|
|
break :disjoint false;
|
|
}
|
|
|
|
break :disjoint true;
|
|
};
|
|
if (disjoint and !(operand_tag == .error_union and dest_tag == .error_union)) {
|
|
return sema.fail(block, src, "error sets '{f}' and '{f}' have no common errors", .{
|
|
operand_err_ty.fmt(pt), dest_err_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
// operand must be defined since it can be an invalid error value
|
|
if (try sema.resolveDefinedValue(block, operand_src, operand)) |operand_val| {
|
|
const err_name: InternPool.NullTerminatedString = switch (operand_tag) {
|
|
.error_set => ip.indexToKey(operand_val.toIntern()).err.name,
|
|
.error_union => switch (ip.indexToKey(operand_val.toIntern()).error_union.val) {
|
|
.err_name => |name| name,
|
|
.payload => |payload_val| {
|
|
assert(dest_tag == .error_union); // should be guaranteed from the type checks above
|
|
return sema.coerce(block, dest_ty, Air.internedToRef(payload_val), operand_src);
|
|
},
|
|
},
|
|
else => unreachable,
|
|
};
|
|
|
|
if (!dest_err_ty.isAnyError(zcu) and !Type.errorSetHasFieldIp(ip, dest_err_ty.toIntern(), err_name)) {
|
|
return sema.fail(block, src, "'error.{f}' not a member of error set '{f}'", .{
|
|
err_name.fmt(ip), dest_err_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
return Air.internedToRef(try pt.intern(switch (dest_tag) {
|
|
.error_set => .{ .err = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.name = err_name,
|
|
} },
|
|
.error_union => .{ .error_union = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.val = .{ .err_name = err_name },
|
|
} },
|
|
else => unreachable,
|
|
}));
|
|
}
|
|
|
|
const err_int_ty = try pt.errorIntType();
|
|
if (block.wantSafety() and !dest_err_ty.isAnyError(zcu) and
|
|
dest_err_ty.toIntern() != .adhoc_inferred_error_set_type and
|
|
zcu.backendSupportsFeature(.error_set_has_value))
|
|
{
|
|
const err_code_inst = switch (operand_tag) {
|
|
.error_set => operand,
|
|
.error_union => try block.addTyOp(.unwrap_errunion_err, operand_err_ty, operand),
|
|
else => unreachable,
|
|
};
|
|
const err_int_inst = try block.addBitCast(err_int_ty, err_code_inst);
|
|
|
|
if (dest_tag == .error_union) {
|
|
const zero_err = try pt.intRef(err_int_ty, 0);
|
|
const is_zero = try block.addBinOp(.cmp_eq, err_int_inst, zero_err);
|
|
if (disjoint) {
|
|
// Error must be zero.
|
|
try sema.addSafetyCheck(block, src, is_zero, .invalid_error_code);
|
|
} else {
|
|
// Error must be in destination set or zero.
|
|
const has_value = try block.addTyOp(.error_set_has_value, dest_err_ty, err_int_inst);
|
|
const ok = try block.addBinOp(.bool_or, has_value, is_zero);
|
|
try sema.addSafetyCheck(block, src, ok, .invalid_error_code);
|
|
}
|
|
} else {
|
|
const ok = try block.addTyOp(.error_set_has_value, dest_err_ty, err_int_inst);
|
|
try sema.addSafetyCheck(block, src, ok, .invalid_error_code);
|
|
}
|
|
}
|
|
|
|
if (operand_tag == .error_set and dest_tag == .error_union) {
|
|
const err_val = try block.addBitCast(dest_err_ty, operand);
|
|
return block.addTyOp(.wrap_errunion_err, dest_ty, err_val);
|
|
} else {
|
|
return block.addBitCast(dest_ty, operand);
|
|
}
|
|
}
|
|
|
|
fn zirPtrCastFull(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const FlagsInt = @typeInfo(Zir.Inst.FullPtrCastFlags).@"struct".backing_integer.?;
|
|
const flags: Zir.Inst.FullPtrCastFlags = @bitCast(@as(FlagsInt, @truncate(extended.small)));
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const operand_src = block.src(.{ .node_offset_ptrcast_operand = extra.node });
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, flags.needResultTypeBuiltinName());
|
|
return sema.ptrCastFull(
|
|
block,
|
|
flags,
|
|
src,
|
|
operand,
|
|
operand_src,
|
|
dest_ty,
|
|
flags.needResultTypeBuiltinName(),
|
|
);
|
|
}
|
|
|
|
fn zirPtrCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, "@ptrCast");
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
|
|
return sema.ptrCastFull(
|
|
block,
|
|
.{ .ptr_cast = true },
|
|
src,
|
|
operand,
|
|
operand_src,
|
|
dest_ty,
|
|
"@ptrCast",
|
|
);
|
|
}
|
|
|
|
fn ptrCastFull(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
flags: Zir.Inst.FullPtrCastFlags,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
operand_src: LazySrcLoc,
|
|
dest_ty: Type,
|
|
operation: []const u8,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
try sema.checkPtrType(block, src, dest_ty, true);
|
|
try sema.checkPtrOperand(block, operand_src, operand_ty);
|
|
|
|
const src_info = operand_ty.ptrInfo(zcu);
|
|
const dest_info = dest_ty.ptrInfo(zcu);
|
|
|
|
try Type.fromInterned(src_info.child).resolveLayout(pt);
|
|
try Type.fromInterned(dest_info.child).resolveLayout(pt);
|
|
|
|
const DestSliceLen = union(enum) {
|
|
undef,
|
|
constant: u64,
|
|
equal_runtime_src_slice,
|
|
change_runtime_src_slice: struct {
|
|
bytes_per_src: u64,
|
|
bytes_per_dest: u64,
|
|
},
|
|
};
|
|
// Populated iff the destination type is a slice.
|
|
const dest_slice_len: ?DestSliceLen = len: {
|
|
switch (dest_info.flags.size) {
|
|
.slice => {},
|
|
.many, .c, .one => break :len null,
|
|
}
|
|
// A `null` length means the operand is a runtime-known slice (so the length is runtime-known).
|
|
// `src_elem_type` is different from `src_info.child` if the latter is an array, to ensure we ignore sentinels.
|
|
const src_elem_ty: Type, const opt_src_len: ?u64 = switch (src_info.flags.size) {
|
|
.one => src: {
|
|
const true_child: Type = .fromInterned(src_info.child);
|
|
break :src switch (true_child.zigTypeTag(zcu)) {
|
|
.array => .{ true_child.childType(zcu), true_child.arrayLen(zcu) },
|
|
else => .{ true_child, 1 },
|
|
};
|
|
},
|
|
.slice => src: {
|
|
const operand_val = try sema.resolveValue(operand) orelse break :src .{ .fromInterned(src_info.child), null };
|
|
if (operand_val.isUndef(zcu)) break :len .undef;
|
|
const slice_val = switch (operand_ty.zigTypeTag(zcu)) {
|
|
.optional => operand_val.optionalValue(zcu) orelse break :len .undef,
|
|
.pointer => operand_val,
|
|
else => unreachable,
|
|
};
|
|
const slice_len_resolved = try sema.resolveLazyValue(.fromInterned(zcu.intern_pool.sliceLen(slice_val.toIntern())));
|
|
if (slice_len_resolved.isUndef(zcu)) break :len .undef;
|
|
break :src .{ .fromInterned(src_info.child), slice_len_resolved.toUnsignedInt(zcu) };
|
|
},
|
|
.many, .c => {
|
|
return sema.fail(block, src, "cannot infer length of slice from {s}", .{pointerSizeString(src_info.flags.size)});
|
|
},
|
|
};
|
|
const dest_elem_ty: Type = .fromInterned(dest_info.child);
|
|
if (dest_elem_ty.toIntern() == src_elem_ty.toIntern()) {
|
|
break :len if (opt_src_len) |l| .{ .constant = l } else .equal_runtime_src_slice;
|
|
}
|
|
if (!src_elem_ty.comptimeOnly(zcu) and !dest_elem_ty.comptimeOnly(zcu)) {
|
|
const src_elem_size = src_elem_ty.abiSize(zcu);
|
|
const dest_elem_size = dest_elem_ty.abiSize(zcu);
|
|
if (dest_elem_size == 0) {
|
|
return sema.fail(block, src, "cannot infer length of slice of zero-bit '{f}' from '{f}'", .{
|
|
dest_elem_ty.fmt(pt), operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
if (opt_src_len) |src_len| {
|
|
const bytes = src_len * src_elem_size;
|
|
const dest_len = std.math.divExact(u64, bytes, dest_elem_size) catch switch (src_info.flags.size) {
|
|
.slice => return sema.fail(block, src, "slice length '{d}' does not divide exactly into destination elements", .{src_len}),
|
|
.one => return sema.fail(block, src, "type '{f}' does not divide exactly into destination elements", .{Type.fromInterned(src_info.child).fmt(pt)}),
|
|
else => unreachable,
|
|
};
|
|
break :len .{ .constant = dest_len };
|
|
}
|
|
assert(src_info.flags.size == .slice);
|
|
break :len .{ .change_runtime_src_slice = .{
|
|
.bytes_per_src = src_elem_size,
|
|
.bytes_per_dest = dest_elem_size,
|
|
} };
|
|
}
|
|
// We apply rules for comptime memory consistent with comptime loads/stores, where arrays of
|
|
// comptime-only types can be "restructured".
|
|
const dest_base_ty: Type, const dest_base_per_elem: u64 = dest_elem_ty.arrayBase(zcu);
|
|
const src_base_ty: Type, const src_base_per_elem: u64 = src_elem_ty.arrayBase(zcu);
|
|
// The source value has `src_len * src_base_per_elem` values of type `src_base_ty`.
|
|
// The result value will have `dest_len * dest_base_per_elem` values of type `dest_base_ty`.
|
|
if (dest_base_ty.toIntern() != src_base_ty.toIntern()) {
|
|
return sema.fail(block, src, "cannot infer length of comptime-only '{f}' from incompatible '{f}'", .{
|
|
dest_ty.fmt(pt), operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
// `src_base_ty` is comptime-only, so `src_elem_ty` is comptime-only, so `operand_ty` is
|
|
// comptime-only, so `operand` is comptime-known, so `opt_src_len` is non-`null`.
|
|
const src_len = opt_src_len.?;
|
|
const base_len = src_len * src_base_per_elem;
|
|
const dest_len = std.math.divExact(u64, base_len, dest_base_per_elem) catch switch (src_info.flags.size) {
|
|
.slice => return sema.fail(block, src, "slice length '{d}' does not divide exactly into destination elements", .{src_len}),
|
|
.one => return sema.fail(block, src, "type '{f}' does not divide exactly into destination elements", .{src_elem_ty.fmt(pt)}),
|
|
else => unreachable,
|
|
};
|
|
break :len .{ .constant = dest_len };
|
|
};
|
|
|
|
// The checking logic in this function must stay in sync with Sema.coerceInMemoryAllowedPtrs
|
|
|
|
if (!flags.ptr_cast) {
|
|
const is_array_ptr_to_slice = b: {
|
|
if (dest_info.flags.size != .slice) break :b false;
|
|
if (src_info.flags.size != .one) break :b false;
|
|
const src_pointer_child: Type = .fromInterned(src_info.child);
|
|
if (src_pointer_child.zigTypeTag(zcu) != .array) break :b false;
|
|
const src_elem = src_pointer_child.childType(zcu);
|
|
break :b src_elem.toIntern() == dest_info.child;
|
|
};
|
|
|
|
check_size: {
|
|
if (src_info.flags.size == dest_info.flags.size) break :check_size;
|
|
if (is_array_ptr_to_slice) break :check_size;
|
|
if (src_info.flags.size == .c) break :check_size;
|
|
if (dest_info.flags.size == .c) break :check_size;
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "cannot implicitly convert {s} to {s}", .{
|
|
pointerSizeString(src_info.flags.size),
|
|
pointerSizeString(dest_info.flags.size),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (dest_info.flags.size == .many and
|
|
(src_info.flags.size == .slice or
|
|
(src_info.flags.size == .one and Type.fromInterned(src_info.child).zigTypeTag(zcu) == .array)))
|
|
{
|
|
try sema.errNote(src, msg, "use 'ptr' field to convert slice to many pointer", .{});
|
|
} else {
|
|
try sema.errNote(src, msg, "use @ptrCast to change pointer size", .{});
|
|
}
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
check_child: {
|
|
const src_child: Type = if (dest_info.flags.size == .slice and src_info.flags.size == .one) blk: {
|
|
// *[n]T -> []T
|
|
break :blk Type.fromInterned(src_info.child).childType(zcu);
|
|
} else .fromInterned(src_info.child);
|
|
|
|
const dest_child: Type = .fromInterned(dest_info.child);
|
|
|
|
const imc_res = try sema.coerceInMemoryAllowed(
|
|
block,
|
|
dest_child,
|
|
src_child,
|
|
!dest_info.flags.is_const,
|
|
zcu.getTarget(),
|
|
src,
|
|
operand_src,
|
|
null,
|
|
);
|
|
if (imc_res == .ok) break :check_child;
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "pointer element type '{f}' cannot coerce into element type '{f}'", .{
|
|
src_child.fmt(pt), dest_child.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try imc_res.report(sema, src, msg);
|
|
try sema.errNote(src, msg, "use @ptrCast to cast pointer element type", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
check_sent: {
|
|
if (dest_info.sentinel == .none) break :check_sent;
|
|
if (src_info.flags.size == .c) break :check_sent;
|
|
if (src_info.sentinel != .none) {
|
|
const coerced_sent = try zcu.intern_pool.getCoerced(sema.gpa, pt.tid, src_info.sentinel, dest_info.child);
|
|
if (dest_info.sentinel == coerced_sent) break :check_sent;
|
|
}
|
|
if (is_array_ptr_to_slice) {
|
|
// [*]nT -> []T
|
|
const arr_ty: Type = .fromInterned(src_info.child);
|
|
if (arr_ty.sentinel(zcu)) |src_sentinel| {
|
|
const coerced_sent = try zcu.intern_pool.getCoerced(sema.gpa, pt.tid, src_sentinel.toIntern(), dest_info.child);
|
|
if (dest_info.sentinel == coerced_sent) break :check_sent;
|
|
}
|
|
}
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = if (src_info.sentinel == .none) blk: {
|
|
break :blk try sema.errMsg(src, "destination pointer requires '{f}' sentinel", .{
|
|
Value.fromInterned(dest_info.sentinel).fmtValueSema(pt, sema),
|
|
});
|
|
} else blk: {
|
|
break :blk try sema.errMsg(src, "pointer sentinel '{f}' cannot coerce into pointer sentinel '{f}'", .{
|
|
Value.fromInterned(src_info.sentinel).fmtValueSema(pt, sema),
|
|
Value.fromInterned(dest_info.sentinel).fmtValueSema(pt, sema),
|
|
});
|
|
};
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "use @ptrCast to cast pointer sentinel", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
if (src_info.packed_offset.host_size != dest_info.packed_offset.host_size) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "pointer host size '{d}' cannot coerce into pointer host size '{d}'", .{
|
|
src_info.packed_offset.host_size,
|
|
dest_info.packed_offset.host_size,
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "use @ptrCast to cast pointer host size", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
if (src_info.packed_offset.bit_offset != dest_info.packed_offset.bit_offset) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "pointer bit offset '{d}' cannot coerce into pointer bit offset '{d}'", .{
|
|
src_info.packed_offset.bit_offset,
|
|
dest_info.packed_offset.bit_offset,
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "use @ptrCast to cast pointer bit offset", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
check_allowzero: {
|
|
const src_allows_zero = operand_ty.ptrAllowsZero(zcu);
|
|
const dest_allows_zero = dest_ty.ptrAllowsZero(zcu);
|
|
if (!src_allows_zero) break :check_allowzero;
|
|
if (dest_allows_zero) break :check_allowzero;
|
|
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "'{f}' could have null values which are illegal in type '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
dest_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "use @ptrCast to assert the pointer is not null", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
// TODO: vector index?
|
|
}
|
|
|
|
const src_align = if (src_info.flags.alignment != .none)
|
|
src_info.flags.alignment
|
|
else
|
|
Type.fromInterned(src_info.child).abiAlignment(zcu);
|
|
|
|
const dest_align = if (dest_info.flags.alignment != .none)
|
|
dest_info.flags.alignment
|
|
else
|
|
Type.fromInterned(dest_info.child).abiAlignment(zcu);
|
|
|
|
if (!flags.align_cast) {
|
|
if (dest_align.compare(.gt, src_align)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "{s} increases pointer alignment", .{operation});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(operand_src, msg, "'{f}' has alignment '{d}'", .{
|
|
operand_ty.fmt(pt), src_align.toByteUnits() orelse 0,
|
|
});
|
|
try sema.errNote(src, msg, "'{f}' has alignment '{d}'", .{
|
|
dest_ty.fmt(pt), dest_align.toByteUnits() orelse 0,
|
|
});
|
|
try sema.errNote(src, msg, "use @alignCast to assert pointer alignment", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!flags.addrspace_cast) {
|
|
if (src_info.flags.address_space != dest_info.flags.address_space) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "{s} changes pointer address space", .{operation});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(operand_src, msg, "'{f}' has address space '{s}'", .{
|
|
operand_ty.fmt(pt), @tagName(src_info.flags.address_space),
|
|
});
|
|
try sema.errNote(src, msg, "'{f}' has address space '{s}'", .{
|
|
dest_ty.fmt(pt), @tagName(dest_info.flags.address_space),
|
|
});
|
|
try sema.errNote(src, msg, "use @addrSpaceCast to cast pointer address space", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
} else {
|
|
// Some address space casts are always disallowed
|
|
if (!target_util.addrSpaceCastIsValid(zcu.getTarget(), src_info.flags.address_space, dest_info.flags.address_space)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "invalid address space cast", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(operand_src, msg, "address space '{s}' is not compatible with address space '{s}'", .{
|
|
@tagName(src_info.flags.address_space),
|
|
@tagName(dest_info.flags.address_space),
|
|
});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!flags.const_cast) {
|
|
if (src_info.flags.is_const and !dest_info.flags.is_const) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "{s} discards const qualifier", .{operation});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "use @constCast to discard const qualifier", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!flags.volatile_cast) {
|
|
if (src_info.flags.is_volatile and !dest_info.flags.is_volatile) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "{s} discards volatile qualifier", .{operation});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "use @volatileCast to discard volatile qualifier", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
// Type validation done -- this cast is okay. Let's do it!
|
|
//
|
|
// `operand` is a maybe-optional pointer or slice.
|
|
// `dest_ty` is a maybe-optional pointer or slice.
|
|
//
|
|
// We have a few safety checks:
|
|
// * if the destination does not allow zero, check the operand is not null / 0
|
|
// * if the destination is more aligned than the operand, check the pointer alignment
|
|
// * if `slice_needs_len_change`, check the element count divides neatly
|
|
|
|
ct: {
|
|
if (flags.addrspace_cast) break :ct; // cannot `@addrSpaceCast` at comptime
|
|
const operand_val = try sema.resolveValue(operand) orelse break :ct;
|
|
|
|
if (operand_val.isUndef(zcu)) {
|
|
if (!dest_ty.ptrAllowsZero(zcu)) {
|
|
return sema.failWithUseOfUndef(block, operand_src, null);
|
|
}
|
|
return pt.undefRef(dest_ty);
|
|
}
|
|
|
|
if (operand_val.isNull(zcu)) {
|
|
if (!dest_ty.ptrAllowsZero(zcu)) {
|
|
return sema.fail(block, operand_src, "null pointer casted to type '{f}'", .{dest_ty.fmt(pt)});
|
|
}
|
|
if (dest_ty.zigTypeTag(zcu) == .optional) {
|
|
return Air.internedToRef((try pt.nullValue(dest_ty)).toIntern());
|
|
} else {
|
|
return Air.internedToRef((try pt.ptrIntValue(dest_ty, 0)).toIntern());
|
|
}
|
|
}
|
|
|
|
const ptr_val: Value = switch (src_info.flags.size) {
|
|
.slice => .fromInterned(zcu.intern_pool.indexToKey(operand_val.toIntern()).slice.ptr),
|
|
.one, .many, .c => operand_val,
|
|
};
|
|
|
|
if (dest_align.compare(.gt, src_align)) {
|
|
if (try ptr_val.getUnsignedIntSema(pt)) |addr| {
|
|
const masked_addr = if (Type.fromInterned(dest_info.child).fnPtrMaskOrNull(zcu)) |mask|
|
|
addr & mask
|
|
else
|
|
addr;
|
|
|
|
if (!dest_align.check(masked_addr)) {
|
|
return sema.fail(block, operand_src, "pointer address 0x{X} is not aligned to {d} bytes", .{
|
|
addr,
|
|
dest_align.toByteUnits().?,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dest_info.flags.size == .slice) {
|
|
// Because the operand is comptime-known and not `null`, the slice length has already been computed:
|
|
const len: Value = switch (dest_slice_len.?) {
|
|
.undef => .undef_usize,
|
|
.constant => |n| try pt.intValue(.usize, n),
|
|
.equal_runtime_src_slice => unreachable,
|
|
.change_runtime_src_slice => unreachable,
|
|
};
|
|
return Air.internedToRef(try pt.intern(.{ .slice = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.ptr = (try pt.getCoerced(ptr_val, dest_ty.slicePtrFieldType(zcu))).toIntern(),
|
|
.len = len.toIntern(),
|
|
} }));
|
|
} else {
|
|
// Any to non-slice
|
|
const new_ptr_val = try pt.getCoerced(ptr_val, dest_ty);
|
|
return Air.internedToRef(new_ptr_val.toIntern());
|
|
}
|
|
}
|
|
|
|
try sema.validateRuntimeValue(block, operand_src, operand);
|
|
|
|
const can_cast_to_int = !target_util.shouldBlockPointerOps(zcu.getTarget(), operand_ty.ptrAddressSpace(zcu));
|
|
const need_null_check = can_cast_to_int and block.wantSafety() and operand_ty.ptrAllowsZero(zcu) and !dest_ty.ptrAllowsZero(zcu);
|
|
const need_align_check = can_cast_to_int and block.wantSafety() and dest_align.compare(.gt, src_align);
|
|
|
|
const slice_needs_len_change = if (dest_slice_len) |l| switch (l) {
|
|
.undef, .equal_runtime_src_slice => false,
|
|
.constant, .change_runtime_src_slice => true,
|
|
} else false;
|
|
|
|
// `operand` might be a slice. If `need_operand_ptr`, we'll populate `operand_ptr` with the raw pointer.
|
|
const need_operand_ptr = src_info.flags.size != .slice or // we already have it
|
|
dest_info.flags.size != .slice or // the result is a raw pointer
|
|
need_null_check or // safety check happens on pointer
|
|
need_align_check or // safety check happens on pointer
|
|
flags.addrspace_cast or // AIR addrspace_cast acts on a pointer
|
|
slice_needs_len_change; // to change the length, we reconstruct the slice
|
|
|
|
// This is not quite just the pointer part of `operand` -- it's also had the address space cast done already.
|
|
const operand_ptr: Air.Inst.Ref = ptr: {
|
|
if (!need_operand_ptr) break :ptr .none;
|
|
// First, just get the pointer.
|
|
const pre_addrspace_cast = inner: {
|
|
if (src_info.flags.size != .slice) break :inner operand;
|
|
if (operand_ty.zigTypeTag(zcu) == .optional) {
|
|
break :inner try sema.analyzeOptionalSlicePtr(block, operand_src, operand, operand_ty);
|
|
} else {
|
|
break :inner try sema.analyzeSlicePtr(block, operand_src, operand, operand_ty);
|
|
}
|
|
};
|
|
// Now, do an addrspace cast if necessary!
|
|
if (!flags.addrspace_cast) break :ptr pre_addrspace_cast;
|
|
|
|
const intermediate_ptr_ty = try pt.ptrTypeSema(info: {
|
|
var info = src_info;
|
|
info.flags.address_space = dest_info.flags.address_space;
|
|
break :info info;
|
|
});
|
|
const intermediate_ty = if (operand_ty.zigTypeTag(zcu) == .optional) blk: {
|
|
break :blk try pt.optionalType(intermediate_ptr_ty.toIntern());
|
|
} else intermediate_ptr_ty;
|
|
break :ptr try block.addInst(.{
|
|
.tag = .addrspace_cast,
|
|
.data = .{ .ty_op = .{
|
|
.ty = Air.internedToRef(intermediate_ty.toIntern()),
|
|
.operand = pre_addrspace_cast,
|
|
} },
|
|
});
|
|
};
|
|
|
|
// Whether we need to know if the (slice) operand has `len == 0`.
|
|
const need_operand_len_is_zero = src_info.flags.size == .slice and
|
|
dest_info.flags.size == .slice and
|
|
(need_null_check or need_align_check);
|
|
// Whether we need to get the (slice) operand's `len`.
|
|
const need_operand_len = need_len: {
|
|
if (src_info.flags.size != .slice) break :need_len false;
|
|
if (dest_info.flags.size != .slice) break :need_len false;
|
|
if (need_operand_len_is_zero) break :need_len true;
|
|
if (flags.addrspace_cast or slice_needs_len_change) break :need_len true;
|
|
break :need_len false;
|
|
};
|
|
// `.none` if `!need_operand_len`.
|
|
const operand_len: Air.Inst.Ref = len: {
|
|
if (!need_operand_len) break :len .none;
|
|
break :len try block.addTyOp(.slice_len, .usize, operand);
|
|
};
|
|
// `.none` if `!need_operand_len_is_zero`.
|
|
const operand_len_is_zero: Air.Inst.Ref = zero: {
|
|
if (!need_operand_len_is_zero) break :zero .none;
|
|
assert(need_operand_len);
|
|
break :zero try block.addBinOp(.cmp_eq, operand_len, .zero_usize);
|
|
};
|
|
|
|
// `operand_ptr` converted to an integer, for safety checks.
|
|
const operand_ptr_int: Air.Inst.Ref = if (need_null_check or need_align_check) i: {
|
|
assert(need_operand_ptr);
|
|
break :i try block.addBitCast(.usize, operand_ptr);
|
|
} else .none;
|
|
|
|
if (need_null_check) {
|
|
assert(operand_ptr_int != .none);
|
|
const ptr_is_non_zero = try block.addBinOp(.cmp_neq, operand_ptr_int, .zero_usize);
|
|
const ok = if (src_info.flags.size == .slice and dest_info.flags.size == .slice) ok: {
|
|
break :ok try block.addBinOp(.bool_or, operand_len_is_zero, ptr_is_non_zero);
|
|
} else ptr_is_non_zero;
|
|
try sema.addSafetyCheck(block, src, ok, .cast_to_null);
|
|
}
|
|
if (need_align_check) {
|
|
assert(operand_ptr_int != .none);
|
|
const align_mask = try pt.intRef(.usize, mask: {
|
|
const target_ptr_mask = Type.fromInterned(dest_info.child).fnPtrMaskOrNull(zcu) orelse ~@as(u64, 0);
|
|
break :mask (dest_align.toByteUnits().? - 1) & target_ptr_mask;
|
|
});
|
|
const ptr_masked = try block.addBinOp(.bit_and, operand_ptr_int, align_mask);
|
|
const is_aligned = try block.addBinOp(.cmp_eq, ptr_masked, .zero_usize);
|
|
const ok = if (src_info.flags.size == .slice and dest_info.flags.size == .slice) ok: {
|
|
break :ok try block.addBinOp(.bool_or, operand_len_is_zero, is_aligned);
|
|
} else is_aligned;
|
|
try sema.addSafetyCheck(block, src, ok, .incorrect_alignment);
|
|
}
|
|
|
|
if (dest_info.flags.size == .slice) {
|
|
if (src_info.flags.size == .slice and !flags.addrspace_cast and !slice_needs_len_change) {
|
|
// Fast path: just bitcast!
|
|
return block.addBitCast(dest_ty, operand);
|
|
}
|
|
|
|
// We need to deconstruct the slice (if applicable) and reconstruct it.
|
|
assert(need_operand_ptr);
|
|
|
|
const result_len: Air.Inst.Ref = switch (dest_slice_len.?) {
|
|
.undef => .undef_usize,
|
|
.constant => |n| try pt.intRef(.usize, n),
|
|
.equal_runtime_src_slice => len: {
|
|
assert(need_operand_len);
|
|
break :len operand_len;
|
|
},
|
|
.change_runtime_src_slice => |change| len: {
|
|
assert(need_operand_len);
|
|
// If `mul / div` is a whole number, then just multiply the length by it.
|
|
if (std.math.divExact(u64, change.bytes_per_src, change.bytes_per_dest)) |dest_per_src| {
|
|
const multiplier = try pt.intRef(.usize, dest_per_src);
|
|
break :len try block.addBinOp(.mul, operand_len, multiplier);
|
|
} else |err| switch (err) {
|
|
error.DivisionByZero => unreachable,
|
|
error.UnexpectedRemainder => {}, // fall through to code below
|
|
}
|
|
// If `div / mul` is a whole number, then just divide the length by it.
|
|
// This incurs a safety check.
|
|
if (std.math.divExact(u64, change.bytes_per_dest, change.bytes_per_src)) |src_per_dest| {
|
|
const divisor = try pt.intRef(.usize, src_per_dest);
|
|
if (block.wantSafety()) {
|
|
// Check that the element count divides neatly.
|
|
const remainder = try block.addBinOp(.rem, operand_len, divisor);
|
|
const ok = try block.addBinOp(.cmp_eq, remainder, .zero_usize);
|
|
try sema.addSafetyCheckCall(block, src, ok, .@"panic.sliceCastLenRemainder", &.{operand_len});
|
|
}
|
|
break :len try block.addBinOp(.div_exact, operand_len, divisor);
|
|
} else |err| switch (err) {
|
|
error.DivisionByZero => unreachable,
|
|
error.UnexpectedRemainder => {}, // fall through to code below
|
|
}
|
|
// Fallback: the elements don't divide easily. We'll multiply *and* divide. This incurs a safety check.
|
|
const total_bytes_ref = try block.addBinOp(.mul, operand_len, try pt.intRef(.usize, change.bytes_per_src));
|
|
const bytes_per_dest_ref = try pt.intRef(.usize, change.bytes_per_dest);
|
|
if (block.wantSafety()) {
|
|
// Check that `total_bytes_ref` divides neatly into `bytes_per_dest_ref`.
|
|
const remainder = try block.addBinOp(.rem, total_bytes_ref, bytes_per_dest_ref);
|
|
const ok = try block.addBinOp(.cmp_eq, remainder, .zero_usize);
|
|
try sema.addSafetyCheckCall(block, src, ok, .@"panic.sliceCastLenRemainder", &.{operand_len});
|
|
}
|
|
break :len try block.addBinOp(.div_exact, total_bytes_ref, bytes_per_dest_ref);
|
|
},
|
|
};
|
|
|
|
const operand_ptr_ty = sema.typeOf(operand_ptr);
|
|
const want_ptr_ty = switch (dest_ty.zigTypeTag(zcu)) {
|
|
.optional => try pt.optionalType(dest_ty.childType(zcu).slicePtrFieldType(zcu).toIntern()),
|
|
.pointer => dest_ty.slicePtrFieldType(zcu),
|
|
else => unreachable,
|
|
};
|
|
const coerced_ptr = if (operand_ptr_ty.toIntern() != want_ptr_ty.toIntern()) ptr: {
|
|
break :ptr try block.addBitCast(want_ptr_ty, operand_ptr);
|
|
} else operand_ptr;
|
|
|
|
return block.addInst(.{
|
|
.tag = .slice,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(dest_ty.toIntern()),
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = coerced_ptr,
|
|
.rhs = result_len,
|
|
}),
|
|
} },
|
|
});
|
|
} else {
|
|
assert(need_operand_ptr);
|
|
// We just need to bitcast the pointer, if necessary.
|
|
// It might not be necessary, since we might have just needed the `addrspace_cast`.
|
|
const result = if (sema.typeOf(operand_ptr).toIntern() == dest_ty.toIntern())
|
|
operand_ptr
|
|
else
|
|
try block.addBitCast(dest_ty, operand_ptr);
|
|
|
|
try sema.checkKnownAllocPtr(block, operand, result);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
fn zirPtrCastNoDest(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const FlagsInt = @typeInfo(Zir.Inst.FullPtrCastFlags).@"struct".backing_integer.?;
|
|
const flags: Zir.Inst.FullPtrCastFlags = @bitCast(@as(FlagsInt, @truncate(extended.small)));
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const operand_src = block.src(.{ .node_offset_ptrcast_operand = extra.node });
|
|
const operand = try sema.resolveInst(extra.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
try sema.checkPtrOperand(block, operand_src, operand_ty);
|
|
|
|
var ptr_info = operand_ty.ptrInfo(zcu);
|
|
if (flags.const_cast) ptr_info.flags.is_const = false;
|
|
if (flags.volatile_cast) ptr_info.flags.is_volatile = false;
|
|
|
|
const dest_ty = blk: {
|
|
const dest_ty = try pt.ptrTypeSema(ptr_info);
|
|
if (operand_ty.zigTypeTag(zcu) == .optional) {
|
|
break :blk try pt.optionalType(dest_ty.toIntern());
|
|
}
|
|
break :blk dest_ty;
|
|
};
|
|
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
return Air.internedToRef((try pt.getCoerced(operand_val, dest_ty)).toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
const new_ptr = try block.addBitCast(dest_ty, operand);
|
|
try sema.checkKnownAllocPtr(block, operand, new_ptr);
|
|
return new_ptr;
|
|
}
|
|
|
|
fn zirTruncate(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@truncate");
|
|
const dest_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, dest_ty, src);
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const operand_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, operand_ty, operand_src);
|
|
|
|
const operand_is_vector = operand_ty.zigTypeTag(zcu) == .vector;
|
|
const dest_is_vector = dest_ty.zigTypeTag(zcu) == .vector;
|
|
if (operand_is_vector != dest_is_vector) {
|
|
return sema.fail(block, operand_src, "expected type '{f}', found '{f}'", .{ dest_ty.fmt(pt), operand_ty.fmt(pt) });
|
|
}
|
|
|
|
if (dest_scalar_ty.zigTypeTag(zcu) == .comptime_int) {
|
|
return sema.coerce(block, dest_ty, operand, operand_src);
|
|
}
|
|
|
|
const dest_info = dest_scalar_ty.intInfo(zcu);
|
|
|
|
if (try sema.typeHasOnePossibleValue(dest_ty)) |val| {
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
if (operand_scalar_ty.zigTypeTag(zcu) != .comptime_int) {
|
|
const operand_info = operand_ty.intInfo(zcu);
|
|
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
if (operand_info.signedness != dest_info.signedness) {
|
|
return sema.fail(block, operand_src, "expected {s} integer type, found '{f}'", .{
|
|
@tagName(dest_info.signedness), operand_ty.fmt(pt),
|
|
});
|
|
}
|
|
switch (std.math.order(dest_info.bits, operand_info.bits)) {
|
|
.gt => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
src,
|
|
"destination type '{f}' has more bits than source type '{f}'",
|
|
.{ dest_ty.fmt(pt), operand_ty.fmt(pt) },
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "destination type has {d} bits", .{
|
|
dest_info.bits,
|
|
});
|
|
try sema.errNote(operand_src, msg, "operand type has {d} bits", .{
|
|
operand_info.bits,
|
|
});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
.eq => return operand,
|
|
.lt => {},
|
|
}
|
|
}
|
|
|
|
if (try sema.resolveValueResolveLazy(operand)) |val| {
|
|
const result_val = try arith.truncate(sema, val, operand_ty, dest_ty, dest_info.signedness, dest_info.bits);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
return block.addTyOp(.trunc, dest_ty, operand);
|
|
}
|
|
|
|
fn zirBitCount(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
air_tag: Air.Inst.Tag,
|
|
comptime comptimeOp: fn (val: Value, ty: Type, zcu: *Zcu) u64,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
_ = try sema.checkIntOrVector(block, operand, operand_src);
|
|
const bits = operand_ty.intInfo(zcu).bits;
|
|
|
|
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
const result_scalar_ty = try pt.smallestUnsignedInt(bits);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.vector => {
|
|
const vec_len = operand_ty.vectorLen(zcu);
|
|
const result_ty = try pt.vectorType(.{
|
|
.len = vec_len,
|
|
.child = result_scalar_ty.toIntern(),
|
|
});
|
|
if (try sema.resolveValue(operand)) |val| {
|
|
if (val.isUndef(zcu)) return pt.undefRef(result_ty);
|
|
|
|
const elems = try sema.arena.alloc(InternPool.Index, vec_len);
|
|
const scalar_ty = operand_ty.scalarType(zcu);
|
|
for (elems, 0..) |*elem, i| {
|
|
const elem_val = try val.elemValue(pt, i);
|
|
const count = comptimeOp(elem_val, scalar_ty, zcu);
|
|
elem.* = (try pt.intValue(result_scalar_ty, count)).toIntern();
|
|
}
|
|
return Air.internedToRef((try pt.aggregateValue(result_ty, elems)).toIntern());
|
|
} else {
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
return block.addTyOp(air_tag, result_ty, operand);
|
|
}
|
|
},
|
|
.int => {
|
|
if (try sema.resolveValueResolveLazy(operand)) |val| {
|
|
if (val.isUndef(zcu)) return pt.undefRef(result_scalar_ty);
|
|
return pt.intRef(result_scalar_ty, comptimeOp(val, operand_ty, zcu));
|
|
} else {
|
|
try sema.requireRuntimeBlock(block, src, operand_src);
|
|
return block.addTyOp(air_tag, result_scalar_ty, operand);
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn zirByteSwap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const scalar_ty = try sema.checkIntOrVector(block, operand, operand_src);
|
|
const bits = scalar_ty.intInfo(zcu).bits;
|
|
if (bits % 8 != 0) {
|
|
return sema.fail(
|
|
block,
|
|
operand_src,
|
|
"@byteSwap requires the number of bits to be evenly divisible by 8, but {f} has {d} bits",
|
|
.{ scalar_ty.fmt(pt), bits },
|
|
);
|
|
}
|
|
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
|
|
return .fromValue(val);
|
|
}
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
return .fromValue(try arith.byteSwap(sema, operand_val, operand_ty));
|
|
}
|
|
return block.addTyOp(.byte_swap, operand_ty, operand);
|
|
}
|
|
|
|
fn zirBitReverse(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand = try sema.resolveInst(inst_data.operand);
|
|
const operand_ty = sema.typeOf(operand);
|
|
_ = try sema.checkIntOrVector(block, operand, operand_src);
|
|
|
|
if (try sema.typeHasOnePossibleValue(operand_ty)) |val| {
|
|
return .fromValue(val);
|
|
}
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
return .fromValue(try arith.bitReverse(sema, operand_val, operand_ty));
|
|
}
|
|
return block.addTyOp(.bit_reverse, operand_ty, operand);
|
|
}
|
|
|
|
fn zirBitOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const offset = try sema.bitOffsetOf(block, inst);
|
|
return sema.pt.intRef(.comptime_int, offset);
|
|
}
|
|
|
|
fn zirOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const offset = try sema.bitOffsetOf(block, inst);
|
|
// TODO reminder to make this a compile error for packed structs
|
|
return sema.pt.intRef(.comptime_int, offset / 8);
|
|
}
|
|
|
|
fn bitOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!u64 {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const src = block.src(.{ .node_offset_bin_op = inst_data.src_node });
|
|
const ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const field_name_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
|
|
const ty = try sema.resolveType(block, ty_src, extra.lhs);
|
|
const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.rhs, .{ .simple = .field_name });
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
try ty.resolveLayout(pt);
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.@"struct" => {},
|
|
else => return sema.fail(block, ty_src, "expected struct type, found '{f}'", .{ty.fmt(pt)}),
|
|
}
|
|
|
|
const field_index = if (ty.isTuple(zcu)) blk: {
|
|
if (field_name.eqlSlice("len", ip)) {
|
|
return sema.fail(block, src, "no offset available for 'len' field of tuple", .{});
|
|
}
|
|
break :blk try sema.tupleFieldIndex(block, ty, field_name, field_name_src);
|
|
} else try sema.structFieldIndex(block, ty, field_name, field_name_src);
|
|
|
|
if (ty.structFieldIsComptime(field_index, zcu)) {
|
|
return sema.fail(block, src, "no offset available for comptime field", .{});
|
|
}
|
|
|
|
switch (ty.containerLayout(zcu)) {
|
|
.@"packed" => {
|
|
var bit_sum: u64 = 0;
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
for (0..struct_type.field_types.len) |i| {
|
|
if (i == field_index) {
|
|
return bit_sum;
|
|
}
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
bit_sum += field_ty.bitSize(zcu);
|
|
} else unreachable;
|
|
},
|
|
else => return ty.structFieldOffset(field_index, zcu) * 8,
|
|
}
|
|
}
|
|
|
|
fn checkNamespaceType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.@"struct", .@"enum", .@"union", .@"opaque" => return,
|
|
else => return sema.fail(block, src, "expected struct, enum, union, or opaque; found '{f}'", .{ty.fmt(pt)}),
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the type was a comptime_int.
|
|
fn checkIntType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.comptime_int => return true,
|
|
.int => return false,
|
|
else => return sema.fail(block, src, "expected integer type, found '{f}'", .{ty.fmt(pt)}),
|
|
}
|
|
}
|
|
|
|
fn checkInvalidPtrIntArithmetic(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.pointer => switch (ty.ptrSize(zcu)) {
|
|
.one, .slice => return,
|
|
.many, .c => return sema.failWithInvalidPtrArithmetic(block, src, "pointer-integer", "addition and subtraction"),
|
|
},
|
|
else => return,
|
|
}
|
|
}
|
|
|
|
fn checkArithmeticOp(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
scalar_tag: std.builtin.TypeId,
|
|
lhs_zig_ty_tag: std.builtin.TypeId,
|
|
rhs_zig_ty_tag: std.builtin.TypeId,
|
|
zir_tag: Zir.Inst.Tag,
|
|
) CompileError!void {
|
|
const is_int = scalar_tag == .int or scalar_tag == .comptime_int;
|
|
const is_float = scalar_tag == .float or scalar_tag == .comptime_float;
|
|
|
|
if (!is_int and !(is_float and floatOpAllowed(zir_tag))) {
|
|
return sema.fail(block, src, "invalid operands to binary expression: '{s}' and '{s}'", .{
|
|
@tagName(lhs_zig_ty_tag), @tagName(rhs_zig_ty_tag),
|
|
});
|
|
}
|
|
}
|
|
|
|
fn checkPtrOperand(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ty_src: LazySrcLoc,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.pointer => return,
|
|
.@"fn" => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
ty_src,
|
|
"expected pointer, found '{f}'",
|
|
.{ty.fmt(pt)},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.errNote(ty_src, msg, "use '&' to obtain a function pointer", .{});
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
.optional => if (ty.childType(zcu).zigTypeTag(zcu) == .pointer) return,
|
|
else => {},
|
|
}
|
|
return sema.fail(block, ty_src, "expected pointer type, found '{f}'", .{ty.fmt(pt)});
|
|
}
|
|
|
|
fn checkPtrType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ty_src: LazySrcLoc,
|
|
ty: Type,
|
|
allow_slice: bool,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.pointer => if (allow_slice or !ty.isSlice(zcu)) return,
|
|
.@"fn" => {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
ty_src,
|
|
"expected pointer type, found '{f}'",
|
|
.{ty.fmt(pt)},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.errNote(ty_src, msg, "use '*const ' to make a function pointer type", .{});
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
.optional => if (ty.childType(zcu).zigTypeTag(zcu) == .pointer) return,
|
|
else => {},
|
|
}
|
|
return sema.fail(block, ty_src, "expected pointer type, found '{f}'", .{ty.fmt(pt)});
|
|
}
|
|
|
|
fn checkLogicalPtrOperation(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (zcu.intern_pool.indexToKey(ty.toIntern()) == .ptr_type) {
|
|
const target = zcu.getTarget();
|
|
const as = ty.ptrAddressSpace(zcu);
|
|
if (target_util.shouldBlockPointerOps(target, as)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "illegal operation on logical pointer of type '{f}'", .{ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(
|
|
src,
|
|
msg,
|
|
"cannot perform arithmetic on pointers with address space '{s}' on target {s}-{s}",
|
|
.{
|
|
@tagName(as),
|
|
@tagName(target.cpu.arch.family()),
|
|
@tagName(target.os.tag),
|
|
},
|
|
);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
fn checkVectorElemType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ty_src: LazySrcLoc,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.int, .float, .bool => return,
|
|
.optional, .pointer => if (ty.isPtrAtRuntime(zcu)) return,
|
|
else => {},
|
|
}
|
|
return sema.fail(block, ty_src, "expected integer, float, bool, or pointer for the vector element type; found '{f}'", .{ty.fmt(pt)});
|
|
}
|
|
|
|
fn checkFloatType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ty_src: LazySrcLoc,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.comptime_int, .comptime_float, .float => {},
|
|
else => return sema.fail(block, ty_src, "expected float type, found '{f}'", .{ty.fmt(pt)}),
|
|
}
|
|
}
|
|
|
|
fn checkNumericType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ty_src: LazySrcLoc,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.comptime_float, .float, .comptime_int, .int => {},
|
|
.vector => switch (ty.childType(zcu).zigTypeTag(zcu)) {
|
|
.comptime_float, .float, .comptime_int, .int => {},
|
|
else => |t| return sema.fail(block, ty_src, "expected number, found '{t}'", .{t}),
|
|
},
|
|
else => return sema.fail(block, ty_src, "expected number, found '{f}'", .{ty.fmt(pt)}),
|
|
}
|
|
}
|
|
|
|
/// Returns the casted pointer.
|
|
fn checkAtomicPtrOperand(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
elem_ty: Type,
|
|
elem_ty_src: LazySrcLoc,
|
|
ptr: Air.Inst.Ref,
|
|
ptr_src: LazySrcLoc,
|
|
ptr_const: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
var diag: Zcu.AtomicPtrAlignmentDiagnostics = .{};
|
|
const alignment = zcu.atomicPtrAlignment(elem_ty, &diag) catch |err| switch (err) {
|
|
error.OutOfMemory => return error.OutOfMemory,
|
|
error.FloatTooBig => return sema.fail(
|
|
block,
|
|
elem_ty_src,
|
|
"expected {d}-bit float type or smaller; found {d}-bit float type",
|
|
.{ diag.max_bits, diag.bits },
|
|
),
|
|
error.IntTooBig => return sema.fail(
|
|
block,
|
|
elem_ty_src,
|
|
"expected {d}-bit integer type or smaller; found {d}-bit integer type",
|
|
.{ diag.max_bits, diag.bits },
|
|
),
|
|
error.BadType => return sema.fail(
|
|
block,
|
|
elem_ty_src,
|
|
"expected bool, integer, float, enum, packed struct, or pointer type; found '{f}'",
|
|
.{elem_ty.fmt(pt)},
|
|
),
|
|
};
|
|
|
|
var wanted_ptr_data: InternPool.Key.PtrType = .{
|
|
.child = elem_ty.toIntern(),
|
|
.flags = .{
|
|
.alignment = alignment,
|
|
.is_const = ptr_const,
|
|
},
|
|
};
|
|
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
const ptr_data = switch (ptr_ty.zigTypeTag(zcu)) {
|
|
.pointer => ptr_ty.ptrInfo(zcu),
|
|
else => {
|
|
const wanted_ptr_ty = try pt.ptrTypeSema(wanted_ptr_data);
|
|
_ = try sema.coerce(block, wanted_ptr_ty, ptr, ptr_src);
|
|
unreachable;
|
|
},
|
|
};
|
|
|
|
wanted_ptr_data.flags.address_space = ptr_data.flags.address_space;
|
|
wanted_ptr_data.flags.is_allowzero = ptr_data.flags.is_allowzero;
|
|
wanted_ptr_data.flags.is_volatile = ptr_data.flags.is_volatile;
|
|
|
|
const wanted_ptr_ty = try pt.ptrTypeSema(wanted_ptr_data);
|
|
const casted_ptr = try sema.coerce(block, wanted_ptr_ty, ptr, ptr_src);
|
|
|
|
return casted_ptr;
|
|
}
|
|
|
|
fn checkPtrIsNotComptimeMutable(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ptr_val: Value,
|
|
ptr_src: LazySrcLoc,
|
|
operand_src: LazySrcLoc,
|
|
) CompileError!void {
|
|
_ = operand_src;
|
|
if (sema.isComptimeMutablePtr(ptr_val)) {
|
|
return sema.fail(block, ptr_src, "cannot store runtime value in compile time variable", .{});
|
|
}
|
|
}
|
|
|
|
fn checkIntOrVector(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
operand: Air.Inst.Ref,
|
|
operand_src: LazySrcLoc,
|
|
) CompileError!Type {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.int => return operand_ty,
|
|
.vector => {
|
|
const elem_ty = operand_ty.childType(zcu);
|
|
switch (elem_ty.zigTypeTag(zcu)) {
|
|
.int => return elem_ty,
|
|
else => return sema.fail(block, operand_src, "expected vector of integers; found vector of '{f}'", .{
|
|
elem_ty.fmt(pt),
|
|
}),
|
|
}
|
|
},
|
|
else => return sema.fail(block, operand_src, "expected integer or vector, found '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn checkIntOrVectorAllowComptime(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
operand_ty: Type,
|
|
operand_src: LazySrcLoc,
|
|
) CompileError!Type {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (operand_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => return operand_ty,
|
|
.vector => {
|
|
const elem_ty = operand_ty.childType(zcu);
|
|
switch (elem_ty.zigTypeTag(zcu)) {
|
|
.int, .comptime_int => return elem_ty,
|
|
else => return sema.fail(block, operand_src, "expected vector of integers; found vector of '{f}'", .{
|
|
elem_ty.fmt(pt),
|
|
}),
|
|
}
|
|
},
|
|
else => return sema.fail(block, operand_src, "expected integer or vector, found '{f}'", .{
|
|
operand_ty.fmt(pt),
|
|
}),
|
|
}
|
|
}
|
|
|
|
const SimdBinOp = struct {
|
|
len: ?usize,
|
|
/// Coerced to `result_ty`.
|
|
lhs: Air.Inst.Ref,
|
|
/// Coerced to `result_ty`.
|
|
rhs: Air.Inst.Ref,
|
|
lhs_val: ?Value,
|
|
rhs_val: ?Value,
|
|
/// Only different than `scalar_ty` when it is a vector operation.
|
|
result_ty: Type,
|
|
scalar_ty: Type,
|
|
};
|
|
|
|
fn checkSimdBinOp(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
uncasted_lhs: Air.Inst.Ref,
|
|
uncasted_rhs: Air.Inst.Ref,
|
|
lhs_src: LazySrcLoc,
|
|
rhs_src: LazySrcLoc,
|
|
) CompileError!SimdBinOp {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const lhs_ty = sema.typeOf(uncasted_lhs);
|
|
const rhs_ty = sema.typeOf(uncasted_rhs);
|
|
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
const vec_len: ?usize = if (lhs_ty.zigTypeTag(zcu) == .vector) lhs_ty.vectorLen(zcu) else null;
|
|
const result_ty = try sema.resolvePeerTypes(block, src, &.{ uncasted_lhs, uncasted_rhs }, .{
|
|
.override = &[_]?LazySrcLoc{ lhs_src, rhs_src },
|
|
});
|
|
const lhs = try sema.coerce(block, result_ty, uncasted_lhs, lhs_src);
|
|
const rhs = try sema.coerce(block, result_ty, uncasted_rhs, rhs_src);
|
|
|
|
return SimdBinOp{
|
|
.len = vec_len,
|
|
.lhs = lhs,
|
|
.rhs = rhs,
|
|
.lhs_val = try sema.resolveValue(lhs),
|
|
.rhs_val = try sema.resolveValue(rhs),
|
|
.result_ty = result_ty,
|
|
.scalar_ty = result_ty.scalarType(zcu),
|
|
};
|
|
}
|
|
|
|
fn checkVectorizableBinaryOperands(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
lhs_ty: Type,
|
|
rhs_ty: Type,
|
|
lhs_src: LazySrcLoc,
|
|
rhs_src: LazySrcLoc,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const lhs_zig_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_zig_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
if (lhs_zig_ty_tag != .vector and rhs_zig_ty_tag != .vector) return;
|
|
|
|
const lhs_is_vector = switch (lhs_zig_ty_tag) {
|
|
.vector, .array => true,
|
|
else => false,
|
|
};
|
|
const rhs_is_vector = switch (rhs_zig_ty_tag) {
|
|
.vector, .array => true,
|
|
else => false,
|
|
};
|
|
|
|
if (lhs_is_vector and rhs_is_vector) {
|
|
const lhs_len = lhs_ty.arrayLen(zcu);
|
|
const rhs_len = rhs_ty.arrayLen(zcu);
|
|
if (lhs_len != rhs_len) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "vector length mismatch", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(lhs_src, msg, "length {d} here", .{lhs_len});
|
|
try sema.errNote(rhs_src, msg, "length {d} here", .{rhs_len});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
} else {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "mixed scalar and vector operands: '{f}' and '{f}'", .{
|
|
lhs_ty.fmt(pt), rhs_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (lhs_is_vector) {
|
|
try sema.errNote(lhs_src, msg, "vector here", .{});
|
|
try sema.errNote(rhs_src, msg, "scalar here", .{});
|
|
} else {
|
|
try sema.errNote(lhs_src, msg, "scalar here", .{});
|
|
try sema.errNote(rhs_src, msg, "vector here", .{});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
fn checkAllScalarsDefined(sema: *Sema, block: *Block, src: LazySrcLoc, val: Value) CompileError!void {
|
|
const zcu = sema.pt.zcu;
|
|
switch (zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
.int, .float => {},
|
|
.undef => return sema.failWithUseOfUndef(block, src, null),
|
|
.aggregate => |agg| {
|
|
assert(Type.fromInterned(agg.ty).zigTypeTag(zcu) == .vector);
|
|
for (agg.storage.values(), 0..) |elem_val, elem_idx| {
|
|
if (Value.fromInterned(elem_val).isUndef(zcu))
|
|
return sema.failWithUseOfUndef(block, src, elem_idx);
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn resolveExportOptions(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
) CompileError!Zcu.Export.Options {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const export_options_ty = try sema.getBuiltinType(src, .ExportOptions);
|
|
const air_ref = try sema.resolveInst(zir_ref);
|
|
const options = try sema.coerce(block, export_options_ty, air_ref, src);
|
|
|
|
const name_src = block.src(.{ .init_field_name = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const linkage_src = block.src(.{ .init_field_linkage = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const section_src = block.src(.{ .init_field_section = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const visibility_src = block.src(.{ .init_field_visibility = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
|
|
const name_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "name", .no_embedded_nulls), name_src);
|
|
const name = try sema.toConstString(block, name_src, name_operand, .{ .simple = .export_options });
|
|
|
|
const linkage_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "linkage", .no_embedded_nulls), linkage_src);
|
|
const linkage_val = try sema.resolveConstDefinedValue(block, linkage_src, linkage_operand, .{ .simple = .export_options });
|
|
const linkage = try sema.interpretBuiltinType(block, linkage_src, linkage_val, std.builtin.GlobalLinkage);
|
|
|
|
const section_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "section", .no_embedded_nulls), section_src);
|
|
const section_opt_val = try sema.resolveConstDefinedValue(block, section_src, section_operand, .{ .simple = .export_options });
|
|
const section = if (section_opt_val.optionalValue(zcu)) |section_val|
|
|
try sema.toConstString(block, section_src, Air.internedToRef(section_val.toIntern()), .{ .simple = .export_options })
|
|
else
|
|
null;
|
|
|
|
const visibility_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "visibility", .no_embedded_nulls), visibility_src);
|
|
const visibility_val = try sema.resolveConstDefinedValue(block, visibility_src, visibility_operand, .{ .simple = .export_options });
|
|
const visibility = try sema.interpretBuiltinType(block, visibility_src, visibility_val, std.builtin.SymbolVisibility);
|
|
|
|
if (name.len < 1) {
|
|
return sema.fail(block, name_src, "exported symbol name cannot be empty", .{});
|
|
}
|
|
|
|
if (visibility != .default and linkage == .internal) {
|
|
return sema.fail(block, visibility_src, "symbol '{s}' exported with internal linkage has non-default visibility {s}", .{
|
|
name, @tagName(visibility),
|
|
});
|
|
}
|
|
|
|
return .{
|
|
.name = try ip.getOrPutString(gpa, pt.tid, name, .no_embedded_nulls),
|
|
.linkage = linkage,
|
|
.section = try ip.getOrPutStringOpt(gpa, pt.tid, section, .no_embedded_nulls),
|
|
.visibility = visibility,
|
|
};
|
|
}
|
|
|
|
fn resolveBuiltinEnum(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
comptime name: Zcu.BuiltinDecl,
|
|
reason: ComptimeReason,
|
|
) CompileError!@field(std.builtin, @tagName(name)) {
|
|
const ty = try sema.getBuiltinType(src, name);
|
|
const air_ref = try sema.resolveInst(zir_ref);
|
|
const coerced = try sema.coerce(block, ty, air_ref, src);
|
|
const val = try sema.resolveConstDefinedValue(block, src, coerced, reason);
|
|
return sema.interpretBuiltinType(block, src, val, @field(std.builtin, @tagName(name)));
|
|
}
|
|
|
|
fn resolveAtomicOrder(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
reason: ComptimeReason,
|
|
) CompileError!std.builtin.AtomicOrder {
|
|
return sema.resolveBuiltinEnum(block, src, zir_ref, .AtomicOrder, reason);
|
|
}
|
|
|
|
fn resolveAtomicRmwOp(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
) CompileError!std.builtin.AtomicRmwOp {
|
|
return sema.resolveBuiltinEnum(block, src, zir_ref, .AtomicRmwOp, .{ .simple = .operand_atomicRmw_operation });
|
|
}
|
|
|
|
fn zirCmpxchg(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const extra = sema.code.extraData(Zir.Inst.Cmpxchg, extended.operand).data;
|
|
const air_tag: Air.Inst.Tag = switch (extended.small) {
|
|
0 => .cmpxchg_weak,
|
|
1 => .cmpxchg_strong,
|
|
else => unreachable,
|
|
};
|
|
const src = block.nodeOffset(extra.node);
|
|
// zig fmt: off
|
|
const elem_ty_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const ptr_src = block.builtinCallArgSrc(extra.node, 1);
|
|
const expected_src = block.builtinCallArgSrc(extra.node, 2);
|
|
const new_value_src = block.builtinCallArgSrc(extra.node, 3);
|
|
const success_order_src = block.builtinCallArgSrc(extra.node, 4);
|
|
const failure_order_src = block.builtinCallArgSrc(extra.node, 5);
|
|
// zig fmt: on
|
|
const expected_value = try sema.resolveInst(extra.expected_value);
|
|
const elem_ty = sema.typeOf(expected_value);
|
|
if (elem_ty.zigTypeTag(zcu) == .float) {
|
|
return sema.fail(
|
|
block,
|
|
elem_ty_src,
|
|
"expected bool, integer, enum, packed struct, or pointer type; found '{f}'",
|
|
.{elem_ty.fmt(pt)},
|
|
);
|
|
}
|
|
const uncasted_ptr = try sema.resolveInst(extra.ptr);
|
|
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false);
|
|
const new_value = try sema.coerce(block, elem_ty, try sema.resolveInst(extra.new_value), new_value_src);
|
|
const success_order = try sema.resolveAtomicOrder(block, success_order_src, extra.success_order, .{ .simple = .atomic_order });
|
|
const failure_order = try sema.resolveAtomicOrder(block, failure_order_src, extra.failure_order, .{ .simple = .atomic_order });
|
|
|
|
if (@intFromEnum(success_order) < @intFromEnum(std.builtin.AtomicOrder.monotonic)) {
|
|
return sema.fail(block, success_order_src, "success atomic ordering must be monotonic or stricter", .{});
|
|
}
|
|
if (@intFromEnum(failure_order) < @intFromEnum(std.builtin.AtomicOrder.monotonic)) {
|
|
return sema.fail(block, failure_order_src, "failure atomic ordering must be monotonic or stricter", .{});
|
|
}
|
|
if (@intFromEnum(failure_order) > @intFromEnum(success_order)) {
|
|
return sema.fail(block, failure_order_src, "failure atomic ordering must be no stricter than success", .{});
|
|
}
|
|
if (failure_order == .release or failure_order == .acq_rel) {
|
|
return sema.fail(block, failure_order_src, "failure atomic ordering must not be release or acq_rel", .{});
|
|
}
|
|
|
|
const result_ty = try pt.optionalType(elem_ty.toIntern());
|
|
|
|
// special case zero bit types
|
|
if ((try sema.typeHasOnePossibleValue(elem_ty)) != null) {
|
|
return Air.internedToRef((try pt.intern(.{ .opt = .{
|
|
.ty = result_ty.toIntern(),
|
|
.val = .none,
|
|
} })));
|
|
}
|
|
|
|
const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: {
|
|
if (try sema.resolveValue(expected_value)) |expected_val| {
|
|
if (try sema.resolveValue(new_value)) |new_val| {
|
|
if (expected_val.isUndef(zcu) or new_val.isUndef(zcu)) {
|
|
// TODO: this should probably cause the memory stored at the pointer
|
|
// to become undef as well
|
|
return pt.undefRef(result_ty);
|
|
}
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
const stored_val = (try sema.pointerDeref(block, ptr_src, ptr_val, ptr_ty)) orelse break :rs ptr_src;
|
|
const result_val = try pt.intern(.{ .opt = .{
|
|
.ty = result_ty.toIntern(),
|
|
.val = if (stored_val.eql(expected_val, elem_ty, zcu)) blk: {
|
|
try sema.storePtr(block, src, ptr, new_value);
|
|
break :blk .none;
|
|
} else stored_val.toIntern(),
|
|
} });
|
|
return Air.internedToRef(result_val);
|
|
} else break :rs new_value_src;
|
|
} else break :rs expected_src;
|
|
} else ptr_src;
|
|
|
|
const flags: u32 = @as(u32, @intFromEnum(success_order)) |
|
|
(@as(u32, @intFromEnum(failure_order)) << 3);
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addInst(.{
|
|
.tag = air_tag,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(result_ty.toIntern()),
|
|
.payload = try sema.addExtra(Air.Cmpxchg{
|
|
.ptr = ptr,
|
|
.expected_value = expected_value,
|
|
.new_value = new_value,
|
|
.flags = flags,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirSplat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const scalar_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@splat");
|
|
|
|
switch (dest_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => {},
|
|
else => return sema.fail(block, src, "expected array or vector type, found '{f}'", .{dest_ty.fmt(pt)}),
|
|
}
|
|
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const scalar_ty = dest_ty.childType(zcu);
|
|
const scalar = try sema.coerce(block, scalar_ty, operand, scalar_src);
|
|
|
|
const len = try sema.usizeCast(block, src, dest_ty.arrayLen(zcu));
|
|
|
|
if (try sema.typeHasOnePossibleValue(dest_ty)) |val| {
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
// We also need this case because `[0:s]T` is not OPV.
|
|
if (len == 0) return .fromValue(try pt.aggregateValue(dest_ty, &.{}));
|
|
|
|
const maybe_sentinel = dest_ty.sentinel(zcu);
|
|
|
|
if (try sema.resolveValue(scalar)) |scalar_val| {
|
|
full: {
|
|
if (dest_ty.zigTypeTag(zcu) == .vector) break :full;
|
|
const sentinel = maybe_sentinel orelse break :full;
|
|
if (sentinel.toIntern() == scalar_val.toIntern()) break :full;
|
|
// This is a array with non-zero length and a sentinel which does not match the element.
|
|
// We have to use the full `elems` representation.
|
|
const elems = try sema.arena.alloc(InternPool.Index, len + 1);
|
|
@memset(elems[0..len], scalar_val.toIntern());
|
|
elems[len] = sentinel.toIntern();
|
|
return .fromValue(try pt.aggregateValue(dest_ty, elems));
|
|
}
|
|
return .fromValue(try pt.aggregateSplatValue(dest_ty, scalar_val));
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, scalar_src);
|
|
|
|
switch (dest_ty.zigTypeTag(zcu)) {
|
|
.array => {
|
|
const elems = try sema.arena.alloc(Air.Inst.Ref, len + @intFromBool(maybe_sentinel != null));
|
|
@memset(elems[0..len], scalar);
|
|
if (maybe_sentinel) |s| elems[len] = Air.internedToRef(s.toIntern());
|
|
return block.addAggregateInit(dest_ty, elems);
|
|
},
|
|
.vector => return block.addTyOp(.splat, dest_ty, scalar),
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn zirReduce(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const op_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const operation = try sema.resolveBuiltinEnum(block, op_src, extra.lhs, .ReduceOp, .{ .simple = .operand_reduce_operation });
|
|
const operand = try sema.resolveInst(extra.rhs);
|
|
const operand_ty = sema.typeOf(operand);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (operand_ty.zigTypeTag(zcu) != .vector) {
|
|
return sema.fail(block, operand_src, "expected vector, found '{f}'", .{operand_ty.fmt(pt)});
|
|
}
|
|
|
|
const scalar_ty = operand_ty.childType(zcu);
|
|
|
|
// Type-check depending on operation.
|
|
switch (operation) {
|
|
.And, .Or, .Xor => switch (scalar_ty.zigTypeTag(zcu)) {
|
|
.int, .bool => {},
|
|
else => return sema.fail(block, operand_src, "@reduce operation '{s}' requires integer or boolean operand; found '{f}'", .{
|
|
@tagName(operation), operand_ty.fmt(pt),
|
|
}),
|
|
},
|
|
.Min, .Max, .Add, .Mul => switch (scalar_ty.zigTypeTag(zcu)) {
|
|
.int, .float => {},
|
|
else => return sema.fail(block, operand_src, "@reduce operation '{s}' requires integer or float operand; found '{f}'", .{
|
|
@tagName(operation), operand_ty.fmt(pt),
|
|
}),
|
|
},
|
|
}
|
|
|
|
const vec_len = operand_ty.vectorLen(zcu);
|
|
if (vec_len == 0) {
|
|
// TODO re-evaluate if we should introduce a "neutral value" for some operations,
|
|
// e.g. zero for add and one for mul.
|
|
return sema.fail(block, operand_src, "@reduce operation requires a vector with nonzero length", .{});
|
|
}
|
|
|
|
if (try sema.resolveValue(operand)) |operand_val| {
|
|
if (operand_val.isUndef(zcu)) return pt.undefRef(scalar_ty);
|
|
|
|
var accum: Value = try operand_val.elemValue(pt, 0);
|
|
var i: u32 = 1;
|
|
while (i < vec_len) : (i += 1) {
|
|
const elem_val = try operand_val.elemValue(pt, i);
|
|
accum = switch (operation) {
|
|
// zig fmt: off
|
|
.And => try arith.bitwiseBin (sema, scalar_ty, accum, elem_val, .@"and"),
|
|
.Or => try arith.bitwiseBin (sema, scalar_ty, accum, elem_val, .@"or"),
|
|
.Xor => try arith.bitwiseBin (sema, scalar_ty, accum, elem_val, .xor),
|
|
.Min => Value.numberMin ( accum, elem_val, zcu),
|
|
.Max => Value.numberMax ( accum, elem_val, zcu),
|
|
.Add => try arith.addMaybeWrap(sema, scalar_ty, accum, elem_val),
|
|
.Mul => try arith.mulMaybeWrap(sema, scalar_ty, accum, elem_val),
|
|
// zig fmt: on
|
|
};
|
|
}
|
|
return Air.internedToRef(accum.toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, block.nodeOffset(inst_data.src_node), operand_src);
|
|
return block.addReduce(operand, operation);
|
|
}
|
|
|
|
fn zirShuffle(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Shuffle, inst_data.payload_index).data;
|
|
const elem_ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const mask_src = block.builtinCallArgSrc(inst_data.src_node, 3);
|
|
|
|
const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type);
|
|
try sema.checkVectorElemType(block, elem_ty_src, elem_ty);
|
|
const a = try sema.resolveInst(extra.a);
|
|
const b = try sema.resolveInst(extra.b);
|
|
var mask = try sema.resolveInst(extra.mask);
|
|
var mask_ty = sema.typeOf(mask);
|
|
|
|
const mask_len = switch (sema.typeOf(mask).zigTypeTag(zcu)) {
|
|
.array, .vector => sema.typeOf(mask).arrayLen(zcu),
|
|
else => return sema.fail(block, mask_src, "expected vector or array, found '{f}'", .{sema.typeOf(mask).fmt(pt)}),
|
|
};
|
|
mask_ty = try pt.vectorType(.{
|
|
.len = @intCast(mask_len),
|
|
.child = .i32_type,
|
|
});
|
|
mask = try sema.coerce(block, mask_ty, mask, mask_src);
|
|
const mask_val = try sema.resolveConstValue(block, mask_src, mask, .{ .simple = .operand_shuffle_mask });
|
|
return sema.analyzeShuffle(block, inst_data.src_node, elem_ty, a, b, mask_val, @intCast(mask_len));
|
|
}
|
|
|
|
fn analyzeShuffle(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src_node: std.zig.Ast.Node.Offset,
|
|
elem_ty: Type,
|
|
a_uncoerced: Air.Inst.Ref,
|
|
b_uncoerced: Air.Inst.Ref,
|
|
mask: Value,
|
|
mask_len: u32,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const a_src = block.builtinCallArgSrc(src_node, 1);
|
|
const b_src = block.builtinCallArgSrc(src_node, 2);
|
|
const mask_src = block.builtinCallArgSrc(src_node, 3);
|
|
|
|
// If the type of `a` is `@Type(.undefined)`, i.e. the argument is untyped,
|
|
// this is 0, because it is an error to index into this vector.
|
|
const a_len: u32 = switch (sema.typeOf(a_uncoerced).zigTypeTag(zcu)) {
|
|
.array, .vector => @intCast(sema.typeOf(a_uncoerced).arrayLen(zcu)),
|
|
.undefined => 0,
|
|
else => return sema.fail(block, a_src, "expected vector of '{f}', found '{f}'", .{
|
|
elem_ty.fmt(pt), sema.typeOf(a_uncoerced).fmt(pt),
|
|
}),
|
|
};
|
|
const a_ty = try pt.vectorType(.{ .len = a_len, .child = elem_ty.toIntern() });
|
|
const a_coerced = try sema.coerce(block, a_ty, a_uncoerced, a_src);
|
|
|
|
// If the type of `b` is `@Type(.undefined)`, i.e. the argument is untyped, this is 0, because it is an error to index into this vector.
|
|
const b_len: u32 = switch (sema.typeOf(b_uncoerced).zigTypeTag(zcu)) {
|
|
.array, .vector => @intCast(sema.typeOf(b_uncoerced).arrayLen(zcu)),
|
|
.undefined => 0,
|
|
else => return sema.fail(block, b_src, "expected vector of '{f}', found '{f}'", .{
|
|
elem_ty.fmt(pt), sema.typeOf(b_uncoerced).fmt(pt),
|
|
}),
|
|
};
|
|
const b_ty = try pt.vectorType(.{ .len = b_len, .child = elem_ty.toIntern() });
|
|
const b_coerced = try sema.coerce(block, b_ty, b_uncoerced, b_src);
|
|
|
|
const result_ty = try pt.vectorType(.{ .len = mask_len, .child = elem_ty.toIntern() });
|
|
|
|
// We're going to pre-emptively reserve space in `sema.air_extra`. The reason for this is we need
|
|
// a `u32` buffer of length `mask_len` anyway, and putting it in `sema.air_extra` avoids a copy
|
|
// in the runtime case. If the result is comptime-known, we'll shrink `air_extra` back.
|
|
const air_extra_idx: u32 = @intCast(sema.air_extra.items.len);
|
|
const air_mask_buf = try sema.air_extra.addManyAsSlice(sema.gpa, mask_len);
|
|
|
|
// We want to interpret that buffer in `air_extra` in a few ways. Initially, we'll consider its
|
|
// elements as `Air.Inst.ShuffleTwoMask`, essentially representing the raw mask values; then, we'll
|
|
// convert it to `InternPool.Index` or `Air.Inst.ShuffleOneMask` if there are comptime-known operands.
|
|
const mask_ip_index: []InternPool.Index = @ptrCast(air_mask_buf);
|
|
const mask_shuffle_one: []Air.ShuffleOneMask = @ptrCast(air_mask_buf);
|
|
const mask_shuffle_two: []Air.ShuffleTwoMask = @ptrCast(air_mask_buf);
|
|
|
|
// Initial loop: check mask elements, populate `mask_shuffle_two`.
|
|
var a_used = false;
|
|
var b_used = false;
|
|
for (mask_shuffle_two, 0..mask_len) |*out, mask_idx| {
|
|
const mask_val = try mask.elemValue(pt, mask_idx);
|
|
if (mask_val.isUndef(zcu)) {
|
|
out.* = .undef;
|
|
continue;
|
|
}
|
|
// Safe because mask elements are `i32` and we already checked for undef:
|
|
const raw = (try sema.resolveLazyValue(mask_val)).toSignedInt(zcu);
|
|
if (raw >= 0) {
|
|
const idx: u32 = @intCast(raw);
|
|
a_used = true;
|
|
out.* = .aElem(idx);
|
|
if (idx >= a_len) return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(mask_src, "mask element at index '{d}' selects out-of-bounds index", .{mask_idx});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(a_src, msg, "index '{d}' exceeds bounds of '{f}' given here", .{ idx, a_ty.fmt(pt) });
|
|
if (idx < b_len) {
|
|
try sema.errNote(b_src, msg, "use '~@as(u32, {d})' to index into second vector given here", .{idx});
|
|
}
|
|
break :msg msg;
|
|
});
|
|
} else {
|
|
const idx: u32 = @intCast(~raw);
|
|
b_used = true;
|
|
out.* = .bElem(idx);
|
|
if (idx >= b_len) return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(mask_src, "mask element at index '{d}' selects out-of-bounds index", .{mask_idx});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(b_src, msg, "index '{d}' exceeds bounds of '{f}' given here", .{ idx, b_ty.fmt(pt) });
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
|
|
const maybe_a_val = try sema.resolveValue(a_coerced);
|
|
const maybe_b_val = try sema.resolveValue(b_coerced);
|
|
|
|
const a_rt = a_used and maybe_a_val == null;
|
|
const b_rt = b_used and maybe_b_val == null;
|
|
|
|
if (a_rt and b_rt) {
|
|
// Both operands are needed and runtime-known. We need a `[]ShuffleTwomask`... which is
|
|
// exactly what we already have in `mask_shuffle_two`! So, we're basically done already.
|
|
// We just need to append the two operands.
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, 2);
|
|
sema.appendRefsAssumeCapacity(&.{ a_coerced, b_coerced });
|
|
return block.addInst(.{
|
|
.tag = .shuffle_two,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(result_ty.toIntern()),
|
|
.payload = air_extra_idx,
|
|
} },
|
|
});
|
|
} else if (a_rt) {
|
|
// We need to convert the `ShuffleTwoMask` values to `ShuffleOneMask`.
|
|
for (mask_shuffle_two, mask_shuffle_one) |in, *out| {
|
|
out.* = switch (in.unwrap()) {
|
|
.undef => .value(try pt.undefValue(elem_ty)),
|
|
.a_elem => |idx| .elem(idx),
|
|
.b_elem => |idx| .value(try maybe_b_val.?.elemValue(pt, idx)),
|
|
};
|
|
}
|
|
// Now just append our single runtime operand, and we're done.
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, 1);
|
|
sema.appendRefsAssumeCapacity(&.{a_coerced});
|
|
return block.addInst(.{
|
|
.tag = .shuffle_one,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(result_ty.toIntern()),
|
|
.payload = air_extra_idx,
|
|
} },
|
|
});
|
|
} else if (b_rt) {
|
|
// We need to convert the `ShuffleTwoMask` values to `ShuffleOneMask`.
|
|
for (mask_shuffle_two, mask_shuffle_one) |in, *out| {
|
|
out.* = switch (in.unwrap()) {
|
|
.undef => .value(try pt.undefValue(elem_ty)),
|
|
.a_elem => |idx| .value(try maybe_a_val.?.elemValue(pt, idx)),
|
|
.b_elem => |idx| .elem(idx),
|
|
};
|
|
}
|
|
// Now just append our single runtime operand, and we're done.
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, 1);
|
|
sema.appendRefsAssumeCapacity(&.{b_coerced});
|
|
return block.addInst(.{
|
|
.tag = .shuffle_one,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(result_ty.toIntern()),
|
|
.payload = air_extra_idx,
|
|
} },
|
|
});
|
|
} else {
|
|
// The result will be comptime-known. We must convert the `ShuffleTwoMask` values to
|
|
// `InternPool.Index` values using the known operands.
|
|
for (mask_shuffle_two, mask_ip_index) |in, *out| {
|
|
const val: Value = switch (in.unwrap()) {
|
|
.undef => try pt.undefValue(elem_ty),
|
|
.a_elem => |idx| try maybe_a_val.?.elemValue(pt, idx),
|
|
.b_elem => |idx| try maybe_b_val.?.elemValue(pt, idx),
|
|
};
|
|
out.* = val.toIntern();
|
|
}
|
|
const res = try pt.aggregateValue(result_ty, mask_ip_index);
|
|
// We have a comptime-known result, so didn't need `air_mask_buf` -- remove it from `sema.air_extra`.
|
|
assert(sema.air_extra.items.len == air_extra_idx + air_mask_buf.len);
|
|
sema.air_extra.shrinkRetainingCapacity(air_extra_idx);
|
|
return Air.internedToRef(res.toIntern());
|
|
}
|
|
}
|
|
|
|
fn zirSelect(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const extra = sema.code.extraData(Zir.Inst.Select, extended.operand).data;
|
|
|
|
const src = block.nodeOffset(extra.node);
|
|
const elem_ty_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const pred_src = block.builtinCallArgSrc(extra.node, 1);
|
|
const a_src = block.builtinCallArgSrc(extra.node, 2);
|
|
const b_src = block.builtinCallArgSrc(extra.node, 3);
|
|
|
|
const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type);
|
|
try sema.checkVectorElemType(block, elem_ty_src, elem_ty);
|
|
const pred_uncoerced = try sema.resolveInst(extra.pred);
|
|
const pred_ty = sema.typeOf(pred_uncoerced);
|
|
|
|
const vec_len_u64 = switch (pred_ty.zigTypeTag(zcu)) {
|
|
.vector, .array => pred_ty.arrayLen(zcu),
|
|
else => return sema.fail(block, pred_src, "expected vector or array, found '{f}'", .{pred_ty.fmt(pt)}),
|
|
};
|
|
const vec_len: u32 = @intCast(try sema.usizeCast(block, pred_src, vec_len_u64));
|
|
|
|
const bool_vec_ty = try pt.vectorType(.{
|
|
.len = vec_len,
|
|
.child = .bool_type,
|
|
});
|
|
const pred = try sema.coerce(block, bool_vec_ty, pred_uncoerced, pred_src);
|
|
|
|
const vec_ty = try pt.vectorType(.{
|
|
.len = vec_len,
|
|
.child = elem_ty.toIntern(),
|
|
});
|
|
const a = try sema.coerce(block, vec_ty, try sema.resolveInst(extra.a), a_src);
|
|
const b = try sema.coerce(block, vec_ty, try sema.resolveInst(extra.b), b_src);
|
|
|
|
const maybe_pred = try sema.resolveValue(pred);
|
|
const maybe_a = try sema.resolveValue(a);
|
|
const maybe_b = try sema.resolveValue(b);
|
|
|
|
const runtime_src = if (maybe_pred) |pred_val| rs: {
|
|
if (pred_val.isUndef(zcu)) return pt.undefRef(vec_ty);
|
|
|
|
if (maybe_a) |a_val| {
|
|
if (a_val.isUndef(zcu)) return pt.undefRef(vec_ty);
|
|
|
|
if (maybe_b) |b_val| {
|
|
if (b_val.isUndef(zcu)) return pt.undefRef(vec_ty);
|
|
|
|
const elems = try sema.gpa.alloc(InternPool.Index, vec_len);
|
|
defer sema.gpa.free(elems);
|
|
for (elems, 0..) |*elem, i| {
|
|
const pred_elem_val = try pred_val.elemValue(pt, i);
|
|
const should_choose_a = pred_elem_val.toBool();
|
|
elem.* = (try (if (should_choose_a) a_val else b_val).elemValue(pt, i)).toIntern();
|
|
}
|
|
|
|
return Air.internedToRef((try pt.aggregateValue(vec_ty, elems)).toIntern());
|
|
} else {
|
|
break :rs b_src;
|
|
}
|
|
} else {
|
|
if (maybe_b) |b_val| {
|
|
if (b_val.isUndef(zcu)) return pt.undefRef(vec_ty);
|
|
}
|
|
break :rs a_src;
|
|
}
|
|
} else rs: {
|
|
if (maybe_a) |a_val| {
|
|
if (a_val.isUndef(zcu)) return pt.undefRef(vec_ty);
|
|
}
|
|
if (maybe_b) |b_val| {
|
|
if (b_val.isUndef(zcu)) return pt.undefRef(vec_ty);
|
|
}
|
|
break :rs pred_src;
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addInst(.{
|
|
.tag = .select,
|
|
.data = .{ .pl_op = .{
|
|
.operand = pred,
|
|
.payload = try block.sema.addExtra(Air.Bin{
|
|
.lhs = a,
|
|
.rhs = b,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirAtomicLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.AtomicLoad, inst_data.payload_index).data;
|
|
// zig fmt: off
|
|
const elem_ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const ptr_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const order_src = block.builtinCallArgSrc(inst_data.src_node, 2);
|
|
// zig fmt: on
|
|
const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type);
|
|
const uncasted_ptr = try sema.resolveInst(extra.ptr);
|
|
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, true);
|
|
const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, .{ .simple = .atomic_order });
|
|
|
|
switch (order) {
|
|
.release, .acq_rel => {
|
|
return sema.fail(
|
|
block,
|
|
order_src,
|
|
"@atomicLoad atomic ordering must not be release or acq_rel",
|
|
.{},
|
|
);
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(elem_ty)) |val| {
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| {
|
|
if (try sema.pointerDeref(block, ptr_src, ptr_val, sema.typeOf(ptr))) |elem_val| {
|
|
return Air.internedToRef(elem_val.toIntern());
|
|
}
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, block.nodeOffset(inst_data.src_node), ptr_src);
|
|
return block.addInst(.{
|
|
.tag = .atomic_load,
|
|
.data = .{ .atomic_load = .{
|
|
.ptr = ptr,
|
|
.order = order,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirAtomicRmw(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.AtomicRmw, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
// zig fmt: off
|
|
const elem_ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const ptr_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const op_src = block.builtinCallArgSrc(inst_data.src_node, 2);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 3);
|
|
const order_src = block.builtinCallArgSrc(inst_data.src_node, 4);
|
|
// zig fmt: on
|
|
const operand = try sema.resolveInst(extra.operand);
|
|
const elem_ty = sema.typeOf(operand);
|
|
const uncasted_ptr = try sema.resolveInst(extra.ptr);
|
|
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false);
|
|
const op = try sema.resolveAtomicRmwOp(block, op_src, extra.operation);
|
|
|
|
switch (elem_ty.zigTypeTag(zcu)) {
|
|
.@"enum" => if (op != .Xchg) {
|
|
return sema.fail(block, op_src, "@atomicRmw with enum only allowed with .Xchg", .{});
|
|
},
|
|
.bool => if (op != .Xchg) {
|
|
return sema.fail(block, op_src, "@atomicRmw with bool only allowed with .Xchg", .{});
|
|
},
|
|
.float => switch (op) {
|
|
.Xchg, .Add, .Sub, .Max, .Min => {},
|
|
else => return sema.fail(block, op_src, "@atomicRmw with float only allowed with .Xchg, .Add, .Sub, .Max, and .Min", .{}),
|
|
},
|
|
else => {},
|
|
}
|
|
const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, .{ .simple = .atomic_order });
|
|
|
|
if (order == .unordered) {
|
|
return sema.fail(block, order_src, "@atomicRmw atomic ordering must not be unordered", .{});
|
|
}
|
|
|
|
// special case zero bit types
|
|
if (try sema.typeHasOnePossibleValue(elem_ty)) |val| {
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
|
|
const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: {
|
|
const maybe_operand_val = try sema.resolveValue(operand);
|
|
const operand_val = maybe_operand_val orelse {
|
|
try sema.checkPtrIsNotComptimeMutable(block, ptr_val, ptr_src, operand_src);
|
|
break :rs operand_src;
|
|
};
|
|
if (sema.isComptimeMutablePtr(ptr_val)) {
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
const stored_val = (try sema.pointerDeref(block, ptr_src, ptr_val, ptr_ty)) orelse break :rs ptr_src;
|
|
const new_val = switch (op) {
|
|
// zig fmt: off
|
|
.Xchg => operand_val,
|
|
.Add => try arith.addMaybeWrap(sema, elem_ty, stored_val, operand_val),
|
|
.Sub => try arith.subMaybeWrap(sema, elem_ty, stored_val, operand_val),
|
|
.And => try arith.bitwiseBin (sema, elem_ty, stored_val, operand_val, .@"and"),
|
|
.Nand => try arith.bitwiseBin (sema, elem_ty, stored_val, operand_val, .nand),
|
|
.Or => try arith.bitwiseBin (sema, elem_ty, stored_val, operand_val, .@"or"),
|
|
.Xor => try arith.bitwiseBin (sema, elem_ty, stored_val, operand_val, .xor),
|
|
.Max => Value.numberMax ( stored_val, operand_val, zcu),
|
|
.Min => Value.numberMin ( stored_val, operand_val, zcu),
|
|
// zig fmt: on
|
|
};
|
|
try sema.storePtrVal(block, src, ptr_val, new_val, elem_ty);
|
|
return Air.internedToRef(stored_val.toIntern());
|
|
} else break :rs ptr_src;
|
|
} else ptr_src;
|
|
|
|
const flags: u32 = @as(u32, @intFromEnum(order)) | (@as(u32, @intFromEnum(op)) << 3);
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addInst(.{
|
|
.tag = .atomic_rmw,
|
|
.data = .{ .pl_op = .{
|
|
.operand = ptr,
|
|
.payload = try sema.addExtra(Air.AtomicRmw{
|
|
.operand = operand,
|
|
.flags = flags,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirAtomicStore(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.AtomicStore, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
// zig fmt: off
|
|
const elem_ty_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const ptr_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const operand_src = block.builtinCallArgSrc(inst_data.src_node, 2);
|
|
const order_src = block.builtinCallArgSrc(inst_data.src_node, 3);
|
|
// zig fmt: on
|
|
const operand = try sema.resolveInst(extra.operand);
|
|
const elem_ty = sema.typeOf(operand);
|
|
const uncasted_ptr = try sema.resolveInst(extra.ptr);
|
|
const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false);
|
|
const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, .{ .simple = .atomic_order });
|
|
|
|
const air_tag: Air.Inst.Tag = switch (order) {
|
|
.acquire, .acq_rel => {
|
|
return sema.fail(
|
|
block,
|
|
order_src,
|
|
"@atomicStore atomic ordering must not be acquire or acq_rel",
|
|
.{},
|
|
);
|
|
},
|
|
.unordered => .atomic_store_unordered,
|
|
.monotonic => .atomic_store_monotonic,
|
|
.release => .atomic_store_release,
|
|
.seq_cst => .atomic_store_seq_cst,
|
|
};
|
|
|
|
return sema.storePtr2(block, src, ptr, ptr_src, operand, operand_src, air_tag);
|
|
}
|
|
|
|
fn zirMulAdd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.MulAdd, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
|
|
const mulend1_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const mulend2_src = block.builtinCallArgSrc(inst_data.src_node, 2);
|
|
const addend_src = block.builtinCallArgSrc(inst_data.src_node, 3);
|
|
|
|
const addend = try sema.resolveInst(extra.addend);
|
|
const ty = sema.typeOf(addend);
|
|
const mulend1 = try sema.coerce(block, ty, try sema.resolveInst(extra.mulend1), mulend1_src);
|
|
const mulend2 = try sema.coerce(block, ty, try sema.resolveInst(extra.mulend2), mulend2_src);
|
|
|
|
const maybe_mulend1 = try sema.resolveValue(mulend1);
|
|
const maybe_mulend2 = try sema.resolveValue(mulend2);
|
|
const maybe_addend = try sema.resolveValue(addend);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
|
|
.comptime_float, .float => {},
|
|
else => return sema.fail(block, src, "expected vector of floats or float type, found '{f}'", .{ty.fmt(pt)}),
|
|
}
|
|
|
|
const runtime_src = if (maybe_mulend1) |mulend1_val| rs: {
|
|
if (maybe_mulend2) |mulend2_val| {
|
|
if (mulend2_val.isUndef(zcu)) return pt.undefRef(ty);
|
|
|
|
if (maybe_addend) |addend_val| {
|
|
if (addend_val.isUndef(zcu)) return pt.undefRef(ty);
|
|
const result_val = try Value.mulAdd(ty, mulend1_val, mulend2_val, addend_val, sema.arena, pt);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
} else {
|
|
break :rs addend_src;
|
|
}
|
|
} else {
|
|
if (maybe_addend) |addend_val| {
|
|
if (addend_val.isUndef(zcu)) return pt.undefRef(ty);
|
|
}
|
|
break :rs mulend2_src;
|
|
}
|
|
} else rs: {
|
|
if (maybe_mulend2) |mulend2_val| {
|
|
if (mulend2_val.isUndef(zcu)) return pt.undefRef(ty);
|
|
}
|
|
if (maybe_addend) |addend_val| {
|
|
if (addend_val.isUndef(zcu)) return pt.undefRef(ty);
|
|
}
|
|
break :rs mulend1_src;
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addInst(.{
|
|
.tag = .mul_add,
|
|
.data = .{ .pl_op = .{
|
|
.operand = addend,
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = mulend1,
|
|
.rhs = mulend2,
|
|
}),
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirBuiltinCall(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const modifier_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const func_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const args_src = block.builtinCallArgSrc(inst_data.src_node, 2);
|
|
const call_src = block.nodeOffset(inst_data.src_node);
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.BuiltinCall, inst_data.payload_index).data;
|
|
const func = try sema.resolveInst(extra.callee);
|
|
|
|
const modifier_ty = try sema.getBuiltinType(call_src, .CallModifier);
|
|
const air_ref = try sema.resolveInst(extra.modifier);
|
|
const modifier_ref = try sema.coerce(block, modifier_ty, air_ref, modifier_src);
|
|
const modifier_val = try sema.resolveConstDefinedValue(block, modifier_src, modifier_ref, .{ .simple = .call_modifier });
|
|
var modifier = try sema.interpretBuiltinType(block, modifier_src, modifier_val, std.builtin.CallModifier);
|
|
switch (modifier) {
|
|
// These can be upgraded to comptime or nosuspend calls.
|
|
.auto, .never_tail, .no_suspend => {
|
|
if (block.isComptime()) {
|
|
if (modifier == .never_tail) {
|
|
return sema.fail(block, modifier_src, "unable to perform 'never_tail' call at compile-time", .{});
|
|
}
|
|
modifier = .compile_time;
|
|
} else if (extra.flags.is_nosuspend) {
|
|
modifier = .no_suspend;
|
|
}
|
|
},
|
|
// These can be upgraded to comptime. nosuspend bit can be safely ignored.
|
|
.always_inline, .compile_time => {
|
|
_ = (try sema.resolveDefinedValue(block, func_src, func)) orelse {
|
|
return sema.fail(block, func_src, "modifier '{s}' requires a comptime-known function", .{@tagName(modifier)});
|
|
};
|
|
|
|
if (block.isComptime()) {
|
|
modifier = .compile_time;
|
|
}
|
|
},
|
|
.always_tail => {
|
|
if (block.isComptime()) {
|
|
modifier = .compile_time;
|
|
}
|
|
},
|
|
.never_inline => {
|
|
if (block.isComptime()) {
|
|
return sema.fail(block, modifier_src, "unable to perform 'never_inline' call at compile-time", .{});
|
|
}
|
|
},
|
|
}
|
|
|
|
const args = try sema.resolveInst(extra.args);
|
|
|
|
const args_ty = sema.typeOf(args);
|
|
if (!args_ty.isTuple(zcu)) {
|
|
return sema.fail(block, args_src, "expected a tuple, found '{f}'", .{args_ty.fmt(pt)});
|
|
}
|
|
|
|
const resolved_args: []Air.Inst.Ref = try sema.arena.alloc(Air.Inst.Ref, args_ty.structFieldCount(zcu));
|
|
for (resolved_args, 0..) |*resolved, i| {
|
|
resolved.* = try sema.tupleFieldValByIndex(block, args, @intCast(i), args_ty);
|
|
}
|
|
|
|
const callee_ty = sema.typeOf(func);
|
|
const func_ty = try sema.checkCallArgumentCount(block, func, func_src, callee_ty, resolved_args.len, false);
|
|
const ensure_result_used = extra.flags.ensure_result_used;
|
|
return sema.analyzeCall(
|
|
block,
|
|
func,
|
|
func_ty,
|
|
func_src,
|
|
call_src,
|
|
modifier,
|
|
ensure_result_used,
|
|
.{ .call_builtin = .{
|
|
.call_node_offset = inst_data.src_node,
|
|
.args = resolved_args,
|
|
} },
|
|
null,
|
|
.@"@call",
|
|
);
|
|
}
|
|
|
|
fn zirFieldParentPtr(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const extra = sema.code.extraData(Zir.Inst.FieldParentPtr, extended.operand).data;
|
|
const FlagsInt = @typeInfo(Zir.Inst.FullPtrCastFlags).@"struct".backing_integer.?;
|
|
const flags: Zir.Inst.FullPtrCastFlags = @bitCast(@as(FlagsInt, @truncate(extended.small)));
|
|
assert(!flags.ptr_cast);
|
|
const inst_src = block.nodeOffset(extra.src_node);
|
|
const field_name_src = block.builtinCallArgSrc(extra.src_node, 0);
|
|
const field_ptr_src = block.builtinCallArgSrc(extra.src_node, 1);
|
|
|
|
const parent_ptr_ty = try sema.resolveDestType(block, inst_src, extra.parent_ptr_type, .remove_eu, "@fieldParentPtr");
|
|
try sema.checkPtrType(block, inst_src, parent_ptr_ty, true);
|
|
const parent_ptr_info = parent_ptr_ty.ptrInfo(zcu);
|
|
if (parent_ptr_info.flags.size != .one) {
|
|
return sema.fail(block, inst_src, "expected single pointer type, found '{f}'", .{parent_ptr_ty.fmt(pt)});
|
|
}
|
|
const parent_ty: Type = .fromInterned(parent_ptr_info.child);
|
|
switch (parent_ty.zigTypeTag(zcu)) {
|
|
.@"struct", .@"union" => {},
|
|
else => return sema.fail(block, inst_src, "expected pointer to struct or union type, found '{f}'", .{parent_ptr_ty.fmt(pt)}),
|
|
}
|
|
try parent_ty.resolveLayout(pt);
|
|
|
|
const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, .{ .simple = .field_name });
|
|
const field_index = switch (parent_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => blk: {
|
|
if (parent_ty.isTuple(zcu)) {
|
|
if (field_name.eqlSlice("len", ip)) {
|
|
return sema.fail(block, inst_src, "cannot get @fieldParentPtr of 'len' field of tuple", .{});
|
|
}
|
|
break :blk try sema.tupleFieldIndex(block, parent_ty, field_name, field_name_src);
|
|
} else {
|
|
break :blk try sema.structFieldIndex(block, parent_ty, field_name, field_name_src);
|
|
}
|
|
},
|
|
.@"union" => try sema.unionFieldIndex(block, parent_ty, field_name, field_name_src),
|
|
else => unreachable,
|
|
};
|
|
if (parent_ty.zigTypeTag(zcu) == .@"struct" and parent_ty.structFieldIsComptime(field_index, zcu)) {
|
|
return sema.fail(block, field_name_src, "cannot get @fieldParentPtr of a comptime field", .{});
|
|
}
|
|
|
|
const field_ptr = try sema.resolveInst(extra.field_ptr);
|
|
const field_ptr_ty = sema.typeOf(field_ptr);
|
|
try sema.checkPtrOperand(block, field_ptr_src, field_ptr_ty);
|
|
const field_ptr_info = field_ptr_ty.ptrInfo(zcu);
|
|
|
|
var actual_parent_ptr_info: InternPool.Key.PtrType = .{
|
|
.child = parent_ty.toIntern(),
|
|
.flags = .{
|
|
.alignment = try parent_ptr_ty.ptrAlignmentSema(pt),
|
|
.is_const = field_ptr_info.flags.is_const,
|
|
.is_volatile = field_ptr_info.flags.is_volatile,
|
|
.is_allowzero = field_ptr_info.flags.is_allowzero,
|
|
.address_space = field_ptr_info.flags.address_space,
|
|
},
|
|
.packed_offset = parent_ptr_info.packed_offset,
|
|
};
|
|
const field_ty = parent_ty.fieldType(field_index, zcu);
|
|
var actual_field_ptr_info: InternPool.Key.PtrType = .{
|
|
.child = field_ty.toIntern(),
|
|
.flags = .{
|
|
.alignment = try field_ptr_ty.ptrAlignmentSema(pt),
|
|
.is_const = field_ptr_info.flags.is_const,
|
|
.is_volatile = field_ptr_info.flags.is_volatile,
|
|
.is_allowzero = field_ptr_info.flags.is_allowzero,
|
|
.address_space = field_ptr_info.flags.address_space,
|
|
},
|
|
.packed_offset = field_ptr_info.packed_offset,
|
|
};
|
|
switch (parent_ty.containerLayout(zcu)) {
|
|
.auto => {
|
|
actual_parent_ptr_info.flags.alignment = actual_field_ptr_info.flags.alignment.minStrict(
|
|
if (zcu.typeToStruct(parent_ty)) |struct_obj|
|
|
try field_ty.structFieldAlignmentSema(
|
|
struct_obj.fieldAlign(ip, field_index),
|
|
struct_obj.layout,
|
|
pt,
|
|
)
|
|
else if (zcu.typeToUnion(parent_ty)) |union_obj|
|
|
try field_ty.unionFieldAlignmentSema(
|
|
union_obj.fieldAlign(ip, field_index),
|
|
union_obj.flagsUnordered(ip).layout,
|
|
pt,
|
|
)
|
|
else
|
|
actual_field_ptr_info.flags.alignment,
|
|
);
|
|
|
|
actual_parent_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
|
|
actual_field_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
|
|
},
|
|
.@"extern" => {
|
|
const field_offset = parent_ty.structFieldOffset(field_index, zcu);
|
|
actual_parent_ptr_info.flags.alignment = actual_field_ptr_info.flags.alignment.minStrict(if (field_offset > 0)
|
|
Alignment.fromLog2Units(@ctz(field_offset))
|
|
else
|
|
actual_field_ptr_info.flags.alignment);
|
|
|
|
actual_parent_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
|
|
actual_field_ptr_info.packed_offset = .{ .bit_offset = 0, .host_size = 0 };
|
|
},
|
|
.@"packed" => {
|
|
const byte_offset = std.math.divExact(u32, @abs(@as(i32, actual_parent_ptr_info.packed_offset.bit_offset) +
|
|
(if (zcu.typeToStruct(parent_ty)) |struct_obj| zcu.structPackedFieldBitOffset(struct_obj, field_index) else 0) -
|
|
actual_field_ptr_info.packed_offset.bit_offset), 8) catch
|
|
return sema.fail(block, inst_src, "pointer bit-offset mismatch", .{});
|
|
actual_parent_ptr_info.flags.alignment = actual_field_ptr_info.flags.alignment.minStrict(if (byte_offset > 0)
|
|
Alignment.fromLog2Units(@ctz(byte_offset))
|
|
else
|
|
actual_field_ptr_info.flags.alignment);
|
|
},
|
|
}
|
|
|
|
const actual_field_ptr_ty = try pt.ptrTypeSema(actual_field_ptr_info);
|
|
const casted_field_ptr = try sema.coerce(block, actual_field_ptr_ty, field_ptr, field_ptr_src);
|
|
const actual_parent_ptr_ty = try pt.ptrTypeSema(actual_parent_ptr_info);
|
|
|
|
const result = if (try sema.resolveDefinedValue(block, field_ptr_src, casted_field_ptr)) |field_ptr_val| result: {
|
|
switch (parent_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => switch (parent_ty.containerLayout(zcu)) {
|
|
.auto => {},
|
|
.@"extern" => {
|
|
const byte_offset = parent_ty.structFieldOffset(field_index, zcu);
|
|
const parent_ptr_val = try sema.ptrSubtract(block, field_ptr_src, field_ptr_val, byte_offset, actual_parent_ptr_ty);
|
|
break :result Air.internedToRef(parent_ptr_val.toIntern());
|
|
},
|
|
.@"packed" => {
|
|
// Logic lifted from type computation above - I'm just assuming it's correct.
|
|
// `catch unreachable` since error case handled above.
|
|
const byte_offset = std.math.divExact(u32, @abs(@as(i32, actual_parent_ptr_info.packed_offset.bit_offset) +
|
|
zcu.structPackedFieldBitOffset(zcu.typeToStruct(parent_ty).?, field_index) -
|
|
actual_field_ptr_info.packed_offset.bit_offset), 8) catch unreachable;
|
|
const parent_ptr_val = try sema.ptrSubtract(block, field_ptr_src, field_ptr_val, byte_offset, actual_parent_ptr_ty);
|
|
break :result Air.internedToRef(parent_ptr_val.toIntern());
|
|
},
|
|
},
|
|
.@"union" => switch (parent_ty.containerLayout(zcu)) {
|
|
.auto => {},
|
|
.@"extern", .@"packed" => {
|
|
// For an extern or packed union, just coerce the pointer.
|
|
const parent_ptr_val = try pt.getCoerced(field_ptr_val, actual_parent_ptr_ty);
|
|
break :result Air.internedToRef(parent_ptr_val.toIntern());
|
|
},
|
|
},
|
|
else => unreachable,
|
|
}
|
|
|
|
const opt_field: ?InternPool.Key.Ptr.BaseAddr.BaseIndex = opt_field: {
|
|
const ptr = switch (ip.indexToKey(field_ptr_val.toIntern())) {
|
|
.ptr => |ptr| ptr,
|
|
else => break :opt_field null,
|
|
};
|
|
if (ptr.byte_offset != 0) break :opt_field null;
|
|
break :opt_field switch (ptr.base_addr) {
|
|
.field => |field| field,
|
|
else => null,
|
|
};
|
|
};
|
|
|
|
const field = opt_field orelse {
|
|
return sema.fail(block, field_ptr_src, "pointer value not based on parent struct", .{});
|
|
};
|
|
|
|
if (Value.fromInterned(field.base).typeOf(zcu).childType(zcu).toIntern() != parent_ty.toIntern()) {
|
|
return sema.fail(block, field_ptr_src, "pointer value not based on parent struct", .{});
|
|
}
|
|
|
|
if (field.index != field_index) {
|
|
return sema.fail(block, inst_src, "field '{f}' has index '{d}' but pointer value is index '{d}' of struct '{f}'", .{
|
|
field_name.fmt(ip), field_index, field.index, parent_ty.fmt(pt),
|
|
});
|
|
}
|
|
break :result try sema.coerce(block, actual_parent_ptr_ty, Air.internedToRef(field.base), inst_src);
|
|
} else result: {
|
|
try sema.requireRuntimeBlock(block, inst_src, field_ptr_src);
|
|
break :result try block.addInst(.{
|
|
.tag = .field_parent_ptr,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(actual_parent_ptr_ty.toIntern()),
|
|
.payload = try block.sema.addExtra(Air.FieldParentPtr{
|
|
.field_ptr = casted_field_ptr,
|
|
.field_index = @intCast(field_index),
|
|
}),
|
|
} },
|
|
});
|
|
};
|
|
return sema.ptrCastFull(block, flags, inst_src, result, inst_src, parent_ptr_ty, "@fieldParentPtr");
|
|
}
|
|
|
|
fn ptrSubtract(sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, byte_subtract: u64, new_ty: Type) !Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (byte_subtract == 0) return pt.getCoerced(ptr_val, new_ty);
|
|
var ptr = switch (zcu.intern_pool.indexToKey(ptr_val.toIntern())) {
|
|
.undef => return sema.failWithUseOfUndef(block, src, null),
|
|
.ptr => |ptr| ptr,
|
|
else => unreachable,
|
|
};
|
|
if (ptr.byte_offset < byte_subtract) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "pointer computation here causes illegal behavior", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "resulting pointer exceeds bounds of containing value which may trigger overflow", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
ptr.byte_offset -= byte_subtract;
|
|
ptr.ty = new_ty.toIntern();
|
|
return Value.fromInterned(try pt.intern(.{ .ptr = ptr }));
|
|
}
|
|
|
|
fn zirMinMax(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
comptime air_tag: Air.Inst.Tag,
|
|
) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const lhs_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const rhs_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const lhs = try sema.resolveInst(extra.lhs);
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
return sema.analyzeMinMax(block, src, air_tag, &.{ lhs, rhs }, &.{ lhs_src, rhs_src });
|
|
}
|
|
|
|
fn zirMinMaxMulti(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
comptime air_tag: Air.Inst.Tag,
|
|
) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.NodeMultiOp, extended.operand);
|
|
const src_node = extra.data.src_node;
|
|
const src = block.nodeOffset(src_node);
|
|
const operands = sema.code.refSlice(extra.end, extended.small);
|
|
|
|
const air_refs = try sema.arena.alloc(Air.Inst.Ref, operands.len);
|
|
const operand_srcs = try sema.arena.alloc(LazySrcLoc, operands.len);
|
|
|
|
for (operands, air_refs, operand_srcs, 0..) |zir_ref, *air_ref, *op_src, i| {
|
|
op_src.* = block.builtinCallArgSrc(src_node, @intCast(i));
|
|
air_ref.* = try sema.resolveInst(zir_ref);
|
|
}
|
|
|
|
return sema.analyzeMinMax(block, src, air_tag, air_refs, operand_srcs);
|
|
}
|
|
|
|
fn analyzeMinMax(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
comptime air_tag: Air.Inst.Tag,
|
|
operands: []const Air.Inst.Ref,
|
|
operand_srcs: []const LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
assert(operands.len == operand_srcs.len);
|
|
assert(operands.len > 0);
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
// This function has the signature `fn (Value, Value, *Zcu) Value`.
|
|
// It is only used on scalar values, although the values may have different types.
|
|
// If either operand is undef, it returns undef.
|
|
const opFunc = switch (air_tag) {
|
|
.min => Value.numberMin,
|
|
.max => Value.numberMax,
|
|
else => comptime unreachable,
|
|
};
|
|
|
|
if (operands.len == 1) {
|
|
try sema.checkNumericType(block, operand_srcs[0], sema.typeOf(operands[0]));
|
|
return operands[0];
|
|
}
|
|
|
|
// First, basic type validation; we'll make sure all the operands are numeric and agree on vector length.
|
|
// This value will be `null` for a scalar type, otherwise the length of the vector type.
|
|
const vector_len: ?u64 = vec_len: {
|
|
const first_operand_ty = sema.typeOf(operands[0]);
|
|
try sema.checkNumericType(block, operand_srcs[0], first_operand_ty);
|
|
if (first_operand_ty.zigTypeTag(zcu) == .vector) {
|
|
const vec_len = first_operand_ty.vectorLen(zcu);
|
|
for (operands[1..], operand_srcs[1..]) |operand, operand_src| {
|
|
const operand_ty = sema.typeOf(operand);
|
|
try sema.checkNumericType(block, operand_src, operand_ty);
|
|
if (operand_ty.zigTypeTag(zcu) != .vector) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(operand_src, "expected vector, found '{f}'", .{operand_ty.fmt(pt)});
|
|
errdefer msg.destroy(zcu.gpa);
|
|
try sema.errNote(operand_srcs[0], msg, "vector operand here", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
if (operand_ty.vectorLen(zcu) != vec_len) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(operand_src, "expected vector of length '{d}', found '{f}'", .{ vec_len, operand_ty.fmt(pt) });
|
|
errdefer msg.destroy(zcu.gpa);
|
|
try sema.errNote(operand_srcs[0], msg, "vector of length '{d}' here", .{vec_len});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
break :vec_len vec_len;
|
|
} else {
|
|
for (operands[1..], operand_srcs[1..]) |operand, operand_src| {
|
|
const operand_ty = sema.typeOf(operand);
|
|
try sema.checkNumericType(block, operand_src, operand_ty);
|
|
if (operand_ty.zigTypeTag(zcu) == .vector) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(operand_srcs[0], "expected vector, found '{f}'", .{first_operand_ty.fmt(pt)});
|
|
errdefer msg.destroy(zcu.gpa);
|
|
try sema.errNote(operand_src, msg, "vector operand here", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
}
|
|
break :vec_len null;
|
|
}
|
|
};
|
|
|
|
// Now we want to look at the scalar types. If any is a float, our result will be a float. This
|
|
// union is in "priority" order: `float` overrides `comptime_float` overrides `int`.
|
|
const TypeStrat = union(enum) {
|
|
float: Type,
|
|
comptime_float,
|
|
int: struct {
|
|
/// If this is still `true` at the end, we will just use a `comptime_int`.
|
|
all_comptime_int: bool,
|
|
// These two fields tells us about the *result* type, which is refined based on operand types.
|
|
// e.g. `@max(u32, i64)` results in a `u63`, because the result is >=0 and <=maxInt(i64).
|
|
result_min: Value,
|
|
result_max: Value,
|
|
// These two fields tell us the *intermediate* type to use for actually computing the min/max.
|
|
// e.g. `@max(u32, i64)` uses an intermediate `i64`, because it can fit all our operands.
|
|
operand_min: Value,
|
|
operand_max: Value,
|
|
},
|
|
none,
|
|
};
|
|
var cur_strat: TypeStrat = .none;
|
|
for (operands) |operand| {
|
|
const operand_scalar_ty = sema.typeOf(operand).scalarType(zcu);
|
|
const want_strat: TypeStrat = switch (operand_scalar_ty.zigTypeTag(zcu)) {
|
|
.comptime_int => s: {
|
|
const val = (try sema.resolveValueResolveLazy(operand)).?;
|
|
if (val.isUndef(zcu)) break :s .none;
|
|
break :s .{ .int = .{
|
|
.all_comptime_int = true,
|
|
.result_min = val,
|
|
.result_max = val,
|
|
.operand_min = val,
|
|
.operand_max = val,
|
|
} };
|
|
},
|
|
.comptime_float => .comptime_float,
|
|
.float => .{ .float = operand_scalar_ty },
|
|
.int => s: {
|
|
// If the *value* is comptime-known, we will use that to get tighter bounds. If #3806
|
|
// is accepted and implemented, so that integer literals have a tightly-bounded ranged
|
|
// integer type (and `comptime_int` ceases to exist), this block should probably go away
|
|
// (replaced with just the simple calls to `Type.minInt`/`Type.maxInt`) so that we only
|
|
// use the input *types* to determine the result type.
|
|
const min: Value, const max: Value = bounds: {
|
|
if (try sema.resolveValueResolveLazy(operand)) |operand_val| {
|
|
if (vector_len) |len| {
|
|
var min = try operand_val.elemValue(pt, 0);
|
|
var max = min;
|
|
for (1..@intCast(len)) |elem_idx| {
|
|
const elem_val = try operand_val.elemValue(pt, elem_idx);
|
|
min = Value.numberMin(min, elem_val, zcu);
|
|
max = Value.numberMax(max, elem_val, zcu);
|
|
}
|
|
if (!min.isUndef(zcu) and !max.isUndef(zcu)) {
|
|
break :bounds .{ min, max };
|
|
}
|
|
} else {
|
|
if (!operand_val.isUndef(zcu)) {
|
|
break :bounds .{ operand_val, operand_val };
|
|
}
|
|
}
|
|
}
|
|
break :bounds .{
|
|
try operand_scalar_ty.minInt(pt, operand_scalar_ty),
|
|
try operand_scalar_ty.maxInt(pt, operand_scalar_ty),
|
|
};
|
|
};
|
|
break :s .{ .int = .{
|
|
.all_comptime_int = false,
|
|
.result_min = min,
|
|
.result_max = max,
|
|
.operand_min = min,
|
|
.operand_max = max,
|
|
} };
|
|
},
|
|
else => unreachable,
|
|
};
|
|
if (@intFromEnum(want_strat) < @intFromEnum(cur_strat)) {
|
|
// `want_strat` overrides `cur_strat`.
|
|
cur_strat = want_strat;
|
|
} else if (@intFromEnum(want_strat) == @intFromEnum(cur_strat)) {
|
|
// The behavior depends on the tag.
|
|
switch (cur_strat) {
|
|
.none, .comptime_float => {}, // no payload, so nop
|
|
.float => |cur_float| {
|
|
const want_float = want_strat.float;
|
|
// Select the larger bit size. If the bit size is the same, select whichever is not c_longdouble.
|
|
const cur_bits = cur_float.floatBits(zcu.getTarget());
|
|
const want_bits = want_float.floatBits(zcu.getTarget());
|
|
if (want_bits > cur_bits or
|
|
(want_bits == cur_bits and
|
|
cur_float.toIntern() == .c_longdouble_type and
|
|
want_float.toIntern() != .c_longdouble_type))
|
|
{
|
|
cur_strat = want_strat;
|
|
}
|
|
},
|
|
.int => |*cur_int| {
|
|
const want_int = want_strat.int;
|
|
if (!want_int.all_comptime_int) cur_int.all_comptime_int = false;
|
|
cur_int.result_min = opFunc(cur_int.result_min, want_int.result_min, zcu);
|
|
cur_int.result_max = opFunc(cur_int.result_max, want_int.result_max, zcu);
|
|
cur_int.operand_min = Value.numberMin(cur_int.operand_min, want_int.operand_min, zcu);
|
|
cur_int.operand_max = Value.numberMax(cur_int.operand_max, want_int.operand_max, zcu);
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
// Use `cur_strat` to actually resolve the result type (and intermediate type).
|
|
const result_scalar_ty: Type, const intermediate_scalar_ty: Type = switch (cur_strat) {
|
|
.float => |ty| .{ ty, ty },
|
|
.comptime_float => .{ .comptime_float, .comptime_float },
|
|
.int => |int| if (int.all_comptime_int) .{
|
|
.comptime_int,
|
|
.comptime_int,
|
|
} else .{
|
|
try pt.intFittingRange(int.result_min, int.result_max),
|
|
try pt.intFittingRange(int.operand_min, int.operand_max),
|
|
},
|
|
.none => .{ .comptime_int, .comptime_int }, // all undef comptime ints
|
|
};
|
|
const result_ty: Type = if (vector_len) |l| try pt.vectorType(.{
|
|
.len = @intCast(l),
|
|
.child = result_scalar_ty.toIntern(),
|
|
}) else result_scalar_ty;
|
|
const intermediate_ty: Type = if (vector_len) |l| try pt.vectorType(.{
|
|
.len = @intCast(l),
|
|
.child = intermediate_scalar_ty.toIntern(),
|
|
}) else intermediate_scalar_ty;
|
|
|
|
// This value, if not `null`, will have type `intermediate_ty`.
|
|
const comptime_part: ?Value = ct: {
|
|
// Contains the comptime-known scalar result values.
|
|
// Values are scalars with no particular type.
|
|
// `elems.len` is `vector_len orelse 1`.
|
|
const elems: []InternPool.Index = try sema.arena.alloc(
|
|
InternPool.Index,
|
|
try sema.usizeCast(block, src, vector_len orelse 1),
|
|
);
|
|
// If `false`, we've not seen any comptime-known operand yet, so `elems` contains `undefined`.
|
|
// Otherwise, `elems` is populated with the comptime-known results so far.
|
|
var elems_populated = false;
|
|
// Populated when we see a runtime-known operand.
|
|
var opt_runtime_src: ?LazySrcLoc = null;
|
|
|
|
for (operands, operand_srcs) |operand, operand_src| {
|
|
const operand_val = try sema.resolveValueResolveLazy(operand) orelse {
|
|
if (opt_runtime_src == null) opt_runtime_src = operand_src;
|
|
continue;
|
|
};
|
|
if (vector_len) |len| {
|
|
// Vector case; apply `opFunc` to each element.
|
|
if (elems_populated) {
|
|
for (elems, 0..@intCast(len)) |*elem, elem_idx| {
|
|
const new_elem = try operand_val.elemValue(pt, elem_idx);
|
|
elem.* = opFunc(.fromInterned(elem.*), new_elem, zcu).toIntern();
|
|
}
|
|
} else {
|
|
elems_populated = true;
|
|
for (elems, 0..@intCast(len)) |*elem_out, elem_idx| {
|
|
elem_out.* = (try operand_val.elemValue(pt, elem_idx)).toIntern();
|
|
}
|
|
}
|
|
} else {
|
|
// Scalar case; just apply `opFunc`.
|
|
if (elems_populated) {
|
|
elems[0] = opFunc(.fromInterned(elems[0]), operand_val, zcu).toIntern();
|
|
} else {
|
|
elems_populated = true;
|
|
elems[0] = operand_val.toIntern();
|
|
}
|
|
}
|
|
}
|
|
const runtime_src = opt_runtime_src orelse {
|
|
// The result is comptime-known. Coerce each element to its scalar type.
|
|
assert(elems_populated);
|
|
for (elems) |*elem| {
|
|
if (Value.fromInterned(elem.*).isUndef(zcu)) {
|
|
elem.* = (try pt.undefValue(result_scalar_ty)).toIntern();
|
|
} else {
|
|
// This coercion will always succeed, because `result_scalar_ty` can definitely hold the result.
|
|
const coerced_ref = try sema.coerce(block, result_scalar_ty, Air.internedToRef(elem.*), .unneeded);
|
|
elem.* = coerced_ref.toInterned().?;
|
|
}
|
|
}
|
|
if (vector_len == null) return Air.internedToRef(elems[0]);
|
|
return Air.internedToRef((try pt.aggregateValue(result_ty, elems)).toIntern());
|
|
};
|
|
_ = runtime_src;
|
|
// The result is runtime-known.
|
|
// Coerce each element to the intermediate scalar type, unless there were no comptime-known operands.
|
|
if (!elems_populated) break :ct null;
|
|
for (elems) |*elem| {
|
|
if (Value.fromInterned(elem.*).isUndef(zcu)) {
|
|
elem.* = (try pt.undefValue(intermediate_scalar_ty)).toIntern();
|
|
} else {
|
|
// This coercion will always succeed, because `intermediate_scalar_ty` can definitely hold all operands.
|
|
const coerced_ref = try sema.coerce(block, intermediate_scalar_ty, Air.internedToRef(elem.*), .unneeded);
|
|
elem.* = coerced_ref.toInterned().?;
|
|
}
|
|
}
|
|
break :ct if (vector_len != null)
|
|
try pt.aggregateValue(intermediate_ty, elems)
|
|
else
|
|
.fromInterned(elems[0]);
|
|
};
|
|
|
|
// Time to emit the runtime operations. All runtime-known peers are coerced to `intermediate_ty`, and we cast down to `result_ty` at the end.
|
|
|
|
// `.none` indicates no result so far.
|
|
var cur_result: Air.Inst.Ref = if (comptime_part) |val| Air.internedToRef(val.toIntern()) else .none;
|
|
for (operands, operand_srcs) |operand, operand_src| {
|
|
if (try sema.isComptimeKnown(operand)) continue; // already in `comptime_part`
|
|
// This coercion could fail; e.g. coercing a runtime integer peer to a `comptime_float` in a case like `@min(runtime_int, 1.5)`.
|
|
const operand_coerced = try sema.coerce(block, intermediate_ty, operand, operand_src);
|
|
if (cur_result == .none) {
|
|
cur_result = operand_coerced;
|
|
} else {
|
|
cur_result = try block.addBinOp(air_tag, cur_result, operand_coerced);
|
|
}
|
|
}
|
|
|
|
assert(cur_result != .none);
|
|
assert(sema.typeOf(cur_result).toIntern() == intermediate_ty.toIntern());
|
|
|
|
// If there is a comptime-known undef operand, we actually return comptime-known undef -- but we had to do the runtime stuff to check for coercion errors.
|
|
if (comptime_part) |val| {
|
|
if (val.isUndef(zcu)) {
|
|
return pt.undefRef(result_ty);
|
|
}
|
|
}
|
|
|
|
if (result_ty.toIntern() == intermediate_ty.toIntern()) {
|
|
// No final cast needed; we're all done.
|
|
return cur_result;
|
|
}
|
|
|
|
// A final cast is needed. The only case where `intermediate_ty` is different is for integers,
|
|
// where we have refined the range, so we should be doing an intcast.
|
|
assert(intermediate_scalar_ty.zigTypeTag(zcu) == .int);
|
|
assert(result_scalar_ty.zigTypeTag(zcu) == .int);
|
|
return block.addTyOp(.intcast, result_ty, cur_result);
|
|
}
|
|
|
|
fn upgradeToArrayPtr(sema: *Sema, block: *Block, ptr: Air.Inst.Ref, len: u64) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
const info = ptr_ty.ptrInfo(zcu);
|
|
if (info.flags.size == .one) {
|
|
// Already an array pointer.
|
|
return ptr;
|
|
}
|
|
const new_ty = try pt.ptrTypeSema(.{
|
|
.child = (try pt.arrayType(.{
|
|
.len = len,
|
|
.sentinel = info.sentinel,
|
|
.child = info.child,
|
|
})).toIntern(),
|
|
.flags = .{
|
|
.alignment = info.flags.alignment,
|
|
.is_const = info.flags.is_const,
|
|
.is_volatile = info.flags.is_volatile,
|
|
.is_allowzero = info.flags.is_allowzero,
|
|
.address_space = info.flags.address_space,
|
|
},
|
|
});
|
|
const non_slice_ptr = if (info.flags.size == .slice)
|
|
try block.addTyOp(.slice_ptr, ptr_ty.slicePtrFieldType(zcu), ptr)
|
|
else
|
|
ptr;
|
|
return block.addBitCast(new_ty, non_slice_ptr);
|
|
}
|
|
|
|
fn zirMemcpy(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Zir.Inst.Index,
|
|
air_tag: Air.Inst.Tag,
|
|
check_aliasing: bool,
|
|
) CompileError!void {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const dest_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const src_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const dest_ptr = try sema.resolveInst(extra.lhs);
|
|
const src_ptr = try sema.resolveInst(extra.rhs);
|
|
const dest_ty = sema.typeOf(dest_ptr);
|
|
const src_ty = sema.typeOf(src_ptr);
|
|
const dest_len = try indexablePtrLenOrNone(sema, block, dest_src, dest_ptr);
|
|
const src_len = try indexablePtrLenOrNone(sema, block, src_src, src_ptr);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (dest_ty.isConstPtr(zcu)) {
|
|
return sema.fail(block, dest_src, "cannot copy to constant pointer", .{});
|
|
}
|
|
|
|
if (dest_len == .none and src_len == .none) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "unknown copy length", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(dest_src, msg, "destination type '{f}' provides no length", .{
|
|
dest_ty.fmt(pt),
|
|
});
|
|
try sema.errNote(src_src, msg, "source type '{f}' provides no length", .{
|
|
src_ty.fmt(pt),
|
|
});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const dest_elem_ty = dest_ty.indexablePtrElem(zcu);
|
|
const src_elem_ty = src_ty.indexablePtrElem(zcu);
|
|
|
|
const imc = try sema.coerceInMemoryAllowed(
|
|
block,
|
|
dest_elem_ty,
|
|
src_elem_ty,
|
|
false,
|
|
zcu.getTarget(),
|
|
dest_src,
|
|
src_src,
|
|
null,
|
|
);
|
|
if (imc != .ok) return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(
|
|
src,
|
|
"pointer element type '{f}' cannot coerce into element type '{f}'",
|
|
.{ src_elem_ty.fmt(pt), dest_elem_ty.fmt(pt) },
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
try imc.report(sema, src, msg);
|
|
break :msg msg;
|
|
});
|
|
|
|
var len_val: ?Value = null;
|
|
|
|
if (dest_len != .none and src_len != .none) check: {
|
|
// If we can check at compile-time, no need for runtime safety.
|
|
if (try sema.resolveDefinedValue(block, dest_src, dest_len)) |dest_len_val| {
|
|
len_val = dest_len_val;
|
|
if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| {
|
|
if (!(try sema.valuesEqual(dest_len_val, src_len_val, .usize))) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "non-matching copy lengths", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(dest_src, msg, "length {f} here", .{
|
|
dest_len_val.fmtValueSema(pt, sema),
|
|
});
|
|
try sema.errNote(src_src, msg, "length {f} here", .{
|
|
src_len_val.fmtValueSema(pt, sema),
|
|
});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
break :check;
|
|
}
|
|
} else if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| {
|
|
len_val = src_len_val;
|
|
}
|
|
|
|
if (block.wantSafety()) {
|
|
const ok = try block.addBinOp(.cmp_eq, dest_len, src_len);
|
|
try sema.addSafetyCheck(block, src, ok, .copy_len_mismatch);
|
|
}
|
|
} else if (dest_len != .none) {
|
|
if (try sema.resolveDefinedValue(block, dest_src, dest_len)) |dest_len_val| {
|
|
len_val = dest_len_val;
|
|
}
|
|
} else if (src_len != .none) {
|
|
if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| {
|
|
len_val = src_len_val;
|
|
}
|
|
}
|
|
|
|
zero_bit: {
|
|
const src_comptime = try src_elem_ty.comptimeOnlySema(pt);
|
|
const dest_comptime = try dest_elem_ty.comptimeOnlySema(pt);
|
|
assert(src_comptime == dest_comptime); // IMC
|
|
if (src_comptime) break :zero_bit;
|
|
|
|
const src_has_bits = try src_elem_ty.hasRuntimeBitsIgnoreComptimeSema(pt);
|
|
const dest_has_bits = try dest_elem_ty.hasRuntimeBitsIgnoreComptimeSema(pt);
|
|
assert(src_has_bits == dest_has_bits); // IMC
|
|
if (src_has_bits) break :zero_bit;
|
|
|
|
// The element type is zero-bit. We've done all validation (aside from the aliasing check,
|
|
// which we must skip) so we're done.
|
|
return;
|
|
}
|
|
|
|
const runtime_src = rs: {
|
|
const dest_ptr_val = try sema.resolveDefinedValue(block, dest_src, dest_ptr) orelse break :rs dest_src;
|
|
const src_ptr_val = try sema.resolveDefinedValue(block, src_src, src_ptr) orelse break :rs src_src;
|
|
|
|
const raw_dest_ptr = if (dest_ty.isSlice(zcu)) dest_ptr_val.slicePtr(zcu) else dest_ptr_val;
|
|
const raw_src_ptr = if (src_ty.isSlice(zcu)) src_ptr_val.slicePtr(zcu) else src_ptr_val;
|
|
|
|
const len_u64 = try len_val.?.toUnsignedIntSema(pt);
|
|
|
|
if (check_aliasing) {
|
|
if (Value.doPointersOverlap(
|
|
raw_src_ptr,
|
|
raw_dest_ptr,
|
|
len_u64,
|
|
zcu,
|
|
)) return sema.fail(block, src, "'@memcpy' arguments alias", .{});
|
|
}
|
|
|
|
if (!sema.isComptimeMutablePtr(dest_ptr_val)) break :rs dest_src;
|
|
|
|
// Because comptime pointer access is a somewhat expensive operation, we implement @memcpy
|
|
// as one load and store of an array, rather than N loads and stores of individual elements.
|
|
|
|
const array_ty = try pt.arrayType(.{
|
|
.child = dest_elem_ty.toIntern(),
|
|
.len = len_u64,
|
|
});
|
|
|
|
const dest_array_ptr_ty = try pt.ptrType(info: {
|
|
var info = dest_ty.ptrInfo(zcu);
|
|
info.flags.size = .one;
|
|
info.child = array_ty.toIntern();
|
|
info.sentinel = .none;
|
|
break :info info;
|
|
});
|
|
const src_array_ptr_ty = try pt.ptrType(info: {
|
|
var info = src_ty.ptrInfo(zcu);
|
|
info.flags.size = .one;
|
|
info.child = array_ty.toIntern();
|
|
info.sentinel = .none;
|
|
break :info info;
|
|
});
|
|
|
|
const coerced_dest_ptr = try pt.getCoerced(raw_dest_ptr, dest_array_ptr_ty);
|
|
const coerced_src_ptr = try pt.getCoerced(raw_src_ptr, src_array_ptr_ty);
|
|
|
|
const array_val = try sema.pointerDeref(block, src_src, coerced_src_ptr, src_array_ptr_ty) orelse break :rs src_src;
|
|
try sema.storePtrVal(block, dest_src, coerced_dest_ptr, array_val, array_ty);
|
|
return;
|
|
};
|
|
|
|
// If the length is comptime-known, then upgrade src and destination types
|
|
// into pointer-to-array. At this point we know they are both pointers
|
|
// already.
|
|
var new_dest_ptr = dest_ptr;
|
|
var new_src_ptr = src_ptr;
|
|
if (len_val) |val| {
|
|
const len = try val.toUnsignedIntSema(pt);
|
|
if (len == 0) {
|
|
// This AIR instruction guarantees length > 0 if it is comptime-known.
|
|
return;
|
|
}
|
|
new_dest_ptr = try upgradeToArrayPtr(sema, block, dest_ptr, len);
|
|
new_src_ptr = try upgradeToArrayPtr(sema, block, src_ptr, len);
|
|
}
|
|
|
|
if (dest_len != .none) {
|
|
// Change the src from slice to a many pointer, to avoid multiple ptr
|
|
// slice extractions in AIR instructions.
|
|
const new_src_ptr_ty = sema.typeOf(new_src_ptr);
|
|
if (new_src_ptr_ty.isSlice(zcu)) {
|
|
new_src_ptr = try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty);
|
|
}
|
|
} else if (dest_len == .none and len_val == null) {
|
|
// Change the dest to a slice, since its type must have the length.
|
|
const dest_ptr_ptr = try sema.analyzeRef(block, dest_src, new_dest_ptr);
|
|
new_dest_ptr = try sema.analyzeSlice(block, dest_src, dest_ptr_ptr, .zero, src_len, .none, LazySrcLoc.unneeded, dest_src, dest_src, dest_src, false);
|
|
const new_src_ptr_ty = sema.typeOf(new_src_ptr);
|
|
if (new_src_ptr_ty.isSlice(zcu)) {
|
|
new_src_ptr = try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty);
|
|
}
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
try sema.validateRuntimeValue(block, dest_src, dest_ptr);
|
|
try sema.validateRuntimeValue(block, src_src, src_ptr);
|
|
|
|
// Aliasing safety check.
|
|
if (check_aliasing and block.wantSafety()) {
|
|
const len = if (len_val) |v|
|
|
Air.internedToRef(v.toIntern())
|
|
else if (dest_len != .none)
|
|
dest_len
|
|
else
|
|
src_len;
|
|
|
|
// Extract raw pointer from dest slice. The AIR instructions could support them, but
|
|
// it would cause redundant machine code instructions.
|
|
const new_dest_ptr_ty = sema.typeOf(new_dest_ptr);
|
|
const raw_dest_ptr = if (new_dest_ptr_ty.isSlice(zcu))
|
|
try sema.analyzeSlicePtr(block, dest_src, new_dest_ptr, new_dest_ptr_ty)
|
|
else if (new_dest_ptr_ty.ptrSize(zcu) == .one) ptr: {
|
|
var dest_manyptr_ty_key = zcu.intern_pool.indexToKey(new_dest_ptr_ty.toIntern()).ptr_type;
|
|
assert(dest_manyptr_ty_key.flags.size == .one);
|
|
dest_manyptr_ty_key.child = dest_elem_ty.toIntern();
|
|
dest_manyptr_ty_key.flags.size = .many;
|
|
break :ptr try sema.coerceCompatiblePtrs(block, try pt.ptrTypeSema(dest_manyptr_ty_key), new_dest_ptr, dest_src);
|
|
} else new_dest_ptr;
|
|
|
|
const new_src_ptr_ty = sema.typeOf(new_src_ptr);
|
|
const raw_src_ptr = if (new_src_ptr_ty.isSlice(zcu))
|
|
try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty)
|
|
else if (new_src_ptr_ty.ptrSize(zcu) == .one) ptr: {
|
|
var src_manyptr_ty_key = zcu.intern_pool.indexToKey(new_src_ptr_ty.toIntern()).ptr_type;
|
|
assert(src_manyptr_ty_key.flags.size == .one);
|
|
src_manyptr_ty_key.child = src_elem_ty.toIntern();
|
|
src_manyptr_ty_key.flags.size = .many;
|
|
break :ptr try sema.coerceCompatiblePtrs(block, try pt.ptrTypeSema(src_manyptr_ty_key), new_src_ptr, src_src);
|
|
} else new_src_ptr;
|
|
|
|
// ok1: dest >= src + len
|
|
// ok2: src >= dest + len
|
|
const src_plus_len = try sema.analyzePtrArithmetic(block, src, raw_src_ptr, len, .ptr_add, src_src, src);
|
|
const dest_plus_len = try sema.analyzePtrArithmetic(block, src, raw_dest_ptr, len, .ptr_add, dest_src, src);
|
|
const ok1 = try block.addBinOp(.cmp_gte, raw_dest_ptr, src_plus_len);
|
|
const ok2 = try block.addBinOp(.cmp_gte, new_src_ptr, dest_plus_len);
|
|
const ok = try block.addBinOp(.bool_or, ok1, ok2);
|
|
try sema.addSafetyCheck(block, src, ok, .memcpy_alias);
|
|
}
|
|
|
|
_ = try block.addInst(.{
|
|
.tag = air_tag,
|
|
.data = .{ .bin_op = .{
|
|
.lhs = new_dest_ptr,
|
|
.rhs = new_src_ptr,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirMemset(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
const dest_src = block.builtinCallArgSrc(inst_data.src_node, 0);
|
|
const value_src = block.builtinCallArgSrc(inst_data.src_node, 1);
|
|
const dest_ptr = try sema.resolveInst(extra.lhs);
|
|
const uncoerced_elem = try sema.resolveInst(extra.rhs);
|
|
const dest_ptr_ty = sema.typeOf(dest_ptr);
|
|
try checkMemOperand(sema, block, dest_src, dest_ptr_ty);
|
|
|
|
if (dest_ptr_ty.isConstPtr(zcu)) {
|
|
return sema.fail(block, dest_src, "cannot memset constant pointer", .{});
|
|
}
|
|
|
|
const dest_elem_ty: Type = dest_elem_ty: {
|
|
const ptr_info = dest_ptr_ty.ptrInfo(zcu);
|
|
switch (ptr_info.flags.size) {
|
|
.slice => break :dest_elem_ty .fromInterned(ptr_info.child),
|
|
.one => {
|
|
if (Type.fromInterned(ptr_info.child).zigTypeTag(zcu) == .array) {
|
|
break :dest_elem_ty Type.fromInterned(ptr_info.child).childType(zcu);
|
|
}
|
|
},
|
|
.many, .c => {},
|
|
}
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "unknown @memset length", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(dest_src, msg, "destination type '{f}' provides no length", .{
|
|
dest_ptr_ty.fmt(pt),
|
|
});
|
|
break :msg msg;
|
|
});
|
|
};
|
|
|
|
const elem = try sema.coerce(block, dest_elem_ty, uncoerced_elem, value_src);
|
|
|
|
const runtime_src = rs: {
|
|
const len_air_ref = try sema.fieldVal(block, src, dest_ptr, try ip.getOrPutString(gpa, pt.tid, "len", .no_embedded_nulls), dest_src);
|
|
const len_val = (try sema.resolveDefinedValue(block, dest_src, len_air_ref)) orelse break :rs dest_src;
|
|
const len_u64 = try len_val.toUnsignedIntSema(pt);
|
|
const len = try sema.usizeCast(block, dest_src, len_u64);
|
|
if (len == 0) {
|
|
// This AIR instruction guarantees length > 0 if it is comptime-known.
|
|
return;
|
|
}
|
|
|
|
const ptr_val = try sema.resolveDefinedValue(block, dest_src, dest_ptr) orelse break :rs dest_src;
|
|
if (!sema.isComptimeMutablePtr(ptr_val)) break :rs dest_src;
|
|
const elem_val = try sema.resolveValue(elem) orelse break :rs value_src;
|
|
const array_ty = try pt.arrayType(.{
|
|
.child = dest_elem_ty.toIntern(),
|
|
.len = len_u64,
|
|
});
|
|
const array_val = try pt.aggregateSplatValue(array_ty, elem_val);
|
|
const array_ptr_ty = ty: {
|
|
var info = dest_ptr_ty.ptrInfo(zcu);
|
|
info.flags.size = .one;
|
|
info.child = array_ty.toIntern();
|
|
break :ty try pt.ptrType(info);
|
|
};
|
|
const raw_ptr_val = if (dest_ptr_ty.isSlice(zcu)) ptr_val.slicePtr(zcu) else ptr_val;
|
|
const array_ptr_val = try pt.getCoerced(raw_ptr_val, array_ptr_ty);
|
|
return sema.storePtrVal(block, src, array_ptr_val, array_val, array_ty);
|
|
};
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
try sema.validateRuntimeValue(block, dest_src, dest_ptr);
|
|
try sema.validateRuntimeValue(block, value_src, elem);
|
|
|
|
_ = try block.addInst(.{
|
|
.tag = if (block.wantSafety()) .memset_safe else .memset,
|
|
.data = .{ .bin_op = .{
|
|
.lhs = dest_ptr,
|
|
.rhs = elem,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirResume(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].un_node;
|
|
const src = block.nodeOffset(inst_data.src_node);
|
|
return sema.failWithUseOfAsync(block, src);
|
|
}
|
|
|
|
fn zirFuncFancy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_data = sema.code.instructions.items(.data)[@intFromEnum(inst)].pl_node;
|
|
const extra = sema.code.extraData(Zir.Inst.FuncFancy, inst_data.payload_index);
|
|
const target = zcu.getTarget();
|
|
|
|
const cc_src = block.src(.{ .node_offset_fn_type_cc = inst_data.src_node });
|
|
const ret_src = block.src(.{ .node_offset_fn_type_ret_ty = inst_data.src_node });
|
|
const has_body = extra.data.body_len != 0;
|
|
|
|
var extra_index: usize = extra.end;
|
|
|
|
const cc: std.builtin.CallingConvention = if (extra.data.bits.has_cc_body) blk: {
|
|
const body_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const body = sema.code.bodySlice(extra_index, body_len);
|
|
extra_index += body.len;
|
|
|
|
const cc_ty = try sema.getBuiltinType(cc_src, .CallingConvention);
|
|
const val = try sema.resolveGenericBody(block, cc_src, body, inst, cc_ty, .{ .simple = .@"callconv" });
|
|
break :blk try sema.analyzeValueAsCallconv(block, cc_src, val);
|
|
} else if (extra.data.bits.has_cc_ref) blk: {
|
|
const cc_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
const cc_ty = try sema.getBuiltinType(cc_src, .CallingConvention);
|
|
const uncoerced_cc = try sema.resolveInst(cc_ref);
|
|
const coerced_cc = try sema.coerce(block, cc_ty, uncoerced_cc, cc_src);
|
|
const cc_val = try sema.resolveConstDefinedValue(block, cc_src, coerced_cc, .{ .simple = .@"callconv" });
|
|
break :blk try sema.analyzeValueAsCallconv(block, cc_src, cc_val);
|
|
} else cc: {
|
|
if (has_body) {
|
|
const func_decl_nav = sema.owner.unwrap().nav_val;
|
|
const func_decl_inst = ip.getNav(func_decl_nav).analysis.?.zir_index.resolve(&zcu.intern_pool) orelse return error.AnalysisFail;
|
|
const zir_decl = sema.code.getDeclaration(func_decl_inst);
|
|
if (zir_decl.linkage == .@"export") {
|
|
break :cc target.cCallingConvention() orelse {
|
|
// This target has no default C calling convention. We sometimes trigger a similar
|
|
// error by trying to evaluate `std.builtin.CallingConvention.c`, so for consistency,
|
|
// let's eval that now and just get the transitive error. (It's guaranteed to error
|
|
// because it does the exact `cCallingConvention` call we just did.)
|
|
const cc_type = try sema.getBuiltinType(cc_src, .CallingConvention);
|
|
_ = try sema.namespaceLookupVal(
|
|
block,
|
|
LazySrcLoc.unneeded,
|
|
cc_type.getNamespaceIndex(zcu),
|
|
try ip.getOrPutString(sema.gpa, pt.tid, "c", .no_embedded_nulls),
|
|
);
|
|
// The above should have errored.
|
|
@panic("std.builtin is corrupt");
|
|
};
|
|
}
|
|
}
|
|
break :cc .auto;
|
|
};
|
|
|
|
const ret_ty: Type = if (extra.data.bits.has_ret_ty_body) blk: {
|
|
const body_len = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
const body = sema.code.bodySlice(extra_index, body_len);
|
|
extra_index += body.len;
|
|
if (extra.data.bits.ret_ty_is_generic) break :blk .generic_poison;
|
|
|
|
const val = try sema.resolveGenericBody(block, ret_src, body, inst, .type, .{ .simple = .function_ret_ty });
|
|
const ty = val.toType();
|
|
break :blk ty;
|
|
} else if (extra.data.bits.has_ret_ty_ref) blk: {
|
|
const ret_ty_ref: Zir.Inst.Ref = @enumFromInt(sema.code.extra[extra_index]);
|
|
extra_index += 1;
|
|
if (extra.data.bits.ret_ty_is_generic) break :blk .generic_poison;
|
|
|
|
const ret_ty_air_ref = try sema.resolveInst(ret_ty_ref);
|
|
const ret_ty_val = try sema.resolveConstDefinedValue(block, ret_src, ret_ty_air_ref, .{ .simple = .function_ret_ty });
|
|
break :blk ret_ty_val.toType();
|
|
} else .void;
|
|
|
|
const noalias_bits: u32 = if (extra.data.bits.has_any_noalias) blk: {
|
|
const x = sema.code.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk x;
|
|
} else 0;
|
|
|
|
var src_locs: Zir.Inst.Func.SrcLocs = undefined;
|
|
if (has_body) {
|
|
extra_index += extra.data.body_len;
|
|
src_locs = sema.code.extraData(Zir.Inst.Func.SrcLocs, extra_index).data;
|
|
}
|
|
|
|
const is_var_args = extra.data.bits.is_var_args;
|
|
const is_inferred_error = extra.data.bits.is_inferred_error;
|
|
const is_noinline = extra.data.bits.is_noinline;
|
|
|
|
return sema.funcCommon(
|
|
block,
|
|
inst_data.src_node,
|
|
inst,
|
|
cc,
|
|
ret_ty,
|
|
is_var_args,
|
|
is_inferred_error,
|
|
has_body,
|
|
src_locs,
|
|
noalias_bits,
|
|
is_noinline,
|
|
);
|
|
}
|
|
|
|
fn zirCUndef(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.builtinCallArgSrc(extra.node, 0);
|
|
|
|
const name = try sema.resolveConstString(block, src, extra.operand, .{ .simple = .operand_cUndef_macro_name });
|
|
try block.c_import_buf.?.print("#undef {s}\n", .{name});
|
|
return .void_value;
|
|
}
|
|
|
|
fn zirCInclude(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const src = block.builtinCallArgSrc(extra.node, 0);
|
|
|
|
const name = try sema.resolveConstString(block, src, extra.operand, .{ .simple = .operand_cInclude_file_name });
|
|
try block.c_import_buf.?.print("#include <{s}>\n", .{name});
|
|
return .void_value;
|
|
}
|
|
|
|
fn zirCDefine(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const name_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const val_src = block.builtinCallArgSrc(extra.node, 1);
|
|
|
|
const name = try sema.resolveConstString(block, name_src, extra.lhs, .{ .simple = .operand_cDefine_macro_name });
|
|
const rhs = try sema.resolveInst(extra.rhs);
|
|
if (sema.typeOf(rhs).zigTypeTag(zcu) != .void) {
|
|
const value = try sema.resolveConstString(block, val_src, extra.rhs, .{ .simple = .operand_cDefine_macro_value });
|
|
try block.c_import_buf.?.print("#define {s} {s}\n", .{ name, value });
|
|
} else {
|
|
try block.c_import_buf.?.print("#define {s}\n", .{name});
|
|
}
|
|
return .void_value;
|
|
}
|
|
|
|
fn zirWasmMemorySize(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const index_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const builtin_src = block.nodeOffset(extra.node);
|
|
const target = sema.pt.zcu.getTarget();
|
|
if (!target.cpu.arch.isWasm()) {
|
|
return sema.fail(block, builtin_src, "builtin @wasmMemorySize is available when targeting WebAssembly; targeted CPU architecture is {s}", .{@tagName(target.cpu.arch)});
|
|
}
|
|
|
|
const index: u32 = @intCast(try sema.resolveInt(block, index_src, extra.operand, .u32, .{ .simple = .wasm_memory_index }));
|
|
try sema.requireRuntimeBlock(block, builtin_src, null);
|
|
return block.addInst(.{
|
|
.tag = .wasm_memory_size,
|
|
.data = .{ .pl_op = .{
|
|
.operand = .none,
|
|
.payload = index,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirWasmMemoryGrow(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const builtin_src = block.nodeOffset(extra.node);
|
|
const index_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const delta_src = block.builtinCallArgSrc(extra.node, 1);
|
|
const target = sema.pt.zcu.getTarget();
|
|
if (!target.cpu.arch.isWasm()) {
|
|
return sema.fail(block, builtin_src, "builtin @wasmMemoryGrow is available when targeting WebAssembly; targeted CPU architecture is {s}", .{@tagName(target.cpu.arch)});
|
|
}
|
|
|
|
const index: u32 = @intCast(try sema.resolveInt(block, index_src, extra.lhs, .u32, .{ .simple = .wasm_memory_index }));
|
|
const delta = try sema.coerce(block, .usize, try sema.resolveInst(extra.rhs), delta_src);
|
|
|
|
try sema.requireRuntimeBlock(block, builtin_src, null);
|
|
return block.addInst(.{
|
|
.tag = .wasm_memory_grow,
|
|
.data = .{ .pl_op = .{
|
|
.operand = delta,
|
|
.payload = index,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn resolvePrefetchOptions(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
) CompileError!std.builtin.PrefetchOptions {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const options_ty = try sema.getBuiltinType(src, .PrefetchOptions);
|
|
const options = try sema.coerce(block, options_ty, try sema.resolveInst(zir_ref), src);
|
|
|
|
const rw_src = block.src(.{ .init_field_rw = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const locality_src = block.src(.{ .init_field_locality = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const cache_src = block.src(.{ .init_field_cache = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
|
|
const rw = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "rw", .no_embedded_nulls), rw_src);
|
|
const rw_val = try sema.resolveConstDefinedValue(block, rw_src, rw, .{ .simple = .prefetch_options });
|
|
|
|
const locality = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "locality", .no_embedded_nulls), locality_src);
|
|
const locality_val = try sema.resolveConstDefinedValue(block, locality_src, locality, .{ .simple = .prefetch_options });
|
|
|
|
const cache = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "cache", .no_embedded_nulls), cache_src);
|
|
const cache_val = try sema.resolveConstDefinedValue(block, cache_src, cache, .{ .simple = .prefetch_options });
|
|
|
|
return std.builtin.PrefetchOptions{
|
|
.rw = try sema.interpretBuiltinType(block, rw_src, rw_val, std.builtin.PrefetchOptions.Rw),
|
|
.locality = @intCast(try locality_val.toUnsignedIntSema(pt)),
|
|
.cache = try sema.interpretBuiltinType(block, cache_src, cache_val, std.builtin.PrefetchOptions.Cache),
|
|
};
|
|
}
|
|
|
|
fn zirPrefetch(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const ptr_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const opts_src = block.builtinCallArgSrc(extra.node, 1);
|
|
const ptr = try sema.resolveInst(extra.lhs);
|
|
try sema.checkPtrOperand(block, ptr_src, sema.typeOf(ptr));
|
|
|
|
const options = try sema.resolvePrefetchOptions(block, opts_src, extra.rhs);
|
|
|
|
if (!block.isComptime()) {
|
|
_ = try block.addInst(.{
|
|
.tag = .prefetch,
|
|
.data = .{ .prefetch = .{
|
|
.ptr = ptr,
|
|
.rw = options.rw,
|
|
.locality = options.locality,
|
|
.cache = options.cache,
|
|
} },
|
|
});
|
|
}
|
|
|
|
return .void_value;
|
|
}
|
|
|
|
fn resolveExternOptions(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
) CompileError!struct {
|
|
name: InternPool.NullTerminatedString,
|
|
library_name: InternPool.OptionalNullTerminatedString,
|
|
linkage: std.builtin.GlobalLinkage,
|
|
visibility: std.builtin.SymbolVisibility,
|
|
is_thread_local: bool,
|
|
is_dll_import: bool,
|
|
relocation: std.builtin.ExternOptions.Relocation,
|
|
} {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const options_inst = try sema.resolveInst(zir_ref);
|
|
const extern_options_ty = try sema.getBuiltinType(src, .ExternOptions);
|
|
const options = try sema.coerce(block, extern_options_ty, options_inst, src);
|
|
|
|
const name_src = block.src(.{ .init_field_name = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const library_src = block.src(.{ .init_field_library = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const linkage_src = block.src(.{ .init_field_linkage = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const visibility_src = block.src(.{ .init_field_visibility = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const thread_local_src = block.src(.{ .init_field_thread_local = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const dll_import_src = block.src(.{ .init_field_dll_import = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
const relocation_src = block.src(.{ .init_field_relocation = src.offset.node_offset_builtin_call_arg.builtin_call_node });
|
|
|
|
const name_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "name", .no_embedded_nulls), name_src);
|
|
const name = try sema.toConstString(block, name_src, name_ref, .{ .simple = .extern_options });
|
|
|
|
const library_name_inst = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "library_name", .no_embedded_nulls), library_src);
|
|
const library_name_val = try sema.resolveConstDefinedValue(block, library_src, library_name_inst, .{ .simple = .extern_options });
|
|
|
|
const linkage_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "linkage", .no_embedded_nulls), linkage_src);
|
|
const linkage_val = try sema.resolveConstDefinedValue(block, linkage_src, linkage_ref, .{ .simple = .extern_options });
|
|
const linkage = try sema.interpretBuiltinType(block, linkage_src, linkage_val, std.builtin.GlobalLinkage);
|
|
|
|
const visibility_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "visibility", .no_embedded_nulls), visibility_src);
|
|
const visibility_val = try sema.resolveConstDefinedValue(block, visibility_src, visibility_ref, .{ .simple = .extern_options });
|
|
const visibility = try sema.interpretBuiltinType(block, visibility_src, visibility_val, std.builtin.SymbolVisibility);
|
|
|
|
const is_thread_local = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "is_thread_local", .no_embedded_nulls), thread_local_src);
|
|
const is_thread_local_val = try sema.resolveConstDefinedValue(block, thread_local_src, is_thread_local, .{ .simple = .extern_options });
|
|
|
|
const library_name = if (library_name_val.optionalValue(zcu)) |library_name_payload| library_name: {
|
|
const library_name = try sema.toConstString(block, library_src, Air.internedToRef(library_name_payload.toIntern()), .{ .simple = .extern_options });
|
|
if (library_name.len == 0) {
|
|
return sema.fail(block, library_src, "library name cannot be empty", .{});
|
|
}
|
|
try sema.handleExternLibName(block, library_src, library_name);
|
|
break :library_name library_name;
|
|
} else null;
|
|
|
|
const is_dll_import_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "is_dll_import", .no_embedded_nulls), dll_import_src);
|
|
const is_dll_import_val = try sema.resolveConstDefinedValue(block, dll_import_src, is_dll_import_ref, .{ .simple = .extern_options });
|
|
|
|
const relocation_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, pt.tid, "relocation", .no_embedded_nulls), relocation_src);
|
|
const relocation_val = try sema.resolveConstDefinedValue(block, relocation_src, relocation_ref, .{ .simple = .extern_options });
|
|
const relocation = try sema.interpretBuiltinType(block, relocation_src, relocation_val, std.builtin.ExternOptions.Relocation);
|
|
|
|
if (name.len == 0) {
|
|
return sema.fail(block, name_src, "extern symbol name cannot be empty", .{});
|
|
}
|
|
|
|
if (linkage != .weak and linkage != .strong) {
|
|
return sema.fail(block, linkage_src, "extern symbol must use strong or weak linkage", .{});
|
|
}
|
|
|
|
return .{
|
|
.name = try ip.getOrPutString(gpa, pt.tid, name, .no_embedded_nulls),
|
|
.library_name = try ip.getOrPutStringOpt(gpa, pt.tid, library_name, .no_embedded_nulls),
|
|
.linkage = linkage,
|
|
.visibility = visibility,
|
|
.is_thread_local = is_thread_local_val.toBool(),
|
|
.is_dll_import = is_dll_import_val.toBool(),
|
|
.relocation = relocation,
|
|
};
|
|
}
|
|
|
|
fn zirBuiltinExtern(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data;
|
|
const src = block.nodeOffset(extra.node);
|
|
const ty_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const options_src = block.builtinCallArgSrc(extra.node, 1);
|
|
|
|
var ty = try sema.resolveType(block, ty_src, extra.lhs);
|
|
if (!ty.isPtrAtRuntime(zcu)) {
|
|
return sema.fail(block, ty_src, "expected (optional) pointer", .{});
|
|
}
|
|
if (!try sema.validateExternType(ty, .other)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ty_src, "extern symbol cannot have type '{f}'", .{ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.explainWhyTypeIsNotExtern(msg, ty_src, ty, .other);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const options = try sema.resolveExternOptions(block, options_src, extra.rhs);
|
|
switch (options.linkage) {
|
|
.internal => if (options.visibility != .default) {
|
|
return sema.fail(block, options_src, "internal symbol cannot have non-default visibility", .{});
|
|
},
|
|
.strong, .weak => {},
|
|
.link_once => return sema.fail(block, options_src, "external symbol cannot have link once linkage", .{}),
|
|
}
|
|
switch (options.relocation) {
|
|
.any => {},
|
|
.pcrel => if (options.visibility == .default) return sema.fail(block, options_src, "cannot require a pc-relative relocation to a symbol with default visibility", .{}),
|
|
}
|
|
|
|
// TODO: error for threadlocal functions, non-const functions, etc
|
|
|
|
if (options.linkage == .weak and !ty.ptrAllowsZero(zcu)) {
|
|
ty = try pt.optionalType(ty.toIntern());
|
|
}
|
|
const ptr_info = ty.ptrInfo(zcu);
|
|
|
|
const extern_val = try pt.getExtern(.{
|
|
.name = options.name,
|
|
.ty = ptr_info.child,
|
|
.lib_name = options.library_name,
|
|
.linkage = options.linkage,
|
|
.visibility = options.visibility,
|
|
.is_threadlocal = options.is_thread_local,
|
|
.is_dll_import = options.is_dll_import,
|
|
.relocation = options.relocation,
|
|
.is_const = ptr_info.flags.is_const,
|
|
.alignment = ptr_info.flags.alignment,
|
|
.@"addrspace" = ptr_info.flags.address_space,
|
|
// This instruction is just for source locations.
|
|
// `builtin_extern` doesn't provide enough information, and isn't currently tracked.
|
|
// So, for now, just use our containing `declaration`.
|
|
.zir_index = switch (sema.owner.unwrap()) {
|
|
.@"comptime" => |cu| ip.getComptimeUnit(cu).zir_index,
|
|
.type => |owner_ty| Type.fromInterned(owner_ty).typeDeclInst(zcu).?,
|
|
.memoized_state => unreachable,
|
|
.nav_ty, .nav_val => |nav| ip.getNav(nav).analysis.?.zir_index,
|
|
.func => |func| zir_index: {
|
|
const func_info = zcu.funcInfo(func);
|
|
const owner_func_info = if (func_info.generic_owner != .none) owner: {
|
|
break :owner zcu.funcInfo(func_info.generic_owner);
|
|
} else func_info;
|
|
break :zir_index ip.getNav(owner_func_info.owner_nav).analysis.?.zir_index;
|
|
},
|
|
},
|
|
.owner_nav = undefined, // ignored by `getExtern`
|
|
.source = .builtin,
|
|
});
|
|
|
|
const uncasted_ptr = try sema.analyzeNavRef(block, src, ip.indexToKey(extern_val).@"extern".owner_nav);
|
|
// We want to cast to `ty`, but that isn't necessarily an allowed coercion.
|
|
if (try sema.resolveValue(uncasted_ptr)) |uncasted_ptr_val| {
|
|
const casted_ptr_val = try pt.getCoerced(uncasted_ptr_val, ty);
|
|
return Air.internedToRef(casted_ptr_val.toIntern());
|
|
} else {
|
|
return block.addBitCast(ty, uncasted_ptr);
|
|
}
|
|
}
|
|
|
|
fn zirWorkItem(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
extended: Zir.Inst.Extended.InstData,
|
|
zir_tag: Zir.Inst.Extended,
|
|
) CompileError!Air.Inst.Ref {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const dimension_src = block.builtinCallArgSrc(extra.node, 0);
|
|
const builtin_src = block.nodeOffset(extra.node);
|
|
const target = sema.pt.zcu.getTarget();
|
|
|
|
switch (target.cpu.arch) {
|
|
// TODO: Allow for other GPU targets.
|
|
.amdgcn, .spirv64, .spirv32, .nvptx, .nvptx64 => {},
|
|
else => {
|
|
return sema.fail(block, builtin_src, "builtin only available on GPU targets; targeted architecture is {s}", .{@tagName(target.cpu.arch)});
|
|
},
|
|
}
|
|
|
|
const dimension: u32 = @intCast(try sema.resolveInt(block, dimension_src, extra.operand, .u32, .{ .simple = .work_group_dim_index }));
|
|
try sema.requireRuntimeBlock(block, builtin_src, null);
|
|
|
|
return block.addInst(.{
|
|
.tag = switch (zir_tag) {
|
|
.work_item_id => .work_item_id,
|
|
.work_group_size => .work_group_size,
|
|
.work_group_id => .work_group_id,
|
|
else => unreachable,
|
|
},
|
|
.data = .{ .pl_op = .{
|
|
.operand = .none,
|
|
.payload = dimension,
|
|
} },
|
|
});
|
|
}
|
|
|
|
fn zirInComptime(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
) CompileError!Air.Inst.Ref {
|
|
_ = sema;
|
|
return if (block.isComptime()) .bool_true else .bool_false;
|
|
}
|
|
|
|
fn zirBuiltinValue(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const src_node: std.zig.Ast.Node.Offset = @enumFromInt(@as(i32, @bitCast(extended.operand)));
|
|
const src = block.nodeOffset(src_node);
|
|
const value: Zir.Inst.BuiltinValue = @enumFromInt(extended.small);
|
|
|
|
const ty = switch (value) {
|
|
// zig fmt: off
|
|
.atomic_order => try sema.getBuiltinType(src, .AtomicOrder),
|
|
.atomic_rmw_op => try sema.getBuiltinType(src, .AtomicRmwOp),
|
|
.calling_convention => try sema.getBuiltinType(src, .CallingConvention),
|
|
.address_space => try sema.getBuiltinType(src, .AddressSpace),
|
|
.float_mode => try sema.getBuiltinType(src, .FloatMode),
|
|
.reduce_op => try sema.getBuiltinType(src, .ReduceOp),
|
|
.call_modifier => try sema.getBuiltinType(src, .CallModifier),
|
|
.prefetch_options => try sema.getBuiltinType(src, .PrefetchOptions),
|
|
.export_options => try sema.getBuiltinType(src, .ExportOptions),
|
|
.extern_options => try sema.getBuiltinType(src, .ExternOptions),
|
|
.type_info => try sema.getBuiltinType(src, .Type),
|
|
.branch_hint => try sema.getBuiltinType(src, .BranchHint),
|
|
.clobbers => try sema.getBuiltinType(src, .@"assembly.Clobbers"),
|
|
// zig fmt: on
|
|
|
|
// Values are handled here.
|
|
.calling_convention_c => {
|
|
const callconv_ty = try sema.getBuiltinType(src, .CallingConvention);
|
|
return try sema.namespaceLookupVal(
|
|
block,
|
|
src,
|
|
callconv_ty.getNamespaceIndex(zcu),
|
|
try ip.getOrPutString(gpa, pt.tid, "c", .no_embedded_nulls),
|
|
) orelse @panic("std.builtin is corrupt");
|
|
},
|
|
.calling_convention_inline => {
|
|
comptime assert(@typeInfo(std.builtin.CallingConvention.Tag).@"enum".tag_type == u8);
|
|
const callconv_ty = try sema.getBuiltinType(src, .CallingConvention);
|
|
const callconv_tag_ty = callconv_ty.unionTagType(zcu) orelse @panic("std.builtin is corrupt");
|
|
const inline_tag_val = try pt.enumValue(
|
|
callconv_tag_ty,
|
|
(try pt.intValue(
|
|
.u8,
|
|
@intFromEnum(std.builtin.CallingConvention.@"inline"),
|
|
)).toIntern(),
|
|
);
|
|
return sema.coerce(block, callconv_ty, Air.internedToRef(inline_tag_val.toIntern()), src);
|
|
},
|
|
};
|
|
return Air.internedToRef(ty.toIntern());
|
|
}
|
|
|
|
fn zirInplaceArithResultTy(sema: *Sema, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const lhs = try sema.resolveInst(@enumFromInt(extended.operand));
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
|
|
const op: Zir.Inst.InplaceOp = @enumFromInt(extended.small);
|
|
const ty: Type = switch (op) {
|
|
.add_eq => ty: {
|
|
const ptr_size = lhs_ty.ptrSizeOrNull(zcu) orelse break :ty lhs_ty;
|
|
switch (ptr_size) {
|
|
.one, .slice => break :ty lhs_ty, // invalid, let it error
|
|
.many, .c => break :ty .usize, // `[*]T + usize`
|
|
}
|
|
},
|
|
.sub_eq => ty: {
|
|
const ptr_size = lhs_ty.ptrSizeOrNull(zcu) orelse break :ty lhs_ty;
|
|
switch (ptr_size) {
|
|
.one, .slice => break :ty lhs_ty, // invalid, let it error
|
|
.many, .c => break :ty .generic_poison, // could be `[*]T - [*]T` or `[*]T - usize`
|
|
}
|
|
},
|
|
};
|
|
return Air.internedToRef(ty.toIntern());
|
|
}
|
|
|
|
fn zirBranchHint(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void {
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const uncoerced_hint = try sema.resolveInst(extra.operand);
|
|
const operand_src = block.builtinCallArgSrc(extra.node, 0);
|
|
|
|
const hint_ty = try sema.getBuiltinType(operand_src, .BranchHint);
|
|
const coerced_hint = try sema.coerce(block, hint_ty, uncoerced_hint, operand_src);
|
|
const hint_val = try sema.resolveConstDefinedValue(block, operand_src, coerced_hint, .{ .simple = .operand_branchHint });
|
|
|
|
// We only apply the first hint in a branch.
|
|
// This allows user-provided hints to override implicit cold hints.
|
|
if (sema.branch_hint == null) {
|
|
sema.branch_hint = try sema.interpretBuiltinType(block, operand_src, hint_val, std.builtin.BranchHint);
|
|
}
|
|
}
|
|
|
|
fn zirFloatOpResultType(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data;
|
|
const operand_src = block.builtinCallArgSrc(extra.node, 0);
|
|
|
|
const raw_ty = try sema.resolveTypeOrPoison(block, operand_src, extra.operand) orelse return .generic_poison_type;
|
|
const float_ty = raw_ty.optEuBaseType(zcu);
|
|
|
|
switch (float_ty.scalarType(zcu).zigTypeTag(zcu)) {
|
|
.float, .comptime_float => {},
|
|
else => return sema.fail(
|
|
block,
|
|
operand_src,
|
|
"expected vector of floats or float type, found '{f}'",
|
|
.{float_ty.fmt(sema.pt)},
|
|
),
|
|
}
|
|
|
|
return .fromType(float_ty);
|
|
}
|
|
|
|
fn requireRuntimeBlock(sema: *Sema, block: *Block, src: LazySrcLoc, runtime_src: ?LazySrcLoc) !void {
|
|
if (block.isComptime()) {
|
|
const msg, const fail_block = msg: {
|
|
const msg = try sema.errMsg(src, "unable to evaluate comptime expression", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
if (runtime_src) |some| {
|
|
try sema.errNote(some, msg, "operation is runtime due to this operand", .{});
|
|
}
|
|
|
|
const fail_block = try block.explainWhyBlockIsComptime(msg);
|
|
|
|
break :msg .{ msg, fail_block };
|
|
};
|
|
return sema.failWithOwnedErrorMsg(fail_block, msg);
|
|
}
|
|
}
|
|
|
|
/// Emit a compile error if type cannot be used for a runtime variable.
|
|
pub fn validateVarType(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
var_ty: Type,
|
|
is_extern: bool,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (is_extern) {
|
|
if (!try sema.validateExternType(var_ty, .other)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "extern variable cannot have type '{f}'", .{var_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.explainWhyTypeIsNotExtern(msg, src, var_ty, .other);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
} else {
|
|
if (var_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"non-extern variable with opaque type '{f}'",
|
|
.{var_ty.fmt(pt)},
|
|
);
|
|
}
|
|
}
|
|
|
|
if (!try var_ty.comptimeOnlySema(pt)) return;
|
|
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "variable of type '{f}' must be const or comptime", .{var_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsComptime(msg, src, var_ty);
|
|
if (var_ty.zigTypeTag(zcu) == .comptime_int or var_ty.zigTypeTag(zcu) == .comptime_float) {
|
|
try sema.errNote(src, msg, "to modify this variable at runtime, it must be given an explicit fixed-size number type", .{});
|
|
}
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const TypeSet = std.AutoHashMapUnmanaged(InternPool.Index, void);
|
|
|
|
fn explainWhyTypeIsComptime(
|
|
sema: *Sema,
|
|
msg: *Zcu.ErrorMsg,
|
|
src_loc: LazySrcLoc,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
var type_set = TypeSet{};
|
|
defer type_set.deinit(sema.gpa);
|
|
|
|
try ty.resolveFully(sema.pt);
|
|
return sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty, &type_set);
|
|
}
|
|
|
|
fn explainWhyTypeIsComptimeInner(
|
|
sema: *Sema,
|
|
msg: *Zcu.ErrorMsg,
|
|
src_loc: LazySrcLoc,
|
|
ty: Type,
|
|
type_set: *TypeSet,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.bool,
|
|
.int,
|
|
.float,
|
|
.error_set,
|
|
.@"enum",
|
|
.frame,
|
|
.@"anyframe",
|
|
.void,
|
|
=> return,
|
|
|
|
.@"fn" => {
|
|
try sema.errNote(src_loc, msg, "use '*const {f}' for a function pointer type", .{ty.fmt(pt)});
|
|
},
|
|
|
|
.type => {
|
|
try sema.errNote(src_loc, msg, "types are not available at runtime", .{});
|
|
},
|
|
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.noreturn,
|
|
.undefined,
|
|
.null,
|
|
=> return,
|
|
|
|
.@"opaque" => {
|
|
try sema.errNote(src_loc, msg, "opaque type '{f}' has undefined size", .{ty.fmt(pt)});
|
|
},
|
|
|
|
.array, .vector => {
|
|
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.childType(zcu), type_set);
|
|
},
|
|
.pointer => {
|
|
const elem_ty = ty.elemType2(zcu);
|
|
if (elem_ty.zigTypeTag(zcu) == .@"fn") {
|
|
const fn_info = zcu.typeToFunc(elem_ty).?;
|
|
if (fn_info.is_generic) {
|
|
try sema.errNote(src_loc, msg, "function is generic", .{});
|
|
}
|
|
switch (fn_info.cc) {
|
|
.@"inline" => try sema.errNote(src_loc, msg, "function has inline calling convention", .{}),
|
|
else => {},
|
|
}
|
|
if (Type.fromInterned(fn_info.return_type).comptimeOnly(zcu)) {
|
|
try sema.errNote(src_loc, msg, "function has a comptime-only return type", .{});
|
|
}
|
|
return;
|
|
}
|
|
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.childType(zcu), type_set);
|
|
},
|
|
|
|
.optional => {
|
|
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.optionalChild(zcu), type_set);
|
|
},
|
|
.error_union => {
|
|
try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.errorUnionPayload(zcu), type_set);
|
|
},
|
|
|
|
.@"struct" => {
|
|
if ((try type_set.getOrPut(sema.gpa, ty.toIntern())).found_existing) return;
|
|
|
|
if (zcu.typeToStruct(ty)) |struct_type| {
|
|
for (0..struct_type.field_types.len) |i| {
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
const field_src: LazySrcLoc = .{
|
|
.base_node_inst = struct_type.zir_index,
|
|
.offset = .{ .container_field_type = @intCast(i) },
|
|
};
|
|
|
|
if (try field_ty.comptimeOnlySema(pt)) {
|
|
try sema.errNote(field_src, msg, "struct requires comptime because of this field", .{});
|
|
try sema.explainWhyTypeIsComptimeInner(msg, field_src, field_ty, type_set);
|
|
}
|
|
}
|
|
}
|
|
// TODO tuples
|
|
},
|
|
|
|
.@"union" => {
|
|
if ((try type_set.getOrPut(sema.gpa, ty.toIntern())).found_existing) return;
|
|
|
|
if (zcu.typeToUnion(ty)) |union_obj| {
|
|
for (0..union_obj.field_types.len) |i| {
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[i]);
|
|
const field_src: LazySrcLoc = .{
|
|
.base_node_inst = union_obj.zir_index,
|
|
.offset = .{ .container_field_type = @intCast(i) },
|
|
};
|
|
|
|
if (try field_ty.comptimeOnlySema(pt)) {
|
|
try sema.errNote(field_src, msg, "union requires comptime because of this field", .{});
|
|
try sema.explainWhyTypeIsComptimeInner(msg, field_src, field_ty, type_set);
|
|
}
|
|
}
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
const ExternPosition = enum {
|
|
ret_ty,
|
|
param_ty,
|
|
union_field,
|
|
struct_field,
|
|
element,
|
|
other,
|
|
};
|
|
|
|
/// Returns true if `ty` is allowed in extern types.
|
|
/// Does *NOT* require `ty` to be resolved in any way.
|
|
/// Calls `resolveLayout` for packed containers.
|
|
fn validateExternType(
|
|
sema: *Sema,
|
|
ty: Type,
|
|
position: ExternPosition,
|
|
) !bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.type,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.undefined,
|
|
.null,
|
|
.error_union,
|
|
.error_set,
|
|
.frame,
|
|
=> return false,
|
|
.void => return position == .union_field or position == .ret_ty or position == .struct_field or position == .element,
|
|
.noreturn => return position == .ret_ty,
|
|
.@"opaque",
|
|
.bool,
|
|
.float,
|
|
.@"anyframe",
|
|
=> return true,
|
|
.pointer => {
|
|
if (ty.childType(zcu).zigTypeTag(zcu) == .@"fn") {
|
|
return ty.isConstPtr(zcu) and try sema.validateExternType(ty.childType(zcu), .other);
|
|
}
|
|
return !(ty.isSlice(zcu) or try ty.comptimeOnlySema(pt));
|
|
},
|
|
.int => switch (ty.intInfo(zcu).bits) {
|
|
0, 8, 16, 32, 64, 128 => return true,
|
|
else => return false,
|
|
},
|
|
.@"fn" => {
|
|
if (position != .other) return false;
|
|
// For now we want to authorize PTX kernel to use zig objects, even if we end up exposing the ABI.
|
|
// The goal is to experiment with more integrated CPU/GPU code.
|
|
if (ty.fnCallingConvention(zcu) == .nvptx_kernel) {
|
|
return true;
|
|
}
|
|
return !target_util.fnCallConvAllowsZigTypes(ty.fnCallingConvention(zcu));
|
|
},
|
|
.@"enum" => {
|
|
return sema.validateExternType(ty.intTagType(zcu), position);
|
|
},
|
|
.@"struct", .@"union" => switch (ty.containerLayout(zcu)) {
|
|
.@"extern" => return true,
|
|
.@"packed" => {
|
|
const bit_size = try ty.bitSizeSema(pt);
|
|
switch (bit_size) {
|
|
0, 8, 16, 32, 64, 128 => return true,
|
|
else => return false,
|
|
}
|
|
},
|
|
.auto => return !(try ty.hasRuntimeBitsSema(pt)),
|
|
},
|
|
.array => {
|
|
if (position == .ret_ty or position == .param_ty) return false;
|
|
return sema.validateExternType(ty.elemType2(zcu), .element);
|
|
},
|
|
.vector => return sema.validateExternType(ty.elemType2(zcu), .element),
|
|
.optional => return ty.isPtrLikeOptional(zcu),
|
|
}
|
|
}
|
|
|
|
fn explainWhyTypeIsNotExtern(
|
|
sema: *Sema,
|
|
msg: *Zcu.ErrorMsg,
|
|
src_loc: LazySrcLoc,
|
|
ty: Type,
|
|
position: ExternPosition,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.@"opaque",
|
|
.bool,
|
|
.float,
|
|
.@"anyframe",
|
|
=> return,
|
|
|
|
.type,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.undefined,
|
|
.null,
|
|
.error_union,
|
|
.error_set,
|
|
.frame,
|
|
=> return,
|
|
|
|
.pointer => {
|
|
if (ty.isSlice(zcu)) {
|
|
try sema.errNote(src_loc, msg, "slices have no guaranteed in-memory representation", .{});
|
|
} else {
|
|
const pointee_ty = ty.childType(zcu);
|
|
if (!ty.isConstPtr(zcu) and pointee_ty.zigTypeTag(zcu) == .@"fn") {
|
|
try sema.errNote(src_loc, msg, "pointer to extern function must be 'const'", .{});
|
|
} else if (try ty.comptimeOnlySema(pt)) {
|
|
try sema.errNote(src_loc, msg, "pointer to comptime-only type '{f}'", .{pointee_ty.fmt(pt)});
|
|
try sema.explainWhyTypeIsComptime(msg, src_loc, ty);
|
|
}
|
|
try sema.explainWhyTypeIsNotExtern(msg, src_loc, pointee_ty, .other);
|
|
}
|
|
},
|
|
.void => try sema.errNote(src_loc, msg, "'void' is a zero bit type; for C 'void' use 'anyopaque'", .{}),
|
|
.noreturn => try sema.errNote(src_loc, msg, "'noreturn' is only allowed as a return type", .{}),
|
|
.int => if (!std.math.isPowerOfTwo(ty.intInfo(zcu).bits)) {
|
|
try sema.errNote(src_loc, msg, "only integers with 0 or power of two bits are extern compatible", .{});
|
|
} else {
|
|
try sema.errNote(src_loc, msg, "only integers with 0, 8, 16, 32, 64 and 128 bits are extern compatible", .{});
|
|
},
|
|
.@"fn" => {
|
|
if (position != .other) {
|
|
try sema.errNote(src_loc, msg, "type has no guaranteed in-memory representation", .{});
|
|
try sema.errNote(src_loc, msg, "use '*const ' to make a function pointer type", .{});
|
|
return;
|
|
}
|
|
switch (ty.fnCallingConvention(zcu)) {
|
|
.auto => try sema.errNote(src_loc, msg, "extern function must specify calling convention", .{}),
|
|
.async => try sema.errNote(src_loc, msg, "async function cannot be extern", .{}),
|
|
.@"inline" => try sema.errNote(src_loc, msg, "inline function cannot be extern", .{}),
|
|
else => return,
|
|
}
|
|
},
|
|
.@"enum" => {
|
|
const tag_ty = ty.intTagType(zcu);
|
|
try sema.errNote(src_loc, msg, "enum tag type '{f}' is not extern compatible", .{tag_ty.fmt(pt)});
|
|
try sema.explainWhyTypeIsNotExtern(msg, src_loc, tag_ty, position);
|
|
},
|
|
.@"struct" => try sema.errNote(src_loc, msg, "only extern structs and ABI sized packed structs are extern compatible", .{}),
|
|
.@"union" => try sema.errNote(src_loc, msg, "only extern unions and ABI sized packed unions are extern compatible", .{}),
|
|
.array => {
|
|
if (position == .ret_ty) {
|
|
return sema.errNote(src_loc, msg, "arrays are not allowed as a return type", .{});
|
|
} else if (position == .param_ty) {
|
|
return sema.errNote(src_loc, msg, "arrays are not allowed as a parameter type", .{});
|
|
}
|
|
try sema.explainWhyTypeIsNotExtern(msg, src_loc, ty.elemType2(zcu), .element);
|
|
},
|
|
.vector => try sema.explainWhyTypeIsNotExtern(msg, src_loc, ty.elemType2(zcu), .element),
|
|
.optional => try sema.errNote(src_loc, msg, "only pointer like optionals are extern compatible", .{}),
|
|
}
|
|
}
|
|
|
|
/// Returns true if `ty` is allowed in packed types.
|
|
/// Does not require `ty` to be resolved in any way, but may resolve whether it is comptime-only.
|
|
fn validatePackedType(sema: *Sema, ty: Type) !bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
return switch (ty.zigTypeTag(zcu)) {
|
|
.type,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.undefined,
|
|
.null,
|
|
.error_union,
|
|
.error_set,
|
|
.frame,
|
|
.noreturn,
|
|
.@"opaque",
|
|
.@"anyframe",
|
|
.@"fn",
|
|
.array,
|
|
=> false,
|
|
.optional => return ty.isPtrLikeOptional(zcu),
|
|
.void,
|
|
.bool,
|
|
.float,
|
|
.int,
|
|
.vector,
|
|
=> true,
|
|
.@"enum" => switch (zcu.intern_pool.loadEnumType(ty.toIntern()).tag_mode) {
|
|
.auto => false,
|
|
.explicit, .nonexhaustive => true,
|
|
},
|
|
.pointer => !ty.isSlice(zcu) and !try ty.comptimeOnlySema(pt),
|
|
.@"struct", .@"union" => ty.containerLayout(zcu) == .@"packed",
|
|
};
|
|
}
|
|
|
|
fn explainWhyTypeIsNotPacked(
|
|
sema: *Sema,
|
|
msg: *Zcu.ErrorMsg,
|
|
src_loc: LazySrcLoc,
|
|
ty: Type,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.void,
|
|
.bool,
|
|
.float,
|
|
.int,
|
|
.vector,
|
|
.@"enum",
|
|
=> return,
|
|
.type,
|
|
.comptime_float,
|
|
.comptime_int,
|
|
.enum_literal,
|
|
.undefined,
|
|
.null,
|
|
.frame,
|
|
.noreturn,
|
|
.@"opaque",
|
|
.error_union,
|
|
.error_set,
|
|
.@"anyframe",
|
|
.optional,
|
|
.array,
|
|
=> try sema.errNote(src_loc, msg, "type has no guaranteed in-memory representation", .{}),
|
|
.pointer => if (ty.isSlice(zcu)) {
|
|
try sema.errNote(src_loc, msg, "slices have no guaranteed in-memory representation", .{});
|
|
} else {
|
|
try sema.errNote(src_loc, msg, "comptime-only pointer has no guaranteed in-memory representation", .{});
|
|
try sema.explainWhyTypeIsComptime(msg, src_loc, ty);
|
|
},
|
|
.@"fn" => {
|
|
try sema.errNote(src_loc, msg, "type has no guaranteed in-memory representation", .{});
|
|
try sema.errNote(src_loc, msg, "use '*const ' to make a function pointer type", .{});
|
|
},
|
|
.@"struct" => try sema.errNote(src_loc, msg, "only packed structs layout are allowed in packed types", .{}),
|
|
.@"union" => try sema.errNote(src_loc, msg, "only packed unions layout are allowed in packed types", .{}),
|
|
}
|
|
}
|
|
|
|
/// Backends depend on panic decls being available when lowering safety-checked
|
|
/// instructions. This function ensures the panic function will be available to
|
|
/// be called during that time.
|
|
fn preparePanicId(sema: *Sema, src: LazySrcLoc, panic_id: Zcu.SimplePanicId) !void {
|
|
const zcu = sema.pt.zcu;
|
|
|
|
// If the backend doesn't support `.panic_fn`, it doesn't want us to lower the panic handlers.
|
|
// The backend will transform panics into traps instead.
|
|
if (!zcu.backendSupportsFeature(.panic_fn)) return;
|
|
|
|
const fn_index = try sema.getPanicIdFunc(src, panic_id);
|
|
const orig_fn_index = zcu.intern_pool.unwrapCoercedFunc(fn_index);
|
|
try sema.addReferenceEntry(null, src, .wrap(.{ .func = orig_fn_index }));
|
|
try zcu.ensureFuncBodyAnalysisQueued(orig_fn_index);
|
|
}
|
|
|
|
fn getPanicIdFunc(sema: *Sema, src: LazySrcLoc, panic_id: Zcu.SimplePanicId) !InternPool.Index {
|
|
const zcu = sema.pt.zcu;
|
|
try sema.ensureMemoizedStateResolved(src, .panic);
|
|
const panic_fn_index = zcu.builtin_decl_values.get(panic_id.toBuiltin());
|
|
switch (sema.owner.unwrap()) {
|
|
.@"comptime", .nav_ty, .nav_val, .type, .memoized_state => {},
|
|
.func => |owner_func| zcu.intern_pool.funcSetHasErrorTrace(owner_func, true),
|
|
}
|
|
return panic_fn_index;
|
|
}
|
|
|
|
fn addSafetyCheck(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
ok: Air.Inst.Ref,
|
|
panic_id: Zcu.SimplePanicId,
|
|
) !void {
|
|
const gpa = sema.gpa;
|
|
assert(!parent_block.isComptime());
|
|
|
|
var fail_block: Block = .{
|
|
.parent = parent_block,
|
|
.sema = sema,
|
|
.namespace = parent_block.namespace,
|
|
.instructions = .{},
|
|
.inlining = parent_block.inlining,
|
|
.comptime_reason = null,
|
|
.src_base_inst = parent_block.src_base_inst,
|
|
.type_name_ctx = parent_block.type_name_ctx,
|
|
};
|
|
|
|
defer fail_block.instructions.deinit(gpa);
|
|
|
|
try sema.safetyPanic(&fail_block, src, panic_id);
|
|
try sema.addSafetyCheckExtra(parent_block, ok, &fail_block);
|
|
}
|
|
|
|
fn addSafetyCheckExtra(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
ok: Air.Inst.Ref,
|
|
fail_block: *Block,
|
|
) !void {
|
|
const gpa = sema.gpa;
|
|
|
|
try parent_block.instructions.ensureUnusedCapacity(gpa, 1);
|
|
|
|
try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).@"struct".fields.len +
|
|
1 + // The main block only needs space for the cond_br.
|
|
@typeInfo(Air.CondBr).@"struct".fields.len +
|
|
1 + // The ok branch of the cond_br only needs space for the br.
|
|
fail_block.instructions.items.len);
|
|
|
|
try sema.air_instructions.ensureUnusedCapacity(gpa, 3);
|
|
const block_inst: Air.Inst.Index = @enumFromInt(sema.air_instructions.len);
|
|
const cond_br_inst: Air.Inst.Index = @enumFromInt(@intFromEnum(block_inst) + 1);
|
|
const br_inst: Air.Inst.Index = @enumFromInt(@intFromEnum(cond_br_inst) + 1);
|
|
sema.air_instructions.appendAssumeCapacity(.{
|
|
.tag = .block,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = .void_type,
|
|
.payload = sema.addExtraAssumeCapacity(Air.Block{
|
|
.body_len = 1,
|
|
}),
|
|
} },
|
|
});
|
|
sema.air_extra.appendAssumeCapacity(@intFromEnum(cond_br_inst));
|
|
|
|
sema.air_instructions.appendAssumeCapacity(.{
|
|
.tag = .cond_br,
|
|
.data = .{
|
|
.pl_op = .{
|
|
.operand = ok,
|
|
.payload = sema.addExtraAssumeCapacity(Air.CondBr{
|
|
.then_body_len = 1,
|
|
.else_body_len = @intCast(fail_block.instructions.items.len),
|
|
.branch_hints = .{
|
|
// Safety check failure branch is cold.
|
|
.true = .likely,
|
|
.false = .cold,
|
|
// Code coverage not wanted for panic branches.
|
|
.then_cov = .none,
|
|
.else_cov = .none,
|
|
},
|
|
}),
|
|
},
|
|
},
|
|
});
|
|
sema.air_extra.appendAssumeCapacity(@intFromEnum(br_inst));
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(fail_block.instructions.items));
|
|
|
|
sema.air_instructions.appendAssumeCapacity(.{
|
|
.tag = .br,
|
|
.data = .{ .br = .{
|
|
.block_inst = block_inst,
|
|
.operand = .void_value,
|
|
} },
|
|
});
|
|
|
|
parent_block.instructions.appendAssumeCapacity(block_inst);
|
|
}
|
|
|
|
fn addSafetyCheckUnwrapError(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
unwrap_err_tag: Air.Inst.Tag,
|
|
is_non_err_tag: Air.Inst.Tag,
|
|
) !void {
|
|
assert(!parent_block.isComptime());
|
|
const ok = try parent_block.addUnOp(is_non_err_tag, operand);
|
|
const gpa = sema.gpa;
|
|
|
|
var fail_block: Block = .{
|
|
.parent = parent_block,
|
|
.sema = sema,
|
|
.namespace = parent_block.namespace,
|
|
.instructions = .{},
|
|
.inlining = parent_block.inlining,
|
|
.comptime_reason = null,
|
|
.src_base_inst = parent_block.src_base_inst,
|
|
.type_name_ctx = parent_block.type_name_ctx,
|
|
};
|
|
|
|
defer fail_block.instructions.deinit(gpa);
|
|
|
|
const err = try fail_block.addTyOp(unwrap_err_tag, .anyerror, operand);
|
|
try safetyPanicUnwrapError(sema, &fail_block, src, err);
|
|
|
|
try sema.addSafetyCheckExtra(parent_block, ok, &fail_block);
|
|
}
|
|
|
|
fn safetyPanicUnwrapError(sema: *Sema, block: *Block, src: LazySrcLoc, err: Air.Inst.Ref) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (!zcu.backendSupportsFeature(.panic_fn)) {
|
|
_ = try block.addNoOp(.trap);
|
|
} else {
|
|
const panic_fn = try getBuiltin(sema, src, .@"panic.unwrapError");
|
|
try sema.callBuiltin(block, src, Air.internedToRef(panic_fn), .auto, &.{err}, .@"safety check");
|
|
}
|
|
}
|
|
|
|
fn addSafetyCheckIndexOob(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
index: Air.Inst.Ref,
|
|
len: Air.Inst.Ref,
|
|
cmp_op: Air.Inst.Tag,
|
|
) !void {
|
|
assert(!parent_block.isComptime());
|
|
const ok = try parent_block.addBinOp(cmp_op, index, len);
|
|
return addSafetyCheckCall(sema, parent_block, src, ok, .@"panic.outOfBounds", &.{ index, len });
|
|
}
|
|
|
|
fn addSafetyCheckInactiveUnionField(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
active_tag: Air.Inst.Ref,
|
|
wanted_tag: Air.Inst.Ref,
|
|
) !void {
|
|
assert(!parent_block.isComptime());
|
|
const ok = try parent_block.addBinOp(.cmp_eq, active_tag, wanted_tag);
|
|
return addSafetyCheckCall(sema, parent_block, src, ok, .@"panic.inactiveUnionField", &.{ active_tag, wanted_tag });
|
|
}
|
|
|
|
fn addSafetyCheckSentinelMismatch(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
maybe_sentinel: ?Value,
|
|
sentinel_ty: Type,
|
|
ptr: Air.Inst.Ref,
|
|
sentinel_index: Air.Inst.Ref,
|
|
) !void {
|
|
assert(!parent_block.isComptime());
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const expected_sentinel_val = maybe_sentinel orelse return;
|
|
const expected_sentinel = Air.internedToRef(expected_sentinel_val.toIntern());
|
|
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
const actual_sentinel = if (ptr_ty.isSlice(zcu))
|
|
try parent_block.addBinOp(.slice_elem_val, ptr, sentinel_index)
|
|
else blk: {
|
|
const elem_ptr_ty = try ptr_ty.elemPtrType(null, pt);
|
|
const sentinel_ptr = try parent_block.addPtrElemPtr(ptr, sentinel_index, elem_ptr_ty);
|
|
break :blk try parent_block.addTyOp(.load, sentinel_ty, sentinel_ptr);
|
|
};
|
|
|
|
const ok = if (sentinel_ty.zigTypeTag(zcu) == .vector) ok: {
|
|
const eql = try parent_block.addCmpVector(expected_sentinel, actual_sentinel, .eq);
|
|
break :ok try parent_block.addReduce(eql, .And);
|
|
} else ok: {
|
|
assert(sentinel_ty.isSelfComparable(zcu, true));
|
|
break :ok try parent_block.addBinOp(.cmp_eq, expected_sentinel, actual_sentinel);
|
|
};
|
|
|
|
return addSafetyCheckCall(sema, parent_block, src, ok, .@"panic.sentinelMismatch", &.{
|
|
expected_sentinel, actual_sentinel,
|
|
});
|
|
}
|
|
|
|
fn addSafetyCheckCall(
|
|
sema: *Sema,
|
|
parent_block: *Block,
|
|
src: LazySrcLoc,
|
|
ok: Air.Inst.Ref,
|
|
comptime func_decl: Zcu.BuiltinDecl,
|
|
args: []const Air.Inst.Ref,
|
|
) !void {
|
|
assert(!parent_block.isComptime());
|
|
const gpa = sema.gpa;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
var fail_block: Block = .{
|
|
.parent = parent_block,
|
|
.sema = sema,
|
|
.namespace = parent_block.namespace,
|
|
.instructions = .{},
|
|
.inlining = parent_block.inlining,
|
|
.comptime_reason = null,
|
|
.src_base_inst = parent_block.src_base_inst,
|
|
.type_name_ctx = parent_block.type_name_ctx,
|
|
};
|
|
|
|
defer fail_block.instructions.deinit(gpa);
|
|
|
|
if (!zcu.backendSupportsFeature(.panic_fn)) {
|
|
_ = try fail_block.addNoOp(.trap);
|
|
} else {
|
|
const panic_fn = try getBuiltin(sema, src, func_decl);
|
|
try sema.callBuiltin(&fail_block, src, Air.internedToRef(panic_fn), .auto, args, .@"safety check");
|
|
}
|
|
|
|
try sema.addSafetyCheckExtra(parent_block, ok, &fail_block);
|
|
}
|
|
|
|
/// This does not set `sema.branch_hint`.
|
|
fn safetyPanic(sema: *Sema, block: *Block, src: LazySrcLoc, panic_id: Zcu.SimplePanicId) CompileError!void {
|
|
if (!sema.pt.zcu.backendSupportsFeature(.panic_fn)) {
|
|
_ = try block.addNoOp(.trap);
|
|
} else {
|
|
const panic_fn = try sema.getPanicIdFunc(src, panic_id);
|
|
try sema.callBuiltin(block, src, Air.internedToRef(panic_fn), .auto, &.{}, .@"safety check");
|
|
}
|
|
}
|
|
|
|
fn emitBackwardBranch(sema: *Sema, block: *Block, src: LazySrcLoc) !void {
|
|
sema.branch_count += 1;
|
|
if (sema.branch_count > sema.branch_quota) {
|
|
const msg = try sema.errMsg(
|
|
src,
|
|
"evaluation exceeded {d} backwards branches",
|
|
.{sema.branch_quota},
|
|
);
|
|
try sema.errNote(
|
|
src,
|
|
msg,
|
|
"use @setEvalBranchQuota() to raise the branch limit from {d}",
|
|
.{sema.branch_quota},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
fn fieldPtrLoad(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
object_ptr: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const object_ptr_ty = sema.typeOf(object_ptr);
|
|
const pointee_ty = object_ptr_ty.childType(zcu);
|
|
if (try typeHasOnePossibleValue(sema, pointee_ty)) |opv| {
|
|
const object: Air.Inst.Ref = .fromValue(opv);
|
|
return fieldVal(sema, block, src, object, field_name, field_name_src);
|
|
}
|
|
|
|
if (try sema.resolveDefinedValue(block, src, object_ptr)) |object_ptr_val| {
|
|
if (try sema.pointerDeref(block, src, object_ptr_val, object_ptr_ty)) |object_val| {
|
|
const object: Air.Inst.Ref = .fromValue(object_val);
|
|
return fieldVal(sema, block, src, object, field_name, field_name_src);
|
|
}
|
|
}
|
|
const field_ptr = try sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, false);
|
|
return analyzeLoad(sema, block, src, field_ptr, field_name_src);
|
|
}
|
|
|
|
fn fieldVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
object: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
// When editing this function, note that there is corresponding logic to be edited
|
|
// in `fieldPtr`. This function takes a value and returns a value.
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const object_src = src; // TODO better source location
|
|
const object_ty = sema.typeOf(object);
|
|
|
|
// Zig allows dereferencing a single pointer during field lookup. Note that
|
|
// we don't actually need to generate the dereference some field lookups, like the
|
|
// length of arrays and other comptime operations.
|
|
const is_pointer_to = object_ty.isSinglePointer(zcu);
|
|
|
|
const inner_ty = if (is_pointer_to)
|
|
object_ty.childType(zcu)
|
|
else
|
|
object_ty;
|
|
|
|
switch (inner_ty.zigTypeTag(zcu)) {
|
|
.array => {
|
|
if (field_name.eqlSlice("len", ip)) {
|
|
return Air.internedToRef((try pt.intValue(.usize, inner_ty.arrayLen(zcu))).toIntern());
|
|
} else if (field_name.eqlSlice("ptr", ip) and is_pointer_to) {
|
|
const ptr_info = object_ty.ptrInfo(zcu);
|
|
const result_ty = try pt.ptrTypeSema(.{
|
|
.child = Type.fromInterned(ptr_info.child).childType(zcu).toIntern(),
|
|
.sentinel = if (inner_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
.flags = .{
|
|
.size = .many,
|
|
.alignment = ptr_info.flags.alignment,
|
|
.is_const = ptr_info.flags.is_const,
|
|
.is_volatile = ptr_info.flags.is_volatile,
|
|
.is_allowzero = ptr_info.flags.is_allowzero,
|
|
.address_space = ptr_info.flags.address_space,
|
|
.vector_index = ptr_info.flags.vector_index,
|
|
},
|
|
.packed_offset = ptr_info.packed_offset,
|
|
});
|
|
return sema.coerce(block, result_ty, object, src);
|
|
} else {
|
|
return sema.fail(
|
|
block,
|
|
field_name_src,
|
|
"no member named '{f}' in '{f}'",
|
|
.{ field_name.fmt(ip), object_ty.fmt(pt) },
|
|
);
|
|
}
|
|
},
|
|
.pointer => {
|
|
const ptr_info = inner_ty.ptrInfo(zcu);
|
|
if (ptr_info.flags.size == .slice) {
|
|
if (field_name.eqlSlice("ptr", ip)) {
|
|
const slice = if (is_pointer_to)
|
|
try sema.analyzeLoad(block, src, object, object_src)
|
|
else
|
|
object;
|
|
return sema.analyzeSlicePtr(block, object_src, slice, inner_ty);
|
|
} else if (field_name.eqlSlice("len", ip)) {
|
|
const slice = if (is_pointer_to)
|
|
try sema.analyzeLoad(block, src, object, object_src)
|
|
else
|
|
object;
|
|
return sema.analyzeSliceLen(block, src, slice);
|
|
} else {
|
|
return sema.fail(
|
|
block,
|
|
field_name_src,
|
|
"no member named '{f}' in '{f}'",
|
|
.{ field_name.fmt(ip), object_ty.fmt(pt) },
|
|
);
|
|
}
|
|
}
|
|
},
|
|
.type => {
|
|
const dereffed_type = if (is_pointer_to)
|
|
try sema.analyzeLoad(block, src, object, object_src)
|
|
else
|
|
object;
|
|
|
|
const val = (try sema.resolveDefinedValue(block, object_src, dereffed_type)).?;
|
|
const child_type = val.toType();
|
|
|
|
switch (child_type.zigTypeTag(zcu)) {
|
|
.error_set => {
|
|
switch (ip.indexToKey(child_type.toIntern())) {
|
|
.error_set_type => |error_set_type| blk: {
|
|
if (error_set_type.nameIndex(ip, field_name) != null) break :blk;
|
|
return sema.fail(block, src, "no error named '{f}' in '{f}'", .{
|
|
field_name.fmt(ip), child_type.fmt(pt),
|
|
});
|
|
},
|
|
.inferred_error_set_type => {
|
|
return sema.fail(block, src, "TODO handle inferred error sets here", .{});
|
|
},
|
|
.simple_type => |t| {
|
|
assert(t == .anyerror);
|
|
_ = try pt.getErrorValue(field_name);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
|
|
const error_set_type = if (!child_type.isAnyError(zcu))
|
|
child_type
|
|
else
|
|
try pt.singleErrorSetType(field_name);
|
|
return Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = error_set_type.toIntern(),
|
|
.name = field_name,
|
|
} })));
|
|
},
|
|
.@"union" => {
|
|
if (try sema.namespaceLookupVal(block, src, child_type.getNamespaceIndex(zcu), field_name)) |inst| {
|
|
return inst;
|
|
}
|
|
try child_type.resolveFields(pt);
|
|
if (child_type.unionTagType(zcu)) |enum_ty| {
|
|
if (enum_ty.enumFieldIndex(field_name, zcu)) |field_index_usize| {
|
|
const field_index: u32 = @intCast(field_index_usize);
|
|
return Air.internedToRef((try pt.enumValueFieldIndex(enum_ty, field_index)).toIntern());
|
|
}
|
|
}
|
|
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
|
|
},
|
|
.@"enum" => {
|
|
if (try sema.namespaceLookupVal(block, src, child_type.getNamespaceIndex(zcu), field_name)) |inst| {
|
|
return inst;
|
|
}
|
|
const field_index_usize = child_type.enumFieldIndex(field_name, zcu) orelse
|
|
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
|
|
const field_index: u32 = @intCast(field_index_usize);
|
|
const enum_val = try pt.enumValueFieldIndex(child_type, field_index);
|
|
return Air.internedToRef(enum_val.toIntern());
|
|
},
|
|
.@"struct", .@"opaque" => {
|
|
if (!child_type.isTuple(zcu) and child_type.toIntern() != .anyopaque_type) {
|
|
if (try sema.namespaceLookupVal(block, src, child_type.getNamespaceIndex(zcu), field_name)) |inst| {
|
|
return inst;
|
|
}
|
|
}
|
|
return sema.failWithBadMemberAccess(block, child_type, src, field_name);
|
|
},
|
|
else => return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "type '{f}' has no members", .{child_type.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (child_type.isSlice(zcu)) try sema.errNote(src, msg, "slice values have 'len' and 'ptr' members", .{});
|
|
if (child_type.zigTypeTag(zcu) == .array) try sema.errNote(src, msg, "array values have 'len' member", .{});
|
|
break :msg msg;
|
|
}),
|
|
}
|
|
},
|
|
.@"struct" => if (is_pointer_to) {
|
|
// Avoid loading the entire struct by fetching a pointer and loading that
|
|
const field_ptr = try sema.structFieldPtr(block, src, object, field_name, field_name_src, inner_ty, false);
|
|
return sema.analyzeLoad(block, src, field_ptr, object_src);
|
|
} else {
|
|
return sema.structFieldVal(block, object, field_name, field_name_src, inner_ty);
|
|
},
|
|
.@"union" => if (is_pointer_to) {
|
|
// Avoid loading the entire union by fetching a pointer and loading that
|
|
const field_ptr = try sema.unionFieldPtr(block, src, object, field_name, field_name_src, inner_ty, false);
|
|
return sema.analyzeLoad(block, src, field_ptr, object_src);
|
|
} else {
|
|
return sema.unionFieldVal(block, src, object, field_name, field_name_src, inner_ty);
|
|
},
|
|
else => {},
|
|
}
|
|
return sema.failWithInvalidFieldAccess(block, src, object_ty, field_name);
|
|
}
|
|
|
|
fn fieldPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
object_ptr: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
initializing: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
// When editing this function, note that there is corresponding logic to be edited
|
|
// in `fieldVal`. This function takes a pointer and returns a pointer.
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const object_ptr_src = src; // TODO better source location
|
|
const object_ptr_ty = sema.typeOf(object_ptr);
|
|
const object_ty = switch (object_ptr_ty.zigTypeTag(zcu)) {
|
|
.pointer => object_ptr_ty.childType(zcu),
|
|
else => return sema.fail(block, object_ptr_src, "expected pointer, found '{f}'", .{object_ptr_ty.fmt(pt)}),
|
|
};
|
|
|
|
// Zig allows dereferencing a single pointer during field lookup. Note that
|
|
// we don't actually need to generate the dereference some field lookups, like the
|
|
// length of arrays and other comptime operations.
|
|
const is_pointer_to = object_ty.isSinglePointer(zcu);
|
|
|
|
const inner_ty = if (is_pointer_to)
|
|
object_ty.childType(zcu)
|
|
else
|
|
object_ty;
|
|
|
|
switch (inner_ty.zigTypeTag(zcu)) {
|
|
.array => {
|
|
if (field_name.eqlSlice("len", ip)) {
|
|
const int_val = try pt.intValue(.usize, inner_ty.arrayLen(zcu));
|
|
return uavRef(sema, int_val.toIntern());
|
|
} else if (field_name.eqlSlice("ptr", ip) and is_pointer_to) {
|
|
const ptr_info = object_ty.ptrInfo(zcu);
|
|
const new_ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = Type.fromInterned(ptr_info.child).childType(zcu).toIntern(),
|
|
.sentinel = if (inner_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
.flags = .{
|
|
.size = .many,
|
|
.alignment = ptr_info.flags.alignment,
|
|
.is_const = ptr_info.flags.is_const,
|
|
.is_volatile = ptr_info.flags.is_volatile,
|
|
.is_allowzero = ptr_info.flags.is_allowzero,
|
|
.address_space = ptr_info.flags.address_space,
|
|
.vector_index = ptr_info.flags.vector_index,
|
|
},
|
|
.packed_offset = ptr_info.packed_offset,
|
|
});
|
|
const ptr_ptr_info = object_ptr_ty.ptrInfo(zcu);
|
|
const result_ty = try pt.ptrTypeSema(.{
|
|
.child = new_ptr_ty.toIntern(),
|
|
.sentinel = if (object_ptr_ty.sentinel(zcu)) |s| s.toIntern() else .none,
|
|
.flags = .{
|
|
.alignment = ptr_ptr_info.flags.alignment,
|
|
.is_const = ptr_ptr_info.flags.is_const,
|
|
.is_volatile = ptr_ptr_info.flags.is_volatile,
|
|
.is_allowzero = ptr_ptr_info.flags.is_allowzero,
|
|
.address_space = ptr_ptr_info.flags.address_space,
|
|
.vector_index = ptr_ptr_info.flags.vector_index,
|
|
},
|
|
.packed_offset = ptr_ptr_info.packed_offset,
|
|
});
|
|
return sema.bitCast(block, result_ty, object_ptr, src, null);
|
|
} else {
|
|
return sema.fail(
|
|
block,
|
|
field_name_src,
|
|
"no member named '{f}' in '{f}'",
|
|
.{ field_name.fmt(ip), object_ty.fmt(pt) },
|
|
);
|
|
}
|
|
},
|
|
.pointer => if (inner_ty.isSlice(zcu)) {
|
|
const inner_ptr = if (is_pointer_to)
|
|
try sema.analyzeLoad(block, src, object_ptr, object_ptr_src)
|
|
else
|
|
object_ptr;
|
|
|
|
const attr_ptr_ty = if (is_pointer_to) object_ty else object_ptr_ty;
|
|
|
|
if (field_name.eqlSlice("ptr", ip)) {
|
|
const slice_ptr_ty = inner_ty.slicePtrFieldType(zcu);
|
|
|
|
const result_ty = try pt.ptrTypeSema(.{
|
|
.child = slice_ptr_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = !attr_ptr_ty.ptrIsMutable(zcu),
|
|
.is_volatile = attr_ptr_ty.isVolatilePtr(zcu),
|
|
.address_space = attr_ptr_ty.ptrAddressSpace(zcu),
|
|
},
|
|
});
|
|
|
|
if (try sema.resolveDefinedValue(block, object_ptr_src, inner_ptr)) |val| {
|
|
return Air.internedToRef((try val.ptrField(Value.slice_ptr_index, pt)).toIntern());
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
|
|
const field_ptr = try block.addTyOp(.ptr_slice_ptr_ptr, result_ty, inner_ptr);
|
|
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
|
|
return field_ptr;
|
|
} else if (field_name.eqlSlice("len", ip)) {
|
|
const result_ty = try pt.ptrTypeSema(.{
|
|
.child = .usize_type,
|
|
.flags = .{
|
|
.is_const = !attr_ptr_ty.ptrIsMutable(zcu),
|
|
.is_volatile = attr_ptr_ty.isVolatilePtr(zcu),
|
|
.address_space = attr_ptr_ty.ptrAddressSpace(zcu),
|
|
},
|
|
});
|
|
|
|
if (try sema.resolveDefinedValue(block, object_ptr_src, inner_ptr)) |val| {
|
|
return Air.internedToRef((try val.ptrField(Value.slice_len_index, pt)).toIntern());
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
|
|
const field_ptr = try block.addTyOp(.ptr_slice_len_ptr, result_ty, inner_ptr);
|
|
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
|
|
return field_ptr;
|
|
} else {
|
|
return sema.fail(
|
|
block,
|
|
field_name_src,
|
|
"no member named '{f}' in '{f}'",
|
|
.{ field_name.fmt(ip), object_ty.fmt(pt) },
|
|
);
|
|
}
|
|
},
|
|
.type => {
|
|
_ = try sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, object_ptr, undefined);
|
|
const result = try sema.analyzeLoad(block, src, object_ptr, object_ptr_src);
|
|
const inner = if (is_pointer_to)
|
|
try sema.analyzeLoad(block, src, result, object_ptr_src)
|
|
else
|
|
result;
|
|
|
|
const val = (sema.resolveDefinedValue(block, src, inner) catch unreachable).?;
|
|
const child_type = val.toType();
|
|
|
|
switch (child_type.zigTypeTag(zcu)) {
|
|
.error_set => {
|
|
switch (ip.indexToKey(child_type.toIntern())) {
|
|
.error_set_type => |error_set_type| blk: {
|
|
if (error_set_type.nameIndex(ip, field_name) != null) {
|
|
break :blk;
|
|
}
|
|
return sema.fail(block, src, "no error named '{f}' in '{f}'", .{
|
|
field_name.fmt(ip), child_type.fmt(pt),
|
|
});
|
|
},
|
|
.inferred_error_set_type => {
|
|
return sema.fail(block, src, "TODO handle inferred error sets here", .{});
|
|
},
|
|
.simple_type => |t| {
|
|
assert(t == .anyerror);
|
|
_ = try pt.getErrorValue(field_name);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
|
|
const error_set_type = if (!child_type.isAnyError(zcu))
|
|
child_type
|
|
else
|
|
try pt.singleErrorSetType(field_name);
|
|
return uavRef(sema, try pt.intern(.{ .err = .{
|
|
.ty = error_set_type.toIntern(),
|
|
.name = field_name,
|
|
} }));
|
|
},
|
|
.@"union" => {
|
|
if (try sema.namespaceLookupRef(block, src, child_type.getNamespaceIndex(zcu), field_name)) |inst| {
|
|
return inst;
|
|
}
|
|
try child_type.resolveFields(pt);
|
|
if (child_type.unionTagType(zcu)) |enum_ty| {
|
|
if (enum_ty.enumFieldIndex(field_name, zcu)) |field_index| {
|
|
const field_index_u32: u32 = @intCast(field_index);
|
|
const idx_val = try pt.enumValueFieldIndex(enum_ty, field_index_u32);
|
|
return uavRef(sema, idx_val.toIntern());
|
|
}
|
|
}
|
|
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
|
|
},
|
|
.@"enum" => {
|
|
if (try sema.namespaceLookupRef(block, src, child_type.getNamespaceIndex(zcu), field_name)) |inst| {
|
|
return inst;
|
|
}
|
|
const field_index = child_type.enumFieldIndex(field_name, zcu) orelse {
|
|
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
|
|
};
|
|
const field_index_u32: u32 = @intCast(field_index);
|
|
const idx_val = try pt.enumValueFieldIndex(child_type, field_index_u32);
|
|
return uavRef(sema, idx_val.toIntern());
|
|
},
|
|
.@"struct", .@"opaque" => {
|
|
if (try sema.namespaceLookupRef(block, src, child_type.getNamespaceIndex(zcu), field_name)) |inst| {
|
|
return inst;
|
|
}
|
|
return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name);
|
|
},
|
|
else => return sema.fail(block, src, "type '{f}' has no members", .{child_type.fmt(pt)}),
|
|
}
|
|
},
|
|
.@"struct" => {
|
|
const inner_ptr = if (is_pointer_to)
|
|
try sema.analyzeLoad(block, src, object_ptr, object_ptr_src)
|
|
else
|
|
object_ptr;
|
|
const field_ptr = try sema.structFieldPtr(block, src, inner_ptr, field_name, field_name_src, inner_ty, initializing);
|
|
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
|
|
return field_ptr;
|
|
},
|
|
.@"union" => {
|
|
const inner_ptr = if (is_pointer_to)
|
|
try sema.analyzeLoad(block, src, object_ptr, object_ptr_src)
|
|
else
|
|
object_ptr;
|
|
const field_ptr = try sema.unionFieldPtr(block, src, inner_ptr, field_name, field_name_src, inner_ty, initializing);
|
|
try sema.checkKnownAllocPtr(block, inner_ptr, field_ptr);
|
|
return field_ptr;
|
|
},
|
|
else => {},
|
|
}
|
|
return sema.failWithInvalidFieldAccess(block, src, object_ty, field_name);
|
|
}
|
|
|
|
const ResolvedFieldCallee = union(enum) {
|
|
/// The LHS of the call was an actual field with this value.
|
|
direct: Air.Inst.Ref,
|
|
/// This is a method call, with the function and first argument given.
|
|
method: struct {
|
|
func_inst: Air.Inst.Ref,
|
|
arg0_inst: Air.Inst.Ref,
|
|
},
|
|
};
|
|
|
|
fn fieldCallBind(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
raw_ptr: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
) CompileError!ResolvedFieldCallee {
|
|
// When editing this function, note that there is corresponding logic to be edited
|
|
// in `fieldVal`. This function takes a pointer and returns a pointer.
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const raw_ptr_src = src; // TODO better source location
|
|
const raw_ptr_ty = sema.typeOf(raw_ptr);
|
|
const inner_ty = if (raw_ptr_ty.zigTypeTag(zcu) == .pointer and (raw_ptr_ty.ptrSize(zcu) == .one or raw_ptr_ty.ptrSize(zcu) == .c))
|
|
raw_ptr_ty.childType(zcu)
|
|
else
|
|
return sema.fail(block, raw_ptr_src, "expected single pointer, found '{f}'", .{raw_ptr_ty.fmt(pt)});
|
|
|
|
// Optionally dereference a second pointer to get the concrete type.
|
|
const is_double_ptr = inner_ty.zigTypeTag(zcu) == .pointer and inner_ty.ptrSize(zcu) == .one;
|
|
const concrete_ty = if (is_double_ptr) inner_ty.childType(zcu) else inner_ty;
|
|
const ptr_ty = if (is_double_ptr) inner_ty else raw_ptr_ty;
|
|
const object_ptr = if (is_double_ptr)
|
|
try sema.analyzeLoad(block, src, raw_ptr, src)
|
|
else
|
|
raw_ptr;
|
|
|
|
find_field: {
|
|
switch (concrete_ty.zigTypeTag(zcu)) {
|
|
.@"struct" => {
|
|
try concrete_ty.resolveFields(pt);
|
|
if (zcu.typeToStruct(concrete_ty)) |struct_type| {
|
|
const field_index = struct_type.nameIndex(ip, field_name) orelse
|
|
break :find_field;
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]);
|
|
|
|
return sema.finishFieldCallBind(block, src, ptr_ty, field_ty, field_index, object_ptr);
|
|
} else if (concrete_ty.isTuple(zcu)) {
|
|
if (field_name.eqlSlice("len", ip)) {
|
|
return .{ .direct = try pt.intRef(.usize, concrete_ty.structFieldCount(zcu)) };
|
|
}
|
|
if (field_name.toUnsigned(ip)) |field_index| {
|
|
if (field_index >= concrete_ty.structFieldCount(zcu)) break :find_field;
|
|
return sema.finishFieldCallBind(block, src, ptr_ty, concrete_ty.fieldType(field_index, zcu), field_index, object_ptr);
|
|
}
|
|
} else {
|
|
const max = concrete_ty.structFieldCount(zcu);
|
|
for (0..max) |i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
if (field_name == concrete_ty.structFieldName(i, zcu).unwrap().?) {
|
|
return sema.finishFieldCallBind(block, src, ptr_ty, concrete_ty.fieldType(i, zcu), i, object_ptr);
|
|
}
|
|
}
|
|
}
|
|
},
|
|
.@"union" => {
|
|
try concrete_ty.resolveFields(pt);
|
|
const union_obj = zcu.typeToUnion(concrete_ty).?;
|
|
_ = union_obj.loadTagType(ip).nameIndex(ip, field_name) orelse break :find_field;
|
|
const field_ptr = try unionFieldPtr(sema, block, src, object_ptr, field_name, field_name_src, concrete_ty, false);
|
|
return .{ .direct = try sema.analyzeLoad(block, src, field_ptr, src) };
|
|
},
|
|
.type => {
|
|
const namespace = try sema.analyzeLoad(block, src, object_ptr, src);
|
|
return .{ .direct = try sema.fieldVal(block, src, namespace, field_name, field_name_src) };
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
// If we get here, we need to look for a decl in the struct type instead.
|
|
const found_nav = found_nav: {
|
|
const namespace = concrete_ty.getNamespace(zcu).unwrap() orelse
|
|
break :found_nav null;
|
|
const nav_index = try sema.namespaceLookup(block, src, namespace, field_name) orelse
|
|
break :found_nav null;
|
|
|
|
const decl_val = try sema.analyzeNavVal(block, src, nav_index);
|
|
const decl_type = sema.typeOf(decl_val);
|
|
if (zcu.typeToFunc(decl_type)) |func_type| f: {
|
|
if (func_type.param_types.len == 0) break :f;
|
|
|
|
const first_param_type: Type = .fromInterned(func_type.param_types.get(ip)[0]);
|
|
if (first_param_type.isGenericPoison() or
|
|
(first_param_type.zigTypeTag(zcu) == .pointer and
|
|
(first_param_type.ptrSize(zcu) == .one or
|
|
first_param_type.ptrSize(zcu) == .c) and
|
|
first_param_type.childType(zcu).eql(concrete_ty, zcu)))
|
|
{
|
|
// Note that if the param type is generic poison, we know that it must
|
|
// specifically be `anytype` since it's the first parameter, meaning we
|
|
// can safely assume it can be a pointer.
|
|
// TODO: bound fn calls on rvalues should probably
|
|
// generate a by-value argument somehow.
|
|
return .{ .method = .{
|
|
.func_inst = decl_val,
|
|
.arg0_inst = object_ptr,
|
|
} };
|
|
} else if (first_param_type.eql(concrete_ty, zcu)) {
|
|
const deref = try sema.analyzeLoad(block, src, object_ptr, src);
|
|
return .{ .method = .{
|
|
.func_inst = decl_val,
|
|
.arg0_inst = deref,
|
|
} };
|
|
} else if (first_param_type.zigTypeTag(zcu) == .optional) {
|
|
const child = first_param_type.optionalChild(zcu);
|
|
if (child.eql(concrete_ty, zcu)) {
|
|
const deref = try sema.analyzeLoad(block, src, object_ptr, src);
|
|
return .{ .method = .{
|
|
.func_inst = decl_val,
|
|
.arg0_inst = deref,
|
|
} };
|
|
} else if (child.zigTypeTag(zcu) == .pointer and
|
|
child.ptrSize(zcu) == .one and
|
|
child.childType(zcu).eql(concrete_ty, zcu))
|
|
{
|
|
return .{ .method = .{
|
|
.func_inst = decl_val,
|
|
.arg0_inst = object_ptr,
|
|
} };
|
|
}
|
|
} else if (first_param_type.zigTypeTag(zcu) == .error_union and
|
|
first_param_type.errorUnionPayload(zcu).eql(concrete_ty, zcu))
|
|
{
|
|
const deref = try sema.analyzeLoad(block, src, object_ptr, src);
|
|
return .{ .method = .{
|
|
.func_inst = decl_val,
|
|
.arg0_inst = deref,
|
|
} };
|
|
}
|
|
}
|
|
break :found_nav nav_index;
|
|
};
|
|
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "no field or member function named '{f}' in '{f}'", .{
|
|
field_name.fmt(ip),
|
|
concrete_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.addDeclaredHereNote(msg, concrete_ty);
|
|
if (found_nav) |nav_index| {
|
|
try sema.errNote(
|
|
zcu.navSrcLoc(nav_index),
|
|
msg,
|
|
"'{f}' is not a member function",
|
|
.{field_name.fmt(ip)},
|
|
);
|
|
}
|
|
if (concrete_ty.zigTypeTag(zcu) == .error_union) {
|
|
try sema.errNote(src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
}
|
|
if (is_double_ptr) {
|
|
try sema.errNote(src, msg, "method invocation only supports up to one level of implicit pointer dereferencing", .{});
|
|
try sema.errNote(src, msg, "use '.*' to dereference pointer", .{});
|
|
}
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn finishFieldCallBind(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ptr_ty: Type,
|
|
field_ty: Type,
|
|
field_index: u32,
|
|
object_ptr: Air.Inst.Ref,
|
|
) CompileError!ResolvedFieldCallee {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ptr_field_ty = try pt.ptrTypeSema(.{
|
|
.child = field_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = !ptr_ty.ptrIsMutable(zcu),
|
|
.address_space = ptr_ty.ptrAddressSpace(zcu),
|
|
},
|
|
});
|
|
|
|
const container_ty = ptr_ty.childType(zcu);
|
|
if (container_ty.zigTypeTag(zcu) == .@"struct") {
|
|
if (container_ty.structFieldIsComptime(field_index, zcu)) {
|
|
try container_ty.resolveStructFieldInits(pt);
|
|
const default_val = (try container_ty.structFieldValueComptime(pt, field_index)).?;
|
|
return .{ .direct = Air.internedToRef(default_val.toIntern()) };
|
|
}
|
|
}
|
|
|
|
if (try sema.resolveDefinedValue(block, src, object_ptr)) |struct_ptr_val| {
|
|
const ptr_val = try struct_ptr_val.ptrField(field_index, pt);
|
|
const pointer = Air.internedToRef(ptr_val.toIntern());
|
|
return .{ .direct = try sema.analyzeLoad(block, src, pointer, src) };
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
const ptr_inst = try block.addStructFieldPtr(object_ptr, field_index, ptr_field_ty);
|
|
return .{ .direct = try sema.analyzeLoad(block, src, ptr_inst, src) };
|
|
}
|
|
|
|
fn namespaceLookup(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
namespace: InternPool.NamespaceIndex,
|
|
decl_name: InternPool.NullTerminatedString,
|
|
) CompileError!?InternPool.Nav.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
if (try sema.lookupInNamespace(block, namespace, decl_name)) |lookup| {
|
|
if (!lookup.accessible) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "'{f}' is not marked 'pub'", .{
|
|
decl_name.fmt(&zcu.intern_pool),
|
|
});
|
|
errdefer msg.destroy(gpa);
|
|
try sema.errNote(zcu.navSrcLoc(lookup.nav), msg, "declared here", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
return lookup.nav;
|
|
}
|
|
return null;
|
|
}
|
|
|
|
fn namespaceLookupRef(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
namespace: InternPool.NamespaceIndex,
|
|
decl_name: InternPool.NullTerminatedString,
|
|
) CompileError!?Air.Inst.Ref {
|
|
const nav = try sema.namespaceLookup(block, src, namespace, decl_name) orelse return null;
|
|
return try sema.analyzeNavRef(block, src, nav);
|
|
}
|
|
|
|
fn namespaceLookupVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
namespace: InternPool.NamespaceIndex,
|
|
decl_name: InternPool.NullTerminatedString,
|
|
) CompileError!?Air.Inst.Ref {
|
|
const nav = try sema.namespaceLookup(block, src, namespace, decl_name) orelse return null;
|
|
return try sema.analyzeNavVal(block, src, nav);
|
|
}
|
|
|
|
fn structFieldPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
struct_ptr: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
struct_ty: Type,
|
|
initializing: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
assert(struct_ty.zigTypeTag(zcu) == .@"struct");
|
|
|
|
try struct_ty.resolveFields(pt);
|
|
try struct_ty.resolveLayout(pt);
|
|
|
|
if (struct_ty.isTuple(zcu)) {
|
|
if (field_name.eqlSlice("len", ip)) {
|
|
const len_inst = try pt.intRef(.usize, struct_ty.structFieldCount(zcu));
|
|
return sema.analyzeRef(block, src, len_inst);
|
|
}
|
|
const field_index = try sema.tupleFieldIndex(block, struct_ty, field_name, field_name_src);
|
|
return sema.tupleFieldPtr(block, src, struct_ptr, field_name_src, field_index, initializing);
|
|
}
|
|
|
|
const struct_type = zcu.typeToStruct(struct_ty).?;
|
|
|
|
const field_index = struct_type.nameIndex(ip, field_name) orelse
|
|
return sema.failWithBadStructFieldAccess(block, struct_ty, struct_type, field_name_src, field_name);
|
|
|
|
return sema.structFieldPtrByIndex(block, src, struct_ptr, field_index, struct_ty);
|
|
}
|
|
|
|
fn structFieldPtrByIndex(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
struct_ptr: Air.Inst.Ref,
|
|
field_index: u32,
|
|
struct_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const struct_type = zcu.typeToStruct(struct_ty).?;
|
|
const field_is_comptime = struct_type.fieldIsComptime(ip, field_index);
|
|
|
|
// Comptime fields are handled later
|
|
if (!field_is_comptime) {
|
|
if (try sema.resolveDefinedValue(block, src, struct_ptr)) |struct_ptr_val| {
|
|
const val = try struct_ptr_val.ptrField(field_index, pt);
|
|
return Air.internedToRef(val.toIntern());
|
|
}
|
|
}
|
|
|
|
const field_ty = struct_type.field_types.get(ip)[field_index];
|
|
const struct_ptr_ty = sema.typeOf(struct_ptr);
|
|
const struct_ptr_ty_info = struct_ptr_ty.ptrInfo(zcu);
|
|
|
|
var ptr_ty_data: InternPool.Key.PtrType = .{
|
|
.child = field_ty,
|
|
.flags = .{
|
|
.is_const = struct_ptr_ty_info.flags.is_const,
|
|
.is_volatile = struct_ptr_ty_info.flags.is_volatile,
|
|
.address_space = struct_ptr_ty_info.flags.address_space,
|
|
},
|
|
};
|
|
|
|
const parent_align = if (struct_ptr_ty_info.flags.alignment != .none)
|
|
struct_ptr_ty_info.flags.alignment
|
|
else
|
|
try Type.fromInterned(struct_ptr_ty_info.child).abiAlignmentSema(pt);
|
|
|
|
if (struct_type.layout == .@"packed") {
|
|
assert(!field_is_comptime);
|
|
const packed_offset = struct_ty.packedStructFieldPtrInfo(struct_ptr_ty, field_index, pt);
|
|
ptr_ty_data.flags.alignment = parent_align;
|
|
ptr_ty_data.packed_offset = packed_offset;
|
|
} else if (struct_type.layout == .@"extern") {
|
|
assert(!field_is_comptime);
|
|
// For extern structs, field alignment might be bigger than type's
|
|
// natural alignment. Eg, in `extern struct { x: u32, y: u16 }` the
|
|
// second field is aligned as u32.
|
|
const field_offset = struct_ty.structFieldOffset(field_index, zcu);
|
|
ptr_ty_data.flags.alignment = if (parent_align == .none)
|
|
.none
|
|
else
|
|
@enumFromInt(@min(@intFromEnum(parent_align), @ctz(field_offset)));
|
|
} else {
|
|
// Our alignment is capped at the field alignment.
|
|
const field_align = try Type.fromInterned(field_ty).structFieldAlignmentSema(
|
|
struct_type.fieldAlign(ip, field_index),
|
|
struct_type.layout,
|
|
pt,
|
|
);
|
|
ptr_ty_data.flags.alignment = if (struct_ptr_ty_info.flags.alignment == .none)
|
|
field_align
|
|
else
|
|
field_align.min(parent_align);
|
|
}
|
|
|
|
const ptr_field_ty = try pt.ptrTypeSema(ptr_ty_data);
|
|
|
|
if (field_is_comptime) {
|
|
try struct_ty.resolveStructFieldInits(pt);
|
|
const val = try pt.intern(.{ .ptr = .{
|
|
.ty = ptr_field_ty.toIntern(),
|
|
.base_addr = .{ .comptime_field = struct_type.field_inits.get(ip)[field_index] },
|
|
.byte_offset = 0,
|
|
} });
|
|
return Air.internedToRef(val);
|
|
}
|
|
|
|
return block.addStructFieldPtr(struct_ptr, field_index, ptr_field_ty);
|
|
}
|
|
|
|
fn structFieldVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
struct_byval: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
struct_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
assert(struct_ty.zigTypeTag(zcu) == .@"struct");
|
|
|
|
try struct_ty.resolveFields(pt);
|
|
|
|
switch (ip.indexToKey(struct_ty.toIntern())) {
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(struct_ty.toIntern());
|
|
|
|
const field_index = struct_type.nameIndex(ip, field_name) orelse
|
|
return sema.failWithBadStructFieldAccess(block, struct_ty, struct_type, field_name_src, field_name);
|
|
if (struct_type.fieldIsComptime(ip, field_index)) {
|
|
try struct_ty.resolveStructFieldInits(pt);
|
|
return Air.internedToRef(struct_type.field_inits.get(ip)[field_index]);
|
|
}
|
|
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]);
|
|
if (try sema.typeHasOnePossibleValue(field_ty)) |field_val|
|
|
return Air.internedToRef(field_val.toIntern());
|
|
|
|
if (try sema.resolveValue(struct_byval)) |struct_val| {
|
|
if (struct_val.isUndef(zcu)) return pt.undefRef(field_ty);
|
|
if ((try sema.typeHasOnePossibleValue(field_ty))) |opv| {
|
|
return Air.internedToRef(opv.toIntern());
|
|
}
|
|
return Air.internedToRef((try struct_val.fieldValue(pt, field_index)).toIntern());
|
|
}
|
|
|
|
try field_ty.resolveLayout(pt);
|
|
return block.addStructFieldVal(struct_byval, field_index, field_ty);
|
|
},
|
|
.tuple_type => {
|
|
return sema.tupleFieldVal(block, struct_byval, field_name, field_name_src, struct_ty);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn tupleFieldVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
tuple_byval: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
tuple_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (field_name.eqlSlice("len", &zcu.intern_pool)) {
|
|
return pt.intRef(.usize, tuple_ty.structFieldCount(zcu));
|
|
}
|
|
const field_index = try sema.tupleFieldIndex(block, tuple_ty, field_name, field_name_src);
|
|
return sema.tupleFieldValByIndex(block, tuple_byval, field_index, tuple_ty);
|
|
}
|
|
|
|
/// Asserts that `field_name` is not "len".
|
|
fn tupleFieldIndex(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
tuple_ty: Type,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
) CompileError!u32 {
|
|
const pt = sema.pt;
|
|
const ip = &pt.zcu.intern_pool;
|
|
assert(!field_name.eqlSlice("len", ip));
|
|
if (field_name.toUnsigned(ip)) |field_index| {
|
|
if (field_index < tuple_ty.structFieldCount(pt.zcu)) return field_index;
|
|
return sema.fail(block, field_name_src, "index '{f}' out of bounds of tuple '{f}'", .{
|
|
field_name.fmt(ip), tuple_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
return sema.fail(block, field_name_src, "no field named '{f}' in tuple '{f}'", .{
|
|
field_name.fmt(ip), tuple_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
fn tupleFieldValByIndex(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
tuple_byval: Air.Inst.Ref,
|
|
field_index: u32,
|
|
tuple_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const field_ty = tuple_ty.fieldType(field_index, zcu);
|
|
|
|
if (tuple_ty.structFieldIsComptime(field_index, zcu))
|
|
try tuple_ty.resolveStructFieldInits(pt);
|
|
if (try tuple_ty.structFieldValueComptime(pt, field_index)) |default_value| {
|
|
return Air.internedToRef(default_value.toIntern());
|
|
}
|
|
|
|
if (try sema.resolveValue(tuple_byval)) |tuple_val| {
|
|
if ((try sema.typeHasOnePossibleValue(field_ty))) |opv| {
|
|
return Air.internedToRef(opv.toIntern());
|
|
}
|
|
return switch (zcu.intern_pool.indexToKey(tuple_val.toIntern())) {
|
|
.undef => pt.undefRef(field_ty),
|
|
.aggregate => |aggregate| Air.internedToRef(switch (aggregate.storage) {
|
|
.bytes => |bytes| try pt.intValue(.u8, bytes.at(field_index, &zcu.intern_pool)),
|
|
.elems => |elems| Value.fromInterned(elems[field_index]),
|
|
.repeated_elem => |elem| Value.fromInterned(elem),
|
|
}.toIntern()),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
try field_ty.resolveLayout(pt);
|
|
return block.addStructFieldVal(tuple_byval, field_index, field_ty);
|
|
}
|
|
|
|
fn unionFieldPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
union_ptr: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
union_ty: Type,
|
|
initializing: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
assert(union_ty.zigTypeTag(zcu) == .@"union");
|
|
|
|
const union_ptr_ty = sema.typeOf(union_ptr);
|
|
const union_ptr_info = union_ptr_ty.ptrInfo(zcu);
|
|
try union_ty.resolveFields(pt);
|
|
const union_obj = zcu.typeToUnion(union_ty).?;
|
|
const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_name_src);
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_index]);
|
|
const ptr_field_ty = try pt.ptrTypeSema(.{
|
|
.child = field_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = union_ptr_info.flags.is_const,
|
|
.is_volatile = union_ptr_info.flags.is_volatile,
|
|
.address_space = union_ptr_info.flags.address_space,
|
|
.alignment = if (union_obj.flagsUnordered(ip).layout == .auto) blk: {
|
|
const union_align = if (union_ptr_info.flags.alignment != .none)
|
|
union_ptr_info.flags.alignment
|
|
else
|
|
try union_ty.abiAlignmentSema(pt);
|
|
const field_align = try union_ty.fieldAlignmentSema(field_index, pt);
|
|
break :blk union_align.min(field_align);
|
|
} else union_ptr_info.flags.alignment,
|
|
},
|
|
.packed_offset = union_ptr_info.packed_offset,
|
|
});
|
|
const enum_field_index: u32 = @intCast(Type.fromInterned(union_obj.enum_tag_ty).enumFieldIndex(field_name, zcu).?);
|
|
|
|
if (initializing and field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "cannot initialize 'noreturn' field of union", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{f}' declared here", .{
|
|
field_name.fmt(ip),
|
|
});
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
if (try sema.resolveDefinedValue(block, src, union_ptr)) |union_ptr_val| ct: {
|
|
switch (union_obj.flagsUnordered(ip).layout) {
|
|
.auto => if (initializing) {
|
|
if (!sema.isComptimeMutablePtr(union_ptr_val)) {
|
|
// The initialization is a runtime operation.
|
|
break :ct;
|
|
}
|
|
// Store to the union to initialize the tag.
|
|
const field_tag = try pt.enumValueFieldIndex(.fromInterned(union_obj.enum_tag_ty), enum_field_index);
|
|
const payload_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_index]);
|
|
const new_union_val = try pt.unionValue(union_ty, field_tag, try pt.undefValue(payload_ty));
|
|
try sema.storePtrVal(block, src, union_ptr_val, new_union_val, union_ty);
|
|
} else {
|
|
const union_val = (try sema.pointerDeref(block, src, union_ptr_val, union_ptr_ty)) orelse
|
|
break :ct;
|
|
if (union_val.isUndef(zcu)) {
|
|
return sema.failWithUseOfUndef(block, src, null);
|
|
}
|
|
const un = ip.indexToKey(union_val.toIntern()).un;
|
|
const field_tag = try pt.enumValueFieldIndex(.fromInterned(union_obj.enum_tag_ty), enum_field_index);
|
|
const tag_matches = un.tag == field_tag.toIntern();
|
|
if (!tag_matches) {
|
|
const msg = msg: {
|
|
const active_index = Type.fromInterned(union_obj.enum_tag_ty).enumTagFieldIndex(Value.fromInterned(un.tag), zcu).?;
|
|
const active_field_name = Type.fromInterned(union_obj.enum_tag_ty).enumFieldName(active_index, zcu);
|
|
const msg = try sema.errMsg(src, "access of union field '{f}' while field '{f}' is active", .{
|
|
field_name.fmt(ip),
|
|
active_field_name.fmt(ip),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
},
|
|
.@"packed", .@"extern" => {},
|
|
}
|
|
const field_ptr_val = try union_ptr_val.ptrField(field_index, pt);
|
|
return Air.internedToRef(field_ptr_val.toIntern());
|
|
}
|
|
|
|
// If the union has a tag, we must either set or or safety check it depending on `initializing`.
|
|
tag: {
|
|
if (union_ty.containerLayout(zcu) != .auto) break :tag;
|
|
const tag_ty: Type = .fromInterned(union_obj.enum_tag_ty);
|
|
if (try sema.typeHasOnePossibleValue(tag_ty) != null) break :tag;
|
|
// There is a hypothetical non-trivial tag. We must set it even if not there at runtime, but
|
|
// only emit a safety check if it's available at runtime (i.e. it's safety-tagged).
|
|
const want_tag = try pt.enumValueFieldIndex(tag_ty, enum_field_index);
|
|
if (initializing) {
|
|
const set_tag_inst = try block.addBinOp(.set_union_tag, union_ptr, .fromValue(want_tag));
|
|
try sema.checkComptimeKnownStore(block, set_tag_inst, .unneeded); // `unneeded` since this isn't a "proper" store
|
|
} else if (block.wantSafety() and union_obj.hasTag(ip)) {
|
|
// The tag exists at runtime (safety tag), so emit a safety check.
|
|
// TODO would it be better if get_union_tag supported pointers to unions?
|
|
const union_val = try block.addTyOp(.load, union_ty, union_ptr);
|
|
const active_tag = try block.addTyOp(.get_union_tag, tag_ty, union_val);
|
|
try sema.addSafetyCheckInactiveUnionField(block, src, active_tag, .fromValue(want_tag));
|
|
}
|
|
}
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
_ = try block.addNoOp(.unreach);
|
|
return .unreachable_value;
|
|
}
|
|
return block.addStructFieldPtr(union_ptr, field_index, ptr_field_ty);
|
|
}
|
|
|
|
fn unionFieldVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
union_byval: Air.Inst.Ref,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_name_src: LazySrcLoc,
|
|
union_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
assert(union_ty.zigTypeTag(zcu) == .@"union");
|
|
|
|
try union_ty.resolveFields(pt);
|
|
const union_obj = zcu.typeToUnion(union_ty).?;
|
|
const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_name_src);
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_index]);
|
|
const enum_field_index: u32 = @intCast(Type.fromInterned(union_obj.enum_tag_ty).enumFieldIndex(field_name, zcu).?);
|
|
|
|
if (try sema.resolveValue(union_byval)) |union_val| {
|
|
if (union_val.isUndef(zcu)) return pt.undefRef(field_ty);
|
|
|
|
const un = ip.indexToKey(union_val.toIntern()).un;
|
|
const field_tag = try pt.enumValueFieldIndex(.fromInterned(union_obj.enum_tag_ty), enum_field_index);
|
|
const tag_matches = un.tag == field_tag.toIntern();
|
|
switch (union_obj.flagsUnordered(ip).layout) {
|
|
.auto => {
|
|
if (tag_matches) {
|
|
return Air.internedToRef(un.val);
|
|
} else {
|
|
const msg = msg: {
|
|
const active_index = Type.fromInterned(union_obj.enum_tag_ty).enumTagFieldIndex(Value.fromInterned(un.tag), zcu).?;
|
|
const active_field_name = Type.fromInterned(union_obj.enum_tag_ty).enumFieldName(active_index, zcu);
|
|
const msg = try sema.errMsg(src, "access of union field '{f}' while field '{f}' is active", .{
|
|
field_name.fmt(ip), active_field_name.fmt(ip),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
},
|
|
.@"extern" => if (tag_matches) {
|
|
// Fast path - no need to use bitcast logic.
|
|
return Air.internedToRef(un.val);
|
|
} else if (try sema.bitCastVal(union_val, field_ty, 0, 0, 0)) |field_val| {
|
|
return Air.internedToRef(field_val.toIntern());
|
|
},
|
|
.@"packed" => if (tag_matches) {
|
|
// Fast path - no need to use bitcast logic.
|
|
return Air.internedToRef(un.val);
|
|
} else if (try sema.bitCastVal(union_val, field_ty, 0, try union_ty.bitSizeSema(pt), 0)) |field_val| {
|
|
return Air.internedToRef(field_val.toIntern());
|
|
},
|
|
}
|
|
}
|
|
|
|
if (union_obj.flagsUnordered(ip).layout == .auto and block.wantSafety() and
|
|
union_ty.unionTagTypeSafety(zcu) != null and union_obj.field_types.len > 1)
|
|
{
|
|
const wanted_tag_val = try pt.enumValueFieldIndex(.fromInterned(union_obj.enum_tag_ty), enum_field_index);
|
|
const wanted_tag = Air.internedToRef(wanted_tag_val.toIntern());
|
|
const active_tag = try block.addTyOp(.get_union_tag, .fromInterned(union_obj.enum_tag_ty), union_byval);
|
|
try sema.addSafetyCheckInactiveUnionField(block, src, active_tag, wanted_tag);
|
|
}
|
|
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
_ = try block.addNoOp(.unreach);
|
|
return .unreachable_value;
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(field_ty)) |field_only_value| {
|
|
return Air.internedToRef(field_only_value.toIntern());
|
|
}
|
|
|
|
try field_ty.resolveLayout(pt);
|
|
return block.addStructFieldVal(union_byval, field_index, field_ty);
|
|
}
|
|
|
|
fn elemPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
indexable_ptr: Air.Inst.Ref,
|
|
elem_index: Air.Inst.Ref,
|
|
elem_index_src: LazySrcLoc,
|
|
init: bool,
|
|
oob_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const indexable_ptr_src = src; // TODO better source location
|
|
const indexable_ptr_ty = sema.typeOf(indexable_ptr);
|
|
|
|
const indexable_ty = switch (indexable_ptr_ty.zigTypeTag(zcu)) {
|
|
.pointer => indexable_ptr_ty.childType(zcu),
|
|
else => return sema.fail(block, indexable_ptr_src, "expected pointer, found '{f}'", .{indexable_ptr_ty.fmt(pt)}),
|
|
};
|
|
try sema.checkIndexable(block, src, indexable_ty);
|
|
|
|
const elem_ptr = switch (indexable_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => try sema.elemPtrArray(block, src, indexable_ptr_src, indexable_ptr, elem_index_src, elem_index, init, oob_safety),
|
|
.@"struct" => blk: {
|
|
// Tuple field access.
|
|
const index_val = try sema.resolveConstDefinedValue(block, elem_index_src, elem_index, .{ .simple = .tuple_field_index });
|
|
const index: u32 = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
break :blk try sema.tupleFieldPtr(block, src, indexable_ptr, elem_index_src, index, init);
|
|
},
|
|
else => {
|
|
const indexable = try sema.analyzeLoad(block, indexable_ptr_src, indexable_ptr, indexable_ptr_src);
|
|
return elemPtrOneLayerOnly(sema, block, src, indexable, elem_index, elem_index_src, init, oob_safety);
|
|
},
|
|
};
|
|
|
|
try sema.checkKnownAllocPtr(block, indexable_ptr, elem_ptr);
|
|
return elem_ptr;
|
|
}
|
|
|
|
/// Asserts that the type of indexable is pointer.
|
|
fn elemPtrOneLayerOnly(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
indexable: Air.Inst.Ref,
|
|
elem_index: Air.Inst.Ref,
|
|
elem_index_src: LazySrcLoc,
|
|
init: bool,
|
|
oob_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const indexable_src = src; // TODO better source location
|
|
const indexable_ty = sema.typeOf(indexable);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
try sema.checkIndexable(block, src, indexable_ty);
|
|
|
|
switch (indexable_ty.ptrSize(zcu)) {
|
|
.slice => return sema.elemPtrSlice(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety),
|
|
.many, .c => {
|
|
const maybe_ptr_val = try sema.resolveDefinedValue(block, indexable_src, indexable);
|
|
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
|
|
ct: {
|
|
const ptr_val = maybe_ptr_val orelse break :ct;
|
|
const index_val = maybe_index_val orelse break :ct;
|
|
const index: usize = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
const elem_ptr = try ptr_val.ptrElem(index, pt);
|
|
return Air.internedToRef(elem_ptr.toIntern());
|
|
}
|
|
|
|
try sema.checkLogicalPtrOperation(block, src, indexable_ty);
|
|
const result_ty = try indexable_ty.elemPtrType(null, pt);
|
|
|
|
try sema.validateRuntimeElemAccess(block, elem_index_src, result_ty, indexable_ty, indexable_src);
|
|
try sema.validateRuntimeValue(block, indexable_src, indexable);
|
|
|
|
if (!try result_ty.childType(zcu).hasRuntimeBitsIgnoreComptimeSema(pt)) {
|
|
// zero-bit child type; just bitcast the pointer
|
|
return block.addBitCast(result_ty, indexable);
|
|
}
|
|
|
|
return block.addPtrElemPtr(indexable, elem_index, result_ty);
|
|
},
|
|
.one => {
|
|
const child_ty = indexable_ty.childType(zcu);
|
|
const elem_ptr = switch (child_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => try sema.elemPtrArray(block, src, indexable_src, indexable, elem_index_src, elem_index, init, oob_safety),
|
|
.@"struct" => blk: {
|
|
assert(child_ty.isTuple(zcu));
|
|
const index_val = try sema.resolveConstDefinedValue(block, elem_index_src, elem_index, .{ .simple = .tuple_field_index });
|
|
const index: u32 = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
break :blk try sema.tupleFieldPtr(block, indexable_src, indexable, elem_index_src, index, false);
|
|
},
|
|
else => unreachable, // Guaranteed by checkIndexable
|
|
};
|
|
try sema.checkKnownAllocPtr(block, indexable, elem_ptr);
|
|
return elem_ptr;
|
|
},
|
|
}
|
|
}
|
|
|
|
fn elemVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
indexable: Air.Inst.Ref,
|
|
elem_index_uncasted: Air.Inst.Ref,
|
|
elem_index_src: LazySrcLoc,
|
|
oob_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const indexable_src = src; // TODO better source location
|
|
const indexable_ty = sema.typeOf(indexable);
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
try sema.checkIndexable(block, src, indexable_ty);
|
|
|
|
// TODO in case of a vector of pointers, we need to detect whether the element
|
|
// index is a scalar or vector instead of unconditionally casting to usize.
|
|
const elem_index = try sema.coerce(block, .usize, elem_index_uncasted, elem_index_src);
|
|
|
|
switch (indexable_ty.zigTypeTag(zcu)) {
|
|
.pointer => switch (indexable_ty.ptrSize(zcu)) {
|
|
.slice => return sema.elemValSlice(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety),
|
|
.many, .c => {
|
|
const maybe_indexable_val = try sema.resolveDefinedValue(block, indexable_src, indexable);
|
|
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
|
|
const elem_ty = indexable_ty.elemType2(zcu);
|
|
|
|
ct: {
|
|
const indexable_val = maybe_indexable_val orelse break :ct;
|
|
const index_val = maybe_index_val orelse break :ct;
|
|
const index: usize = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
const many_ptr_ty = try pt.manyConstPtrType(elem_ty);
|
|
const many_ptr_val = try pt.getCoerced(indexable_val, many_ptr_ty);
|
|
const elem_ptr_ty = try pt.singleConstPtrType(elem_ty);
|
|
const elem_ptr_val = try many_ptr_val.ptrElem(index, pt);
|
|
const elem_val = try sema.pointerDeref(block, indexable_src, elem_ptr_val, elem_ptr_ty) orelse break :ct;
|
|
return Air.internedToRef((try pt.getCoerced(elem_val, elem_ty)).toIntern());
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(elem_ty)) |elem_only_value| {
|
|
return Air.internedToRef(elem_only_value.toIntern());
|
|
}
|
|
|
|
try sema.checkLogicalPtrOperation(block, src, indexable_ty);
|
|
return block.addBinOp(.ptr_elem_val, indexable, elem_index);
|
|
},
|
|
.one => {
|
|
arr_sent: {
|
|
const inner_ty = indexable_ty.childType(zcu);
|
|
if (inner_ty.zigTypeTag(zcu) != .array) break :arr_sent;
|
|
const sentinel = inner_ty.sentinel(zcu) orelse break :arr_sent;
|
|
const index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index) orelse break :arr_sent;
|
|
const index = try sema.usizeCast(block, src, try index_val.toUnsignedIntSema(pt));
|
|
if (index != inner_ty.arrayLen(zcu)) break :arr_sent;
|
|
return Air.internedToRef(sentinel.toIntern());
|
|
}
|
|
const elem_ptr = try sema.elemPtr(block, indexable_src, indexable, elem_index, elem_index_src, false, oob_safety);
|
|
return sema.analyzeLoad(block, indexable_src, elem_ptr, elem_index_src);
|
|
},
|
|
},
|
|
.array => return sema.elemValArray(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety),
|
|
.vector => {
|
|
// TODO: If the index is a vector, the result should be a vector.
|
|
return sema.elemValArray(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety);
|
|
},
|
|
.@"struct" => {
|
|
// Tuple field access.
|
|
const index_val = try sema.resolveConstDefinedValue(block, elem_index_src, elem_index, .{ .simple = .tuple_field_index });
|
|
const index: u32 = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
return sema.tupleField(block, indexable_src, indexable, elem_index_src, index);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
/// Called when the index or indexable is runtime known.
|
|
fn validateRuntimeElemAccess(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
elem_index_src: LazySrcLoc,
|
|
elem_ty: Type,
|
|
parent_ty: Type,
|
|
parent_src: LazySrcLoc,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (try elem_ty.comptimeOnlySema(sema.pt)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
elem_index_src,
|
|
"values of type '{f}' must be comptime-known, but index value is runtime-known",
|
|
.{parent_ty.fmt(sema.pt)},
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsComptime(msg, parent_src, parent_ty);
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
if (zcu.intern_pool.indexToKey(parent_ty.toIntern()) == .ptr_type) {
|
|
const target = zcu.getTarget();
|
|
const as = parent_ty.ptrAddressSpace(zcu);
|
|
if (target_util.shouldBlockPointerOps(target, as)) {
|
|
return sema.fail(block, elem_index_src, "cannot access element of logical pointer '{f}'", .{parent_ty.fmt(pt)});
|
|
}
|
|
}
|
|
}
|
|
|
|
fn tupleFieldPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
tuple_ptr_src: LazySrcLoc,
|
|
tuple_ptr: Air.Inst.Ref,
|
|
field_index_src: LazySrcLoc,
|
|
field_index: u32,
|
|
init: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const tuple_ptr_ty = sema.typeOf(tuple_ptr);
|
|
const tuple_ptr_info = tuple_ptr_ty.ptrInfo(zcu);
|
|
const tuple_ty: Type = .fromInterned(tuple_ptr_info.child);
|
|
try tuple_ty.resolveFields(pt);
|
|
const field_count = tuple_ty.structFieldCount(zcu);
|
|
|
|
if (field_count == 0) {
|
|
return sema.fail(block, tuple_ptr_src, "indexing into empty tuple is not allowed", .{});
|
|
}
|
|
|
|
if (field_index >= field_count) {
|
|
return sema.fail(block, field_index_src, "index {d} outside tuple of length {d}", .{
|
|
field_index, field_count,
|
|
});
|
|
}
|
|
|
|
const field_ty = tuple_ty.fieldType(field_index, zcu);
|
|
const ptr_field_ty = try pt.ptrTypeSema(.{
|
|
.child = field_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = tuple_ptr_info.flags.is_const,
|
|
.is_volatile = tuple_ptr_info.flags.is_volatile,
|
|
.address_space = tuple_ptr_info.flags.address_space,
|
|
.alignment = a: {
|
|
if (tuple_ptr_info.flags.alignment == .none) break :a .none;
|
|
// The tuple pointer isn't naturally aligned, so the field pointer might be underaligned.
|
|
const tuple_align = tuple_ptr_info.flags.alignment;
|
|
const field_align = try field_ty.abiAlignmentSema(pt);
|
|
break :a tuple_align.min(field_align);
|
|
},
|
|
},
|
|
});
|
|
|
|
if (tuple_ty.structFieldIsComptime(field_index, zcu))
|
|
try tuple_ty.resolveStructFieldInits(pt);
|
|
|
|
if (try tuple_ty.structFieldValueComptime(pt, field_index)) |default_val| {
|
|
return Air.internedToRef((try pt.intern(.{ .ptr = .{
|
|
.ty = ptr_field_ty.toIntern(),
|
|
.base_addr = .{ .comptime_field = default_val.toIntern() },
|
|
.byte_offset = 0,
|
|
} })));
|
|
}
|
|
|
|
if (try sema.resolveValue(tuple_ptr)) |tuple_ptr_val| {
|
|
const field_ptr_val = try tuple_ptr_val.ptrField(field_index, pt);
|
|
return Air.internedToRef(field_ptr_val.toIntern());
|
|
}
|
|
|
|
if (!init) {
|
|
try sema.validateRuntimeElemAccess(block, field_index_src, field_ty, tuple_ty, tuple_ptr_src);
|
|
}
|
|
|
|
return block.addStructFieldPtr(tuple_ptr, field_index, ptr_field_ty);
|
|
}
|
|
|
|
fn tupleField(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
tuple_src: LazySrcLoc,
|
|
tuple: Air.Inst.Ref,
|
|
field_index_src: LazySrcLoc,
|
|
field_index: u32,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const tuple_ty = sema.typeOf(tuple);
|
|
try tuple_ty.resolveFields(pt);
|
|
const field_count = tuple_ty.structFieldCount(zcu);
|
|
|
|
if (field_count == 0) {
|
|
return sema.fail(block, tuple_src, "indexing into empty tuple is not allowed", .{});
|
|
}
|
|
|
|
if (field_index >= field_count) {
|
|
return sema.fail(block, field_index_src, "index {d} outside tuple of length {d}", .{
|
|
field_index, field_count,
|
|
});
|
|
}
|
|
|
|
const field_ty = tuple_ty.fieldType(field_index, zcu);
|
|
|
|
if (tuple_ty.structFieldIsComptime(field_index, zcu))
|
|
try tuple_ty.resolveStructFieldInits(pt);
|
|
if (try tuple_ty.structFieldValueComptime(pt, field_index)) |default_value| {
|
|
return Air.internedToRef(default_value.toIntern()); // comptime field
|
|
}
|
|
|
|
if (try sema.resolveValue(tuple)) |tuple_val| {
|
|
if (tuple_val.isUndef(zcu)) return pt.undefRef(field_ty);
|
|
return Air.internedToRef((try tuple_val.fieldValue(pt, field_index)).toIntern());
|
|
}
|
|
|
|
try sema.validateRuntimeElemAccess(block, field_index_src, field_ty, tuple_ty, tuple_src);
|
|
|
|
try field_ty.resolveLayout(pt);
|
|
return block.addStructFieldVal(tuple, field_index, field_ty);
|
|
}
|
|
|
|
fn elemValArray(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
array_src: LazySrcLoc,
|
|
array: Air.Inst.Ref,
|
|
elem_index_src: LazySrcLoc,
|
|
elem_index: Air.Inst.Ref,
|
|
oob_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const array_ty = sema.typeOf(array);
|
|
const array_sent = array_ty.sentinel(zcu);
|
|
const array_len = array_ty.arrayLen(zcu);
|
|
const array_len_s = array_len + @intFromBool(array_sent != null);
|
|
const elem_ty = array_ty.childType(zcu);
|
|
|
|
if (array_len_s == 0) {
|
|
return sema.fail(block, array_src, "indexing into empty array is not allowed", .{});
|
|
}
|
|
|
|
const maybe_undef_array_val = try sema.resolveValue(array);
|
|
// index must be defined since it can access out of bounds
|
|
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
|
|
|
|
if (maybe_index_val) |index_val| {
|
|
const index: usize = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
if (array_sent) |s| {
|
|
if (index == array_len) {
|
|
return Air.internedToRef(s.toIntern());
|
|
}
|
|
}
|
|
if (index >= array_len_s) {
|
|
const sentinel_label: []const u8 = if (array_sent != null) " +1 (sentinel)" else "";
|
|
return sema.fail(block, elem_index_src, "index {d} outside array of length {d}{s}", .{ index, array_len, sentinel_label });
|
|
}
|
|
}
|
|
if (maybe_undef_array_val) |array_val| {
|
|
if (array_val.isUndef(zcu)) {
|
|
return pt.undefRef(elem_ty);
|
|
}
|
|
if (maybe_index_val) |index_val| {
|
|
const index: usize = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
const elem_val = try array_val.elemValue(pt, index);
|
|
return Air.internedToRef(elem_val.toIntern());
|
|
}
|
|
}
|
|
|
|
try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ty, array_ty, array_src);
|
|
try sema.validateRuntimeValue(block, array_src, array);
|
|
|
|
if (oob_safety and block.wantSafety()) {
|
|
// Runtime check is only needed if unable to comptime check.
|
|
if (maybe_index_val == null) {
|
|
const len_inst = try pt.intRef(.usize, array_len);
|
|
const cmp_op: Air.Inst.Tag = if (array_sent != null) .cmp_lte else .cmp_lt;
|
|
try sema.addSafetyCheckIndexOob(block, src, elem_index, len_inst, cmp_op);
|
|
}
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(elem_ty)) |elem_val|
|
|
return Air.internedToRef(elem_val.toIntern());
|
|
|
|
return block.addBinOp(.array_elem_val, array, elem_index);
|
|
}
|
|
|
|
fn elemPtrArray(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
array_ptr_src: LazySrcLoc,
|
|
array_ptr: Air.Inst.Ref,
|
|
elem_index_src: LazySrcLoc,
|
|
elem_index: Air.Inst.Ref,
|
|
init: bool,
|
|
oob_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const array_ptr_ty = sema.typeOf(array_ptr);
|
|
const array_ty = array_ptr_ty.childType(zcu);
|
|
const array_sent = array_ty.sentinel(zcu) != null;
|
|
const array_len = array_ty.arrayLen(zcu);
|
|
const array_len_s = array_len + @intFromBool(array_sent);
|
|
|
|
if (array_len_s == 0) {
|
|
return sema.fail(block, array_ptr_src, "indexing into empty array is not allowed", .{});
|
|
}
|
|
|
|
const maybe_undef_array_ptr_val = try sema.resolveValue(array_ptr);
|
|
// The index must not be undefined since it can be out of bounds.
|
|
const offset: ?usize = if (try sema.resolveDefinedValue(block, elem_index_src, elem_index)) |index_val| o: {
|
|
const index = try sema.usizeCast(block, elem_index_src, try index_val.toUnsignedIntSema(pt));
|
|
if (index >= array_len_s) {
|
|
const sentinel_label: []const u8 = if (array_sent) " +1 (sentinel)" else "";
|
|
return sema.fail(block, elem_index_src, "index {d} outside array of length {d}{s}", .{ index, array_len, sentinel_label });
|
|
}
|
|
break :o index;
|
|
} else null;
|
|
|
|
const elem_ptr_ty = try array_ptr_ty.elemPtrType(offset, pt);
|
|
|
|
if (maybe_undef_array_ptr_val) |array_ptr_val| {
|
|
if (array_ptr_val.isUndef(zcu)) {
|
|
return pt.undefRef(elem_ptr_ty);
|
|
}
|
|
if (offset) |index| {
|
|
const elem_ptr = try array_ptr_val.ptrElem(index, pt);
|
|
return Air.internedToRef(elem_ptr.toIntern());
|
|
}
|
|
}
|
|
|
|
if (!init) {
|
|
try sema.validateRuntimeElemAccess(block, elem_index_src, array_ty.elemType2(zcu), array_ty, array_ptr_src);
|
|
try sema.validateRuntimeValue(block, array_ptr_src, array_ptr);
|
|
}
|
|
|
|
if (offset == null and array_ty.zigTypeTag(zcu) == .vector) {
|
|
return sema.fail(block, elem_index_src, "vector index not comptime known", .{});
|
|
}
|
|
|
|
// Runtime check is only needed if unable to comptime check.
|
|
if (oob_safety and block.wantSafety() and offset == null) {
|
|
const len_inst = try pt.intRef(.usize, array_len);
|
|
const cmp_op: Air.Inst.Tag = if (array_sent) .cmp_lte else .cmp_lt;
|
|
try sema.addSafetyCheckIndexOob(block, src, elem_index, len_inst, cmp_op);
|
|
}
|
|
|
|
return block.addPtrElemPtr(array_ptr, elem_index, elem_ptr_ty);
|
|
}
|
|
|
|
fn elemValSlice(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
slice_src: LazySrcLoc,
|
|
slice: Air.Inst.Ref,
|
|
elem_index_src: LazySrcLoc,
|
|
elem_index: Air.Inst.Ref,
|
|
oob_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const slice_ty = sema.typeOf(slice);
|
|
const slice_sent = slice_ty.sentinel(zcu) != null;
|
|
const elem_ty = slice_ty.elemType2(zcu);
|
|
var runtime_src = slice_src;
|
|
|
|
// slice must be defined since it can dereferenced as null
|
|
const maybe_slice_val = try sema.resolveDefinedValue(block, slice_src, slice);
|
|
// index must be defined since it can index out of bounds
|
|
const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index);
|
|
|
|
if (maybe_slice_val) |slice_val| {
|
|
runtime_src = elem_index_src;
|
|
const slice_len = try slice_val.sliceLen(pt);
|
|
const slice_len_s = slice_len + @intFromBool(slice_sent);
|
|
if (slice_len_s == 0) {
|
|
return sema.fail(block, slice_src, "indexing into empty slice is not allowed", .{});
|
|
}
|
|
if (maybe_index_val) |index_val| {
|
|
const index: usize = @intCast(try index_val.toUnsignedIntSema(pt));
|
|
if (index >= slice_len_s) {
|
|
const sentinel_label: []const u8 = if (slice_sent) " +1 (sentinel)" else "";
|
|
return sema.fail(block, elem_index_src, "index {d} outside slice of length {d}{s}", .{ index, slice_len, sentinel_label });
|
|
}
|
|
const elem_ptr_ty = try slice_ty.elemPtrType(index, pt);
|
|
const elem_ptr_val = try slice_val.ptrElem(index, pt);
|
|
if (try sema.pointerDeref(block, slice_src, elem_ptr_val, elem_ptr_ty)) |elem_val| {
|
|
return Air.internedToRef(elem_val.toIntern());
|
|
}
|
|
runtime_src = slice_src;
|
|
}
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(elem_ty)) |elem_only_value| {
|
|
return Air.internedToRef(elem_only_value.toIntern());
|
|
}
|
|
|
|
try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ty, slice_ty, slice_src);
|
|
try sema.validateRuntimeValue(block, slice_src, slice);
|
|
|
|
if (oob_safety and block.wantSafety()) {
|
|
const len_inst = if (maybe_slice_val) |slice_val|
|
|
try pt.intRef(.usize, try slice_val.sliceLen(pt))
|
|
else
|
|
try block.addTyOp(.slice_len, .usize, slice);
|
|
const cmp_op: Air.Inst.Tag = if (slice_sent) .cmp_lte else .cmp_lt;
|
|
try sema.addSafetyCheckIndexOob(block, src, elem_index, len_inst, cmp_op);
|
|
}
|
|
return block.addBinOp(.slice_elem_val, slice, elem_index);
|
|
}
|
|
|
|
fn elemPtrSlice(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
slice_src: LazySrcLoc,
|
|
slice: Air.Inst.Ref,
|
|
elem_index_src: LazySrcLoc,
|
|
elem_index: Air.Inst.Ref,
|
|
oob_safety: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const slice_ty = sema.typeOf(slice);
|
|
const slice_sent = slice_ty.sentinel(zcu) != null;
|
|
|
|
const maybe_undef_slice_val = try sema.resolveValue(slice);
|
|
// The index must not be undefined since it can be out of bounds.
|
|
const offset: ?usize = if (try sema.resolveDefinedValue(block, elem_index_src, elem_index)) |index_val| o: {
|
|
const index = try sema.usizeCast(block, elem_index_src, try index_val.toUnsignedIntSema(pt));
|
|
break :o index;
|
|
} else null;
|
|
|
|
const elem_ptr_ty = try slice_ty.elemPtrType(offset, pt);
|
|
|
|
if (maybe_undef_slice_val) |slice_val| {
|
|
if (slice_val.isUndef(zcu)) {
|
|
return pt.undefRef(elem_ptr_ty);
|
|
}
|
|
const slice_len = try slice_val.sliceLen(pt);
|
|
const slice_len_s = slice_len + @intFromBool(slice_sent);
|
|
if (slice_len_s == 0) {
|
|
return sema.fail(block, slice_src, "indexing into empty slice is not allowed", .{});
|
|
}
|
|
if (offset) |index| {
|
|
if (index >= slice_len_s) {
|
|
const sentinel_label: []const u8 = if (slice_sent) " +1 (sentinel)" else "";
|
|
return sema.fail(block, elem_index_src, "index {d} outside slice of length {d}{s}", .{ index, slice_len, sentinel_label });
|
|
}
|
|
const elem_ptr_val = try slice_val.ptrElem(index, pt);
|
|
return Air.internedToRef(elem_ptr_val.toIntern());
|
|
}
|
|
}
|
|
|
|
try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ptr_ty, slice_ty, slice_src);
|
|
try sema.validateRuntimeValue(block, slice_src, slice);
|
|
|
|
if (oob_safety and block.wantSafety()) {
|
|
const len_inst = len: {
|
|
if (maybe_undef_slice_val) |slice_val|
|
|
if (!slice_val.isUndef(zcu))
|
|
break :len try pt.intRef(.usize, try slice_val.sliceLen(pt));
|
|
break :len try block.addTyOp(.slice_len, .usize, slice);
|
|
};
|
|
const cmp_op: Air.Inst.Tag = if (slice_sent) .cmp_lte else .cmp_lt;
|
|
try sema.addSafetyCheckIndexOob(block, src, elem_index, len_inst, cmp_op);
|
|
}
|
|
if (!try slice_ty.childType(zcu).hasRuntimeBitsIgnoreComptimeSema(pt)) {
|
|
// zero-bit child type; just extract the pointer and bitcast it
|
|
const slice_ptr = try block.addTyOp(.slice_ptr, slice_ty.slicePtrFieldType(zcu), slice);
|
|
return block.addBitCast(elem_ptr_ty, slice_ptr);
|
|
}
|
|
return block.addSliceElemPtr(slice, elem_index, elem_ptr_ty);
|
|
}
|
|
|
|
pub fn coerce(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty_unresolved: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
return sema.coerceExtra(block, dest_ty_unresolved, inst, inst_src, .{}) catch |err| switch (err) {
|
|
error.NotCoercible => unreachable,
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
|
|
const CoersionError = CompileError || error{
|
|
/// When coerce is called recursively, this error should be returned instead of using `fail`
|
|
/// to ensure correct types in compile errors.
|
|
NotCoercible,
|
|
};
|
|
|
|
const CoerceOpts = struct {
|
|
/// Should coerceExtra emit error messages.
|
|
report_err: bool = true,
|
|
/// Ignored if `report_err == false`.
|
|
is_ret: bool = false,
|
|
/// Should coercion to comptime_int emit an error message.
|
|
no_cast_to_comptime_int: bool = false,
|
|
|
|
param_src: struct {
|
|
func_inst: Air.Inst.Ref = .none,
|
|
param_i: u32 = undefined,
|
|
|
|
fn get(info: @This(), sema: *Sema) !?LazySrcLoc {
|
|
if (info.func_inst == .none) return null;
|
|
const func_inst = try sema.funcDeclSrcInst(info.func_inst) orelse return null;
|
|
return .{
|
|
.base_node_inst = func_inst,
|
|
.offset = .{ .fn_proto_param_type = .{
|
|
.fn_proto_node_offset = .zero,
|
|
.param_index = info.param_i,
|
|
} },
|
|
};
|
|
}
|
|
} = .{ .func_inst = .none, .param_i = undefined },
|
|
};
|
|
|
|
fn coerceExtra(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
opts: CoerceOpts,
|
|
) CoersionError!Air.Inst.Ref {
|
|
if (dest_ty.isGenericPoison()) return inst;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const dest_ty_src = inst_src; // TODO better source location
|
|
try dest_ty.resolveFields(pt);
|
|
const inst_ty = sema.typeOf(inst);
|
|
try inst_ty.resolveFields(pt);
|
|
const target = zcu.getTarget();
|
|
// If the types are the same, we can return the operand.
|
|
if (dest_ty.eql(inst_ty, zcu))
|
|
return inst;
|
|
|
|
const maybe_inst_val = try sema.resolveValue(inst);
|
|
|
|
var in_memory_result = try sema.coerceInMemoryAllowed(block, dest_ty, inst_ty, false, target, dest_ty_src, inst_src, maybe_inst_val);
|
|
if (in_memory_result == .ok) {
|
|
if (maybe_inst_val) |val| {
|
|
return sema.coerceInMemory(val, dest_ty);
|
|
}
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
const new_val = try block.addBitCast(dest_ty, inst);
|
|
try sema.checkKnownAllocPtr(block, inst, new_val);
|
|
return new_val;
|
|
}
|
|
|
|
switch (dest_ty.zigTypeTag(zcu)) {
|
|
.optional => optional: {
|
|
if (maybe_inst_val) |val| {
|
|
// undefined sets the optional bit also to undefined.
|
|
if (val.toIntern() == .undef) {
|
|
return pt.undefRef(dest_ty);
|
|
}
|
|
|
|
// null to ?T
|
|
if (val.toIntern() == .null_value) {
|
|
return Air.internedToRef((try pt.intern(.{ .opt = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.val = .none,
|
|
} })));
|
|
}
|
|
}
|
|
|
|
// cast from ?*T and ?[*]T to ?*anyopaque
|
|
// but don't do it if the source type is a double pointer
|
|
if (dest_ty.isPtrLikeOptional(zcu) and
|
|
dest_ty.elemType2(zcu).toIntern() == .anyopaque_type and
|
|
inst_ty.isPtrAtRuntime(zcu))
|
|
anyopaque_check: {
|
|
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :optional;
|
|
const elem_ty = inst_ty.elemType2(zcu);
|
|
if (elem_ty.zigTypeTag(zcu) == .pointer or elem_ty.isPtrLikeOptional(zcu)) {
|
|
in_memory_result = .{ .double_ptr_to_anyopaque = .{
|
|
.actual = inst_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
break :optional;
|
|
}
|
|
// Let the logic below handle wrapping the optional now that
|
|
// it has been checked to correctly coerce.
|
|
if (!inst_ty.isPtrLikeOptional(zcu)) break :anyopaque_check;
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
|
|
}
|
|
|
|
// T to ?T
|
|
const child_type = dest_ty.optionalChild(zcu);
|
|
const intermediate = sema.coerceExtra(block, child_type, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) {
|
|
error.NotCoercible => {
|
|
if (in_memory_result == .no_match) {
|
|
// Try to give more useful notes
|
|
in_memory_result = try sema.coerceInMemoryAllowed(block, child_type, inst_ty, false, target, dest_ty_src, inst_src, maybe_inst_val);
|
|
}
|
|
break :optional;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
return try sema.wrapOptional(block, dest_ty, intermediate, inst_src);
|
|
},
|
|
.pointer => pointer: {
|
|
const dest_info = dest_ty.ptrInfo(zcu);
|
|
|
|
// Function body to function pointer.
|
|
if (inst_ty.zigTypeTag(zcu) == .@"fn") {
|
|
const fn_val = try sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, inst, undefined);
|
|
const fn_nav = switch (zcu.intern_pool.indexToKey(fn_val.toIntern())) {
|
|
.func => |f| f.owner_nav,
|
|
.@"extern" => |e| e.owner_nav,
|
|
else => unreachable,
|
|
};
|
|
const inst_as_ptr = try sema.analyzeNavRef(block, inst_src, fn_nav);
|
|
return sema.coerce(block, dest_ty, inst_as_ptr, inst_src);
|
|
}
|
|
|
|
// *T to *[1]T
|
|
single_item: {
|
|
if (dest_info.flags.size != .one) break :single_item;
|
|
if (!inst_ty.isSinglePointer(zcu)) break :single_item;
|
|
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer;
|
|
const ptr_elem_ty = inst_ty.childType(zcu);
|
|
const array_ty: Type = .fromInterned(dest_info.child);
|
|
if (array_ty.zigTypeTag(zcu) != .array) break :single_item;
|
|
const array_elem_ty = array_ty.childType(zcu);
|
|
if (array_ty.arrayLen(zcu) != 1) break :single_item;
|
|
const dest_is_mut = !dest_info.flags.is_const;
|
|
switch (try sema.coerceInMemoryAllowed(block, array_elem_ty, ptr_elem_ty, dest_is_mut, target, dest_ty_src, inst_src, maybe_inst_val)) {
|
|
.ok => {},
|
|
else => break :single_item,
|
|
}
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
|
|
}
|
|
|
|
// Coercions where the source is a single pointer to an array.
|
|
src_array_ptr: {
|
|
if (!inst_ty.isSinglePointer(zcu)) break :src_array_ptr;
|
|
if (dest_info.flags.size == .one) break :src_array_ptr; // `*[n]T` -> `*T` isn't valid
|
|
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer;
|
|
const array_ty = inst_ty.childType(zcu);
|
|
if (array_ty.zigTypeTag(zcu) != .array) break :src_array_ptr;
|
|
const array_elem_type = array_ty.childType(zcu);
|
|
const dest_is_mut = !dest_info.flags.is_const;
|
|
|
|
const dst_elem_type: Type = .fromInterned(dest_info.child);
|
|
const elem_res = try sema.coerceInMemoryAllowed(block, dst_elem_type, array_elem_type, dest_is_mut, target, dest_ty_src, inst_src, maybe_inst_val);
|
|
switch (elem_res) {
|
|
.ok => {},
|
|
else => {
|
|
in_memory_result = .{ .ptr_child = .{
|
|
.child = try elem_res.dupe(sema.arena),
|
|
.actual = array_elem_type,
|
|
.wanted = dst_elem_type,
|
|
} };
|
|
break :src_array_ptr;
|
|
},
|
|
}
|
|
|
|
if (dest_info.sentinel != .none) {
|
|
if (array_ty.sentinel(zcu)) |inst_sent| {
|
|
if (Air.internedToRef(dest_info.sentinel) !=
|
|
try sema.coerceInMemory(inst_sent, dst_elem_type))
|
|
{
|
|
in_memory_result = .{ .ptr_sentinel = .{
|
|
.actual = inst_sent,
|
|
.wanted = Value.fromInterned(dest_info.sentinel),
|
|
.ty = dst_elem_type,
|
|
} };
|
|
break :src_array_ptr;
|
|
}
|
|
} else {
|
|
in_memory_result = .{ .ptr_sentinel = .{
|
|
.actual = Value.@"unreachable",
|
|
.wanted = Value.fromInterned(dest_info.sentinel),
|
|
.ty = dst_elem_type,
|
|
} };
|
|
break :src_array_ptr;
|
|
}
|
|
}
|
|
|
|
switch (dest_info.flags.size) {
|
|
.slice => {
|
|
// *[N]T to []T
|
|
return sema.coerceArrayPtrToSlice(block, dest_ty, inst, inst_src);
|
|
},
|
|
.c => {
|
|
// *[N]T to [*c]T
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
|
|
},
|
|
.many => {
|
|
// *[N]T to [*]T
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
|
|
},
|
|
.one => unreachable, // early exit at top of block
|
|
}
|
|
}
|
|
|
|
// coercion from C pointer
|
|
if (inst_ty.isCPtr(zcu)) src_c_ptr: {
|
|
if (dest_info.flags.size == .slice) break :src_c_ptr;
|
|
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :src_c_ptr;
|
|
// In this case we must add a safety check because the C pointer
|
|
// could be null.
|
|
const src_elem_ty = inst_ty.childType(zcu);
|
|
const dest_is_mut = !dest_info.flags.is_const;
|
|
const dst_elem_type: Type = .fromInterned(dest_info.child);
|
|
switch (try sema.coerceInMemoryAllowed(block, dst_elem_type, src_elem_ty, dest_is_mut, target, dest_ty_src, inst_src, maybe_inst_val)) {
|
|
.ok => {},
|
|
else => break :src_c_ptr,
|
|
}
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
|
|
}
|
|
|
|
// cast from *T and [*]T to *anyopaque
|
|
// but don't do it if the source type is a double pointer
|
|
if (dest_info.child == .anyopaque_type and inst_ty.zigTypeTag(zcu) == .pointer) to_anyopaque: {
|
|
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer;
|
|
const elem_ty = inst_ty.elemType2(zcu);
|
|
if (elem_ty.zigTypeTag(zcu) == .pointer or elem_ty.isPtrLikeOptional(zcu)) {
|
|
in_memory_result = .{ .double_ptr_to_anyopaque = .{
|
|
.actual = inst_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
break :pointer;
|
|
}
|
|
if (dest_ty.isSlice(zcu)) break :to_anyopaque;
|
|
if (inst_ty.isSlice(zcu)) {
|
|
in_memory_result = .{ .slice_to_anyopaque = .{
|
|
.actual = inst_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
break :pointer;
|
|
}
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
|
|
}
|
|
|
|
switch (dest_info.flags.size) {
|
|
// coercion to C pointer
|
|
.c => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.null => return Air.internedToRef(try pt.intern(.{ .ptr = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.base_addr = .int,
|
|
.byte_offset = 0,
|
|
} })),
|
|
.comptime_int => {
|
|
const addr = sema.coerceExtra(block, .usize, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) {
|
|
error.NotCoercible => break :pointer,
|
|
else => |e| return e,
|
|
};
|
|
return try sema.coerceCompatiblePtrs(block, dest_ty, addr, inst_src);
|
|
},
|
|
.int => {
|
|
const ptr_size_ty: Type = switch (inst_ty.intInfo(zcu).signedness) {
|
|
.signed => .isize,
|
|
.unsigned => .usize,
|
|
};
|
|
const addr = sema.coerceExtra(block, ptr_size_ty, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) {
|
|
error.NotCoercible => {
|
|
// Try to give more useful notes
|
|
in_memory_result = try sema.coerceInMemoryAllowed(block, ptr_size_ty, inst_ty, false, target, dest_ty_src, inst_src, maybe_inst_val);
|
|
break :pointer;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
return try sema.coerceCompatiblePtrs(block, dest_ty, addr, inst_src);
|
|
},
|
|
.pointer => p: {
|
|
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :p;
|
|
const inst_info = inst_ty.ptrInfo(zcu);
|
|
switch (try sema.coerceInMemoryAllowed(
|
|
block,
|
|
.fromInterned(dest_info.child),
|
|
.fromInterned(inst_info.child),
|
|
!dest_info.flags.is_const,
|
|
target,
|
|
dest_ty_src,
|
|
inst_src,
|
|
maybe_inst_val,
|
|
)) {
|
|
.ok => {},
|
|
else => break :p,
|
|
}
|
|
if (inst_info.flags.size == .slice) {
|
|
assert(dest_info.sentinel == .none);
|
|
if (inst_info.sentinel == .none or
|
|
inst_info.sentinel != (try pt.intValue(.fromInterned(inst_info.child), 0)).toIntern())
|
|
break :p;
|
|
|
|
const slice_ptr = try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty);
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, slice_ptr, inst_src);
|
|
}
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src);
|
|
},
|
|
else => {},
|
|
},
|
|
.one => {},
|
|
.slice => to_slice: {
|
|
if (inst_ty.zigTypeTag(zcu) == .array) {
|
|
return sema.fail(
|
|
block,
|
|
inst_src,
|
|
"array literal requires address-of operator (&) to coerce to slice type '{f}'",
|
|
.{dest_ty.fmt(pt)},
|
|
);
|
|
}
|
|
|
|
if (!inst_ty.isSinglePointer(zcu)) break :to_slice;
|
|
const inst_child_ty = inst_ty.childType(zcu);
|
|
if (!inst_child_ty.isTuple(zcu)) break :to_slice;
|
|
|
|
// empty tuple to zero-length slice
|
|
// note that this allows coercing to a mutable slice.
|
|
if (inst_child_ty.structFieldCount(zcu) == 0) {
|
|
const align_val = try dest_ty.ptrAlignmentSema(pt);
|
|
return Air.internedToRef(try pt.intern(.{ .slice = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.ptr = try pt.intern(.{ .ptr = .{
|
|
.ty = dest_ty.slicePtrFieldType(zcu).toIntern(),
|
|
.base_addr = .int,
|
|
.byte_offset = align_val.toByteUnits().?,
|
|
} }),
|
|
.len = .zero_usize,
|
|
} }));
|
|
}
|
|
|
|
// pointer to tuple to slice
|
|
if (!dest_info.flags.is_const) {
|
|
const err_msg = err_msg: {
|
|
const err_msg = try sema.errMsg(inst_src, "cannot cast pointer to tuple to '{f}'", .{dest_ty.fmt(pt)});
|
|
errdefer err_msg.destroy(sema.gpa);
|
|
try sema.errNote(dest_ty_src, err_msg, "pointers to tuples can only coerce to constant pointers", .{});
|
|
break :err_msg err_msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, err_msg);
|
|
}
|
|
return sema.coerceTupleToSlicePtrs(block, dest_ty, dest_ty_src, inst, inst_src);
|
|
},
|
|
.many => p: {
|
|
if (!inst_ty.isSlice(zcu)) break :p;
|
|
if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :p;
|
|
const inst_info = inst_ty.ptrInfo(zcu);
|
|
|
|
switch (try sema.coerceInMemoryAllowed(
|
|
block,
|
|
.fromInterned(dest_info.child),
|
|
.fromInterned(inst_info.child),
|
|
!dest_info.flags.is_const,
|
|
target,
|
|
dest_ty_src,
|
|
inst_src,
|
|
maybe_inst_val,
|
|
)) {
|
|
.ok => {},
|
|
else => break :p,
|
|
}
|
|
|
|
if (dest_info.sentinel == .none or inst_info.sentinel == .none or
|
|
Air.internedToRef(dest_info.sentinel) !=
|
|
try sema.coerceInMemory(Value.fromInterned(inst_info.sentinel), .fromInterned(dest_info.child)))
|
|
break :p;
|
|
|
|
const slice_ptr = try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty);
|
|
return sema.coerceCompatiblePtrs(block, dest_ty, slice_ptr, inst_src);
|
|
},
|
|
}
|
|
},
|
|
.int, .comptime_int => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.float, .comptime_float => float: {
|
|
const val = maybe_inst_val orelse {
|
|
if (dest_ty.zigTypeTag(zcu) == .comptime_int) {
|
|
if (!opts.report_err) return error.NotCoercible;
|
|
return sema.failWithNeededComptime(block, inst_src, .{ .simple = .casted_to_comptime_int });
|
|
}
|
|
break :float;
|
|
};
|
|
const result_val = try sema.intFromFloat(block, inst_src, val, inst_ty, dest_ty, .exact);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
},
|
|
.int, .comptime_int => {
|
|
if (maybe_inst_val) |val| {
|
|
// comptime-known integer to other number
|
|
if (!(try sema.intFitsInType(val, dest_ty, null))) {
|
|
if (!opts.report_err) return error.NotCoercible;
|
|
return sema.fail(block, inst_src, "type '{f}' cannot represent integer value '{f}'", .{ dest_ty.fmt(pt), val.fmtValueSema(pt, sema) });
|
|
}
|
|
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
.undef => try pt.undefRef(dest_ty),
|
|
.int => |int| Air.internedToRef(
|
|
try zcu.intern_pool.getCoercedInts(zcu.gpa, pt.tid, int, dest_ty.toIntern()),
|
|
),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
if (dest_ty.zigTypeTag(zcu) == .comptime_int) {
|
|
if (!opts.report_err) return error.NotCoercible;
|
|
if (opts.no_cast_to_comptime_int) return inst;
|
|
return sema.failWithNeededComptime(block, inst_src, .{ .simple = .casted_to_comptime_int });
|
|
}
|
|
|
|
// integer widening
|
|
const dst_info = dest_ty.intInfo(zcu);
|
|
const src_info = inst_ty.intInfo(zcu);
|
|
if ((src_info.signedness == dst_info.signedness and dst_info.bits >= src_info.bits) or
|
|
// small enough unsigned ints can get casted to large enough signed ints
|
|
(dst_info.signedness == .signed and dst_info.bits > src_info.bits))
|
|
{
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addTyOp(.intcast, dest_ty, inst);
|
|
}
|
|
},
|
|
else => {},
|
|
},
|
|
.float, .comptime_float => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.comptime_float => {
|
|
const val = try sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, inst, undefined);
|
|
const result_val = try val.floatCast(dest_ty, pt);
|
|
return Air.internedToRef(result_val.toIntern());
|
|
},
|
|
.float => {
|
|
if (maybe_inst_val) |val| {
|
|
const result_val = try val.floatCast(dest_ty, pt);
|
|
if (!val.eql(try result_val.floatCast(inst_ty, pt), inst_ty, zcu)) {
|
|
return sema.fail(
|
|
block,
|
|
inst_src,
|
|
"type '{f}' cannot represent float value '{f}'",
|
|
.{ dest_ty.fmt(pt), val.fmtValueSema(pt, sema) },
|
|
);
|
|
}
|
|
return Air.internedToRef(result_val.toIntern());
|
|
} else if (dest_ty.zigTypeTag(zcu) == .comptime_float) {
|
|
if (!opts.report_err) return error.NotCoercible;
|
|
return sema.failWithNeededComptime(block, inst_src, .{ .simple = .casted_to_comptime_float });
|
|
}
|
|
|
|
// float widening
|
|
const src_bits = inst_ty.floatBits(target);
|
|
const dst_bits = dest_ty.floatBits(target);
|
|
if (dst_bits >= src_bits) {
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addTyOp(.fpext, dest_ty, inst);
|
|
}
|
|
},
|
|
.int, .comptime_int => int: {
|
|
const val = maybe_inst_val orelse {
|
|
if (dest_ty.zigTypeTag(zcu) == .comptime_float) {
|
|
if (!opts.report_err) return error.NotCoercible;
|
|
return sema.failWithNeededComptime(block, inst_src, .{ .simple = .casted_to_comptime_float });
|
|
}
|
|
break :int;
|
|
};
|
|
const result_val = try val.floatFromIntAdvanced(sema.arena, inst_ty, dest_ty, pt, .sema);
|
|
const fits: bool = switch (ip.indexToKey(result_val.toIntern())) {
|
|
else => unreachable,
|
|
.undef => true,
|
|
.float => |float| fits: {
|
|
var buffer: InternPool.Key.Int.Storage.BigIntSpace = undefined;
|
|
const operand_big_int = val.toBigInt(&buffer, zcu);
|
|
switch (float.storage) {
|
|
inline else => |x| {
|
|
if (!std.math.isFinite(x)) break :fits false;
|
|
var result_big_int: std.math.big.int.Mutable = .{
|
|
.limbs = try sema.arena.alloc(std.math.big.Limb, std.math.big.int.calcLimbLen(x)),
|
|
.len = undefined,
|
|
.positive = undefined,
|
|
};
|
|
switch (result_big_int.setFloat(x, .nearest_even)) {
|
|
.inexact => break :fits false,
|
|
.exact => {},
|
|
}
|
|
break :fits result_big_int.toConst().eql(operand_big_int);
|
|
},
|
|
}
|
|
},
|
|
};
|
|
if (!fits) return sema.fail(
|
|
block,
|
|
inst_src,
|
|
"type '{f}' cannot represent integer value '{f}'",
|
|
.{ dest_ty.fmt(pt), val.fmtValue(pt) },
|
|
);
|
|
return .fromValue(result_val);
|
|
},
|
|
else => {},
|
|
},
|
|
.@"enum" => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.enum_literal => {
|
|
// enum literal to enum
|
|
const val = try sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, inst, undefined);
|
|
const string = zcu.intern_pool.indexToKey(val.toIntern()).enum_literal;
|
|
const field_index = dest_ty.enumFieldIndex(string, zcu) orelse {
|
|
return sema.fail(block, inst_src, "no field named '{f}' in enum '{f}'", .{
|
|
string.fmt(&zcu.intern_pool), dest_ty.fmt(pt),
|
|
});
|
|
};
|
|
return Air.internedToRef((try pt.enumValueFieldIndex(dest_ty, @intCast(field_index))).toIntern());
|
|
},
|
|
.@"union" => blk: {
|
|
// union to its own tag type
|
|
const union_tag_ty = inst_ty.unionTagType(zcu) orelse break :blk;
|
|
if (union_tag_ty.eql(dest_ty, zcu)) {
|
|
return sema.unionToTag(block, dest_ty, inst, inst_src);
|
|
}
|
|
},
|
|
else => {},
|
|
},
|
|
.error_union => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.error_union => eu: {
|
|
if (maybe_inst_val) |inst_val| {
|
|
switch (inst_val.toIntern()) {
|
|
.undef => return pt.undefRef(dest_ty),
|
|
else => switch (zcu.intern_pool.indexToKey(inst_val.toIntern())) {
|
|
.error_union => |error_union| switch (error_union.val) {
|
|
.err_name => |err_name| {
|
|
const error_set_ty = inst_ty.errorUnionSet(zcu);
|
|
const error_set_val = Air.internedToRef((try pt.intern(.{ .err = .{
|
|
.ty = error_set_ty.toIntern(),
|
|
.name = err_name,
|
|
} })));
|
|
return sema.wrapErrorUnionSet(block, dest_ty, error_set_val, inst_src);
|
|
},
|
|
.payload => |payload| {
|
|
const payload_val = Air.internedToRef(payload);
|
|
return sema.wrapErrorUnionPayload(block, dest_ty, payload_val, inst_src) catch |err| switch (err) {
|
|
error.NotCoercible => break :eu,
|
|
else => |e| return e,
|
|
};
|
|
},
|
|
},
|
|
else => unreachable,
|
|
},
|
|
}
|
|
}
|
|
},
|
|
.error_set => {
|
|
// E to E!T
|
|
return sema.wrapErrorUnionSet(block, dest_ty, inst, inst_src);
|
|
},
|
|
else => eu: {
|
|
// T to E!T
|
|
return sema.wrapErrorUnionPayload(block, dest_ty, inst, inst_src) catch |err| switch (err) {
|
|
error.NotCoercible => {
|
|
if (in_memory_result == .no_match) {
|
|
const payload_type = dest_ty.errorUnionPayload(zcu);
|
|
// Try to give more useful notes
|
|
in_memory_result = try sema.coerceInMemoryAllowed(block, payload_type, inst_ty, false, target, dest_ty_src, inst_src, maybe_inst_val);
|
|
}
|
|
break :eu;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
},
|
|
},
|
|
.@"union" => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.@"enum", .enum_literal => return sema.coerceEnumToUnion(block, dest_ty, dest_ty_src, inst, inst_src),
|
|
else => {},
|
|
},
|
|
.array => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.array => array_to_array: {
|
|
// Array coercions are allowed only if the child is IMC and the sentinel is unchanged or removed.
|
|
if (.ok != try sema.coerceInMemoryAllowed(
|
|
block,
|
|
dest_ty.childType(zcu),
|
|
inst_ty.childType(zcu),
|
|
false,
|
|
target,
|
|
dest_ty_src,
|
|
inst_src,
|
|
maybe_inst_val,
|
|
)) {
|
|
break :array_to_array;
|
|
}
|
|
|
|
if (dest_ty.sentinel(zcu)) |dest_sent| {
|
|
const src_sent = inst_ty.sentinel(zcu) orelse break :array_to_array;
|
|
if (dest_sent.toIntern() != (try pt.getCoerced(src_sent, dest_ty.childType(zcu))).toIntern()) {
|
|
break :array_to_array;
|
|
}
|
|
}
|
|
|
|
return sema.coerceArrayLike(block, dest_ty, dest_ty_src, inst, inst_src);
|
|
},
|
|
.vector => return sema.coerceArrayLike(block, dest_ty, dest_ty_src, inst, inst_src),
|
|
.@"struct" => {
|
|
if (inst_ty.isTuple(zcu)) {
|
|
return sema.coerceTupleToArray(block, dest_ty, dest_ty_src, inst, inst_src);
|
|
}
|
|
},
|
|
else => {},
|
|
},
|
|
.vector => switch (inst_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => return sema.coerceArrayLike(block, dest_ty, dest_ty_src, inst, inst_src),
|
|
.@"struct" => {
|
|
if (inst_ty.isTuple(zcu)) {
|
|
return sema.coerceTupleToArray(block, dest_ty, dest_ty_src, inst, inst_src);
|
|
}
|
|
},
|
|
else => {},
|
|
},
|
|
.@"struct" => blk: {
|
|
if (dest_ty.isTuple(zcu) and inst_ty.isTuple(zcu)) {
|
|
return sema.coerceTupleToTuple(block, dest_ty, inst, inst_src) catch |err| switch (err) {
|
|
error.NotCoercible => break :blk,
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
const can_coerce_to = switch (dest_ty.zigTypeTag(zcu)) {
|
|
.noreturn, .@"opaque" => false,
|
|
else => true,
|
|
};
|
|
|
|
if (can_coerce_to) {
|
|
// undefined to anything. We do this after the big switch above so that
|
|
// special logic has a chance to run first, such as `*[N]T` to `[]T` which
|
|
// should initialize the length field of the slice.
|
|
if (maybe_inst_val) |val| if (val.toIntern() == .undef) return pt.undefRef(dest_ty);
|
|
}
|
|
|
|
if (!opts.report_err) return error.NotCoercible;
|
|
|
|
if (opts.is_ret and dest_ty.zigTypeTag(zcu) == .noreturn) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "function declared 'noreturn' returns", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
const ret_ty_src: LazySrcLoc = .{
|
|
.base_node_inst = ip.getNav(zcu.funcInfo(sema.func_index).owner_nav).srcInst(ip),
|
|
.offset = .{ .node_offset_fn_type_ret_ty = .zero },
|
|
};
|
|
try sema.errNote(ret_ty_src, msg, "'noreturn' declared here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "expected type '{f}', found '{f}'", .{ dest_ty.fmt(pt), inst_ty.fmt(pt) });
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
if (!can_coerce_to) {
|
|
try sema.errNote(inst_src, msg, "cannot coerce to '{f}'", .{dest_ty.fmt(pt)});
|
|
}
|
|
|
|
// E!T to T
|
|
if (inst_ty.zigTypeTag(zcu) == .error_union and
|
|
(try sema.coerceInMemoryAllowed(block, inst_ty.errorUnionPayload(zcu), dest_ty, false, target, dest_ty_src, inst_src, maybe_inst_val)) == .ok)
|
|
{
|
|
try sema.errNote(inst_src, msg, "cannot convert error union to payload type", .{});
|
|
try sema.errNote(inst_src, msg, "consider using 'try', 'catch', or 'if'", .{});
|
|
}
|
|
|
|
// ?T to T
|
|
if (inst_ty.zigTypeTag(zcu) == .optional and
|
|
(try sema.coerceInMemoryAllowed(block, inst_ty.optionalChild(zcu), dest_ty, false, target, dest_ty_src, inst_src, maybe_inst_val)) == .ok)
|
|
{
|
|
try sema.errNote(inst_src, msg, "cannot convert optional to payload type", .{});
|
|
try sema.errNote(inst_src, msg, "consider using '.?', 'orelse', or 'if'", .{});
|
|
}
|
|
|
|
try in_memory_result.report(sema, inst_src, msg);
|
|
|
|
// Add notes about function return type
|
|
if (opts.is_ret and
|
|
!zcu.test_functions.contains(zcu.funcInfo(sema.func_index).owner_nav))
|
|
{
|
|
const ret_ty_src: LazySrcLoc = .{
|
|
.base_node_inst = ip.getNav(zcu.funcInfo(sema.func_index).owner_nav).srcInst(ip),
|
|
.offset = .{ .node_offset_fn_type_ret_ty = .zero },
|
|
};
|
|
if (inst_ty.isError(zcu) and !dest_ty.isError(zcu)) {
|
|
try sema.errNote(ret_ty_src, msg, "function cannot return an error", .{});
|
|
} else {
|
|
try sema.errNote(ret_ty_src, msg, "function return type declared here", .{});
|
|
}
|
|
}
|
|
|
|
if (try opts.param_src.get(sema)) |param_src| {
|
|
try sema.errNote(param_src, msg, "parameter type declared here", .{});
|
|
}
|
|
|
|
// TODO maybe add "cannot store an error in type '{f}'" note
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
fn coerceInMemory(
|
|
sema: *Sema,
|
|
val: Value,
|
|
dst_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
return Air.internedToRef((try sema.pt.getCoerced(val, dst_ty)).toIntern());
|
|
}
|
|
|
|
const InMemoryCoercionResult = union(enum) {
|
|
ok,
|
|
no_match: Pair,
|
|
int_not_coercible: Int,
|
|
comptime_int_not_coercible: TypeValuePair,
|
|
error_union_payload: PairAndChild,
|
|
array_len: IntPair,
|
|
array_sentinel: Sentinel,
|
|
array_elem: PairAndChild,
|
|
vector_len: IntPair,
|
|
vector_elem: PairAndChild,
|
|
optional_shape: Pair,
|
|
optional_child: PairAndChild,
|
|
from_anyerror,
|
|
missing_error: []const InternPool.NullTerminatedString,
|
|
/// true if wanted is var args
|
|
fn_var_args: bool,
|
|
/// true if wanted is generic
|
|
fn_generic: bool,
|
|
fn_param_count: IntPair,
|
|
fn_param_noalias: IntPair,
|
|
fn_param_comptime: ComptimeParam,
|
|
fn_param: Param,
|
|
fn_cc: CC,
|
|
fn_return_type: PairAndChild,
|
|
ptr_child: PairAndChild,
|
|
ptr_addrspace: AddressSpace,
|
|
ptr_sentinel: Sentinel,
|
|
ptr_size: Size,
|
|
ptr_const: Pair,
|
|
ptr_volatile: Pair,
|
|
ptr_allowzero: Pair,
|
|
ptr_bit_range: BitRange,
|
|
ptr_alignment: AlignPair,
|
|
double_ptr_to_anyopaque: Pair,
|
|
slice_to_anyopaque: Pair,
|
|
|
|
const Pair = struct {
|
|
actual: Type,
|
|
wanted: Type,
|
|
};
|
|
|
|
const TypeValuePair = struct {
|
|
actual: Value,
|
|
wanted: Type,
|
|
};
|
|
|
|
const PairAndChild = struct {
|
|
child: *InMemoryCoercionResult,
|
|
actual: Type,
|
|
wanted: Type,
|
|
};
|
|
|
|
const Param = struct {
|
|
child: *InMemoryCoercionResult,
|
|
actual: Type,
|
|
wanted: Type,
|
|
index: u64,
|
|
};
|
|
|
|
const ComptimeParam = struct {
|
|
index: u64,
|
|
wanted: bool,
|
|
};
|
|
|
|
const Sentinel = struct {
|
|
// unreachable_value indicates no sentinel
|
|
actual: Value,
|
|
wanted: Value,
|
|
ty: Type,
|
|
};
|
|
|
|
const Int = struct {
|
|
actual_signedness: std.builtin.Signedness,
|
|
wanted_signedness: std.builtin.Signedness,
|
|
actual_bits: u16,
|
|
wanted_bits: u16,
|
|
};
|
|
|
|
const IntPair = struct {
|
|
actual: u64,
|
|
wanted: u64,
|
|
};
|
|
|
|
const AlignPair = struct {
|
|
actual: Alignment,
|
|
wanted: Alignment,
|
|
};
|
|
|
|
const Size = struct {
|
|
actual: std.builtin.Type.Pointer.Size,
|
|
wanted: std.builtin.Type.Pointer.Size,
|
|
};
|
|
|
|
const AddressSpace = struct {
|
|
actual: std.builtin.AddressSpace,
|
|
wanted: std.builtin.AddressSpace,
|
|
};
|
|
|
|
const CC = struct {
|
|
actual: std.builtin.CallingConvention,
|
|
wanted: std.builtin.CallingConvention,
|
|
};
|
|
|
|
const BitRange = struct {
|
|
actual_host: u16,
|
|
wanted_host: u16,
|
|
actual_offset: u16,
|
|
wanted_offset: u16,
|
|
};
|
|
|
|
fn dupe(child: *const InMemoryCoercionResult, arena: Allocator) !*InMemoryCoercionResult {
|
|
const res = try arena.create(InMemoryCoercionResult);
|
|
res.* = child.*;
|
|
return res;
|
|
}
|
|
|
|
fn report(res: *const InMemoryCoercionResult, sema: *Sema, src: LazySrcLoc, msg: *Zcu.ErrorMsg) !void {
|
|
const pt = sema.pt;
|
|
var cur = res;
|
|
while (true) switch (cur.*) {
|
|
.ok => unreachable,
|
|
.no_match => |types| {
|
|
try sema.addDeclaredHereNote(msg, types.wanted);
|
|
try sema.addDeclaredHereNote(msg, types.actual);
|
|
break;
|
|
},
|
|
.int_not_coercible => |int| {
|
|
try sema.errNote(src, msg, "{s} {d}-bit int cannot represent all possible {s} {d}-bit values", .{
|
|
@tagName(int.wanted_signedness), int.wanted_bits, @tagName(int.actual_signedness), int.actual_bits,
|
|
});
|
|
break;
|
|
},
|
|
.comptime_int_not_coercible => |int| {
|
|
try sema.errNote(src, msg, "type '{f}' cannot represent value '{f}'", .{
|
|
int.wanted.fmt(pt), int.actual.fmtValueSema(pt, sema),
|
|
});
|
|
break;
|
|
},
|
|
.error_union_payload => |pair| {
|
|
try sema.errNote(src, msg, "error union payload '{f}' cannot cast into error union payload '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
cur = pair.child;
|
|
},
|
|
.array_len => |lens| {
|
|
try sema.errNote(src, msg, "array of length {d} cannot cast into an array of length {d}", .{
|
|
lens.actual, lens.wanted,
|
|
});
|
|
break;
|
|
},
|
|
.array_sentinel => |sentinel| {
|
|
if (sentinel.actual.toIntern() != .unreachable_value) {
|
|
try sema.errNote(src, msg, "array sentinel '{f}' cannot cast into array sentinel '{f}'", .{
|
|
sentinel.actual.fmtValueSema(pt, sema), sentinel.wanted.fmtValueSema(pt, sema),
|
|
});
|
|
} else {
|
|
try sema.errNote(src, msg, "destination array requires '{f}' sentinel", .{
|
|
sentinel.wanted.fmtValueSema(pt, sema),
|
|
});
|
|
}
|
|
break;
|
|
},
|
|
.array_elem => |pair| {
|
|
try sema.errNote(src, msg, "array element type '{f}' cannot cast into array element type '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
cur = pair.child;
|
|
},
|
|
.vector_len => |lens| {
|
|
try sema.errNote(src, msg, "vector of length {d} cannot cast into a vector of length {d}", .{
|
|
lens.actual, lens.wanted,
|
|
});
|
|
break;
|
|
},
|
|
.vector_elem => |pair| {
|
|
try sema.errNote(src, msg, "vector element type '{f}' cannot cast into vector element type '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
cur = pair.child;
|
|
},
|
|
.optional_shape => |pair| {
|
|
try sema.errNote(src, msg, "optional type child '{f}' cannot cast into optional type child '{f}'", .{
|
|
pair.actual.optionalChild(pt.zcu).fmt(pt), pair.wanted.optionalChild(pt.zcu).fmt(pt),
|
|
});
|
|
break;
|
|
},
|
|
.optional_child => |pair| {
|
|
try sema.errNote(src, msg, "optional type child '{f}' cannot cast into optional type child '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
cur = pair.child;
|
|
},
|
|
.from_anyerror => {
|
|
try sema.errNote(src, msg, "global error set cannot cast into a smaller set", .{});
|
|
break;
|
|
},
|
|
.missing_error => |missing_errors| {
|
|
for (missing_errors) |err| {
|
|
try sema.errNote(src, msg, "'error.{f}' not a member of destination error set", .{err.fmt(&pt.zcu.intern_pool)});
|
|
}
|
|
break;
|
|
},
|
|
.fn_var_args => |wanted_var_args| {
|
|
if (wanted_var_args) {
|
|
try sema.errNote(src, msg, "non-variadic function cannot cast into a variadic function", .{});
|
|
} else {
|
|
try sema.errNote(src, msg, "variadic function cannot cast into a non-variadic function", .{});
|
|
}
|
|
break;
|
|
},
|
|
.fn_generic => |wanted_generic| {
|
|
if (wanted_generic) {
|
|
try sema.errNote(src, msg, "non-generic function cannot cast into a generic function", .{});
|
|
} else {
|
|
try sema.errNote(src, msg, "generic function cannot cast into a non-generic function", .{});
|
|
}
|
|
break;
|
|
},
|
|
.fn_param_count => |lens| {
|
|
try sema.errNote(src, msg, "function with {d} parameters cannot cast into a function with {d} parameters", .{
|
|
lens.actual, lens.wanted,
|
|
});
|
|
break;
|
|
},
|
|
.fn_param_noalias => |param| {
|
|
var index: u6 = 0;
|
|
var actual_noalias = false;
|
|
while (true) : (index += 1) {
|
|
const actual: u1 = @truncate(param.actual >> index);
|
|
const wanted: u1 = @truncate(param.wanted >> index);
|
|
if (actual != wanted) {
|
|
actual_noalias = actual == 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!actual_noalias) {
|
|
try sema.errNote(src, msg, "regular parameter {d} cannot cast into a noalias parameter", .{index});
|
|
} else {
|
|
try sema.errNote(src, msg, "noalias parameter {d} cannot cast into a regular parameter", .{index});
|
|
}
|
|
break;
|
|
},
|
|
.fn_param_comptime => |param| {
|
|
if (param.wanted) {
|
|
try sema.errNote(src, msg, "non-comptime parameter {d} cannot cast into a comptime parameter", .{param.index});
|
|
} else {
|
|
try sema.errNote(src, msg, "comptime parameter {d} cannot cast into a non-comptime parameter", .{param.index});
|
|
}
|
|
break;
|
|
},
|
|
.fn_param => |param| {
|
|
try sema.errNote(src, msg, "parameter {d} '{f}' cannot cast into '{f}'", .{
|
|
param.index, param.actual.fmt(pt), param.wanted.fmt(pt),
|
|
});
|
|
cur = param.child;
|
|
},
|
|
.fn_cc => |cc| {
|
|
try sema.errNote(src, msg, "calling convention '{s}' cannot cast into calling convention '{s}'", .{ @tagName(cc.actual), @tagName(cc.wanted) });
|
|
break;
|
|
},
|
|
.fn_return_type => |pair| {
|
|
try sema.errNote(src, msg, "return type '{f}' cannot cast into return type '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
cur = pair.child;
|
|
},
|
|
.ptr_child => |pair| {
|
|
try sema.errNote(src, msg, "pointer type child '{f}' cannot cast into pointer type child '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
cur = pair.child;
|
|
},
|
|
.ptr_addrspace => |@"addrspace"| {
|
|
try sema.errNote(src, msg, "address space '{s}' cannot cast into address space '{s}'", .{ @tagName(@"addrspace".actual), @tagName(@"addrspace".wanted) });
|
|
break;
|
|
},
|
|
.ptr_sentinel => |sentinel| {
|
|
if (sentinel.actual.toIntern() != .unreachable_value) {
|
|
try sema.errNote(src, msg, "pointer sentinel '{f}' cannot cast into pointer sentinel '{f}'", .{
|
|
sentinel.actual.fmtValueSema(pt, sema), sentinel.wanted.fmtValueSema(pt, sema),
|
|
});
|
|
} else {
|
|
try sema.errNote(src, msg, "destination pointer requires '{f}' sentinel", .{
|
|
sentinel.wanted.fmtValueSema(pt, sema),
|
|
});
|
|
}
|
|
break;
|
|
},
|
|
.ptr_size => |size| {
|
|
try sema.errNote(src, msg, "a {s} cannot cast into a {s}", .{ pointerSizeString(size.actual), pointerSizeString(size.wanted) });
|
|
break;
|
|
},
|
|
.ptr_allowzero => |pair| {
|
|
const wanted_allow_zero = pair.wanted.ptrAllowsZero(pt.zcu);
|
|
const actual_allow_zero = pair.actual.ptrAllowsZero(pt.zcu);
|
|
if (actual_allow_zero and !wanted_allow_zero) {
|
|
try sema.errNote(src, msg, "'{f}' could have null values which are illegal in type '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
} else {
|
|
try sema.errNote(src, msg, "mutable '{f}' would allow illegal null values stored to type '{f}'", .{
|
|
pair.wanted.fmt(pt), pair.actual.fmt(pt),
|
|
});
|
|
}
|
|
break;
|
|
},
|
|
.ptr_const => |pair| {
|
|
const wanted_const = pair.wanted.isConstPtr(pt.zcu);
|
|
const actual_const = pair.actual.isConstPtr(pt.zcu);
|
|
if (actual_const and !wanted_const) {
|
|
try sema.errNote(src, msg, "cast discards const qualifier", .{});
|
|
} else {
|
|
try sema.errNote(src, msg, "mutable '{f}' would allow illegal const pointers stored to type '{f}'", .{
|
|
pair.wanted.fmt(pt), pair.actual.fmt(pt),
|
|
});
|
|
}
|
|
break;
|
|
},
|
|
.ptr_volatile => |pair| {
|
|
const wanted_volatile = pair.wanted.isVolatilePtr(pt.zcu);
|
|
const actual_volatile = pair.actual.isVolatilePtr(pt.zcu);
|
|
if (actual_volatile and !wanted_volatile) {
|
|
try sema.errNote(src, msg, "cast discards volatile qualifier", .{});
|
|
} else {
|
|
try sema.errNote(src, msg, "mutable '{f}' would allow illegal volatile pointers stored to type '{f}'", .{
|
|
pair.wanted.fmt(pt), pair.actual.fmt(pt),
|
|
});
|
|
}
|
|
break;
|
|
},
|
|
.ptr_bit_range => |bit_range| {
|
|
if (bit_range.actual_host != bit_range.wanted_host) {
|
|
try sema.errNote(src, msg, "pointer host size '{d}' cannot cast into pointer host size '{d}'", .{
|
|
bit_range.actual_host, bit_range.wanted_host,
|
|
});
|
|
}
|
|
if (bit_range.actual_offset != bit_range.wanted_offset) {
|
|
try sema.errNote(src, msg, "pointer bit offset '{d}' cannot cast into pointer bit offset '{d}'", .{
|
|
bit_range.actual_offset, bit_range.wanted_offset,
|
|
});
|
|
}
|
|
break;
|
|
},
|
|
.ptr_alignment => |pair| {
|
|
try sema.errNote(src, msg, "pointer alignment '{d}' cannot cast into pointer alignment '{d}'", .{
|
|
pair.actual.toByteUnits() orelse 0, pair.wanted.toByteUnits() orelse 0,
|
|
});
|
|
break;
|
|
},
|
|
.double_ptr_to_anyopaque => |pair| {
|
|
try sema.errNote(src, msg, "cannot implicitly cast double pointer '{f}' to anyopaque pointer '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
break;
|
|
},
|
|
.slice_to_anyopaque => |pair| {
|
|
try sema.errNote(src, msg, "cannot implicitly cast slice '{f}' to anyopaque pointer '{f}'", .{
|
|
pair.actual.fmt(pt), pair.wanted.fmt(pt),
|
|
});
|
|
try sema.errNote(src, msg, "consider using '.ptr'", .{});
|
|
break;
|
|
},
|
|
};
|
|
}
|
|
};
|
|
|
|
fn pointerSizeString(size: std.builtin.Type.Pointer.Size) []const u8 {
|
|
return switch (size) {
|
|
.one => "single pointer",
|
|
.many => "many pointer",
|
|
.c => "C pointer",
|
|
.slice => "slice",
|
|
};
|
|
}
|
|
|
|
/// If types `A` and `B` have identical representations in runtime memory, they are considered
|
|
/// "in-memory coercible". This is a subset of normal coercions. Not only can `A` coerce to `B`, but
|
|
/// also, coercions can happen through pointers. For instance, `*const A` can coerce to `*const B`.
|
|
///
|
|
/// If this function is called, the coercion must be applied, or a compile error emitted if `.ok`
|
|
/// is not returned. This is because this function may modify inferred error sets to make a
|
|
/// coercion possible, even if `.ok` is not returned.
|
|
pub fn coerceInMemoryAllowed(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
src_ty: Type,
|
|
/// If `true`, this query comes from an attempted coercion of the form `*Src` -> `*Dest`, where
|
|
/// both pointers are mutable. If this coercion is allowed, one could store to the `*Dest` and
|
|
/// load from the `*Src` to effectively perform an in-memory coercion from `Dest` to `Src`.
|
|
/// Therefore, when `dest_is_mut`, the in-memory coercion must be valid in *both directions*.
|
|
dest_is_mut: bool,
|
|
target: *const std.Target,
|
|
dest_src: LazySrcLoc,
|
|
src_src: LazySrcLoc,
|
|
src_val: ?Value,
|
|
) CompileError!InMemoryCoercionResult {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (dest_ty.eql(src_ty, zcu))
|
|
return .ok;
|
|
|
|
const dest_tag = dest_ty.zigTypeTag(zcu);
|
|
const src_tag = src_ty.zigTypeTag(zcu);
|
|
|
|
// Differently-named integers with the same number of bits.
|
|
if (dest_tag == .int and src_tag == .int) {
|
|
const dest_info = dest_ty.intInfo(zcu);
|
|
const src_info = src_ty.intInfo(zcu);
|
|
|
|
if (dest_info.signedness == src_info.signedness and
|
|
dest_info.bits == src_info.bits)
|
|
{
|
|
return .ok;
|
|
}
|
|
|
|
if ((src_info.signedness == dest_info.signedness and dest_info.bits < src_info.bits) or
|
|
// small enough unsigned ints can get casted to large enough signed ints
|
|
(dest_info.signedness == .signed and src_info.signedness == .unsigned and dest_info.bits <= src_info.bits) or
|
|
(dest_info.signedness == .unsigned and src_info.signedness == .signed))
|
|
{
|
|
return InMemoryCoercionResult{ .int_not_coercible = .{
|
|
.actual_signedness = src_info.signedness,
|
|
.wanted_signedness = dest_info.signedness,
|
|
.actual_bits = src_info.bits,
|
|
.wanted_bits = dest_info.bits,
|
|
} };
|
|
}
|
|
}
|
|
|
|
// Comptime int to regular int.
|
|
if (dest_tag == .int and src_tag == .comptime_int) {
|
|
if (src_val) |val| {
|
|
if (!(try sema.intFitsInType(val, dest_ty, null))) {
|
|
return .{ .comptime_int_not_coercible = .{ .wanted = dest_ty, .actual = val } };
|
|
}
|
|
}
|
|
}
|
|
|
|
// Differently-named floats with the same number of bits.
|
|
if (dest_tag == .float and src_tag == .float) {
|
|
const dest_bits = dest_ty.floatBits(target);
|
|
const src_bits = src_ty.floatBits(target);
|
|
if (dest_bits == src_bits) {
|
|
return .ok;
|
|
}
|
|
}
|
|
|
|
// Pointers / Pointer-like Optionals
|
|
const maybe_dest_ptr_ty = try sema.typePtrOrOptionalPtrTy(dest_ty);
|
|
const maybe_src_ptr_ty = try sema.typePtrOrOptionalPtrTy(src_ty);
|
|
if (maybe_dest_ptr_ty) |dest_ptr_ty| {
|
|
if (maybe_src_ptr_ty) |src_ptr_ty| {
|
|
return try sema.coerceInMemoryAllowedPtrs(block, dest_ty, src_ty, dest_ptr_ty, src_ptr_ty, dest_is_mut, target, dest_src, src_src);
|
|
}
|
|
}
|
|
|
|
// Slices
|
|
if (dest_ty.isSlice(zcu) and src_ty.isSlice(zcu)) {
|
|
return try sema.coerceInMemoryAllowedPtrs(block, dest_ty, src_ty, dest_ty, src_ty, dest_is_mut, target, dest_src, src_src);
|
|
}
|
|
|
|
// Functions
|
|
if (dest_tag == .@"fn" and src_tag == .@"fn") {
|
|
return try sema.coerceInMemoryAllowedFns(block, dest_ty, src_ty, dest_is_mut, target, dest_src, src_src);
|
|
}
|
|
|
|
// Error Unions
|
|
if (dest_tag == .error_union and src_tag == .error_union) {
|
|
const dest_payload = dest_ty.errorUnionPayload(zcu);
|
|
const src_payload = src_ty.errorUnionPayload(zcu);
|
|
const child = try sema.coerceInMemoryAllowed(block, dest_payload, src_payload, dest_is_mut, target, dest_src, src_src, null);
|
|
if (child != .ok) {
|
|
return .{ .error_union_payload = .{
|
|
.child = try child.dupe(sema.arena),
|
|
.actual = src_payload,
|
|
.wanted = dest_payload,
|
|
} };
|
|
}
|
|
return try sema.coerceInMemoryAllowed(block, dest_ty.errorUnionSet(zcu), src_ty.errorUnionSet(zcu), dest_is_mut, target, dest_src, src_src, null);
|
|
}
|
|
|
|
// Error Sets
|
|
if (dest_tag == .error_set and src_tag == .error_set) {
|
|
const res1 = try sema.coerceInMemoryAllowedErrorSets(block, dest_ty, src_ty, dest_src, src_src);
|
|
if (!dest_is_mut or res1 != .ok) return res1;
|
|
// src -> dest is okay, but `dest_is_mut`, so it needs to be allowed in the other direction.
|
|
const res2 = try sema.coerceInMemoryAllowedErrorSets(block, src_ty, dest_ty, src_src, dest_src);
|
|
return res2;
|
|
}
|
|
|
|
// Arrays
|
|
if (dest_tag == .array and src_tag == .array) {
|
|
const dest_info = dest_ty.arrayInfo(zcu);
|
|
const src_info = src_ty.arrayInfo(zcu);
|
|
if (dest_info.len != src_info.len) {
|
|
return .{ .array_len = .{
|
|
.actual = src_info.len,
|
|
.wanted = dest_info.len,
|
|
} };
|
|
}
|
|
|
|
const child = try sema.coerceInMemoryAllowed(block, dest_info.elem_type, src_info.elem_type, dest_is_mut, target, dest_src, src_src, null);
|
|
switch (child) {
|
|
.ok => {},
|
|
.no_match => return child,
|
|
else => {
|
|
return .{ .array_elem = .{
|
|
.child = try child.dupe(sema.arena),
|
|
.actual = src_info.elem_type,
|
|
.wanted = dest_info.elem_type,
|
|
} };
|
|
},
|
|
}
|
|
const ok_sent = (dest_info.sentinel == null and src_info.sentinel == null) or
|
|
(src_info.sentinel != null and
|
|
dest_info.sentinel != null and
|
|
dest_info.sentinel.?.eql(
|
|
try pt.getCoerced(src_info.sentinel.?, dest_info.elem_type),
|
|
dest_info.elem_type,
|
|
zcu,
|
|
));
|
|
if (!ok_sent) {
|
|
return .{ .array_sentinel = .{
|
|
.actual = src_info.sentinel orelse Value.@"unreachable",
|
|
.wanted = dest_info.sentinel orelse Value.@"unreachable",
|
|
.ty = dest_info.elem_type,
|
|
} };
|
|
}
|
|
return .ok;
|
|
}
|
|
|
|
// Vectors
|
|
if (dest_tag == .vector and src_tag == .vector) {
|
|
const dest_len = dest_ty.vectorLen(zcu);
|
|
const src_len = src_ty.vectorLen(zcu);
|
|
if (dest_len != src_len) {
|
|
return .{ .vector_len = .{
|
|
.actual = src_len,
|
|
.wanted = dest_len,
|
|
} };
|
|
}
|
|
|
|
const dest_elem_ty = dest_ty.scalarType(zcu);
|
|
const src_elem_ty = src_ty.scalarType(zcu);
|
|
const child = try sema.coerceInMemoryAllowed(block, dest_elem_ty, src_elem_ty, dest_is_mut, target, dest_src, src_src, null);
|
|
if (child != .ok) {
|
|
return .{ .vector_elem = .{
|
|
.child = try child.dupe(sema.arena),
|
|
.actual = src_elem_ty,
|
|
.wanted = dest_elem_ty,
|
|
} };
|
|
}
|
|
|
|
return .ok;
|
|
}
|
|
|
|
// Optionals
|
|
if (dest_tag == .optional and src_tag == .optional) {
|
|
if ((maybe_dest_ptr_ty != null) != (maybe_src_ptr_ty != null)) {
|
|
return .{ .optional_shape = .{
|
|
.actual = src_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
}
|
|
const dest_child_type = dest_ty.optionalChild(zcu);
|
|
const src_child_type = src_ty.optionalChild(zcu);
|
|
|
|
const child = try sema.coerceInMemoryAllowed(block, dest_child_type, src_child_type, dest_is_mut, target, dest_src, src_src, null);
|
|
if (child != .ok) {
|
|
return .{ .optional_child = .{
|
|
.child = try child.dupe(sema.arena),
|
|
.actual = src_child_type,
|
|
.wanted = dest_child_type,
|
|
} };
|
|
}
|
|
|
|
return .ok;
|
|
}
|
|
|
|
// Tuples (with in-memory-coercible fields)
|
|
if (dest_ty.isTuple(zcu) and src_ty.isTuple(zcu)) tuple: {
|
|
if (dest_ty.structFieldCount(zcu) != src_ty.structFieldCount(zcu)) break :tuple;
|
|
const field_count = dest_ty.structFieldCount(zcu);
|
|
for (0..field_count) |field_idx| {
|
|
if (dest_ty.structFieldIsComptime(field_idx, zcu) != src_ty.structFieldIsComptime(field_idx, zcu)) break :tuple;
|
|
if (dest_ty.fieldAlignment(field_idx, zcu) != src_ty.fieldAlignment(field_idx, zcu)) break :tuple;
|
|
const dest_field_ty = dest_ty.fieldType(field_idx, zcu);
|
|
const src_field_ty = src_ty.fieldType(field_idx, zcu);
|
|
const field = try sema.coerceInMemoryAllowed(block, dest_field_ty, src_field_ty, dest_is_mut, target, dest_src, src_src, null);
|
|
if (field != .ok) break :tuple;
|
|
}
|
|
return .ok;
|
|
}
|
|
|
|
return .{ .no_match = .{
|
|
.actual = dest_ty,
|
|
.wanted = src_ty,
|
|
} };
|
|
}
|
|
|
|
fn coerceInMemoryAllowedErrorSets(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
src_ty: Type,
|
|
dest_src: LazySrcLoc,
|
|
src_src: LazySrcLoc,
|
|
) !InMemoryCoercionResult {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
// Coercion to `anyerror`. Note that this check can return false negatives
|
|
// in case the error sets did not get resolved.
|
|
if (dest_ty.isAnyError(zcu)) {
|
|
return .ok;
|
|
}
|
|
|
|
if (dest_ty.toIntern() == .adhoc_inferred_error_set_type) {
|
|
// We are trying to coerce an error set to the current function's
|
|
// inferred error set.
|
|
const dst_ies = sema.fn_ret_ty_ies.?;
|
|
try dst_ies.addErrorSet(src_ty, ip, sema.arena);
|
|
return .ok;
|
|
}
|
|
|
|
if (ip.isInferredErrorSetType(dest_ty.toIntern())) {
|
|
const dst_ies_func_index = ip.iesFuncIndex(dest_ty.toIntern());
|
|
if (sema.fn_ret_ty_ies) |dst_ies| {
|
|
if (dst_ies.func == dst_ies_func_index) {
|
|
// We are trying to coerce an error set to the current function's
|
|
// inferred error set.
|
|
try dst_ies.addErrorSet(src_ty, ip, sema.arena);
|
|
return .ok;
|
|
}
|
|
}
|
|
switch (try sema.resolveInferredErrorSet(block, dest_src, dest_ty.toIntern())) {
|
|
// isAnyError might have changed from a false negative to a true
|
|
// positive after resolution.
|
|
.anyerror_type => return .ok,
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
var missing_error_buf = std.array_list.Managed(InternPool.NullTerminatedString).init(gpa);
|
|
defer missing_error_buf.deinit();
|
|
|
|
switch (src_ty.toIntern()) {
|
|
.anyerror_type => switch (ip.indexToKey(dest_ty.toIntern())) {
|
|
.simple_type => unreachable, // filtered out above
|
|
.error_set_type, .inferred_error_set_type => return .from_anyerror,
|
|
else => unreachable,
|
|
},
|
|
|
|
else => switch (ip.indexToKey(src_ty.toIntern())) {
|
|
.inferred_error_set_type => {
|
|
const resolved_src_ty = try sema.resolveInferredErrorSet(block, src_src, src_ty.toIntern());
|
|
// src anyerror status might have changed after the resolution.
|
|
if (resolved_src_ty == .anyerror_type) {
|
|
// dest_ty.isAnyError(zcu) == true is already checked for at this point.
|
|
return .from_anyerror;
|
|
}
|
|
|
|
for (ip.indexToKey(resolved_src_ty).error_set_type.names.get(ip)) |key| {
|
|
if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), key)) {
|
|
try missing_error_buf.append(key);
|
|
}
|
|
}
|
|
|
|
if (missing_error_buf.items.len != 0) {
|
|
return InMemoryCoercionResult{
|
|
.missing_error = try sema.arena.dupe(InternPool.NullTerminatedString, missing_error_buf.items),
|
|
};
|
|
}
|
|
|
|
return .ok;
|
|
},
|
|
.error_set_type => |error_set_type| {
|
|
for (error_set_type.names.get(ip)) |name| {
|
|
if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), name)) {
|
|
try missing_error_buf.append(name);
|
|
}
|
|
}
|
|
|
|
if (missing_error_buf.items.len != 0) {
|
|
return InMemoryCoercionResult{
|
|
.missing_error = try sema.arena.dupe(InternPool.NullTerminatedString, missing_error_buf.items),
|
|
};
|
|
}
|
|
|
|
return .ok;
|
|
},
|
|
else => unreachable,
|
|
},
|
|
}
|
|
}
|
|
|
|
fn coerceInMemoryAllowedFns(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
src_ty: Type,
|
|
/// If set, the coercion must be valid in both directions.
|
|
dest_is_mut: bool,
|
|
target: *const std.Target,
|
|
dest_src: LazySrcLoc,
|
|
src_src: LazySrcLoc,
|
|
) !InMemoryCoercionResult {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const dest_info = zcu.typeToFunc(dest_ty).?;
|
|
const src_info = zcu.typeToFunc(src_ty).?;
|
|
|
|
{
|
|
if (dest_info.is_var_args != src_info.is_var_args) {
|
|
return InMemoryCoercionResult{ .fn_var_args = dest_info.is_var_args };
|
|
}
|
|
|
|
if (dest_info.is_generic != src_info.is_generic) {
|
|
return InMemoryCoercionResult{ .fn_generic = dest_info.is_generic };
|
|
}
|
|
|
|
const callconv_ok = callconvCoerceAllowed(target, src_info.cc, dest_info.cc) and
|
|
(!dest_is_mut or callconvCoerceAllowed(target, dest_info.cc, src_info.cc));
|
|
|
|
if (!callconv_ok) {
|
|
return .{ .fn_cc = .{
|
|
.actual = src_info.cc,
|
|
.wanted = dest_info.cc,
|
|
} };
|
|
}
|
|
|
|
if (!switch (src_info.return_type) {
|
|
.generic_poison_type => true,
|
|
.noreturn_type => !dest_is_mut,
|
|
else => false,
|
|
}) {
|
|
const rt = try sema.coerceInMemoryAllowed(
|
|
block,
|
|
.fromInterned(dest_info.return_type),
|
|
.fromInterned(src_info.return_type),
|
|
dest_is_mut,
|
|
target,
|
|
dest_src,
|
|
src_src,
|
|
null,
|
|
);
|
|
if (rt != .ok) return .{ .fn_return_type = .{
|
|
.child = try rt.dupe(sema.arena),
|
|
.actual = .fromInterned(src_info.return_type),
|
|
.wanted = .fromInterned(dest_info.return_type),
|
|
} };
|
|
}
|
|
}
|
|
|
|
const params_len = params_len: {
|
|
if (dest_info.param_types.len != src_info.param_types.len) {
|
|
return .{ .fn_param_count = .{
|
|
.actual = src_info.param_types.len,
|
|
.wanted = dest_info.param_types.len,
|
|
} };
|
|
}
|
|
|
|
if (dest_info.noalias_bits != src_info.noalias_bits) {
|
|
return .{ .fn_param_noalias = .{
|
|
.actual = src_info.noalias_bits,
|
|
.wanted = dest_info.noalias_bits,
|
|
} };
|
|
}
|
|
|
|
break :params_len dest_info.param_types.len;
|
|
};
|
|
|
|
for (0..params_len) |param_i| {
|
|
const dest_param_ty: Type = .fromInterned(dest_info.param_types.get(ip)[param_i]);
|
|
const src_param_ty: Type = .fromInterned(src_info.param_types.get(ip)[param_i]);
|
|
|
|
comptime_param: {
|
|
const src_is_comptime = src_info.paramIsComptime(@intCast(param_i));
|
|
const dest_is_comptime = dest_info.paramIsComptime(@intCast(param_i));
|
|
if (src_is_comptime == dest_is_comptime) break :comptime_param;
|
|
if (!dest_is_mut and src_is_comptime and !dest_is_comptime and try dest_param_ty.comptimeOnlySema(pt)) {
|
|
// A parameter which is marked `comptime` can drop that annotation if the type is comptime-only.
|
|
// The function remains generic, and the parameter is going to be comptime-resolved either way,
|
|
// so this just affects whether or not the argument is comptime-evaluated at the call site.
|
|
break :comptime_param;
|
|
}
|
|
return .{ .fn_param_comptime = .{
|
|
.index = param_i,
|
|
.wanted = dest_is_comptime,
|
|
} };
|
|
}
|
|
|
|
if (!src_param_ty.isGenericPoison() and !dest_param_ty.isGenericPoison()) {
|
|
// Note: Cast direction is reversed here.
|
|
const param = try sema.coerceInMemoryAllowed(block, src_param_ty, dest_param_ty, dest_is_mut, target, dest_src, src_src, null);
|
|
if (param != .ok) {
|
|
return .{ .fn_param = .{
|
|
.child = try param.dupe(sema.arena),
|
|
.actual = src_param_ty,
|
|
.wanted = dest_param_ty,
|
|
.index = param_i,
|
|
} };
|
|
}
|
|
}
|
|
}
|
|
|
|
return .ok;
|
|
}
|
|
|
|
fn callconvCoerceAllowed(
|
|
target: *const std.Target,
|
|
src_cc: std.builtin.CallingConvention,
|
|
dest_cc: std.builtin.CallingConvention,
|
|
) bool {
|
|
const Tag = std.builtin.CallingConvention.Tag;
|
|
if (@as(Tag, src_cc) != @as(Tag, dest_cc)) return false;
|
|
|
|
switch (src_cc) {
|
|
inline else => |src_data, tag| {
|
|
const dest_data = @field(dest_cc, @tagName(tag));
|
|
if (@TypeOf(src_data) != void) {
|
|
const default_stack_align = target.stackAlignment();
|
|
const src_stack_align = src_data.incoming_stack_alignment orelse default_stack_align;
|
|
const dest_stack_align = src_data.incoming_stack_alignment orelse default_stack_align;
|
|
if (dest_stack_align < src_stack_align) return false;
|
|
}
|
|
switch (@TypeOf(src_data)) {
|
|
void, std.builtin.CallingConvention.CommonOptions => {},
|
|
std.builtin.CallingConvention.X86RegparmOptions => {
|
|
if (src_data.register_params != dest_data.register_params) return false;
|
|
},
|
|
std.builtin.CallingConvention.ArcInterruptOptions => {
|
|
if (src_data.type != dest_data.type) return false;
|
|
},
|
|
std.builtin.CallingConvention.ArmInterruptOptions => {
|
|
if (src_data.type != dest_data.type) return false;
|
|
},
|
|
std.builtin.CallingConvention.MicroblazeInterruptOptions => {
|
|
if (src_data.type != dest_data.type) return false;
|
|
},
|
|
std.builtin.CallingConvention.MipsInterruptOptions => {
|
|
if (src_data.mode != dest_data.mode) return false;
|
|
},
|
|
std.builtin.CallingConvention.RiscvInterruptOptions => {
|
|
if (src_data.mode != dest_data.mode) return false;
|
|
},
|
|
std.builtin.CallingConvention.ShInterruptOptions => {
|
|
if (src_data.save != dest_data.save) return false;
|
|
},
|
|
else => comptime unreachable,
|
|
}
|
|
},
|
|
}
|
|
return true;
|
|
}
|
|
|
|
fn coerceInMemoryAllowedPtrs(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
src_ty: Type,
|
|
dest_ptr_ty: Type,
|
|
src_ptr_ty: Type,
|
|
/// If set, the coercion must be valid in both directions.
|
|
dest_is_mut: bool,
|
|
target: *const std.Target,
|
|
dest_src: LazySrcLoc,
|
|
src_src: LazySrcLoc,
|
|
) !InMemoryCoercionResult {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const dest_info = dest_ptr_ty.ptrInfo(zcu);
|
|
const src_info = src_ptr_ty.ptrInfo(zcu);
|
|
|
|
const ok_ptr_size = src_info.flags.size == dest_info.flags.size or
|
|
src_info.flags.size == .c or dest_info.flags.size == .c;
|
|
if (!ok_ptr_size) {
|
|
return InMemoryCoercionResult{ .ptr_size = .{
|
|
.actual = src_info.flags.size,
|
|
.wanted = dest_info.flags.size,
|
|
} };
|
|
}
|
|
|
|
const ok_const = src_info.flags.is_const == dest_info.flags.is_const or
|
|
(!dest_is_mut and dest_info.flags.is_const);
|
|
|
|
if (!ok_const) return .{ .ptr_const = .{
|
|
.actual = src_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
|
|
const ok_volatile = src_info.flags.is_volatile == dest_info.flags.is_volatile or
|
|
(!dest_is_mut and dest_info.flags.is_volatile);
|
|
|
|
if (!ok_volatile) return .{ .ptr_volatile = .{
|
|
.actual = src_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
|
|
const dest_allowzero = dest_ty.ptrAllowsZero(zcu);
|
|
const src_allowzero = src_ty.ptrAllowsZero(zcu);
|
|
const ok_allowzero = src_allowzero == dest_allowzero or
|
|
(!dest_is_mut and dest_allowzero);
|
|
|
|
if (!ok_allowzero) return .{ .ptr_allowzero = .{
|
|
.actual = src_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
|
|
if (dest_info.flags.address_space != src_info.flags.address_space) {
|
|
return .{ .ptr_addrspace = .{
|
|
.actual = src_info.flags.address_space,
|
|
.wanted = dest_info.flags.address_space,
|
|
} };
|
|
}
|
|
|
|
const dest_child: Type = .fromInterned(dest_info.child);
|
|
const src_child: Type = .fromInterned(src_info.child);
|
|
const child = try sema.coerceInMemoryAllowed(
|
|
block,
|
|
dest_child,
|
|
src_child,
|
|
// We must also include `dest_is_mut`.
|
|
// Otherwise, this code is valid:
|
|
//
|
|
// const b: B = ...;
|
|
// var pa: *const A = undefined;
|
|
// const ppa: **const A = &pa;
|
|
// const ppb: **const B = ppa; // <-- this is what that allows
|
|
// ppb.* = &b;
|
|
// const a: A = pa.*;
|
|
//
|
|
// ...effectively performing an in-memory coercion from B to A.
|
|
dest_is_mut or !dest_info.flags.is_const,
|
|
target,
|
|
dest_src,
|
|
src_src,
|
|
null,
|
|
);
|
|
if (child != .ok and !dest_is_mut) allow: {
|
|
// As a special case, we also allow coercing `*[n:s]T` to `*[n]T`, akin to dropping the sentinel from a slice.
|
|
// `*[n:s]T` cannot coerce in memory to `*[n]T` since they have different sizes.
|
|
if (src_child.zigTypeTag(zcu) == .array and dest_child.zigTypeTag(zcu) == .array and
|
|
src_child.arrayLen(zcu) == dest_child.arrayLen(zcu) and
|
|
src_child.sentinel(zcu) != null and dest_child.sentinel(zcu) == null and
|
|
.ok == try sema.coerceInMemoryAllowed(block, dest_child.childType(zcu), src_child.childType(zcu), !dest_info.flags.is_const, target, dest_src, src_src, null))
|
|
{
|
|
break :allow;
|
|
}
|
|
return .{ .ptr_child = .{
|
|
.child = try child.dupe(sema.arena),
|
|
.actual = .fromInterned(src_info.child),
|
|
.wanted = .fromInterned(dest_info.child),
|
|
} };
|
|
}
|
|
|
|
if (src_info.packed_offset.host_size != dest_info.packed_offset.host_size or
|
|
src_info.packed_offset.bit_offset != dest_info.packed_offset.bit_offset)
|
|
{
|
|
return .{ .ptr_bit_range = .{
|
|
.actual_host = src_info.packed_offset.host_size,
|
|
.wanted_host = dest_info.packed_offset.host_size,
|
|
.actual_offset = src_info.packed_offset.bit_offset,
|
|
.wanted_offset = dest_info.packed_offset.bit_offset,
|
|
} };
|
|
}
|
|
|
|
const sentinel_ok = ok: {
|
|
const ss = src_info.sentinel;
|
|
const ds = dest_info.sentinel;
|
|
if (ss == .none and ds == .none) break :ok true;
|
|
if (ss != .none and ds != .none) {
|
|
if (ds == try zcu.intern_pool.getCoerced(sema.gpa, pt.tid, ss, dest_info.child)) break :ok true;
|
|
}
|
|
if (src_info.flags.size == .c) break :ok true;
|
|
if (!dest_is_mut and dest_info.sentinel == .none) break :ok true;
|
|
break :ok false;
|
|
};
|
|
|
|
if (!sentinel_ok) {
|
|
return .{ .ptr_sentinel = .{
|
|
.actual = switch (src_info.sentinel) {
|
|
.none => Value.@"unreachable",
|
|
else => Value.fromInterned(src_info.sentinel),
|
|
},
|
|
.wanted = switch (dest_info.sentinel) {
|
|
.none => Value.@"unreachable",
|
|
else => Value.fromInterned(dest_info.sentinel),
|
|
},
|
|
.ty = .fromInterned(dest_info.child),
|
|
} };
|
|
}
|
|
|
|
// If both pointers have alignment 0, it means they both want ABI alignment.
|
|
// In this case, if they share the same child type, no need to resolve
|
|
// pointee type alignment. Otherwise both pointee types must have their alignment
|
|
// resolved and we compare the alignment numerically.
|
|
if (src_info.flags.alignment != .none or dest_info.flags.alignment != .none or
|
|
dest_info.child != src_info.child)
|
|
{
|
|
const src_align = if (src_info.flags.alignment != .none)
|
|
src_info.flags.alignment
|
|
else
|
|
try Type.fromInterned(src_info.child).abiAlignmentSema(pt);
|
|
|
|
const dest_align = if (dest_info.flags.alignment != .none)
|
|
dest_info.flags.alignment
|
|
else
|
|
try Type.fromInterned(dest_info.child).abiAlignmentSema(pt);
|
|
|
|
if (dest_align.compare(if (dest_is_mut) .neq else .gt, src_align)) {
|
|
return InMemoryCoercionResult{ .ptr_alignment = .{
|
|
.actual = src_align,
|
|
.wanted = dest_align,
|
|
} };
|
|
}
|
|
}
|
|
|
|
return .ok;
|
|
}
|
|
|
|
fn coerceVarArgParam(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
if (block.is_typeof) return inst;
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const uncasted_ty = sema.typeOf(inst);
|
|
const coerced = switch (uncasted_ty.zigTypeTag(zcu)) {
|
|
// TODO consider casting to c_int/f64 if they fit
|
|
.comptime_int, .comptime_float => return sema.fail(
|
|
block,
|
|
inst_src,
|
|
"integer and float literals passed to variadic function must be casted to a fixed-size number type",
|
|
.{},
|
|
),
|
|
.@"fn" => fn_ptr: {
|
|
const fn_val = try sema.resolveConstDefinedValue(block, LazySrcLoc.unneeded, inst, undefined);
|
|
const fn_nav = zcu.funcInfo(fn_val.toIntern()).owner_nav;
|
|
break :fn_ptr try sema.analyzeNavRef(block, inst_src, fn_nav);
|
|
},
|
|
.array => return sema.fail(block, inst_src, "arrays must be passed by reference to variadic function", .{}),
|
|
.float => float: {
|
|
const target = zcu.getTarget();
|
|
const double_bits = target.cTypeBitSize(.double);
|
|
const inst_bits = uncasted_ty.floatBits(target);
|
|
if (inst_bits >= double_bits) break :float inst;
|
|
switch (double_bits) {
|
|
32 => break :float try sema.coerce(block, .f32, inst, inst_src),
|
|
64 => break :float try sema.coerce(block, .f64, inst, inst_src),
|
|
else => unreachable,
|
|
}
|
|
},
|
|
else => if (uncasted_ty.isAbiInt(zcu)) int: {
|
|
if (!try sema.validateExternType(uncasted_ty, .param_ty)) break :int inst;
|
|
const target = zcu.getTarget();
|
|
const uncasted_info = uncasted_ty.intInfo(zcu);
|
|
if (uncasted_info.bits <= target.cTypeBitSize(switch (uncasted_info.signedness) {
|
|
.signed => .int,
|
|
.unsigned => .uint,
|
|
})) break :int try sema.coerce(block, switch (uncasted_info.signedness) {
|
|
.signed => .c_int,
|
|
.unsigned => .c_uint,
|
|
}, inst, inst_src);
|
|
if (uncasted_info.bits <= target.cTypeBitSize(switch (uncasted_info.signedness) {
|
|
.signed => .long,
|
|
.unsigned => .ulong,
|
|
})) break :int try sema.coerce(block, switch (uncasted_info.signedness) {
|
|
.signed => .c_long,
|
|
.unsigned => .c_ulong,
|
|
}, inst, inst_src);
|
|
if (uncasted_info.bits <= target.cTypeBitSize(switch (uncasted_info.signedness) {
|
|
.signed => .longlong,
|
|
.unsigned => .ulonglong,
|
|
})) break :int try sema.coerce(block, switch (uncasted_info.signedness) {
|
|
.signed => .c_longlong,
|
|
.unsigned => .c_ulonglong,
|
|
}, inst, inst_src);
|
|
break :int inst;
|
|
} else inst,
|
|
};
|
|
|
|
const coerced_ty = sema.typeOf(coerced);
|
|
if (!try sema.validateExternType(coerced_ty, .param_ty)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "cannot pass '{f}' to variadic function", .{coerced_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, inst_src, coerced_ty, .param_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, coerced_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
return coerced;
|
|
}
|
|
|
|
// TODO migrate callsites to use storePtr2 instead.
|
|
fn storePtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ptr: Air.Inst.Ref,
|
|
uncasted_operand: Air.Inst.Ref,
|
|
) CompileError!void {
|
|
const air_tag: Air.Inst.Tag = if (block.wantSafety()) .store_safe else .store;
|
|
return sema.storePtr2(block, src, ptr, src, uncasted_operand, src, air_tag);
|
|
}
|
|
|
|
fn storePtr2(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ptr: Air.Inst.Ref,
|
|
ptr_src: LazySrcLoc,
|
|
uncasted_operand: Air.Inst.Ref,
|
|
operand_src: LazySrcLoc,
|
|
air_tag: Air.Inst.Tag,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
if (ptr_ty.isConstPtr(zcu))
|
|
return sema.fail(block, ptr_src, "cannot assign to constant", .{});
|
|
|
|
const elem_ty = ptr_ty.childType(zcu);
|
|
|
|
// To generate better code for tuples, we detect a tuple operand here, and
|
|
// analyze field loads and stores directly. This avoids an extra allocation + memcpy
|
|
// which would occur if we used `coerce`.
|
|
// However, we avoid this mechanism if the destination element type is a tuple,
|
|
// because the regular store will be better for this case.
|
|
// If the destination type is a struct we don't want this mechanism to trigger, because
|
|
// this code does not handle tuple-to-struct coercion which requires dealing with missing
|
|
// fields.
|
|
const operand_ty = sema.typeOf(uncasted_operand);
|
|
if (operand_ty.isTuple(zcu) and elem_ty.zigTypeTag(zcu) == .array) {
|
|
const field_count = operand_ty.structFieldCount(zcu);
|
|
var i: u32 = 0;
|
|
while (i < field_count) : (i += 1) {
|
|
const elem_src = operand_src; // TODO better source location
|
|
const elem = try sema.tupleField(block, operand_src, uncasted_operand, elem_src, i);
|
|
const elem_index = try pt.intRef(.usize, i);
|
|
const elem_ptr = try sema.elemPtr(block, ptr_src, ptr, elem_index, elem_src, false, true);
|
|
try sema.storePtr2(block, src, elem_ptr, elem_src, elem, elem_src, .store);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// TODO do the same thing for anon structs as for tuples above.
|
|
// However, beware of the need to handle missing/extra fields.
|
|
|
|
const is_ret = air_tag == .ret_ptr;
|
|
|
|
// Detect if we are storing an array operand to a bitcasted vector pointer.
|
|
// If so, we instead reach through the bitcasted pointer to the vector pointer,
|
|
// bitcast the array operand to a vector, and then lower this as a store of
|
|
// a vector value to a vector pointer. This generally results in better code,
|
|
// as well as working around an LLVM bug:
|
|
// https://github.com/ziglang/zig/issues/11154
|
|
if (sema.obtainBitCastedVectorPtr(ptr)) |vector_ptr| {
|
|
const vector_ty = sema.typeOf(vector_ptr).childType(zcu);
|
|
const vector = sema.coerceExtra(block, vector_ty, uncasted_operand, operand_src, .{ .is_ret = is_ret }) catch |err| switch (err) {
|
|
error.NotCoercible => unreachable,
|
|
else => |e| return e,
|
|
};
|
|
try sema.storePtr2(block, src, vector_ptr, ptr_src, vector, operand_src, .store);
|
|
return;
|
|
}
|
|
|
|
const operand = sema.coerceExtra(block, elem_ty, uncasted_operand, operand_src, .{ .is_ret = is_ret }) catch |err| switch (err) {
|
|
error.NotCoercible => unreachable,
|
|
else => |e| return e,
|
|
};
|
|
const maybe_operand_val = try sema.resolveValue(operand);
|
|
|
|
const runtime_src = rs: {
|
|
const ptr_val = try sema.resolveDefinedValue(block, ptr_src, ptr) orelse break :rs ptr_src;
|
|
if (!sema.isComptimeMutablePtr(ptr_val)) break :rs ptr_src;
|
|
const operand_val = maybe_operand_val orelse return sema.fail(block, ptr_src, "cannot store runtime value in compile time variable", .{});
|
|
return sema.storePtrVal(block, src, ptr_val, operand_val, elem_ty);
|
|
};
|
|
|
|
// We're performing the store at runtime; as such, we need to make sure the pointee type
|
|
// is not comptime-only. We can hit this case with a `@ptrFromInt` pointer.
|
|
if (try elem_ty.comptimeOnlySema(pt)) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "cannot store comptime-only type '{f}' at runtime", .{elem_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(ptr_src, msg, "operation is runtime due to this pointer", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
// We do this after the possible comptime store above, for the case of field_ptr stores
|
|
// to unions because we want the comptime tag to be set, even if the field type is void.
|
|
if ((try sema.typeHasOnePossibleValue(elem_ty)) != null) {
|
|
return;
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
|
|
if (ptr_ty.ptrInfo(zcu).flags.vector_index == .runtime) {
|
|
const ptr_inst = ptr.toIndex().?;
|
|
const air_tags = sema.air_instructions.items(.tag);
|
|
if (air_tags[@intFromEnum(ptr_inst)] == .ptr_elem_ptr) {
|
|
const ty_pl = sema.air_instructions.items(.data)[@intFromEnum(ptr_inst)].ty_pl;
|
|
const bin_op = sema.getTmpAir().extraData(Air.Bin, ty_pl.payload).data;
|
|
_ = try block.addInst(.{
|
|
.tag = .vector_store_elem,
|
|
.data = .{ .vector_store_elem = .{
|
|
.vector_ptr = bin_op.lhs,
|
|
.payload = try block.sema.addExtra(Air.Bin{
|
|
.lhs = bin_op.rhs,
|
|
.rhs = operand,
|
|
}),
|
|
} },
|
|
});
|
|
return;
|
|
}
|
|
return sema.fail(block, ptr_src, "unable to determine vector element index of type '{f}'", .{
|
|
ptr_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
const store_inst = if (is_ret)
|
|
try block.addBinOp(.store, ptr, operand)
|
|
else
|
|
try block.addBinOp(air_tag, ptr, operand);
|
|
|
|
try sema.checkComptimeKnownStore(block, store_inst, operand_src);
|
|
|
|
return;
|
|
}
|
|
|
|
/// Given an AIR store instruction, checks whether we are performing a
|
|
/// comptime-known store to a local alloc, and updates `maybe_comptime_allocs`
|
|
/// accordingly.
|
|
/// Handles calling `validateRuntimeValue` if the store is runtime for any reason.
|
|
fn checkComptimeKnownStore(sema: *Sema, block: *Block, store_inst_ref: Air.Inst.Ref, store_src: LazySrcLoc) !void {
|
|
const store_inst = store_inst_ref.toIndex().?;
|
|
const inst_data = sema.air_instructions.items(.data)[@intFromEnum(store_inst)].bin_op;
|
|
const ptr = inst_data.lhs.toIndex() orelse return;
|
|
const operand = inst_data.rhs;
|
|
|
|
known: {
|
|
const maybe_base_alloc = sema.base_allocs.get(ptr) orelse break :known;
|
|
const maybe_comptime_alloc = sema.maybe_comptime_allocs.getPtr(maybe_base_alloc) orelse break :known;
|
|
|
|
if ((try sema.resolveValue(operand)) != null and
|
|
block.runtime_index == maybe_comptime_alloc.runtime_index)
|
|
{
|
|
try maybe_comptime_alloc.stores.append(sema.arena, .{
|
|
.inst = store_inst,
|
|
.src = store_src,
|
|
});
|
|
return;
|
|
}
|
|
|
|
// We're newly discovering that this alloc is runtime-known.
|
|
try sema.markMaybeComptimeAllocRuntime(block, maybe_base_alloc);
|
|
}
|
|
|
|
try sema.validateRuntimeValue(block, store_src, operand);
|
|
}
|
|
|
|
/// Given an AIR instruction transforming a pointer (struct_field_ptr,
|
|
/// ptr_elem_ptr, bitcast, etc), checks whether the base pointer refers to a
|
|
/// local alloc, and updates `base_allocs` accordingly.
|
|
fn checkKnownAllocPtr(sema: *Sema, block: *Block, base_ptr: Air.Inst.Ref, new_ptr: Air.Inst.Ref) !void {
|
|
const base_ptr_inst = base_ptr.toIndex() orelse return;
|
|
const new_ptr_inst = new_ptr.toIndex() orelse return;
|
|
const alloc_inst = sema.base_allocs.get(base_ptr_inst) orelse return;
|
|
try sema.base_allocs.put(sema.gpa, new_ptr_inst, alloc_inst);
|
|
|
|
switch (sema.air_instructions.items(.tag)[@intFromEnum(new_ptr_inst)]) {
|
|
.optional_payload_ptr_set, .errunion_payload_ptr_set => {
|
|
const maybe_comptime_alloc = sema.maybe_comptime_allocs.getPtr(alloc_inst) orelse return;
|
|
|
|
// This is functionally a store, since it writes the optional payload bit.
|
|
// Thus, if it is behind a runtime condition, we must mark the alloc as runtime appropriately.
|
|
if (block.runtime_index != maybe_comptime_alloc.runtime_index) {
|
|
return sema.markMaybeComptimeAllocRuntime(block, alloc_inst);
|
|
}
|
|
|
|
try maybe_comptime_alloc.stores.append(sema.arena, .{
|
|
.inst = new_ptr_inst,
|
|
.src = LazySrcLoc.unneeded,
|
|
});
|
|
},
|
|
.ptr_elem_ptr => {
|
|
const tmp_air = sema.getTmpAir();
|
|
const pl_idx = tmp_air.instructions.items(.data)[@intFromEnum(new_ptr_inst)].ty_pl.payload;
|
|
const bin = tmp_air.extraData(Air.Bin, pl_idx).data;
|
|
const index_ref = bin.rhs;
|
|
|
|
// If the index value is runtime-known, this pointer is also runtime-known, so
|
|
// we must in turn make the alloc value runtime-known.
|
|
if (null == try sema.resolveValue(index_ref)) {
|
|
try sema.markMaybeComptimeAllocRuntime(block, alloc_inst);
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
fn markMaybeComptimeAllocRuntime(sema: *Sema, block: *Block, alloc_inst: Air.Inst.Index) CompileError!void {
|
|
const maybe_comptime_alloc = (sema.maybe_comptime_allocs.fetchRemove(alloc_inst) orelse return).value;
|
|
// Since the alloc has been determined to be runtime, we must check that
|
|
// all other stores to it are permitted to be runtime values.
|
|
const slice = maybe_comptime_alloc.stores.slice();
|
|
for (slice.items(.inst), slice.items(.src)) |other_inst, other_src| {
|
|
if (other_src.offset == .unneeded) {
|
|
switch (sema.air_instructions.items(.tag)[@intFromEnum(other_inst)]) {
|
|
.set_union_tag, .optional_payload_ptr_set, .errunion_payload_ptr_set => continue,
|
|
else => unreachable, // assertion failure
|
|
}
|
|
}
|
|
const other_data = sema.air_instructions.items(.data)[@intFromEnum(other_inst)].bin_op;
|
|
const other_operand = other_data.rhs;
|
|
try sema.validateRuntimeValue(block, other_src, other_operand);
|
|
}
|
|
}
|
|
|
|
/// Traverse an arbitrary number of bitcasted pointers and return the underyling vector
|
|
/// pointer. Only if the final element type matches the vector element type, and the
|
|
/// lengths match.
|
|
fn obtainBitCastedVectorPtr(sema: *Sema, ptr: Air.Inst.Ref) ?Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const array_ty = sema.typeOf(ptr).childType(zcu);
|
|
if (array_ty.zigTypeTag(zcu) != .array) return null;
|
|
var ptr_ref = ptr;
|
|
var ptr_inst = ptr_ref.toIndex() orelse return null;
|
|
const air_datas = sema.air_instructions.items(.data);
|
|
const air_tags = sema.air_instructions.items(.tag);
|
|
const vector_ty = while (air_tags[@intFromEnum(ptr_inst)] == .bitcast) {
|
|
ptr_ref = air_datas[@intFromEnum(ptr_inst)].ty_op.operand;
|
|
if (!sema.isKnownZigType(ptr_ref, .pointer)) return null;
|
|
const child_ty = sema.typeOf(ptr_ref).childType(zcu);
|
|
if (child_ty.zigTypeTag(zcu) == .vector) break child_ty;
|
|
ptr_inst = ptr_ref.toIndex() orelse return null;
|
|
} else return null;
|
|
|
|
// We have a pointer-to-array and a pointer-to-vector. If the elements and
|
|
// lengths match, return the result.
|
|
if (array_ty.childType(zcu).eql(vector_ty.childType(zcu), zcu) and
|
|
array_ty.arrayLen(zcu) == vector_ty.vectorLen(zcu))
|
|
{
|
|
return ptr_ref;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/// Call when you have Value objects rather than Air instructions, and you want to
|
|
/// assert the store must be done at comptime.
|
|
fn storePtrVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ptr_val: Value,
|
|
operand_val: Value,
|
|
operand_ty: Type,
|
|
) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
// TODO: audit use sites to eliminate this coercion
|
|
const coerced_operand_val = try pt.getCoerced(operand_val, operand_ty);
|
|
// TODO: audit use sites to eliminate this coercion
|
|
const ptr_ty = try pt.ptrType(info: {
|
|
var info = ptr_val.typeOf(zcu).ptrInfo(zcu);
|
|
info.child = operand_ty.toIntern();
|
|
break :info info;
|
|
});
|
|
const coerced_ptr_val = try pt.getCoerced(ptr_val, ptr_ty);
|
|
|
|
switch (try sema.storeComptimePtr(block, src, coerced_ptr_val, coerced_operand_val)) {
|
|
.success => {},
|
|
.runtime_store => unreachable, // use sites check this
|
|
// TODO use failWithInvalidComptimeFieldStore
|
|
.comptime_field_mismatch => return sema.fail(
|
|
block,
|
|
src,
|
|
"value stored in comptime field does not match the default value of the field",
|
|
.{},
|
|
),
|
|
.undef => return sema.failWithUseOfUndef(block, src, null),
|
|
.err_payload => |err_name| return sema.fail(block, src, "attempt to unwrap error: {f}", .{err_name.fmt(ip)}),
|
|
.null_payload => return sema.fail(block, src, "attempt to use null value", .{}),
|
|
.inactive_union_field => return sema.fail(block, src, "access of inactive union field", .{}),
|
|
.needed_well_defined => |ty| return sema.fail(
|
|
block,
|
|
src,
|
|
"comptime dereference requires '{f}' to have a well-defined layout",
|
|
.{ty.fmt(pt)},
|
|
),
|
|
.out_of_bounds => |ty| return sema.fail(
|
|
block,
|
|
src,
|
|
"dereference of '{f}' exceeds bounds of containing decl of type '{f}'",
|
|
.{ ptr_ty.fmt(pt), ty.fmt(pt) },
|
|
),
|
|
.exceeds_host_size => return sema.fail(block, src, "bit-pointer target exceeds host size", .{}),
|
|
}
|
|
}
|
|
|
|
fn bitCast(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
operand_src: ?LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
try dest_ty.resolveLayout(pt);
|
|
|
|
const old_ty = sema.typeOf(inst);
|
|
try old_ty.resolveLayout(pt);
|
|
|
|
const dest_bits = dest_ty.bitSize(zcu);
|
|
const old_bits = old_ty.bitSize(zcu);
|
|
|
|
if (old_bits != dest_bits) {
|
|
return sema.fail(block, inst_src, "@bitCast size mismatch: destination type '{f}' has {d} bits but source type '{f}' has {d} bits", .{
|
|
dest_ty.fmt(pt),
|
|
dest_bits,
|
|
old_ty.fmt(pt),
|
|
old_bits,
|
|
});
|
|
}
|
|
|
|
if (try sema.resolveValue(inst)) |val| {
|
|
if (val.isUndef(zcu))
|
|
return pt.undefRef(dest_ty);
|
|
if (old_ty.zigTypeTag(zcu) == .error_set and dest_ty.zigTypeTag(zcu) == .error_set) {
|
|
// Special case: we sometimes call `bitCast` on error set values, but they
|
|
// don't have a well-defined layout, so we can't use `bitCastVal` on them.
|
|
return Air.internedToRef((try pt.getCoerced(val, dest_ty)).toIntern());
|
|
}
|
|
if (try sema.bitCastVal(val, dest_ty, 0, 0, 0)) |result_val| {
|
|
return Air.internedToRef(result_val.toIntern());
|
|
}
|
|
}
|
|
try sema.requireRuntimeBlock(block, inst_src, operand_src);
|
|
try sema.validateRuntimeValue(block, inst_src, inst);
|
|
return block.addBitCast(dest_ty, inst);
|
|
}
|
|
|
|
fn coerceArrayPtrToSlice(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (try sema.resolveValue(inst)) |val| {
|
|
const ptr_array_ty = sema.typeOf(inst);
|
|
const array_ty = ptr_array_ty.childType(zcu);
|
|
const slice_ptr_ty = dest_ty.slicePtrFieldType(zcu);
|
|
const slice_ptr = try pt.getCoerced(val, slice_ptr_ty);
|
|
const slice_val = try pt.intern(.{ .slice = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.ptr = slice_ptr.toIntern(),
|
|
.len = (try pt.intValue(.usize, array_ty.arrayLen(zcu))).toIntern(),
|
|
} });
|
|
return Air.internedToRef(slice_val);
|
|
}
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addTyOp(.array_to_slice, dest_ty, inst);
|
|
}
|
|
|
|
fn checkPtrAttributes(sema: *Sema, dest_ty: Type, inst_ty: Type, in_memory_result: *InMemoryCoercionResult) bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const dest_info = dest_ty.ptrInfo(zcu);
|
|
const inst_info = inst_ty.ptrInfo(zcu);
|
|
const len0 = (Type.fromInterned(inst_info.child).zigTypeTag(zcu) == .array and (Type.fromInterned(inst_info.child).arrayLenIncludingSentinel(zcu) == 0 or
|
|
(Type.fromInterned(inst_info.child).arrayLen(zcu) == 0 and dest_info.sentinel == .none and dest_info.flags.size != .c and dest_info.flags.size != .many))) or
|
|
(Type.fromInterned(inst_info.child).isTuple(zcu) and Type.fromInterned(inst_info.child).structFieldCount(zcu) == 0);
|
|
|
|
const ok_const = (!inst_info.flags.is_const or dest_info.flags.is_const) or len0;
|
|
const ok_volatile = !inst_info.flags.is_volatile or dest_info.flags.is_volatile;
|
|
if (!ok_const) {
|
|
in_memory_result.* = .{ .ptr_const = .{
|
|
.actual = inst_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
return false;
|
|
}
|
|
if (!ok_volatile) {
|
|
in_memory_result.* = .{ .ptr_volatile = .{
|
|
.actual = inst_ty,
|
|
.wanted = dest_ty,
|
|
} };
|
|
return false;
|
|
}
|
|
|
|
if (dest_info.flags.address_space != inst_info.flags.address_space) {
|
|
in_memory_result.* = .{ .ptr_addrspace = .{
|
|
.actual = inst_info.flags.address_space,
|
|
.wanted = dest_info.flags.address_space,
|
|
} };
|
|
return false;
|
|
}
|
|
if (inst_info.flags.alignment == .none and dest_info.flags.alignment == .none) return true;
|
|
if (len0) return true;
|
|
|
|
const inst_align = if (inst_info.flags.alignment != .none)
|
|
inst_info.flags.alignment
|
|
else
|
|
Type.fromInterned(inst_info.child).abiAlignment(zcu);
|
|
|
|
const dest_align = if (dest_info.flags.alignment != .none)
|
|
dest_info.flags.alignment
|
|
else
|
|
Type.fromInterned(dest_info.child).abiAlignment(zcu);
|
|
|
|
if (dest_align.compare(.gt, inst_align)) {
|
|
in_memory_result.* = .{ .ptr_alignment = .{
|
|
.actual = inst_align,
|
|
.wanted = dest_align,
|
|
} };
|
|
return false;
|
|
}
|
|
|
|
if (inst_info.packed_offset.host_size != dest_info.packed_offset.host_size or
|
|
inst_info.packed_offset.bit_offset != dest_info.packed_offset.bit_offset)
|
|
{
|
|
in_memory_result.* = .{ .ptr_bit_range = .{
|
|
.actual_host = inst_info.packed_offset.host_size,
|
|
.wanted_host = dest_info.packed_offset.host_size,
|
|
.actual_offset = inst_info.packed_offset.bit_offset,
|
|
.wanted_offset = dest_info.packed_offset.bit_offset,
|
|
} };
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
fn coerceCompatiblePtrs(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_ty = sema.typeOf(inst);
|
|
if (try sema.resolveValue(inst)) |val| {
|
|
if (!val.isUndef(zcu) and val.isNull(zcu) and !dest_ty.isAllowzeroPtr(zcu)) {
|
|
return sema.fail(block, inst_src, "null pointer casted to type '{f}'", .{dest_ty.fmt(pt)});
|
|
}
|
|
// The comptime Value representation is compatible with both types.
|
|
return Air.internedToRef(
|
|
(try pt.getCoerced(val, dest_ty)).toIntern(),
|
|
);
|
|
}
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
const inst_allows_zero = inst_ty.zigTypeTag(zcu) != .pointer or inst_ty.ptrAllowsZero(zcu);
|
|
if (block.wantSafety() and inst_allows_zero and !dest_ty.ptrAllowsZero(zcu) and
|
|
(try dest_ty.elemType2(zcu).hasRuntimeBitsSema(pt) or dest_ty.elemType2(zcu).zigTypeTag(zcu) == .@"fn"))
|
|
{
|
|
try sema.checkLogicalPtrOperation(block, inst_src, inst_ty);
|
|
const actual_ptr = if (inst_ty.isSlice(zcu))
|
|
try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty)
|
|
else
|
|
inst;
|
|
const ptr_int = try block.addBitCast(.usize, actual_ptr);
|
|
const is_non_zero = try block.addBinOp(.cmp_neq, ptr_int, .zero_usize);
|
|
const ok = if (inst_ty.isSlice(zcu)) ok: {
|
|
const len = try sema.analyzeSliceLen(block, inst_src, inst);
|
|
const len_zero = try block.addBinOp(.cmp_eq, len, .zero_usize);
|
|
break :ok try block.addBinOp(.bool_or, len_zero, is_non_zero);
|
|
} else is_non_zero;
|
|
try sema.addSafetyCheck(block, inst_src, ok, .cast_to_null);
|
|
}
|
|
const new_ptr = try sema.bitCast(block, dest_ty, inst, inst_src, null);
|
|
try sema.checkKnownAllocPtr(block, inst, new_ptr);
|
|
return new_ptr;
|
|
}
|
|
|
|
fn coerceEnumToUnion(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
union_ty: Type,
|
|
union_ty_src: LazySrcLoc,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_ty = sema.typeOf(inst);
|
|
|
|
const tag_ty = union_ty.unionTagType(zcu) orelse {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "expected type '{f}', found '{f}'", .{
|
|
union_ty.fmt(pt), inst_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(union_ty_src, msg, "cannot coerce enum to untagged union", .{});
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
};
|
|
|
|
const enum_tag = try sema.coerce(block, tag_ty, inst, inst_src);
|
|
if (try sema.resolveDefinedValue(block, inst_src, enum_tag)) |val| {
|
|
const field_index = union_ty.unionTagFieldIndex(val, pt.zcu) orelse {
|
|
return sema.fail(block, inst_src, "union '{f}' has no tag with value '{f}'", .{
|
|
union_ty.fmt(pt), val.fmtValueSema(pt, sema),
|
|
});
|
|
};
|
|
|
|
const union_obj = zcu.typeToUnion(union_ty).?;
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_index]);
|
|
try field_ty.resolveFields(pt);
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "cannot initialize 'noreturn' field of union", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
const field_name = union_obj.loadTagType(ip).names.get(ip)[field_index];
|
|
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{f}' declared here", .{
|
|
field_name.fmt(ip),
|
|
});
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
const opv = (try sema.typeHasOnePossibleValue(field_ty)) orelse {
|
|
const msg = msg: {
|
|
const field_name = union_obj.loadTagType(ip).names.get(ip)[field_index];
|
|
const msg = try sema.errMsg(inst_src, "coercion from enum '{f}' to union '{f}' must initialize '{f}' field '{f}'", .{
|
|
inst_ty.fmt(pt), union_ty.fmt(pt),
|
|
field_ty.fmt(pt), field_name.fmt(ip),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{f}' declared here", .{
|
|
field_name.fmt(ip),
|
|
});
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
};
|
|
|
|
return Air.internedToRef((try pt.unionValue(union_ty, val, opv)).toIntern());
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
|
|
if (tag_ty.isNonexhaustiveEnum(zcu)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "runtime coercion to union '{f}' from non-exhaustive enum", .{
|
|
union_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.addDeclaredHereNote(msg, tag_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const union_obj = zcu.typeToUnion(union_ty).?;
|
|
{
|
|
var msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (msg) |some| some.destroy(sema.gpa);
|
|
|
|
for (union_obj.field_types.get(ip), 0..) |field_ty, field_index| {
|
|
if (Type.fromInterned(field_ty).zigTypeTag(zcu) == .noreturn) {
|
|
const err_msg = msg orelse try sema.errMsg(
|
|
inst_src,
|
|
"runtime coercion from enum '{f}' to union '{f}' which has a 'noreturn' field",
|
|
.{ tag_ty.fmt(pt), union_ty.fmt(pt) },
|
|
);
|
|
msg = err_msg;
|
|
|
|
try sema.addFieldErrNote(union_ty, field_index, err_msg, "'noreturn' field here", .{});
|
|
}
|
|
}
|
|
if (msg) |some| {
|
|
msg = null;
|
|
try sema.addDeclaredHereNote(some, union_ty);
|
|
return sema.failWithOwnedErrorMsg(block, some);
|
|
}
|
|
}
|
|
|
|
// If the union has all fields 0 bits, the union value is just the enum value.
|
|
if (union_ty.unionHasAllZeroBitFieldTypes(zcu)) {
|
|
return block.addBitCast(union_ty, enum_tag);
|
|
}
|
|
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
inst_src,
|
|
"runtime coercion from enum '{f}' to union '{f}' which has non-void fields",
|
|
.{ tag_ty.fmt(pt), union_ty.fmt(pt) },
|
|
);
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
for (0..union_obj.field_types.len) |field_index| {
|
|
const field_name = union_obj.loadTagType(ip).names.get(ip)[field_index];
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_index]);
|
|
if (!(try field_ty.hasRuntimeBitsSema(pt))) continue;
|
|
try sema.addFieldErrNote(union_ty, field_index, msg, "field '{f}' has type '{f}'", .{
|
|
field_name.fmt(ip),
|
|
field_ty.fmt(pt),
|
|
});
|
|
}
|
|
try sema.addDeclaredHereNote(msg, union_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
/// If the lengths match, coerces element-wise.
|
|
fn coerceArrayLike(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
dest_ty_src: LazySrcLoc,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_ty = sema.typeOf(inst);
|
|
const target = zcu.getTarget();
|
|
|
|
// try coercion of the whole array
|
|
const in_memory_result = try sema.coerceInMemoryAllowed(block, dest_ty, inst_ty, false, target, dest_ty_src, inst_src, null);
|
|
if (in_memory_result == .ok) {
|
|
if (try sema.resolveValue(inst)) |inst_val| {
|
|
// These types share the same comptime value representation.
|
|
return sema.coerceInMemory(inst_val, dest_ty);
|
|
}
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addBitCast(dest_ty, inst);
|
|
}
|
|
|
|
// otherwise, try element by element
|
|
const inst_len = inst_ty.arrayLen(zcu);
|
|
const dest_len = try sema.usizeCast(block, dest_ty_src, dest_ty.arrayLen(zcu));
|
|
if (dest_len != inst_len) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "expected type '{f}', found '{f}'", .{
|
|
dest_ty.fmt(pt), inst_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(dest_ty_src, msg, "destination has length {d}", .{dest_len});
|
|
try sema.errNote(inst_src, msg, "source has length {d}", .{inst_len});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const dest_elem_ty = dest_ty.childType(zcu);
|
|
if (dest_ty.isVector(zcu) and inst_ty.isVector(zcu) and (try sema.resolveValue(inst)) == null) {
|
|
const inst_elem_ty = inst_ty.childType(zcu);
|
|
switch (dest_elem_ty.zigTypeTag(zcu)) {
|
|
.int => if (inst_elem_ty.isInt(zcu)) {
|
|
// integer widening
|
|
const dst_info = dest_elem_ty.intInfo(zcu);
|
|
const src_info = inst_elem_ty.intInfo(zcu);
|
|
if ((src_info.signedness == dst_info.signedness and dst_info.bits >= src_info.bits) or
|
|
// small enough unsigned ints can get casted to large enough signed ints
|
|
(dst_info.signedness == .signed and dst_info.bits > src_info.bits))
|
|
{
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addTyOp(.intcast, dest_ty, inst);
|
|
}
|
|
},
|
|
.float => if (inst_elem_ty.isRuntimeFloat()) {
|
|
// float widening
|
|
const src_bits = inst_elem_ty.floatBits(target);
|
|
const dst_bits = dest_elem_ty.floatBits(target);
|
|
if (dst_bits >= src_bits) {
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addTyOp(.fpext, dest_ty, inst);
|
|
}
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
const element_vals = try sema.arena.alloc(InternPool.Index, dest_len);
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, dest_len);
|
|
var runtime_src: ?LazySrcLoc = null;
|
|
|
|
for (element_vals, element_refs, 0..) |*val, *ref, i| {
|
|
const index_ref = Air.internedToRef((try pt.intValue(.usize, i)).toIntern());
|
|
const src = inst_src; // TODO better source location
|
|
const elem_src = inst_src; // TODO better source location
|
|
const elem_ref = try sema.elemValArray(block, src, inst_src, inst, elem_src, index_ref, true);
|
|
const coerced = try sema.coerce(block, dest_elem_ty, elem_ref, elem_src);
|
|
ref.* = coerced;
|
|
if (runtime_src == null) {
|
|
if (try sema.resolveValue(coerced)) |elem_val| {
|
|
val.* = elem_val.toIntern();
|
|
} else {
|
|
runtime_src = elem_src;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (runtime_src) |rs| {
|
|
try sema.requireRuntimeBlock(block, inst_src, rs);
|
|
return block.addAggregateInit(dest_ty, element_refs);
|
|
}
|
|
|
|
return Air.internedToRef((try pt.aggregateValue(dest_ty, element_vals)).toIntern());
|
|
}
|
|
|
|
/// If the lengths match, coerces element-wise.
|
|
fn coerceTupleToArray(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
dest_ty_src: LazySrcLoc,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const inst_ty = sema.typeOf(inst);
|
|
const inst_len = inst_ty.arrayLen(zcu);
|
|
const dest_len = dest_ty.arrayLen(zcu);
|
|
|
|
if (dest_len != inst_len) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(inst_src, "expected type '{f}', found '{f}'", .{
|
|
dest_ty.fmt(pt), inst_ty.fmt(pt),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(dest_ty_src, msg, "destination has length {d}", .{dest_len});
|
|
try sema.errNote(inst_src, msg, "source has length {d}", .{inst_len});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
const dest_elems = try sema.usizeCast(block, dest_ty_src, dest_len);
|
|
const element_vals = try sema.arena.alloc(InternPool.Index, dest_elems);
|
|
const element_refs = try sema.arena.alloc(Air.Inst.Ref, dest_elems);
|
|
const dest_elem_ty = dest_ty.childType(zcu);
|
|
|
|
var runtime_src: ?LazySrcLoc = null;
|
|
for (element_vals, element_refs, 0..) |*val, *ref, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
if (i_usize == inst_len) {
|
|
const sentinel_val = dest_ty.sentinel(zcu).?;
|
|
val.* = sentinel_val.toIntern();
|
|
ref.* = Air.internedToRef(sentinel_val.toIntern());
|
|
break;
|
|
}
|
|
const elem_src = inst_src; // TODO better source location
|
|
const elem_ref = try sema.tupleField(block, inst_src, inst, elem_src, i);
|
|
const coerced = try sema.coerce(block, dest_elem_ty, elem_ref, elem_src);
|
|
ref.* = coerced;
|
|
if (runtime_src == null) {
|
|
if (try sema.resolveValue(coerced)) |elem_val| {
|
|
val.* = elem_val.toIntern();
|
|
} else {
|
|
runtime_src = elem_src;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (runtime_src) |rs| {
|
|
try sema.requireRuntimeBlock(block, inst_src, rs);
|
|
return block.addAggregateInit(dest_ty, element_refs);
|
|
}
|
|
|
|
return Air.internedToRef((try pt.aggregateValue(dest_ty, element_vals)).toIntern());
|
|
}
|
|
|
|
/// If the lengths match, coerces element-wise.
|
|
fn coerceTupleToSlicePtrs(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
slice_ty: Type,
|
|
slice_ty_src: LazySrcLoc,
|
|
ptr_tuple: Air.Inst.Ref,
|
|
tuple_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const tuple_ty = sema.typeOf(ptr_tuple).childType(zcu);
|
|
const tuple = try sema.analyzeLoad(block, tuple_src, ptr_tuple, tuple_src);
|
|
const slice_info = slice_ty.ptrInfo(zcu);
|
|
const array_ty = try pt.arrayType(.{
|
|
.len = tuple_ty.structFieldCount(zcu),
|
|
.sentinel = slice_info.sentinel,
|
|
.child = slice_info.child,
|
|
});
|
|
const array_inst = try sema.coerceTupleToArray(block, array_ty, slice_ty_src, tuple, tuple_src);
|
|
if (slice_info.flags.alignment != .none) {
|
|
return sema.fail(block, slice_ty_src, "TODO: override the alignment of the array decl we create here", .{});
|
|
}
|
|
const ptr_array = try sema.analyzeRef(block, slice_ty_src, array_inst);
|
|
return sema.coerceArrayPtrToSlice(block, slice_ty, ptr_array, slice_ty_src);
|
|
}
|
|
|
|
/// If the lengths match, coerces element-wise.
|
|
fn coerceTupleToArrayPtrs(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
ptr_array_ty: Type,
|
|
array_ty_src: LazySrcLoc,
|
|
ptr_tuple: Air.Inst.Ref,
|
|
tuple_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const tuple = try sema.analyzeLoad(block, tuple_src, ptr_tuple, tuple_src);
|
|
const ptr_info = ptr_array_ty.ptrInfo(zcu);
|
|
const array_ty: Type = .fromInterned(ptr_info.child);
|
|
const array_inst = try sema.coerceTupleToArray(block, array_ty, array_ty_src, tuple, tuple_src);
|
|
if (ptr_info.flags.alignment != .none) {
|
|
return sema.fail(block, array_ty_src, "TODO: override the alignment of the array decl we create here", .{});
|
|
}
|
|
const ptr_array = try sema.analyzeRef(block, array_ty_src, array_inst);
|
|
return ptr_array;
|
|
}
|
|
|
|
fn coerceTupleToTuple(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
tuple_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const dest_field_count = switch (ip.indexToKey(tuple_ty.toIntern())) {
|
|
.tuple_type => |tuple_type| tuple_type.types.len,
|
|
else => unreachable,
|
|
};
|
|
const field_vals = try sema.arena.alloc(InternPool.Index, dest_field_count);
|
|
const field_refs = try sema.arena.alloc(Air.Inst.Ref, field_vals.len);
|
|
@memset(field_refs, .none);
|
|
|
|
const inst_ty = sema.typeOf(inst);
|
|
const src_field_count = switch (ip.indexToKey(inst_ty.toIntern())) {
|
|
.tuple_type => |tuple_type| tuple_type.types.len,
|
|
else => unreachable,
|
|
};
|
|
if (src_field_count > dest_field_count) return error.NotCoercible;
|
|
|
|
var runtime_src: ?LazySrcLoc = null;
|
|
for (0..dest_field_count) |field_index_usize| {
|
|
const field_i: u32 = @intCast(field_index_usize);
|
|
const field_src = inst_src; // TODO better source location
|
|
|
|
const field_ty = switch (ip.indexToKey(tuple_ty.toIntern())) {
|
|
.tuple_type => |tuple_type| tuple_type.types.get(ip)[field_index_usize],
|
|
.struct_type => ip.loadStructType(tuple_ty.toIntern()).field_types.get(ip)[field_index_usize],
|
|
else => unreachable,
|
|
};
|
|
const default_val = switch (ip.indexToKey(tuple_ty.toIntern())) {
|
|
.tuple_type => |tuple_type| tuple_type.values.get(ip)[field_index_usize],
|
|
.struct_type => ip.loadStructType(tuple_ty.toIntern()).fieldInit(ip, field_index_usize),
|
|
else => unreachable,
|
|
};
|
|
|
|
const field_index: u32 = @intCast(field_index_usize);
|
|
|
|
const elem_ref = try sema.tupleField(block, inst_src, inst, field_src, field_i);
|
|
const coerced = try sema.coerce(block, .fromInterned(field_ty), elem_ref, field_src);
|
|
field_refs[field_index] = coerced;
|
|
if (default_val != .none) {
|
|
const init_val = (try sema.resolveValue(coerced)) orelse {
|
|
return sema.failWithNeededComptime(block, field_src, .{ .simple = .stored_to_comptime_field });
|
|
};
|
|
|
|
if (!init_val.eql(Value.fromInterned(default_val), .fromInterned(field_ty), pt.zcu)) {
|
|
return sema.failWithInvalidComptimeFieldStore(block, field_src, inst_ty, field_i);
|
|
}
|
|
}
|
|
if (runtime_src == null) {
|
|
if (try sema.resolveValue(coerced)) |field_val| {
|
|
field_vals[field_index] = field_val.toIntern();
|
|
} else {
|
|
runtime_src = field_src;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Populate default field values and report errors for missing fields.
|
|
var root_msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (root_msg) |msg| msg.destroy(sema.gpa);
|
|
|
|
for (field_refs, 0..) |*field_ref, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
if (field_ref.* != .none) continue;
|
|
|
|
const default_val = switch (ip.indexToKey(tuple_ty.toIntern())) {
|
|
.tuple_type => |tuple_type| tuple_type.values.get(ip)[i],
|
|
.struct_type => ip.loadStructType(tuple_ty.toIntern()).fieldInit(ip, i),
|
|
else => unreachable,
|
|
};
|
|
|
|
const field_src = inst_src; // TODO better source location
|
|
if (default_val == .none) {
|
|
const template = "missing tuple field: {d}";
|
|
if (root_msg) |msg| {
|
|
try sema.errNote(field_src, msg, template, .{i});
|
|
} else {
|
|
root_msg = try sema.errMsg(field_src, template, .{i});
|
|
}
|
|
continue;
|
|
}
|
|
if (runtime_src == null) {
|
|
field_vals[i] = default_val;
|
|
} else {
|
|
field_ref.* = Air.internedToRef(default_val);
|
|
}
|
|
}
|
|
|
|
if (root_msg) |msg| {
|
|
try sema.addDeclaredHereNote(msg, tuple_ty);
|
|
root_msg = null;
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
if (runtime_src) |rs| {
|
|
try sema.requireRuntimeBlock(block, inst_src, rs);
|
|
return block.addAggregateInit(tuple_ty, field_refs);
|
|
}
|
|
|
|
return Air.internedToRef((try pt.aggregateValue(tuple_ty, field_vals)).toIntern());
|
|
}
|
|
|
|
fn analyzeNavVal(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
nav_index: InternPool.Nav.Index,
|
|
) CompileError!Air.Inst.Ref {
|
|
const ref = try sema.analyzeNavRefInner(block, src, nav_index, false);
|
|
return sema.analyzeLoad(block, src, ref, src);
|
|
}
|
|
|
|
fn addReferenceEntry(
|
|
sema: *Sema,
|
|
opt_block: ?*Block,
|
|
src: LazySrcLoc,
|
|
referenced_unit: AnalUnit,
|
|
) !void {
|
|
const zcu = sema.pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
switch (referenced_unit.unwrap()) {
|
|
.func => |f| assert(ip.unwrapCoercedFunc(f) == f), // for `.{ .func = f }`, `f` must be uncoerced
|
|
else => {},
|
|
}
|
|
if (!zcu.comp.config.incremental and zcu.comp.reference_trace == 0) return;
|
|
const gop = try sema.references.getOrPut(sema.gpa, referenced_unit);
|
|
if (gop.found_existing) return;
|
|
try zcu.addUnitReference(sema.owner, referenced_unit, src, inline_frame: {
|
|
const block = opt_block orelse break :inline_frame .none;
|
|
const inlining = block.inlining orelse break :inline_frame .none;
|
|
const frame = try inlining.refFrame(zcu);
|
|
break :inline_frame frame.toOptional();
|
|
});
|
|
}
|
|
|
|
pub fn addTypeReferenceEntry(
|
|
sema: *Sema,
|
|
src: LazySrcLoc,
|
|
referenced_type: InternPool.Index,
|
|
) !void {
|
|
const zcu = sema.pt.zcu;
|
|
if (!zcu.comp.config.incremental and zcu.comp.reference_trace == 0) return;
|
|
const gop = try sema.type_references.getOrPut(sema.gpa, referenced_type);
|
|
if (gop.found_existing) return;
|
|
try zcu.addTypeReference(sema.owner, referenced_type, src);
|
|
}
|
|
|
|
fn ensureMemoizedStateResolved(sema: *Sema, src: LazySrcLoc, stage: InternPool.MemoizedStateStage) SemaError!void {
|
|
const pt = sema.pt;
|
|
|
|
const unit: AnalUnit = .wrap(.{ .memoized_state = stage });
|
|
try sema.addReferenceEntry(null, src, unit);
|
|
try sema.declareDependency(.{ .memoized_state = stage });
|
|
|
|
if (pt.zcu.analysis_in_progress.contains(unit)) {
|
|
return sema.failWithOwnedErrorMsg(null, try sema.errMsg(src, "dependency loop detected", .{}));
|
|
}
|
|
try pt.ensureMemoizedStateUpToDate(stage);
|
|
}
|
|
|
|
pub fn ensureNavResolved(sema: *Sema, block: *Block, src: LazySrcLoc, nav_index: InternPool.Nav.Index, kind: enum { type, fully }) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const nav = ip.getNav(nav_index);
|
|
if (nav.analysis == null) {
|
|
assert(nav.status == .fully_resolved);
|
|
return;
|
|
}
|
|
|
|
try sema.declareDependency(switch (kind) {
|
|
.type => .{ .nav_ty = nav_index },
|
|
.fully => .{ .nav_val = nav_index },
|
|
});
|
|
|
|
// Note that even if `nav.status == .resolved`, we must still trigger `ensureNavValUpToDate`
|
|
// to make sure the value is up-to-date on incremental updates.
|
|
|
|
const anal_unit: AnalUnit = .wrap(switch (kind) {
|
|
.type => .{ .nav_ty = nav_index },
|
|
.fully => .{ .nav_val = nav_index },
|
|
});
|
|
try sema.addReferenceEntry(block, src, anal_unit);
|
|
|
|
if (zcu.analysis_in_progress.contains(anal_unit)) {
|
|
return sema.failWithOwnedErrorMsg(null, try sema.errMsg(.{
|
|
.base_node_inst = nav.analysis.?.zir_index,
|
|
.offset = LazySrcLoc.Offset.nodeOffset(.zero),
|
|
}, "dependency loop detected", .{}));
|
|
}
|
|
|
|
switch (kind) {
|
|
.type => {
|
|
try zcu.ensureNavValAnalysisQueued(nav_index);
|
|
return pt.ensureNavTypeUpToDate(nav_index);
|
|
},
|
|
.fully => return pt.ensureNavValUpToDate(nav_index),
|
|
}
|
|
}
|
|
|
|
fn optRefValue(sema: *Sema, opt_val: ?Value) !Value {
|
|
const pt = sema.pt;
|
|
const ptr_anyopaque_ty = try pt.singleConstPtrType(.anyopaque);
|
|
return Value.fromInterned(try pt.intern(.{ .opt = .{
|
|
.ty = (try pt.optionalType(ptr_anyopaque_ty.toIntern())).toIntern(),
|
|
.val = if (opt_val) |val| (try pt.getCoerced(
|
|
Value.fromInterned(try pt.refValue(val.toIntern())),
|
|
ptr_anyopaque_ty,
|
|
)).toIntern() else .none,
|
|
} }));
|
|
}
|
|
|
|
fn analyzeNavRef(sema: *Sema, block: *Block, src: LazySrcLoc, nav_index: InternPool.Nav.Index) CompileError!Air.Inst.Ref {
|
|
return sema.analyzeNavRefInner(block, src, nav_index, true);
|
|
}
|
|
|
|
/// Analyze a reference to the `Nav` at the given index. Ensures the underlying `Nav` is analyzed.
|
|
/// If this pointer will be used directly, `is_ref` must be `true`.
|
|
/// If this pointer will be immediately loaded (i.e. a `decl_val` instruction), `is_ref` must be `false`.
|
|
fn analyzeNavRefInner(sema: *Sema, block: *Block, src: LazySrcLoc, orig_nav_index: InternPool.Nav.Index, is_ref: bool) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
try sema.ensureNavResolved(block, src, orig_nav_index, if (is_ref) .type else .fully);
|
|
|
|
const nav_index = nav: {
|
|
if (ip.getNav(orig_nav_index).isExternOrFn(ip)) {
|
|
// Getting a pointer to this `Nav` might mean we actually get a pointer to something else!
|
|
// We need to resolve the value to know for sure.
|
|
if (is_ref) try sema.ensureNavResolved(block, src, orig_nav_index, .fully);
|
|
switch (ip.indexToKey(ip.getNav(orig_nav_index).status.fully_resolved.val)) {
|
|
.func => |f| break :nav f.owner_nav,
|
|
.@"extern" => |e| break :nav e.owner_nav,
|
|
else => {},
|
|
}
|
|
}
|
|
break :nav orig_nav_index;
|
|
};
|
|
|
|
const nav_status = ip.getNav(nav_index).status;
|
|
|
|
const is_runtime = switch (nav_status) {
|
|
.unresolved => unreachable,
|
|
// dllimports go straight to `fully_resolved`; the only option is threadlocal
|
|
.type_resolved => |r| r.is_threadlocal,
|
|
.fully_resolved => |r| switch (ip.indexToKey(r.val)) {
|
|
.@"extern" => |e| e.is_threadlocal or e.is_dll_import or switch (e.relocation) {
|
|
.any => false,
|
|
.pcrel => true,
|
|
},
|
|
.variable => |v| v.is_threadlocal,
|
|
else => false,
|
|
},
|
|
};
|
|
|
|
const ty, const alignment, const @"addrspace", const is_const = switch (nav_status) {
|
|
.unresolved => unreachable,
|
|
.type_resolved => |r| .{ r.type, r.alignment, r.@"addrspace", r.is_const },
|
|
.fully_resolved => |r| .{ ip.typeOf(r.val), r.alignment, r.@"addrspace", r.is_const },
|
|
};
|
|
const ptr_ty = try pt.ptrTypeSema(.{
|
|
.child = ty,
|
|
.flags = .{
|
|
.alignment = alignment,
|
|
.is_const = is_const,
|
|
.address_space = @"addrspace",
|
|
},
|
|
});
|
|
|
|
if (is_runtime) {
|
|
// This pointer is runtime-known; we need to emit an AIR instruction to create it.
|
|
return block.addInst(.{
|
|
.tag = .runtime_nav_ptr,
|
|
.data = .{ .ty_nav = .{
|
|
.ty = ptr_ty.toIntern(),
|
|
.nav = nav_index,
|
|
} },
|
|
});
|
|
}
|
|
|
|
if (is_ref) {
|
|
try sema.maybeQueueFuncBodyAnalysis(block, src, nav_index);
|
|
}
|
|
|
|
return Air.internedToRef((try pt.intern(.{ .ptr = .{
|
|
.ty = ptr_ty.toIntern(),
|
|
.base_addr = .{ .nav = nav_index },
|
|
.byte_offset = 0,
|
|
} })));
|
|
}
|
|
|
|
fn maybeQueueFuncBodyAnalysis(sema: *Sema, block: *Block, src: LazySrcLoc, nav_index: InternPool.Nav.Index) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
// To avoid forcing too much resolution, let's first resolve the type, and check if it's a function.
|
|
// If it is, we can resolve the *value*, and queue analysis as needed.
|
|
|
|
try sema.ensureNavResolved(block, src, nav_index, .type);
|
|
const nav_ty: Type = .fromInterned(ip.getNav(nav_index).typeOf(ip));
|
|
if (nav_ty.zigTypeTag(zcu) != .@"fn") return;
|
|
if (!try nav_ty.fnHasRuntimeBitsSema(pt)) return;
|
|
|
|
try sema.ensureNavResolved(block, src, nav_index, .fully);
|
|
const nav_val = zcu.navValue(nav_index);
|
|
if (!ip.isFuncBody(nav_val.toIntern())) return;
|
|
|
|
const orig_fn_index = ip.unwrapCoercedFunc(nav_val.toIntern());
|
|
try sema.addReferenceEntry(block, src, .wrap(.{ .func = orig_fn_index }));
|
|
try zcu.ensureFuncBodyAnalysisQueued(orig_fn_index);
|
|
}
|
|
|
|
fn analyzeRef(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const operand_ty = sema.typeOf(operand);
|
|
|
|
if (try sema.resolveValue(operand)) |val| {
|
|
switch (zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
.@"extern" => |e| return sema.analyzeNavRef(block, src, e.owner_nav),
|
|
.func => |f| return sema.analyzeNavRef(block, src, f.owner_nav),
|
|
else => return uavRef(sema, val.toIntern()),
|
|
}
|
|
}
|
|
|
|
// No `requireRuntimeBlock`; it's okay to `ref` to a runtime value in a comptime context,
|
|
// it's just that we can only use the *type* of the result, since the value is runtime-known.
|
|
|
|
const address_space = target_util.defaultAddressSpace(zcu.getTarget(), .local);
|
|
const ptr_type = try pt.ptrTypeSema(.{
|
|
.child = operand_ty.toIntern(),
|
|
.flags = .{
|
|
.is_const = true,
|
|
.address_space = address_space,
|
|
},
|
|
});
|
|
const mut_ptr_type = try pt.ptrTypeSema(.{
|
|
.child = operand_ty.toIntern(),
|
|
.flags = .{ .address_space = address_space },
|
|
});
|
|
const alloc = try block.addTy(.alloc, mut_ptr_type);
|
|
|
|
// In a comptime context, the store would fail, since the operand is runtime-known. But that's
|
|
// okay; we don't actually need this store to succeed, since we're creating a runtime value in a
|
|
// comptime scope, so the value can never be used aside from to get its type.
|
|
if (!block.isComptime()) {
|
|
try sema.storePtr(block, src, alloc, operand);
|
|
}
|
|
|
|
// Cast to the constant pointer type. We do this directly rather than going via `coerce` to
|
|
// avoid errors in the `block.isComptime()` case.
|
|
return block.addBitCast(ptr_type, alloc);
|
|
}
|
|
|
|
fn analyzeLoad(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ptr: Air.Inst.Ref,
|
|
ptr_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ptr_ty = sema.typeOf(ptr);
|
|
const elem_ty = switch (ptr_ty.zigTypeTag(zcu)) {
|
|
.pointer => ptr_ty.childType(zcu),
|
|
else => return sema.fail(block, ptr_src, "expected pointer, found '{f}'", .{ptr_ty.fmt(pt)}),
|
|
};
|
|
if (elem_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
return sema.fail(block, ptr_src, "cannot load opaque type '{f}'", .{elem_ty.fmt(pt)});
|
|
}
|
|
|
|
if (try sema.typeHasOnePossibleValue(elem_ty)) |opv| {
|
|
return Air.internedToRef(opv.toIntern());
|
|
}
|
|
|
|
if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| {
|
|
if (try sema.pointerDeref(block, src, ptr_val, ptr_ty)) |elem_val| {
|
|
return Air.internedToRef(elem_val.toIntern());
|
|
}
|
|
}
|
|
|
|
return block.addTyOp(.load, elem_ty, ptr);
|
|
}
|
|
|
|
fn analyzeSlicePtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
slice_src: LazySrcLoc,
|
|
slice: Air.Inst.Ref,
|
|
slice_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const result_ty = slice_ty.slicePtrFieldType(zcu);
|
|
if (try sema.resolveValue(slice)) |val| {
|
|
if (val.isUndef(zcu)) return pt.undefRef(result_ty);
|
|
return Air.internedToRef(val.slicePtr(zcu).toIntern());
|
|
}
|
|
try sema.requireRuntimeBlock(block, slice_src, null);
|
|
return block.addTyOp(.slice_ptr, result_ty, slice);
|
|
}
|
|
|
|
fn analyzeOptionalSlicePtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
opt_slice_src: LazySrcLoc,
|
|
opt_slice: Air.Inst.Ref,
|
|
opt_slice_ty: Type,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const slice_ty = opt_slice_ty.optionalChild(zcu);
|
|
const result_ty = slice_ty.slicePtrFieldType(zcu);
|
|
|
|
if (try sema.resolveValue(opt_slice)) |opt_val| {
|
|
if (opt_val.isUndef(zcu)) return pt.undefRef(result_ty);
|
|
const slice_ptr: InternPool.Index = if (opt_val.optionalValue(zcu)) |val|
|
|
val.slicePtr(zcu).toIntern()
|
|
else
|
|
.null_value;
|
|
|
|
return Air.internedToRef(slice_ptr);
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, opt_slice_src, null);
|
|
|
|
const slice = try block.addTyOp(.optional_payload, slice_ty, opt_slice);
|
|
return block.addTyOp(.slice_ptr, result_ty, slice);
|
|
}
|
|
|
|
fn analyzeSliceLen(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
slice_inst: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (try sema.resolveValue(slice_inst)) |slice_val| {
|
|
if (slice_val.isUndef(zcu)) {
|
|
return .undef_usize;
|
|
}
|
|
return pt.intRef(.usize, try slice_val.sliceLen(pt));
|
|
}
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addTyOp(.slice_len, .usize, slice_inst);
|
|
}
|
|
|
|
fn analyzeIsNull(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
operand: Air.Inst.Ref,
|
|
invert_logic: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const result_ty: Type = .bool;
|
|
if (try sema.resolveValue(operand)) |opt_val| {
|
|
if (opt_val.isUndef(zcu)) {
|
|
return pt.undefRef(result_ty);
|
|
}
|
|
const is_null = opt_val.isNull(zcu);
|
|
const bool_value = if (invert_logic) !is_null else is_null;
|
|
return if (bool_value) .bool_true else .bool_false;
|
|
}
|
|
|
|
if (sema.typeOf(operand).isNullFromType(zcu)) |is_null| {
|
|
const result = is_null != invert_logic;
|
|
return if (result) .bool_true else .bool_false;
|
|
}
|
|
const air_tag: Air.Inst.Tag = if (invert_logic) .is_non_null else .is_null;
|
|
return block.addUnOp(air_tag, operand);
|
|
}
|
|
|
|
fn analyzePtrIsNonErrComptimeOnly(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ptr_ty = sema.typeOf(operand);
|
|
assert(ptr_ty.zigTypeTag(zcu) == .pointer);
|
|
const child_ty = ptr_ty.childType(zcu);
|
|
|
|
const child_tag = child_ty.zigTypeTag(zcu);
|
|
if (child_tag != .error_set and child_tag != .error_union) return .bool_true;
|
|
if (child_tag == .error_set) return .bool_false;
|
|
assert(child_tag == .error_union);
|
|
|
|
_ = block;
|
|
_ = src;
|
|
|
|
return .none;
|
|
}
|
|
|
|
fn analyzeIsNonErrComptimeOnly(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const operand_ty = sema.typeOf(operand);
|
|
const ot = operand_ty.zigTypeTag(zcu);
|
|
if (ot != .error_set and ot != .error_union) return .bool_true;
|
|
if (ot == .error_set) return .bool_false;
|
|
assert(ot == .error_union);
|
|
|
|
const payload_ty = operand_ty.errorUnionPayload(zcu);
|
|
if (payload_ty.zigTypeTag(zcu) == .noreturn) {
|
|
return .bool_false;
|
|
}
|
|
|
|
if (operand.toIndex()) |operand_inst| {
|
|
switch (sema.air_instructions.items(.tag)[@intFromEnum(operand_inst)]) {
|
|
.wrap_errunion_payload => return .bool_true,
|
|
.wrap_errunion_err => return .bool_false,
|
|
else => {},
|
|
}
|
|
} else if (operand == .undef) {
|
|
return .undef_bool;
|
|
} else if (@intFromEnum(operand) < InternPool.static_len) {
|
|
// None of the ref tags can be errors.
|
|
return .bool_true;
|
|
}
|
|
|
|
const maybe_operand_val = try sema.resolveValue(operand);
|
|
|
|
// exception if the error union error set is known to be empty,
|
|
// we allow the comparison but always make it comptime-known.
|
|
const set_ty = ip.errorUnionSet(operand_ty.toIntern());
|
|
switch (set_ty) {
|
|
.anyerror_type => {},
|
|
.adhoc_inferred_error_set_type => if (sema.fn_ret_ty_ies) |ies| blk: {
|
|
// If the error set is empty, we must return a comptime true or false.
|
|
// However we want to avoid unnecessarily resolving an inferred error set
|
|
// in case it is already non-empty.
|
|
switch (ies.resolved) {
|
|
.anyerror_type => break :blk,
|
|
.none => {},
|
|
else => |i| if (ip.indexToKey(i).error_set_type.names.len != 0) break :blk,
|
|
}
|
|
|
|
if (maybe_operand_val != null) break :blk;
|
|
|
|
// Try to avoid resolving inferred error set if possible.
|
|
if (ies.errors.count() != 0) return .none;
|
|
switch (ies.resolved) {
|
|
.anyerror_type => return .none,
|
|
.none => {},
|
|
else => switch (ip.indexToKey(ies.resolved).error_set_type.names.len) {
|
|
0 => return .bool_true,
|
|
else => return .none,
|
|
},
|
|
}
|
|
// We do not have a comptime answer because this inferred error
|
|
// set is not resolved, and an instruction later in this function
|
|
// body may or may not cause an error to be added to this set.
|
|
return .none;
|
|
},
|
|
else => switch (ip.indexToKey(set_ty)) {
|
|
.error_set_type => |error_set_type| {
|
|
if (error_set_type.names.len == 0) return .bool_true;
|
|
},
|
|
.inferred_error_set_type => |func_index| blk: {
|
|
// If the error set is empty, we must return a comptime true or false.
|
|
// However we want to avoid unnecessarily resolving an inferred error set
|
|
// in case it is already non-empty.
|
|
try zcu.maybeUnresolveIes(func_index);
|
|
switch (ip.funcIesResolvedUnordered(func_index)) {
|
|
.anyerror_type => break :blk,
|
|
.none => {},
|
|
else => |i| if (ip.indexToKey(i).error_set_type.names.len != 0) break :blk,
|
|
}
|
|
if (maybe_operand_val != null) break :blk;
|
|
if (sema.fn_ret_ty_ies) |ies| {
|
|
if (ies.func == func_index) {
|
|
// Try to avoid resolving inferred error set if possible.
|
|
if (ies.errors.count() != 0) return .none;
|
|
switch (ies.resolved) {
|
|
.anyerror_type => return .none,
|
|
.none => {},
|
|
else => switch (ip.indexToKey(ies.resolved).error_set_type.names.len) {
|
|
0 => return .bool_true,
|
|
else => return .none,
|
|
},
|
|
}
|
|
// We do not have a comptime answer because this inferred error
|
|
// set is not resolved, and an instruction later in this function
|
|
// body may or may not cause an error to be added to this set.
|
|
return .none;
|
|
}
|
|
}
|
|
const resolved_ty = try sema.resolveInferredErrorSet(block, src, set_ty);
|
|
if (resolved_ty == .anyerror_type)
|
|
break :blk;
|
|
if (ip.indexToKey(resolved_ty).error_set_type.names.len == 0)
|
|
return .bool_true;
|
|
},
|
|
else => unreachable,
|
|
},
|
|
}
|
|
|
|
if (maybe_operand_val) |err_union| {
|
|
return if (err_union.isUndef(zcu)) .undef_bool else if (err_union.getErrorName(zcu) == .none) .bool_true else .bool_false;
|
|
}
|
|
return .none;
|
|
}
|
|
|
|
fn analyzeIsNonErr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const result = try sema.analyzeIsNonErrComptimeOnly(block, src, operand);
|
|
if (result == .none) {
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addUnOp(.is_non_err, operand);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
fn analyzePtrIsNonErr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
operand: Air.Inst.Ref,
|
|
) CompileError!Air.Inst.Ref {
|
|
const result = try sema.analyzePtrIsNonErrComptimeOnly(block, src, operand);
|
|
if (result == .none) {
|
|
try sema.requireRuntimeBlock(block, src, null);
|
|
return block.addUnOp(.is_non_err_ptr, operand);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
fn analyzeSlice(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ptr_ptr: Air.Inst.Ref,
|
|
uncasted_start: Air.Inst.Ref,
|
|
uncasted_end_opt: Air.Inst.Ref,
|
|
sentinel_opt: Air.Inst.Ref,
|
|
sentinel_src: LazySrcLoc,
|
|
ptr_src: LazySrcLoc,
|
|
start_src: LazySrcLoc,
|
|
end_src: LazySrcLoc,
|
|
by_length: bool,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
// Slice expressions can operate on a variable whose type is an array. This requires
|
|
// the slice operand to be a pointer. In the case of a non-array, it will be a double pointer.
|
|
const ptr_ptr_ty = sema.typeOf(ptr_ptr);
|
|
const ptr_ptr_child_ty = switch (ptr_ptr_ty.zigTypeTag(zcu)) {
|
|
.pointer => ptr_ptr_ty.childType(zcu),
|
|
else => return sema.fail(block, ptr_src, "expected pointer, found '{f}'", .{ptr_ptr_ty.fmt(pt)}),
|
|
};
|
|
|
|
var array_ty = ptr_ptr_child_ty;
|
|
var slice_ty = ptr_ptr_ty;
|
|
var ptr_or_slice = ptr_ptr;
|
|
var elem_ty: Type = undefined;
|
|
var ptr_sentinel: ?Value = null;
|
|
switch (ptr_ptr_child_ty.zigTypeTag(zcu)) {
|
|
.array => {
|
|
ptr_sentinel = ptr_ptr_child_ty.sentinel(zcu);
|
|
elem_ty = ptr_ptr_child_ty.childType(zcu);
|
|
},
|
|
.pointer => switch (ptr_ptr_child_ty.ptrSize(zcu)) {
|
|
.one => {
|
|
const double_child_ty = ptr_ptr_child_ty.childType(zcu);
|
|
ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src);
|
|
if (double_child_ty.zigTypeTag(zcu) == .array) {
|
|
ptr_sentinel = double_child_ty.sentinel(zcu);
|
|
slice_ty = ptr_ptr_child_ty;
|
|
array_ty = double_child_ty;
|
|
elem_ty = double_child_ty.childType(zcu);
|
|
} else {
|
|
if (uncasted_end_opt == .none) {
|
|
return sema.fail(block, src, "slice of single-item pointer must be bounded", .{});
|
|
}
|
|
const start_value = try sema.resolveConstDefinedValue(
|
|
block,
|
|
start_src,
|
|
uncasted_start,
|
|
.{ .simple = .slice_single_item_ptr_bounds },
|
|
);
|
|
|
|
const end_value = try sema.resolveConstDefinedValue(
|
|
block,
|
|
end_src,
|
|
uncasted_end_opt,
|
|
.{ .simple = .slice_single_item_ptr_bounds },
|
|
);
|
|
|
|
const bounds_error_message = "slice of single-item pointer must have bounds [0..0], [0..1], or [1..1]";
|
|
if (try sema.compareScalar(start_value, .neq, end_value, .comptime_int)) {
|
|
if (try sema.compareScalar(start_value, .neq, Value.zero_comptime_int, .comptime_int)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(start_src, bounds_error_message, .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(
|
|
start_src,
|
|
msg,
|
|
"expected '{f}', found '{f}'",
|
|
.{
|
|
Value.zero_comptime_int.fmtValueSema(pt, sema),
|
|
start_value.fmtValueSema(pt, sema),
|
|
},
|
|
);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
} else if (try sema.compareScalar(end_value, .neq, Value.one_comptime_int, .comptime_int)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(end_src, bounds_error_message, .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(
|
|
end_src,
|
|
msg,
|
|
"expected '{f}', found '{f}'",
|
|
.{
|
|
Value.one_comptime_int.fmtValueSema(pt, sema),
|
|
end_value.fmtValueSema(pt, sema),
|
|
},
|
|
);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
} else {
|
|
if (try sema.compareScalar(end_value, .gt, Value.one_comptime_int, .comptime_int)) {
|
|
return sema.fail(
|
|
block,
|
|
end_src,
|
|
"end index {f} out of bounds for slice of single-item pointer",
|
|
.{end_value.fmtValueSema(pt, sema)},
|
|
);
|
|
}
|
|
}
|
|
|
|
array_ty = try pt.arrayType(.{
|
|
.len = 1,
|
|
.child = double_child_ty.toIntern(),
|
|
});
|
|
const ptr_info = ptr_ptr_child_ty.ptrInfo(zcu);
|
|
slice_ty = try pt.ptrType(.{
|
|
.child = array_ty.toIntern(),
|
|
.flags = .{
|
|
.alignment = ptr_info.flags.alignment,
|
|
.is_const = ptr_info.flags.is_const,
|
|
.is_allowzero = ptr_info.flags.is_allowzero,
|
|
.is_volatile = ptr_info.flags.is_volatile,
|
|
.address_space = ptr_info.flags.address_space,
|
|
},
|
|
});
|
|
elem_ty = double_child_ty;
|
|
}
|
|
},
|
|
.many, .c => {
|
|
ptr_sentinel = ptr_ptr_child_ty.sentinel(zcu);
|
|
ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src);
|
|
slice_ty = ptr_ptr_child_ty;
|
|
array_ty = ptr_ptr_child_ty;
|
|
elem_ty = ptr_ptr_child_ty.childType(zcu);
|
|
|
|
if (ptr_ptr_child_ty.ptrSize(zcu) == .c) {
|
|
if (try sema.resolveDefinedValue(block, ptr_src, ptr_or_slice)) |ptr_val| {
|
|
if (ptr_val.isNull(zcu)) {
|
|
return sema.fail(block, src, "slice of null pointer", .{});
|
|
}
|
|
}
|
|
}
|
|
},
|
|
.slice => {
|
|
ptr_sentinel = ptr_ptr_child_ty.sentinel(zcu);
|
|
ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src);
|
|
slice_ty = ptr_ptr_child_ty;
|
|
array_ty = ptr_ptr_child_ty;
|
|
elem_ty = ptr_ptr_child_ty.childType(zcu);
|
|
},
|
|
},
|
|
else => return sema.fail(block, src, "slice of non-array type '{f}'", .{ptr_ptr_child_ty.fmt(pt)}),
|
|
}
|
|
|
|
const ptr = if (slice_ty.isSlice(zcu))
|
|
try sema.analyzeSlicePtr(block, ptr_src, ptr_or_slice, slice_ty)
|
|
else if (array_ty.zigTypeTag(zcu) == .array) ptr: {
|
|
var manyptr_ty_key = zcu.intern_pool.indexToKey(slice_ty.toIntern()).ptr_type;
|
|
assert(manyptr_ty_key.child == array_ty.toIntern());
|
|
assert(manyptr_ty_key.flags.size == .one);
|
|
manyptr_ty_key.child = elem_ty.toIntern();
|
|
manyptr_ty_key.flags.size = .many;
|
|
break :ptr try sema.coerceCompatiblePtrs(block, try pt.ptrTypeSema(manyptr_ty_key), ptr_or_slice, ptr_src);
|
|
} else ptr_or_slice;
|
|
|
|
const start = try sema.coerce(block, .usize, uncasted_start, start_src);
|
|
const new_ptr = try sema.analyzePtrArithmetic(block, src, ptr, start, .ptr_add, ptr_src, start_src);
|
|
const new_ptr_ty = sema.typeOf(new_ptr);
|
|
|
|
// true if and only if the end index of the slice, implicitly or explicitly, equals
|
|
// the length of the underlying object being sliced. we might learn the length of the
|
|
// underlying object because it is an array (which has the length in the type), or
|
|
// we might learn of the length because it is a comptime-known slice value.
|
|
var end_is_len = uncasted_end_opt == .none;
|
|
const end = e: {
|
|
if (array_ty.zigTypeTag(zcu) == .array) {
|
|
const len_val = try pt.intValue(.usize, array_ty.arrayLen(zcu));
|
|
|
|
if (!end_is_len) {
|
|
const end = if (by_length) end: {
|
|
const len = try sema.coerce(block, .usize, uncasted_end_opt, end_src);
|
|
const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false);
|
|
break :end try sema.coerce(block, .usize, uncasted_end, end_src);
|
|
} else try sema.coerce(block, .usize, uncasted_end_opt, end_src);
|
|
if (try sema.resolveDefinedValue(block, end_src, end)) |end_val| {
|
|
const len_s_val = try pt.intValue(
|
|
.usize,
|
|
array_ty.arrayLenIncludingSentinel(zcu),
|
|
);
|
|
if (!(try sema.compareAll(end_val, .lte, len_s_val, .usize))) {
|
|
const sentinel_label: []const u8 = if (array_ty.sentinel(zcu) != null)
|
|
" +1 (sentinel)"
|
|
else
|
|
"";
|
|
|
|
return sema.fail(
|
|
block,
|
|
end_src,
|
|
"end index {f} out of bounds for array of length {f}{s}",
|
|
.{
|
|
end_val.fmtValueSema(pt, sema),
|
|
len_val.fmtValueSema(pt, sema),
|
|
sentinel_label,
|
|
},
|
|
);
|
|
}
|
|
|
|
// end_is_len is only true if we are NOT using the sentinel
|
|
// length. For sentinel-length, we don't want the type to
|
|
// contain the sentinel.
|
|
if (end_val.eql(len_val, .usize, zcu)) {
|
|
end_is_len = true;
|
|
}
|
|
}
|
|
break :e end;
|
|
}
|
|
|
|
break :e Air.internedToRef(len_val.toIntern());
|
|
} else if (slice_ty.isSlice(zcu)) {
|
|
if (!end_is_len) {
|
|
const end = if (by_length) end: {
|
|
const len = try sema.coerce(block, .usize, uncasted_end_opt, end_src);
|
|
const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false);
|
|
break :end try sema.coerce(block, .usize, uncasted_end, end_src);
|
|
} else try sema.coerce(block, .usize, uncasted_end_opt, end_src);
|
|
if (try sema.resolveDefinedValue(block, end_src, end)) |end_val| {
|
|
if (try sema.resolveValue(ptr_or_slice)) |slice_val| {
|
|
if (slice_val.isUndef(zcu)) {
|
|
return sema.fail(block, src, "slice of undefined", .{});
|
|
}
|
|
const has_sentinel = slice_ty.sentinel(zcu) != null;
|
|
const slice_len = try slice_val.sliceLen(pt);
|
|
const len_plus_sent = slice_len + @intFromBool(has_sentinel);
|
|
const slice_len_val_with_sentinel = try pt.intValue(.usize, len_plus_sent);
|
|
if (!(try sema.compareAll(end_val, .lte, slice_len_val_with_sentinel, .usize))) {
|
|
const sentinel_label: []const u8 = if (has_sentinel)
|
|
" +1 (sentinel)"
|
|
else
|
|
"";
|
|
|
|
return sema.fail(
|
|
block,
|
|
end_src,
|
|
"end index {f} out of bounds for slice of length {d}{s}",
|
|
.{
|
|
end_val.fmtValueSema(pt, sema),
|
|
try slice_val.sliceLen(pt),
|
|
sentinel_label,
|
|
},
|
|
);
|
|
}
|
|
|
|
// If the slice has a sentinel, we consider end_is_len
|
|
// is only true if it equals the length WITHOUT the
|
|
// sentinel, so we don't add a sentinel type.
|
|
const slice_len_val = try pt.intValue(.usize, slice_len);
|
|
if (end_val.eql(slice_len_val, .usize, zcu)) {
|
|
end_is_len = true;
|
|
}
|
|
}
|
|
}
|
|
break :e end;
|
|
}
|
|
break :e try sema.analyzeSliceLen(block, src, ptr_or_slice);
|
|
}
|
|
if (!end_is_len) {
|
|
if (by_length) {
|
|
const len = try sema.coerce(block, .usize, uncasted_end_opt, end_src);
|
|
const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false);
|
|
break :e try sema.coerce(block, .usize, uncasted_end, end_src);
|
|
} else break :e try sema.coerce(block, .usize, uncasted_end_opt, end_src);
|
|
}
|
|
|
|
// when slicing a many-item pointer, if a sentinel `S` is provided as in `ptr[a.. :S]`, it
|
|
// must match the sentinel of `@TypeOf(ptr)`.
|
|
sentinel_check: {
|
|
if (sentinel_opt == .none) break :sentinel_check;
|
|
const provided = provided: {
|
|
const casted = try sema.coerce(block, elem_ty, sentinel_opt, sentinel_src);
|
|
try checkSentinelType(sema, block, sentinel_src, elem_ty);
|
|
break :provided try sema.resolveConstDefinedValue(
|
|
block,
|
|
sentinel_src,
|
|
casted,
|
|
.{ .simple = .slice_sentinel },
|
|
);
|
|
};
|
|
|
|
if (ptr_sentinel) |current| {
|
|
if (provided.toIntern() == current.toIntern()) break :sentinel_check;
|
|
}
|
|
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(sentinel_src, "sentinel-terminated slicing of many-item pointer must match existing sentinel", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (ptr_sentinel) |current| {
|
|
try sema.errNote(sentinel_src, msg, "expected sentinel '{f}', found '{f}'", .{ current.fmtValue(pt), provided.fmtValue(pt) });
|
|
} else {
|
|
try sema.errNote(ptr_src, msg, "type '{f}' does not have a sentinel", .{slice_ty.fmt(pt)});
|
|
}
|
|
try sema.errNote(src, msg, "use @ptrCast to cast pointer sentinel", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
return sema.analyzePtrArithmetic(block, src, ptr, start, .ptr_add, ptr_src, start_src);
|
|
};
|
|
|
|
const sentinel = s: {
|
|
if (sentinel_opt != .none) {
|
|
const casted = try sema.coerce(block, elem_ty, sentinel_opt, sentinel_src);
|
|
try checkSentinelType(sema, block, sentinel_src, elem_ty);
|
|
break :s try sema.resolveConstDefinedValue(block, sentinel_src, casted, .{ .simple = .slice_sentinel });
|
|
}
|
|
// If we are slicing to the end of something that is sentinel-terminated
|
|
// then the resulting slice type is also sentinel-terminated.
|
|
if (end_is_len) {
|
|
if (ptr_sentinel) |sent| {
|
|
break :s sent;
|
|
}
|
|
}
|
|
break :s null;
|
|
};
|
|
const slice_sentinel = if (sentinel_opt != .none) sentinel else null;
|
|
|
|
var checked_start_lte_end = by_length;
|
|
var runtime_src: ?LazySrcLoc = null;
|
|
|
|
// requirement: start <= end
|
|
if (try sema.resolveDefinedValue(block, end_src, end)) |end_val| {
|
|
if (try sema.resolveDefinedValue(block, start_src, start)) |start_val| {
|
|
if (!by_length and !(try sema.compareAll(start_val, .lte, end_val, .usize))) {
|
|
return sema.fail(
|
|
block,
|
|
start_src,
|
|
"start index {f} is larger than end index {f}",
|
|
.{
|
|
start_val.fmtValueSema(pt, sema),
|
|
end_val.fmtValueSema(pt, sema),
|
|
},
|
|
);
|
|
}
|
|
checked_start_lte_end = true;
|
|
if (try sema.resolveValue(new_ptr)) |ptr_val| sentinel_check: {
|
|
const expected_sentinel = sentinel orelse break :sentinel_check;
|
|
const start_int = start_val.toUnsignedInt(zcu);
|
|
const end_int = end_val.toUnsignedInt(zcu);
|
|
const sentinel_index = try sema.usizeCast(block, end_src, end_int - start_int);
|
|
|
|
const many_ptr_ty = try pt.manyConstPtrType(elem_ty);
|
|
const many_ptr_val = try pt.getCoerced(ptr_val, many_ptr_ty);
|
|
const elem_ptr = try many_ptr_val.ptrElem(sentinel_index, pt);
|
|
const res = try sema.pointerDerefExtra(block, src, elem_ptr);
|
|
const actual_sentinel = switch (res) {
|
|
.runtime_load => break :sentinel_check,
|
|
.val => |v| v,
|
|
.needed_well_defined => |ty| return sema.fail(
|
|
block,
|
|
src,
|
|
"comptime dereference requires '{f}' to have a well-defined layout",
|
|
.{ty.fmt(pt)},
|
|
),
|
|
.out_of_bounds => |ty| return sema.fail(
|
|
block,
|
|
end_src,
|
|
"slice end index {d} exceeds bounds of containing decl of type '{f}'",
|
|
.{ end_int, ty.fmt(pt) },
|
|
),
|
|
};
|
|
|
|
if (!actual_sentinel.eql(expected_sentinel, elem_ty, zcu)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "value in memory does not match slice sentinel", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "expected '{f}', found '{f}'", .{
|
|
expected_sentinel.fmtValueSema(pt, sema),
|
|
actual_sentinel.fmtValueSema(pt, sema),
|
|
});
|
|
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
} else {
|
|
runtime_src = ptr_src;
|
|
}
|
|
} else {
|
|
runtime_src = start_src;
|
|
}
|
|
} else {
|
|
runtime_src = end_src;
|
|
}
|
|
|
|
if (!checked_start_lte_end and block.wantSafety() and !block.isComptime()) {
|
|
// requirement: start <= end
|
|
assert(!block.isComptime());
|
|
try sema.requireRuntimeBlock(block, src, runtime_src.?);
|
|
const ok = try block.addBinOp(.cmp_lte, start, end);
|
|
try sema.addSafetyCheckCall(block, src, ok, .@"panic.startGreaterThanEnd", &.{ start, end });
|
|
}
|
|
const new_len = if (by_length)
|
|
try sema.coerce(block, .usize, uncasted_end_opt, end_src)
|
|
else
|
|
try sema.analyzeArithmetic(block, .sub, end, start, src, end_src, start_src, false);
|
|
const opt_new_len_val = try sema.resolveDefinedValue(block, src, new_len);
|
|
|
|
const new_ptr_ty_info = new_ptr_ty.ptrInfo(zcu);
|
|
const new_allowzero = new_ptr_ty_info.flags.is_allowzero and sema.typeOf(ptr).ptrSize(zcu) != .c;
|
|
|
|
if (opt_new_len_val) |new_len_val| {
|
|
const new_len_int = try new_len_val.toUnsignedIntSema(pt);
|
|
|
|
const return_ty = try pt.ptrTypeSema(.{
|
|
.child = (try pt.arrayType(.{
|
|
.len = new_len_int,
|
|
.sentinel = if (sentinel) |s| s.toIntern() else .none,
|
|
.child = elem_ty.toIntern(),
|
|
})).toIntern(),
|
|
.flags = .{
|
|
.alignment = new_ptr_ty_info.flags.alignment,
|
|
.is_const = new_ptr_ty_info.flags.is_const,
|
|
.is_allowzero = new_allowzero,
|
|
.is_volatile = new_ptr_ty_info.flags.is_volatile,
|
|
.address_space = new_ptr_ty_info.flags.address_space,
|
|
},
|
|
});
|
|
|
|
const opt_new_ptr_val = try sema.resolveValue(new_ptr);
|
|
const new_ptr_val = opt_new_ptr_val orelse {
|
|
const result = try block.addBitCast(return_ty, new_ptr);
|
|
if (block.wantSafety()) {
|
|
// requirement: slicing C ptr is non-null
|
|
if (ptr_ptr_child_ty.isCPtr(zcu)) {
|
|
const is_non_null = try sema.analyzeIsNull(block, ptr, true);
|
|
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
|
|
}
|
|
|
|
bounds_check: {
|
|
const actual_len = if (array_ty.zigTypeTag(zcu) == .array)
|
|
try pt.intRef(.usize, array_ty.arrayLenIncludingSentinel(zcu))
|
|
else if (slice_ty.isSlice(zcu)) l: {
|
|
const slice_len = try sema.analyzeSliceLen(block, src, ptr_or_slice);
|
|
break :l if (slice_ty.sentinel(zcu) == null)
|
|
slice_len
|
|
else
|
|
try sema.analyzeArithmetic(block, .add, slice_len, .one, src, end_src, end_src, true);
|
|
} else break :bounds_check;
|
|
|
|
const actual_end = if (slice_sentinel != null)
|
|
try sema.analyzeArithmetic(block, .add, end, .one, src, end_src, end_src, true)
|
|
else
|
|
end;
|
|
|
|
try sema.addSafetyCheckIndexOob(block, src, actual_end, actual_len, .cmp_lte);
|
|
}
|
|
|
|
// requirement: result[new_len] == slice_sentinel
|
|
try sema.addSafetyCheckSentinelMismatch(block, src, slice_sentinel, elem_ty, result, new_len);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
if (!new_ptr_val.isUndef(zcu)) {
|
|
return Air.internedToRef((try pt.getCoerced(new_ptr_val, return_ty)).toIntern());
|
|
}
|
|
|
|
// Special case: @as([]i32, undefined)[x..x]
|
|
if (new_len_int == 0) {
|
|
return pt.undefRef(return_ty);
|
|
}
|
|
|
|
return sema.fail(block, src, "non-zero length slice of undefined pointer", .{});
|
|
}
|
|
|
|
const return_ty = try pt.ptrTypeSema(.{
|
|
.child = elem_ty.toIntern(),
|
|
.sentinel = if (sentinel) |s| s.toIntern() else .none,
|
|
.flags = .{
|
|
.size = .slice,
|
|
.alignment = new_ptr_ty_info.flags.alignment,
|
|
.is_const = new_ptr_ty_info.flags.is_const,
|
|
.is_volatile = new_ptr_ty_info.flags.is_volatile,
|
|
.is_allowzero = new_allowzero,
|
|
.address_space = new_ptr_ty_info.flags.address_space,
|
|
},
|
|
});
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src.?);
|
|
if (block.wantSafety()) {
|
|
// requirement: slicing C ptr is non-null
|
|
if (ptr_ptr_child_ty.isCPtr(zcu)) {
|
|
const is_non_null = try sema.analyzeIsNull(block, ptr, true);
|
|
try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null);
|
|
}
|
|
|
|
// requirement: end <= len
|
|
const opt_len_inst = if (array_ty.zigTypeTag(zcu) == .array)
|
|
try pt.intRef(.usize, array_ty.arrayLenIncludingSentinel(zcu))
|
|
else if (slice_ty.isSlice(zcu)) blk: {
|
|
if (try sema.resolveDefinedValue(block, src, ptr_or_slice)) |slice_val| {
|
|
// we don't need to add one for sentinels because the
|
|
// underlying value data includes the sentinel
|
|
break :blk try pt.intRef(.usize, try slice_val.sliceLen(pt));
|
|
}
|
|
|
|
const slice_len_inst = try block.addTyOp(.slice_len, .usize, ptr_or_slice);
|
|
if (slice_ty.sentinel(zcu) == null) break :blk slice_len_inst;
|
|
|
|
// we have to add one because slice lengths don't include the sentinel
|
|
break :blk try sema.analyzeArithmetic(block, .add, slice_len_inst, .one, src, end_src, end_src, true);
|
|
} else null;
|
|
if (opt_len_inst) |len_inst| {
|
|
const actual_end = if (slice_sentinel != null)
|
|
try sema.analyzeArithmetic(block, .add, end, .one, src, end_src, end_src, true)
|
|
else
|
|
end;
|
|
try sema.addSafetyCheckIndexOob(block, src, actual_end, len_inst, .cmp_lte);
|
|
}
|
|
|
|
// requirement: start <= end
|
|
try sema.addSafetyCheckIndexOob(block, src, start, end, .cmp_lte);
|
|
}
|
|
const result = try block.addInst(.{
|
|
.tag = .slice,
|
|
.data = .{ .ty_pl = .{
|
|
.ty = Air.internedToRef(return_ty.toIntern()),
|
|
.payload = try sema.addExtra(Air.Bin{
|
|
.lhs = new_ptr,
|
|
.rhs = new_len,
|
|
}),
|
|
} },
|
|
});
|
|
if (block.wantSafety()) {
|
|
// requirement: result[new_len] == slice_sentinel
|
|
try sema.addSafetyCheckSentinelMismatch(block, src, slice_sentinel, elem_ty, result, new_len);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Asserts that lhs and rhs types are both numeric.
|
|
fn cmpNumeric(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
uncasted_lhs: Air.Inst.Ref,
|
|
uncasted_rhs: Air.Inst.Ref,
|
|
op: std.math.CompareOperator,
|
|
lhs_src: LazySrcLoc,
|
|
rhs_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const lhs_ty = sema.typeOf(uncasted_lhs);
|
|
const rhs_ty = sema.typeOf(uncasted_rhs);
|
|
|
|
assert(lhs_ty.isNumeric(zcu));
|
|
assert(rhs_ty.isNumeric(zcu));
|
|
|
|
const lhs_ty_tag = lhs_ty.zigTypeTag(zcu);
|
|
const rhs_ty_tag = rhs_ty.zigTypeTag(zcu);
|
|
const target = zcu.getTarget();
|
|
|
|
// One exception to heterogeneous comparison: comptime_float needs to
|
|
// coerce to fixed-width float.
|
|
|
|
const lhs = if (lhs_ty_tag == .comptime_float and rhs_ty_tag == .float)
|
|
try sema.coerce(block, rhs_ty, uncasted_lhs, lhs_src)
|
|
else
|
|
uncasted_lhs;
|
|
|
|
const rhs = if (lhs_ty_tag == .float and rhs_ty_tag == .comptime_float)
|
|
try sema.coerce(block, lhs_ty, uncasted_rhs, rhs_src)
|
|
else
|
|
uncasted_rhs;
|
|
|
|
const maybe_lhs_val = try sema.resolveValue(lhs);
|
|
const maybe_rhs_val = try sema.resolveValue(rhs);
|
|
|
|
// If the LHS is const, check if there is a guaranteed result which does not depend on ths RHS value.
|
|
if (maybe_lhs_val) |lhs_val| {
|
|
// Result based on comparison exceeding type bounds
|
|
if (!lhs_val.isUndef(zcu) and (lhs_ty_tag == .int or lhs_ty_tag == .comptime_int) and rhs_ty.isInt(zcu)) {
|
|
if (try sema.compareIntsOnlyPossibleResult(lhs_val, op, rhs_ty)) |res| {
|
|
return if (res) .bool_true else .bool_false;
|
|
}
|
|
}
|
|
// Result based on NaN comparison
|
|
if (lhs_val.isNan(zcu)) {
|
|
return if (op == .neq) .bool_true else .bool_false;
|
|
}
|
|
// Result based on inf comparison to int
|
|
if (lhs_val.isInf(zcu) and rhs_ty_tag == .int) return switch (op) {
|
|
.neq => .bool_true,
|
|
.eq => .bool_false,
|
|
.gt, .gte => if (lhs_val.isNegativeInf(zcu)) .bool_false else .bool_true,
|
|
.lt, .lte => if (lhs_val.isNegativeInf(zcu)) .bool_true else .bool_false,
|
|
};
|
|
}
|
|
|
|
// If the RHS is const, check if there is a guaranteed result which does not depend on ths LHS value.
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
// Result based on comparison exceeding type bounds
|
|
if (!rhs_val.isUndef(zcu) and (rhs_ty_tag == .int or rhs_ty_tag == .comptime_int) and lhs_ty.isInt(zcu)) {
|
|
if (try sema.compareIntsOnlyPossibleResult(rhs_val, op.reverse(), lhs_ty)) |res| {
|
|
return if (res) .bool_true else .bool_false;
|
|
}
|
|
}
|
|
// Result based on NaN comparison
|
|
if (rhs_val.isNan(zcu)) {
|
|
return if (op == .neq) .bool_true else .bool_false;
|
|
}
|
|
// Result based on inf comparison to int
|
|
if (rhs_val.isInf(zcu) and lhs_ty_tag == .int) return switch (op) {
|
|
.neq => .bool_true,
|
|
.eq => .bool_false,
|
|
.gt, .gte => if (rhs_val.isNegativeInf(zcu)) .bool_true else .bool_false,
|
|
.lt, .lte => if (rhs_val.isNegativeInf(zcu)) .bool_false else .bool_true,
|
|
};
|
|
}
|
|
|
|
// Any other comparison depends on both values, so the result is undef if either is undef.
|
|
if (maybe_lhs_val) |v| if (v.isUndef(zcu)) return .undef_bool;
|
|
if (maybe_rhs_val) |v| if (v.isUndef(zcu)) return .undef_bool;
|
|
|
|
const runtime_src: LazySrcLoc = if (maybe_lhs_val) |lhs_val| rs: {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const res = try Value.compareHeteroSema(lhs_val, op, rhs_val, pt);
|
|
return if (res) .bool_true else .bool_false;
|
|
} else break :rs rhs_src;
|
|
} else lhs_src;
|
|
|
|
// TODO handle comparisons against lazy zero values
|
|
// Some values can be compared against zero without being runtime-known or without forcing
|
|
// a full resolution of their value, for example `@sizeOf(@Frame(function))` is known to
|
|
// always be nonzero, and we benefit from not forcing the full evaluation and stack frame layout
|
|
// of this function if we don't need to.
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
|
|
// For floats, emit a float comparison instruction.
|
|
const lhs_is_float = switch (lhs_ty_tag) {
|
|
.float, .comptime_float => true,
|
|
else => false,
|
|
};
|
|
const rhs_is_float = switch (rhs_ty_tag) {
|
|
.float, .comptime_float => true,
|
|
else => false,
|
|
};
|
|
|
|
if (lhs_is_float and rhs_is_float) {
|
|
// Smaller fixed-width floats coerce to larger fixed-width floats.
|
|
// comptime_float coerces to fixed-width float.
|
|
const dest_ty = x: {
|
|
if (lhs_ty_tag == .comptime_float) {
|
|
break :x rhs_ty;
|
|
} else if (rhs_ty_tag == .comptime_float) {
|
|
break :x lhs_ty;
|
|
}
|
|
if (lhs_ty.floatBits(target) >= rhs_ty.floatBits(target)) {
|
|
break :x lhs_ty;
|
|
} else {
|
|
break :x rhs_ty;
|
|
}
|
|
};
|
|
const casted_lhs = try sema.coerce(block, dest_ty, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, dest_ty, rhs, rhs_src);
|
|
return block.addBinOp(Air.Inst.Tag.fromCmpOp(op, block.float_mode == .optimized), casted_lhs, casted_rhs);
|
|
}
|
|
|
|
// For mixed unsigned integer sizes, implicit cast both operands to the larger integer.
|
|
// For mixed signed and unsigned integers, implicit cast both operands to a signed
|
|
// integer with + 1 bit.
|
|
// For mixed floats and integers, extract the integer part from the float, cast that to
|
|
// a signed integer with mantissa bits + 1, and if there was any non-integral part of the float,
|
|
// add/subtract 1.
|
|
const lhs_is_signed = if (maybe_lhs_val) |lhs_val|
|
|
!(try lhs_val.compareAllWithZeroSema(.gte, pt))
|
|
else
|
|
(lhs_ty.isRuntimeFloat() or lhs_ty.isSignedInt(zcu));
|
|
const rhs_is_signed = if (maybe_rhs_val) |rhs_val|
|
|
!(try rhs_val.compareAllWithZeroSema(.gte, pt))
|
|
else
|
|
(rhs_ty.isRuntimeFloat() or rhs_ty.isSignedInt(zcu));
|
|
const dest_int_is_signed = lhs_is_signed or rhs_is_signed;
|
|
|
|
var dest_float_type: ?Type = null;
|
|
|
|
var lhs_bits: usize = undefined;
|
|
if (maybe_lhs_val) |unresolved_lhs_val| {
|
|
const lhs_val = try sema.resolveLazyValue(unresolved_lhs_val);
|
|
if (!rhs_is_signed) {
|
|
switch (lhs_val.orderAgainstZero(zcu)) {
|
|
.gt => {},
|
|
.eq => switch (op) { // LHS = 0, RHS is unsigned
|
|
.lte => return .bool_true,
|
|
.gt => return .bool_false,
|
|
else => {},
|
|
},
|
|
.lt => switch (op) { // LHS < 0, RHS is unsigned
|
|
.neq, .lt, .lte => return .bool_true,
|
|
.eq, .gt, .gte => return .bool_false,
|
|
},
|
|
}
|
|
}
|
|
if (lhs_is_float) {
|
|
const float = lhs_val.toFloat(f128, zcu);
|
|
var big_int: std.math.big.int.Mutable = .{
|
|
.limbs = try sema.arena.alloc(std.math.big.Limb, std.math.big.int.calcLimbLen(float)),
|
|
.len = undefined,
|
|
.positive = undefined,
|
|
};
|
|
switch (big_int.setFloat(float, .away)) {
|
|
.inexact => switch (op) {
|
|
.eq => return .bool_false,
|
|
.neq => return .bool_true,
|
|
else => {},
|
|
},
|
|
.exact => {},
|
|
}
|
|
lhs_bits = big_int.toConst().bitCountTwosComp();
|
|
} else {
|
|
lhs_bits = lhs_val.intBitCountTwosComp(zcu);
|
|
}
|
|
lhs_bits += @intFromBool(!lhs_is_signed and dest_int_is_signed);
|
|
} else if (lhs_is_float) {
|
|
dest_float_type = lhs_ty;
|
|
} else {
|
|
const int_info = lhs_ty.intInfo(zcu);
|
|
lhs_bits = int_info.bits + @intFromBool(int_info.signedness == .unsigned and dest_int_is_signed);
|
|
}
|
|
|
|
var rhs_bits: usize = undefined;
|
|
if (maybe_rhs_val) |unresolved_rhs_val| {
|
|
const rhs_val = try sema.resolveLazyValue(unresolved_rhs_val);
|
|
if (!lhs_is_signed) {
|
|
switch (rhs_val.orderAgainstZero(zcu)) {
|
|
.gt => {},
|
|
.eq => switch (op) { // RHS = 0, LHS is unsigned
|
|
.gte => return .bool_true,
|
|
.lt => return .bool_false,
|
|
else => {},
|
|
},
|
|
.lt => switch (op) { // RHS < 0, LHS is unsigned
|
|
.neq, .gt, .gte => return .bool_true,
|
|
.eq, .lt, .lte => return .bool_false,
|
|
},
|
|
}
|
|
}
|
|
if (rhs_is_float) {
|
|
const float = rhs_val.toFloat(f128, zcu);
|
|
var big_int: std.math.big.int.Mutable = .{
|
|
.limbs = try sema.arena.alloc(std.math.big.Limb, std.math.big.int.calcLimbLen(float)),
|
|
.len = undefined,
|
|
.positive = undefined,
|
|
};
|
|
switch (big_int.setFloat(float, .away)) {
|
|
.inexact => switch (op) {
|
|
.eq => return .bool_false,
|
|
.neq => return .bool_true,
|
|
else => {},
|
|
},
|
|
.exact => {},
|
|
}
|
|
rhs_bits = big_int.toConst().bitCountTwosComp();
|
|
} else {
|
|
rhs_bits = rhs_val.intBitCountTwosComp(zcu);
|
|
}
|
|
rhs_bits += @intFromBool(!rhs_is_signed and dest_int_is_signed);
|
|
} else if (rhs_is_float) {
|
|
dest_float_type = rhs_ty;
|
|
} else {
|
|
const int_info = rhs_ty.intInfo(zcu);
|
|
rhs_bits = int_info.bits + @intFromBool(int_info.signedness == .unsigned and dest_int_is_signed);
|
|
}
|
|
|
|
const dest_ty = if (dest_float_type) |ft| ft else blk: {
|
|
const max_bits = @max(lhs_bits, rhs_bits);
|
|
const casted_bits = std.math.cast(u16, max_bits) orelse return sema.fail(block, src, "{d} exceeds maximum integer bit count", .{max_bits});
|
|
const signedness: std.builtin.Signedness = if (dest_int_is_signed) .signed else .unsigned;
|
|
break :blk try pt.intType(signedness, casted_bits);
|
|
};
|
|
const casted_lhs = try sema.coerce(block, dest_ty, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, dest_ty, rhs, rhs_src);
|
|
|
|
return block.addBinOp(Air.Inst.Tag.fromCmpOp(op, block.float_mode == .optimized), casted_lhs, casted_rhs);
|
|
}
|
|
|
|
/// Asserts that LHS value is an int or comptime int and not undefined, and
|
|
/// that RHS type is an int. Given a const LHS and an unknown RHS, attempt to
|
|
/// determine whether `op` has a guaranteed result.
|
|
/// If it cannot be determined, returns null.
|
|
/// Otherwise returns a bool for the guaranteed comparison operation.
|
|
fn compareIntsOnlyPossibleResult(
|
|
sema: *Sema,
|
|
lhs_val: Value,
|
|
op: std.math.CompareOperator,
|
|
rhs_ty: Type,
|
|
) SemaError!?bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
const min_rhs = try rhs_ty.minInt(pt, rhs_ty);
|
|
const max_rhs = try rhs_ty.maxInt(pt, rhs_ty);
|
|
|
|
if (min_rhs.toIntern() == max_rhs.toIntern()) {
|
|
// RHS is effectively comptime-known.
|
|
return try Value.compareHeteroSema(lhs_val, op, min_rhs, pt);
|
|
}
|
|
|
|
const against_min = try lhs_val.orderAdvanced(min_rhs, .sema, zcu, pt.tid);
|
|
const against_max = try lhs_val.orderAdvanced(max_rhs, .sema, zcu, pt.tid);
|
|
|
|
switch (op) {
|
|
.eq => {
|
|
if (against_min.compare(.lt)) return false;
|
|
if (against_max.compare(.gt)) return false;
|
|
},
|
|
.neq => {
|
|
if (against_min.compare(.lt)) return true;
|
|
if (against_max.compare(.gt)) return true;
|
|
},
|
|
.lt => {
|
|
if (against_min.compare(.lt)) return true;
|
|
if (against_max.compare(.gte)) return false;
|
|
},
|
|
.gt => {
|
|
if (against_max.compare(.gt)) return true;
|
|
if (against_min.compare(.lte)) return false;
|
|
},
|
|
.lte => {
|
|
if (against_min.compare(.lte)) return true;
|
|
if (against_max.compare(.gt)) return false;
|
|
},
|
|
.gte => {
|
|
if (against_max.compare(.gte)) return true;
|
|
if (against_min.compare(.lt)) return false;
|
|
},
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/// Asserts that lhs and rhs types are both vectors.
|
|
fn cmpVector(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
lhs: Air.Inst.Ref,
|
|
rhs: Air.Inst.Ref,
|
|
op: std.math.CompareOperator,
|
|
lhs_src: LazySrcLoc,
|
|
rhs_src: LazySrcLoc,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const lhs_ty = sema.typeOf(lhs);
|
|
const rhs_ty = sema.typeOf(rhs);
|
|
assert(lhs_ty.zigTypeTag(zcu) == .vector);
|
|
assert(rhs_ty.zigTypeTag(zcu) == .vector);
|
|
try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src);
|
|
|
|
const resolved_ty = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{ .override = &.{ lhs_src, rhs_src } });
|
|
const casted_lhs = try sema.coerce(block, resolved_ty, lhs, lhs_src);
|
|
const casted_rhs = try sema.coerce(block, resolved_ty, rhs, rhs_src);
|
|
|
|
const result_ty = try pt.vectorType(.{
|
|
.len = lhs_ty.vectorLen(zcu),
|
|
.child = .bool_type,
|
|
});
|
|
|
|
const maybe_lhs_val = try sema.resolveValue(casted_lhs);
|
|
const maybe_rhs_val = try sema.resolveValue(casted_rhs);
|
|
if (maybe_lhs_val) |v| if (v.isUndef(zcu)) return pt.undefRef(result_ty);
|
|
if (maybe_rhs_val) |v| if (v.isUndef(zcu)) return pt.undefRef(result_ty);
|
|
|
|
const runtime_src: LazySrcLoc = if (maybe_lhs_val) |lhs_val| src: {
|
|
if (maybe_rhs_val) |rhs_val| {
|
|
const cmp_val = try sema.compareVector(lhs_val, op, rhs_val, resolved_ty);
|
|
return Air.internedToRef(cmp_val.toIntern());
|
|
} else break :src rhs_src;
|
|
} else lhs_src;
|
|
|
|
try sema.requireRuntimeBlock(block, src, runtime_src);
|
|
return block.addCmpVector(casted_lhs, casted_rhs, op);
|
|
}
|
|
|
|
fn wrapOptional(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
if (try sema.resolveValue(inst)) |val| {
|
|
return Air.internedToRef((try sema.pt.intern(.{ .opt = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.val = val.toIntern(),
|
|
} })));
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addTyOp(.wrap_optional, dest_ty, inst);
|
|
}
|
|
|
|
fn wrapErrorUnionPayload(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const dest_payload_ty = dest_ty.errorUnionPayload(zcu);
|
|
const coerced = try sema.coerceExtra(block, dest_payload_ty, inst, inst_src, .{ .report_err = false });
|
|
if (try sema.resolveValue(coerced)) |val| {
|
|
return Air.internedToRef((try pt.intern(.{ .error_union = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.val = .{ .payload = val.toIntern() },
|
|
} })));
|
|
}
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
return block.addTyOp(.wrap_errunion_payload, dest_ty, coerced);
|
|
}
|
|
|
|
fn wrapErrorUnionSet(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
dest_ty: Type,
|
|
inst: Air.Inst.Ref,
|
|
inst_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const inst_ty = sema.typeOf(inst);
|
|
const dest_err_set_ty = dest_ty.errorUnionSet(zcu);
|
|
if (try sema.resolveValue(inst)) |val| {
|
|
const expected_name = zcu.intern_pool.indexToKey(val.toIntern()).err.name;
|
|
switch (dest_err_set_ty.toIntern()) {
|
|
.anyerror_type => {},
|
|
.adhoc_inferred_error_set_type => ok: {
|
|
const ies = sema.fn_ret_ty_ies.?;
|
|
switch (ies.resolved) {
|
|
.anyerror_type => break :ok,
|
|
.none => if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, dest_err_set_ty, inst_ty, inst_src, inst_src)) {
|
|
break :ok;
|
|
},
|
|
else => |i| if (ip.indexToKey(i).error_set_type.nameIndex(ip, expected_name) != null) {
|
|
break :ok;
|
|
},
|
|
}
|
|
return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty);
|
|
},
|
|
else => switch (ip.indexToKey(dest_err_set_ty.toIntern())) {
|
|
.error_set_type => |error_set_type| ok: {
|
|
if (error_set_type.nameIndex(ip, expected_name) != null) break :ok;
|
|
return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty);
|
|
},
|
|
.inferred_error_set_type => |func_index| ok: {
|
|
// We carefully do this in an order that avoids unnecessarily
|
|
// resolving the destination error set type.
|
|
try zcu.maybeUnresolveIes(func_index);
|
|
switch (ip.funcIesResolvedUnordered(func_index)) {
|
|
.anyerror_type => break :ok,
|
|
.none => if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, dest_err_set_ty, inst_ty, inst_src, inst_src)) {
|
|
break :ok;
|
|
},
|
|
else => |i| if (ip.indexToKey(i).error_set_type.nameIndex(ip, expected_name) != null) {
|
|
break :ok;
|
|
},
|
|
}
|
|
|
|
return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty);
|
|
},
|
|
else => unreachable,
|
|
},
|
|
}
|
|
return Air.internedToRef((try pt.intern(.{ .error_union = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.val = .{ .err_name = expected_name },
|
|
} })));
|
|
}
|
|
|
|
try sema.requireRuntimeBlock(block, inst_src, null);
|
|
const coerced = try sema.coerce(block, dest_err_set_ty, inst, inst_src);
|
|
return block.addTyOp(.wrap_errunion_err, dest_ty, coerced);
|
|
}
|
|
|
|
fn unionToTag(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
enum_ty: Type,
|
|
un: Air.Inst.Ref,
|
|
un_src: LazySrcLoc,
|
|
) !Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if ((try sema.typeHasOnePossibleValue(enum_ty))) |opv| {
|
|
return Air.internedToRef(opv.toIntern());
|
|
}
|
|
if (try sema.resolveValue(un)) |un_val| {
|
|
const tag_val = un_val.unionTag(zcu).?;
|
|
if (tag_val.isUndef(zcu))
|
|
return try pt.undefRef(enum_ty);
|
|
return Air.internedToRef(tag_val.toIntern());
|
|
}
|
|
try sema.requireRuntimeBlock(block, un_src, null);
|
|
return block.addTyOp(.get_union_tag, enum_ty, un);
|
|
}
|
|
|
|
const PeerResolveStrategy = enum {
|
|
/// The type is not known.
|
|
/// If refined no further, this is equivalent to `exact`.
|
|
unknown,
|
|
/// The type may be an error set or error union.
|
|
/// If refined no further, it is an error set.
|
|
error_set,
|
|
/// The type must be some error union.
|
|
error_union,
|
|
/// The type may be @TypeOf(null), an optional or a C pointer.
|
|
/// If refined no further, it is @TypeOf(null).
|
|
nullable,
|
|
/// The type must be some optional or a C pointer.
|
|
/// If refined no further, it is an optional.
|
|
optional,
|
|
/// The type must be either an array or a vector.
|
|
/// If refined no further, it is an array.
|
|
array,
|
|
/// The type must be a vector.
|
|
vector,
|
|
/// The type must be a C pointer.
|
|
c_ptr,
|
|
/// The type must be a pointer (C or not).
|
|
/// If refined no further, it is a non-C pointer.
|
|
ptr,
|
|
/// The type must be a function or a pointer to a function.
|
|
/// If refined no further, it is a function.
|
|
func,
|
|
/// The type must be an enum literal, or some specific enum or union. Which one is decided
|
|
/// afterwards based on the types in question.
|
|
enum_or_union,
|
|
/// The type must be some integer or float type.
|
|
/// If refined no further, it is `comptime_int`.
|
|
comptime_int,
|
|
/// The type must be some float type.
|
|
/// If refined no further, it is `comptime_float`.
|
|
comptime_float,
|
|
/// The type must be some float or fixed-width integer type.
|
|
/// If refined no further, it is some fixed-width integer type.
|
|
fixed_int,
|
|
/// The type must be some fixed-width float type.
|
|
fixed_float,
|
|
/// The type must be a tuple.
|
|
tuple,
|
|
/// The peers must all be of the same type.
|
|
exact,
|
|
|
|
/// Given two strategies, find a strategy that satisfies both, if one exists. If no such
|
|
/// strategy exists, any strategy may be returned; an error will be emitted when the caller
|
|
/// attempts to use the strategy to resolve the type.
|
|
/// Strategy `a` comes from the peer in `reason_peer`, while strategy `b` comes from the peer at
|
|
/// index `b_peer_idx`. `reason_peer` is updated to reflect the reason for the new strategy.
|
|
fn merge(a: PeerResolveStrategy, b: PeerResolveStrategy, reason_peer: *usize, b_peer_idx: usize) PeerResolveStrategy {
|
|
// Our merging should be order-independent. Thus, even though the union order is arbitrary,
|
|
// by sorting the tags and switching first on the smaller, we have half as many cases to
|
|
// worry about (since we avoid the duplicates).
|
|
const s0_is_a = @intFromEnum(a) <= @intFromEnum(b);
|
|
const s0 = if (s0_is_a) a else b;
|
|
const s1 = if (s0_is_a) b else a;
|
|
|
|
const ReasonMethod = enum {
|
|
all_s0,
|
|
all_s1,
|
|
either,
|
|
};
|
|
|
|
const reason_method: ReasonMethod, const strat: PeerResolveStrategy = switch (s0) {
|
|
.unknown => .{ .all_s1, s1 },
|
|
.error_set => switch (s1) {
|
|
.error_set => .{ .either, .error_set },
|
|
else => .{ .all_s0, .error_union },
|
|
},
|
|
.error_union => switch (s1) {
|
|
.error_union => .{ .either, .error_union },
|
|
else => .{ .all_s0, .error_union },
|
|
},
|
|
.nullable => switch (s1) {
|
|
.nullable => .{ .either, .nullable },
|
|
.c_ptr => .{ .all_s1, .c_ptr },
|
|
else => .{ .all_s0, .optional },
|
|
},
|
|
.optional => switch (s1) {
|
|
.optional => .{ .either, .optional },
|
|
.c_ptr => .{ .all_s1, .c_ptr },
|
|
else => .{ .all_s0, .optional },
|
|
},
|
|
.array => switch (s1) {
|
|
.array => .{ .either, .array },
|
|
.vector => .{ .all_s1, .vector },
|
|
else => .{ .all_s0, .array },
|
|
},
|
|
.vector => switch (s1) {
|
|
.vector => .{ .either, .vector },
|
|
else => .{ .all_s0, .vector },
|
|
},
|
|
.c_ptr => switch (s1) {
|
|
.c_ptr => .{ .either, .c_ptr },
|
|
else => .{ .all_s0, .c_ptr },
|
|
},
|
|
.ptr => switch (s1) {
|
|
.ptr => .{ .either, .ptr },
|
|
else => .{ .all_s0, .ptr },
|
|
},
|
|
.func => switch (s1) {
|
|
.func => .{ .either, .func },
|
|
else => .{ .all_s1, s1 }, // doesn't override anything later
|
|
},
|
|
.enum_or_union => switch (s1) {
|
|
.enum_or_union => .{ .either, .enum_or_union },
|
|
else => .{ .all_s0, .enum_or_union },
|
|
},
|
|
.comptime_int => switch (s1) {
|
|
.comptime_int => .{ .either, .comptime_int },
|
|
else => .{ .all_s1, s1 }, // doesn't override anything later
|
|
},
|
|
.comptime_float => switch (s1) {
|
|
.comptime_float => .{ .either, .comptime_float },
|
|
else => .{ .all_s1, s1 }, // doesn't override anything later
|
|
},
|
|
.fixed_int => switch (s1) {
|
|
.fixed_int => .{ .either, .fixed_int },
|
|
else => .{ .all_s1, s1 }, // doesn't override anything later
|
|
},
|
|
.fixed_float => switch (s1) {
|
|
.fixed_float => .{ .either, .fixed_float },
|
|
else => .{ .all_s1, s1 }, // doesn't override anything later
|
|
},
|
|
.tuple => switch (s1) {
|
|
.exact => .{ .all_s1, .exact },
|
|
else => .{ .all_s0, .tuple },
|
|
},
|
|
.exact => .{ .all_s0, .exact },
|
|
};
|
|
|
|
switch (reason_method) {
|
|
.all_s0 => {
|
|
if (!s0_is_a) {
|
|
reason_peer.* = b_peer_idx;
|
|
}
|
|
},
|
|
.all_s1 => {
|
|
if (s0_is_a) {
|
|
reason_peer.* = b_peer_idx;
|
|
}
|
|
},
|
|
.either => {
|
|
// Prefer the earliest peer
|
|
reason_peer.* = @min(reason_peer.*, b_peer_idx);
|
|
},
|
|
}
|
|
|
|
return strat;
|
|
}
|
|
|
|
fn select(ty: Type, zcu: *Zcu) PeerResolveStrategy {
|
|
return switch (ty.zigTypeTag(zcu)) {
|
|
.type, .void, .bool, .@"opaque", .frame, .@"anyframe" => .exact,
|
|
.noreturn, .undefined => .unknown,
|
|
.null => .nullable,
|
|
.comptime_int => .comptime_int,
|
|
.int => .fixed_int,
|
|
.comptime_float => .comptime_float,
|
|
.float => .fixed_float,
|
|
.pointer => if (ty.ptrInfo(zcu).flags.size == .c) .c_ptr else .ptr,
|
|
.array => .array,
|
|
.vector => .vector,
|
|
.optional => .optional,
|
|
.error_set => .error_set,
|
|
.error_union => .error_union,
|
|
.enum_literal, .@"enum", .@"union" => .enum_or_union,
|
|
.@"struct" => if (ty.isTuple(zcu)) .tuple else .exact,
|
|
.@"fn" => .func,
|
|
};
|
|
}
|
|
};
|
|
|
|
const PeerTypeCandidateSrc = union(enum) {
|
|
/// Do not print out error notes for candidate sources
|
|
none: void,
|
|
/// When we want to know the the src of candidate i, look up at
|
|
/// index i in this slice
|
|
override: []const ?LazySrcLoc,
|
|
/// resolvePeerTypes originates from a @TypeOf(...) call
|
|
typeof_builtin_call_node_offset: std.zig.Ast.Node.Offset,
|
|
|
|
pub fn resolve(
|
|
self: PeerTypeCandidateSrc,
|
|
block: *Block,
|
|
candidate_i: usize,
|
|
) ?LazySrcLoc {
|
|
return switch (self) {
|
|
.none => null,
|
|
.override => |candidate_srcs| if (candidate_i >= candidate_srcs.len)
|
|
null
|
|
else
|
|
candidate_srcs[candidate_i],
|
|
.typeof_builtin_call_node_offset => |node_offset| block.builtinCallArgSrc(node_offset, @intCast(candidate_i)),
|
|
};
|
|
}
|
|
};
|
|
|
|
const PeerResolveResult = union(enum) {
|
|
/// The peer type resolution was successful, and resulted in the given type.
|
|
success: Type,
|
|
/// There was some generic conflict between two peers.
|
|
conflict: struct {
|
|
peer_idx_a: usize,
|
|
peer_idx_b: usize,
|
|
},
|
|
/// There was an error when resolving the type of a struct or tuple field.
|
|
field_error: struct {
|
|
/// The name of the field which caused the failure.
|
|
field_name: InternPool.NullTerminatedString,
|
|
/// The type of this field in each peer.
|
|
field_types: []Type,
|
|
/// The error from resolving the field type. Guaranteed not to be `success`.
|
|
sub_result: *PeerResolveResult,
|
|
},
|
|
|
|
fn report(
|
|
result: PeerResolveResult,
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
instructions: []const Air.Inst.Ref,
|
|
candidate_srcs: PeerTypeCandidateSrc,
|
|
) !*Zcu.ErrorMsg {
|
|
const pt = sema.pt;
|
|
|
|
var opt_msg: ?*Zcu.ErrorMsg = null;
|
|
errdefer if (opt_msg) |msg| msg.destroy(sema.gpa);
|
|
|
|
// If we mention fields we'll want to include field types, so put peer types in a buffer
|
|
var peer_tys = try sema.arena.alloc(Type, instructions.len);
|
|
for (peer_tys, instructions) |*ty, inst| {
|
|
ty.* = sema.typeOf(inst);
|
|
}
|
|
|
|
var cur = result;
|
|
while (true) {
|
|
var conflict_idx: [2]usize = undefined;
|
|
|
|
switch (cur) {
|
|
.success => unreachable,
|
|
.conflict => |conflict| {
|
|
// Fall through to two-peer conflict handling below
|
|
conflict_idx = .{
|
|
conflict.peer_idx_a,
|
|
conflict.peer_idx_b,
|
|
};
|
|
},
|
|
.field_error => |field_error| {
|
|
const fmt = "struct field '{f}' has conflicting types";
|
|
const args = .{field_error.field_name.fmt(&pt.zcu.intern_pool)};
|
|
if (opt_msg) |msg| {
|
|
try sema.errNote(src, msg, fmt, args);
|
|
} else {
|
|
opt_msg = try sema.errMsg(src, fmt, args);
|
|
}
|
|
|
|
// Continue on to child error
|
|
cur = field_error.sub_result.*;
|
|
peer_tys = field_error.field_types;
|
|
continue;
|
|
},
|
|
}
|
|
|
|
// This is the path for reporting a generic conflict between two peers.
|
|
|
|
if (conflict_idx[1] < conflict_idx[0]) {
|
|
// b comes first in source, so it's better if it comes first in the error
|
|
std.mem.swap(usize, &conflict_idx[0], &conflict_idx[1]);
|
|
}
|
|
|
|
const conflict_tys: [2]Type = .{
|
|
peer_tys[conflict_idx[0]],
|
|
peer_tys[conflict_idx[1]],
|
|
};
|
|
const conflict_srcs: [2]?LazySrcLoc = .{
|
|
candidate_srcs.resolve(block, conflict_idx[0]),
|
|
candidate_srcs.resolve(block, conflict_idx[1]),
|
|
};
|
|
|
|
const fmt = "incompatible types: '{f}' and '{f}'";
|
|
const args = .{
|
|
conflict_tys[0].fmt(pt),
|
|
conflict_tys[1].fmt(pt),
|
|
};
|
|
const msg = if (opt_msg) |msg| msg: {
|
|
try sema.errNote(src, msg, fmt, args);
|
|
break :msg msg;
|
|
} else msg: {
|
|
const msg = try sema.errMsg(src, fmt, args);
|
|
opt_msg = msg;
|
|
break :msg msg;
|
|
};
|
|
|
|
if (conflict_srcs[0]) |src_loc| try sema.errNote(src_loc, msg, "type '{f}' here", .{conflict_tys[0].fmt(pt)});
|
|
if (conflict_srcs[1]) |src_loc| try sema.errNote(src_loc, msg, "type '{f}' here", .{conflict_tys[1].fmt(pt)});
|
|
|
|
// No child error
|
|
break;
|
|
}
|
|
|
|
return opt_msg.?;
|
|
}
|
|
};
|
|
|
|
fn resolvePeerTypes(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
instructions: []const Air.Inst.Ref,
|
|
candidate_srcs: PeerTypeCandidateSrc,
|
|
) !Type {
|
|
switch (instructions.len) {
|
|
0 => return .noreturn,
|
|
1 => return sema.typeOf(instructions[0]),
|
|
else => {},
|
|
}
|
|
|
|
// Fast path: check if everything has the same type to bypass the main PTR logic.
|
|
same_type: {
|
|
const ty = sema.typeOf(instructions[0]);
|
|
for (instructions[1..]) |inst| {
|
|
if (sema.typeOf(inst).toIntern() != ty.toIntern()) {
|
|
break :same_type;
|
|
}
|
|
}
|
|
return ty;
|
|
}
|
|
|
|
const peer_tys = try sema.arena.alloc(?Type, instructions.len);
|
|
const peer_vals = try sema.arena.alloc(?Value, instructions.len);
|
|
|
|
for (instructions, peer_tys, peer_vals) |inst, *ty, *val| {
|
|
ty.* = sema.typeOf(inst);
|
|
val.* = try sema.resolveValue(inst);
|
|
}
|
|
|
|
switch (try sema.resolvePeerTypesInner(block, src, peer_tys, peer_vals)) {
|
|
.success => |ty| return ty,
|
|
else => |result| {
|
|
const msg = try result.report(sema, block, src, instructions, candidate_srcs);
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn resolvePeerTypesInner(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
peer_tys: []?Type,
|
|
peer_vals: []?Value,
|
|
) !PeerResolveResult {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
var strat_reason: usize = 0;
|
|
var s: PeerResolveStrategy = .unknown;
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
s = s.merge(PeerResolveStrategy.select(ty, zcu), &strat_reason, i);
|
|
}
|
|
|
|
if (s == .unknown) {
|
|
// The whole thing was noreturn or undefined - try to do an exact match
|
|
s = .exact;
|
|
} else {
|
|
// There was something other than noreturn and undefined, so we can ignore those peers
|
|
for (peer_tys) |*ty_ptr| {
|
|
const ty = ty_ptr.* orelse continue;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.noreturn, .undefined => ty_ptr.* = null,
|
|
else => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
const target = zcu.getTarget();
|
|
|
|
switch (s) {
|
|
.unknown => unreachable,
|
|
|
|
.error_set => {
|
|
var final_set: ?Type = null;
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
if (ty.zigTypeTag(zcu) != .error_set) return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
if (final_set) |cur_set| {
|
|
final_set = try sema.maybeMergeErrorSets(block, src, cur_set, ty);
|
|
} else {
|
|
final_set = ty;
|
|
}
|
|
}
|
|
return .{ .success = final_set.? };
|
|
},
|
|
|
|
.error_union => {
|
|
var final_set: ?Type = null;
|
|
for (peer_tys, peer_vals) |*ty_ptr, *val_ptr| {
|
|
const ty = ty_ptr.* orelse continue;
|
|
const set_ty = switch (ty.zigTypeTag(zcu)) {
|
|
.error_set => blk: {
|
|
ty_ptr.* = null; // no payload to decide on
|
|
val_ptr.* = null;
|
|
break :blk ty;
|
|
},
|
|
.error_union => blk: {
|
|
const set_ty = ty.errorUnionSet(zcu);
|
|
ty_ptr.* = ty.errorUnionPayload(zcu);
|
|
if (val_ptr.*) |eu_val| switch (ip.indexToKey(eu_val.toIntern())) {
|
|
.error_union => |eu| switch (eu.val) {
|
|
.payload => |payload_ip| val_ptr.* = Value.fromInterned(payload_ip),
|
|
.err_name => val_ptr.* = null,
|
|
},
|
|
.undef => val_ptr.* = Value.fromInterned(try pt.intern(.{ .undef = ty_ptr.*.?.toIntern() })),
|
|
else => unreachable,
|
|
};
|
|
break :blk set_ty;
|
|
},
|
|
else => continue, // whole type is the payload
|
|
};
|
|
if (final_set) |cur_set| {
|
|
final_set = try sema.maybeMergeErrorSets(block, src, cur_set, set_ty);
|
|
} else {
|
|
final_set = set_ty;
|
|
}
|
|
}
|
|
assert(final_set != null);
|
|
const final_payload = switch (try sema.resolvePeerTypesInner(
|
|
block,
|
|
src,
|
|
peer_tys,
|
|
peer_vals,
|
|
)) {
|
|
.success => |ty| ty,
|
|
else => |result| return result,
|
|
};
|
|
return .{ .success = try pt.errorUnionType(final_set.?, final_payload) };
|
|
},
|
|
|
|
.nullable => {
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
if (!ty.eql(.null, zcu)) return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
return .{ .success = .null };
|
|
},
|
|
|
|
.optional => {
|
|
for (peer_tys, peer_vals) |*ty_ptr, *val_ptr| {
|
|
const ty = ty_ptr.* orelse continue;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.null => {
|
|
ty_ptr.* = null;
|
|
val_ptr.* = null;
|
|
},
|
|
.optional => {
|
|
ty_ptr.* = ty.optionalChild(zcu);
|
|
if (val_ptr.*) |opt_val| val_ptr.* = if (!opt_val.isUndef(zcu)) opt_val.optionalValue(zcu) else null;
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
const child_ty = switch (try sema.resolvePeerTypesInner(
|
|
block,
|
|
src,
|
|
peer_tys,
|
|
peer_vals,
|
|
)) {
|
|
.success => |ty| ty,
|
|
else => |result| return result,
|
|
};
|
|
return .{ .success = try pt.optionalType(child_ty.toIntern()) };
|
|
},
|
|
|
|
.array => {
|
|
// Index of the first non-null peer
|
|
var opt_first_idx: ?usize = null;
|
|
// Index of the first array or vector peer (i.e. not a tuple)
|
|
var opt_first_arr_idx: ?usize = null;
|
|
// Set to non-null once we see any peer, even a tuple
|
|
var len: u64 = undefined;
|
|
var sentinel: ?Value = undefined;
|
|
// Only set once we see a non-tuple peer
|
|
var elem_ty: Type = undefined;
|
|
|
|
for (peer_tys, 0..) |*ty_ptr, i| {
|
|
const ty = ty_ptr.* orelse continue;
|
|
|
|
if (!ty.isArrayOrVector(zcu)) {
|
|
// We allow tuples of the correct length. We won't validate their elem type, since the elements can be coerced.
|
|
const arr_like = sema.typeIsArrayLike(ty) orelse return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
|
|
if (opt_first_idx) |first_idx| {
|
|
if (arr_like.len != len) return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
} else {
|
|
opt_first_idx = i;
|
|
len = arr_like.len;
|
|
}
|
|
|
|
sentinel = null;
|
|
|
|
continue;
|
|
}
|
|
|
|
const first_arr_idx = opt_first_arr_idx orelse {
|
|
if (opt_first_idx == null) {
|
|
opt_first_idx = i;
|
|
len = ty.arrayLen(zcu);
|
|
sentinel = ty.sentinel(zcu);
|
|
}
|
|
opt_first_arr_idx = i;
|
|
elem_ty = ty.childType(zcu);
|
|
continue;
|
|
};
|
|
|
|
if (ty.arrayLen(zcu) != len) return .{ .conflict = .{
|
|
.peer_idx_a = first_arr_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
|
|
const peer_elem_ty = ty.childType(zcu);
|
|
if (!peer_elem_ty.eql(elem_ty, zcu)) coerce: {
|
|
const peer_elem_coerces_to_elem =
|
|
try sema.coerceInMemoryAllowed(block, elem_ty, peer_elem_ty, false, zcu.getTarget(), src, src, null);
|
|
if (peer_elem_coerces_to_elem == .ok) {
|
|
break :coerce;
|
|
}
|
|
|
|
const elem_coerces_to_peer_elem =
|
|
try sema.coerceInMemoryAllowed(block, peer_elem_ty, elem_ty, false, zcu.getTarget(), src, src, null);
|
|
if (elem_coerces_to_peer_elem == .ok) {
|
|
elem_ty = peer_elem_ty;
|
|
break :coerce;
|
|
}
|
|
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = first_arr_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
|
|
if (sentinel) |cur_sent| {
|
|
if (ty.sentinel(zcu)) |peer_sent| {
|
|
if (!peer_sent.eql(cur_sent, elem_ty, zcu)) sentinel = null;
|
|
} else {
|
|
sentinel = null;
|
|
}
|
|
}
|
|
}
|
|
|
|
// There should always be at least one array or vector peer
|
|
assert(opt_first_arr_idx != null);
|
|
|
|
return .{ .success = try pt.arrayType(.{
|
|
.len = len,
|
|
.child = elem_ty.toIntern(),
|
|
.sentinel = if (sentinel) |sent_val| sent_val.toIntern() else .none,
|
|
}) };
|
|
},
|
|
|
|
.vector => {
|
|
var len: ?u64 = null;
|
|
var first_idx: usize = undefined;
|
|
for (peer_tys, peer_vals, 0..) |*ty_ptr, *val_ptr, i| {
|
|
const ty = ty_ptr.* orelse continue;
|
|
|
|
if (!ty.isArrayOrVector(zcu)) {
|
|
// Allow tuples of the correct length
|
|
const arr_like = sema.typeIsArrayLike(ty) orelse return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
|
|
if (len) |expect_len| {
|
|
if (arr_like.len != expect_len) return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
} else {
|
|
len = arr_like.len;
|
|
first_idx = i;
|
|
}
|
|
|
|
// Tuples won't participate in the child type resolution. We'll resolve without
|
|
// them, and if the tuples have a bad type, we'll get a coercion error later.
|
|
ty_ptr.* = null;
|
|
val_ptr.* = null;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (len) |expect_len| {
|
|
if (ty.arrayLen(zcu) != expect_len) return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
} else {
|
|
len = ty.arrayLen(zcu);
|
|
first_idx = i;
|
|
}
|
|
|
|
ty_ptr.* = ty.childType(zcu);
|
|
val_ptr.* = null; // multiple child vals, so we can't easily use them in PTR
|
|
}
|
|
|
|
const child_ty = switch (try sema.resolvePeerTypesInner(
|
|
block,
|
|
src,
|
|
peer_tys,
|
|
peer_vals,
|
|
)) {
|
|
.success => |ty| ty,
|
|
else => |result| return result,
|
|
};
|
|
|
|
return .{ .success = try pt.vectorType(.{
|
|
.len = @intCast(len.?),
|
|
.child = child_ty.toIntern(),
|
|
}) };
|
|
},
|
|
|
|
.c_ptr => {
|
|
var opt_ptr_info: ?InternPool.Key.PtrType = null;
|
|
var first_idx: usize = undefined;
|
|
for (peer_tys, peer_vals, 0..) |opt_ty, opt_val, i| {
|
|
const ty = opt_ty orelse continue;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.comptime_int => continue, // comptime-known integers can always coerce to C pointers
|
|
.int => {
|
|
if (opt_val != null) {
|
|
// Always allow the coercion for comptime-known ints
|
|
continue;
|
|
} else {
|
|
// Runtime-known, so check if the type is no bigger than a usize
|
|
const ptr_bits = target.ptrBitWidth();
|
|
const bits = ty.intInfo(zcu).bits;
|
|
if (bits <= ptr_bits) continue;
|
|
}
|
|
},
|
|
.null => continue,
|
|
else => {},
|
|
}
|
|
|
|
if (!ty.isPtrAtRuntime(zcu)) return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
|
|
// Goes through optionals
|
|
const peer_info = ty.ptrInfo(zcu);
|
|
|
|
var ptr_info = opt_ptr_info orelse {
|
|
opt_ptr_info = peer_info;
|
|
opt_ptr_info.?.flags.size = .c;
|
|
first_idx = i;
|
|
continue;
|
|
};
|
|
|
|
// Try peer -> cur, then cur -> peer
|
|
ptr_info.child = ((try sema.resolvePairInMemoryCoercible(block, src, .fromInterned(ptr_info.child), .fromInterned(peer_info.child))) orelse {
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}).toIntern();
|
|
|
|
if (ptr_info.sentinel != .none and peer_info.sentinel != .none) {
|
|
const peer_sent = try ip.getCoerced(sema.gpa, pt.tid, ptr_info.sentinel, ptr_info.child);
|
|
const ptr_sent = try ip.getCoerced(sema.gpa, pt.tid, peer_info.sentinel, ptr_info.child);
|
|
if (ptr_sent == peer_sent) {
|
|
ptr_info.sentinel = ptr_sent;
|
|
} else {
|
|
ptr_info.sentinel = .none;
|
|
}
|
|
} else {
|
|
ptr_info.sentinel = .none;
|
|
}
|
|
|
|
// Note that the align can be always non-zero; Zcu.ptrType will canonicalize it
|
|
ptr_info.flags.alignment = InternPool.Alignment.min(
|
|
if (ptr_info.flags.alignment != .none)
|
|
ptr_info.flags.alignment
|
|
else
|
|
Type.fromInterned(ptr_info.child).abiAlignment(zcu),
|
|
|
|
if (peer_info.flags.alignment != .none)
|
|
peer_info.flags.alignment
|
|
else
|
|
Type.fromInterned(peer_info.child).abiAlignment(zcu),
|
|
);
|
|
if (ptr_info.flags.address_space != peer_info.flags.address_space) {
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
|
|
if (ptr_info.packed_offset.bit_offset != peer_info.packed_offset.bit_offset or
|
|
ptr_info.packed_offset.host_size != peer_info.packed_offset.host_size)
|
|
{
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
|
|
ptr_info.flags.is_const = ptr_info.flags.is_const or peer_info.flags.is_const;
|
|
ptr_info.flags.is_volatile = ptr_info.flags.is_volatile or peer_info.flags.is_volatile;
|
|
|
|
opt_ptr_info = ptr_info;
|
|
}
|
|
return .{ .success = try pt.ptrTypeSema(opt_ptr_info.?) };
|
|
},
|
|
|
|
.ptr => {
|
|
// If we've resolved to a `[]T` but then see a `[*]T`, we can resolve to a `[*]T` only
|
|
// if there were no actual slices. Else, we want the slice index to report a conflict.
|
|
var opt_slice_idx: ?usize = null;
|
|
|
|
var any_abi_aligned = false;
|
|
var opt_ptr_info: ?InternPool.Key.PtrType = null;
|
|
var first_idx: usize = undefined;
|
|
var other_idx: usize = undefined; // We sometimes need a second peer index to report a generic error
|
|
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
const peer_info: InternPool.Key.PtrType = switch (ty.zigTypeTag(zcu)) {
|
|
.pointer => ty.ptrInfo(zcu),
|
|
.@"fn" => .{
|
|
.child = ty.toIntern(),
|
|
.flags = .{
|
|
.address_space = target_util.defaultAddressSpace(target, .global_constant),
|
|
},
|
|
},
|
|
else => return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} },
|
|
};
|
|
|
|
switch (peer_info.flags.size) {
|
|
.one, .many => {},
|
|
.slice => opt_slice_idx = i,
|
|
.c => return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} },
|
|
}
|
|
|
|
var ptr_info = opt_ptr_info orelse {
|
|
opt_ptr_info = peer_info;
|
|
first_idx = i;
|
|
continue;
|
|
};
|
|
|
|
other_idx = i;
|
|
|
|
// We want to return this in a lot of cases, so alias it here for convenience
|
|
const generic_err: PeerResolveResult = .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
|
|
// Note that the align can be always non-zero; Type.ptr will canonicalize it
|
|
if (peer_info.flags.alignment == .none) {
|
|
any_abi_aligned = true;
|
|
} else if (ptr_info.flags.alignment == .none) {
|
|
any_abi_aligned = true;
|
|
ptr_info.flags.alignment = peer_info.flags.alignment;
|
|
} else {
|
|
ptr_info.flags.alignment = ptr_info.flags.alignment.minStrict(peer_info.flags.alignment);
|
|
}
|
|
|
|
if (ptr_info.flags.address_space != peer_info.flags.address_space) {
|
|
return generic_err;
|
|
}
|
|
|
|
if (ptr_info.packed_offset.bit_offset != peer_info.packed_offset.bit_offset or
|
|
ptr_info.packed_offset.host_size != peer_info.packed_offset.host_size)
|
|
{
|
|
return generic_err;
|
|
}
|
|
|
|
ptr_info.flags.is_const = ptr_info.flags.is_const or peer_info.flags.is_const;
|
|
ptr_info.flags.is_volatile = ptr_info.flags.is_volatile or peer_info.flags.is_volatile;
|
|
ptr_info.flags.is_allowzero = ptr_info.flags.is_allowzero or peer_info.flags.is_allowzero;
|
|
|
|
const peer_sentinel: InternPool.Index = switch (peer_info.flags.size) {
|
|
.one => switch (ip.indexToKey(peer_info.child)) {
|
|
.array_type => |array_type| array_type.sentinel,
|
|
else => .none,
|
|
},
|
|
.many, .slice => peer_info.sentinel,
|
|
.c => unreachable,
|
|
};
|
|
|
|
const cur_sentinel: InternPool.Index = switch (ptr_info.flags.size) {
|
|
.one => switch (ip.indexToKey(ptr_info.child)) {
|
|
.array_type => |array_type| array_type.sentinel,
|
|
else => .none,
|
|
},
|
|
.many, .slice => ptr_info.sentinel,
|
|
.c => unreachable,
|
|
};
|
|
|
|
// We abstract array handling slightly so that tuple pointers can work like array pointers
|
|
const peer_pointee_array = sema.typeIsArrayLike(.fromInterned(peer_info.child));
|
|
const cur_pointee_array = sema.typeIsArrayLike(.fromInterned(ptr_info.child));
|
|
|
|
// This switch is just responsible for deciding the size and pointee (not including
|
|
// single-pointer array sentinel).
|
|
good: {
|
|
switch (peer_info.flags.size) {
|
|
.one => switch (ptr_info.flags.size) {
|
|
.one => {
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, .fromInterned(ptr_info.child), .fromInterned(peer_info.child))) |pointee| {
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
|
|
const cur_arr = cur_pointee_array orelse return generic_err;
|
|
const peer_arr = peer_pointee_array orelse return generic_err;
|
|
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, cur_arr.elem_ty, peer_arr.elem_ty)) |elem_ty| {
|
|
// *[n:x]T + *[n:y]T = *[n]T
|
|
if (cur_arr.len == peer_arr.len) {
|
|
ptr_info.child = (try pt.arrayType(.{
|
|
.len = cur_arr.len,
|
|
.child = elem_ty.toIntern(),
|
|
})).toIntern();
|
|
break :good;
|
|
}
|
|
// *[a]T + *[b]T = []T
|
|
ptr_info.flags.size = .slice;
|
|
ptr_info.child = elem_ty.toIntern();
|
|
break :good;
|
|
}
|
|
|
|
if (peer_arr.elem_ty.toIntern() == .noreturn_type) {
|
|
// *struct{} + *[a]T = []T
|
|
ptr_info.flags.size = .slice;
|
|
ptr_info.child = cur_arr.elem_ty.toIntern();
|
|
break :good;
|
|
}
|
|
|
|
if (cur_arr.elem_ty.toIntern() == .noreturn_type) {
|
|
// *[a]T + *struct{} = []T
|
|
ptr_info.flags.size = .slice;
|
|
ptr_info.child = peer_arr.elem_ty.toIntern();
|
|
break :good;
|
|
}
|
|
|
|
return generic_err;
|
|
},
|
|
.many => {
|
|
// Only works for *[n]T + [*]T -> [*]T
|
|
const arr = peer_pointee_array orelse return generic_err;
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, .fromInterned(ptr_info.child), arr.elem_ty)) |pointee| {
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
if (arr.elem_ty.toIntern() == .noreturn_type) {
|
|
// *struct{} + [*]T -> [*]T
|
|
break :good;
|
|
}
|
|
return generic_err;
|
|
},
|
|
.slice => {
|
|
// Only works for *[n]T + []T -> []T
|
|
const arr = peer_pointee_array orelse return generic_err;
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, .fromInterned(ptr_info.child), arr.elem_ty)) |pointee| {
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
if (arr.elem_ty.toIntern() == .noreturn_type) {
|
|
// *struct{} + []T -> []T
|
|
break :good;
|
|
}
|
|
return generic_err;
|
|
},
|
|
.c => unreachable,
|
|
},
|
|
.many => switch (ptr_info.flags.size) {
|
|
.one => {
|
|
// Only works for [*]T + *[n]T -> [*]T
|
|
const arr = cur_pointee_array orelse return generic_err;
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, arr.elem_ty, .fromInterned(peer_info.child))) |pointee| {
|
|
ptr_info.flags.size = .many;
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
if (arr.elem_ty.toIntern() == .noreturn_type) {
|
|
// [*]T + *struct{} -> [*]T
|
|
ptr_info.flags.size = .many;
|
|
ptr_info.child = peer_info.child;
|
|
break :good;
|
|
}
|
|
return generic_err;
|
|
},
|
|
.many => {
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, .fromInterned(ptr_info.child), .fromInterned(peer_info.child))) |pointee| {
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
return generic_err;
|
|
},
|
|
.slice => {
|
|
// Only works if no peers are actually slices
|
|
if (opt_slice_idx) |slice_idx| {
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = slice_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
// Okay, then works for [*]T + "[]T" -> [*]T
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, .fromInterned(ptr_info.child), .fromInterned(peer_info.child))) |pointee| {
|
|
ptr_info.flags.size = .many;
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
return generic_err;
|
|
},
|
|
.c => unreachable,
|
|
},
|
|
.slice => switch (ptr_info.flags.size) {
|
|
.one => {
|
|
// Only works for []T + *[n]T -> []T
|
|
const arr = cur_pointee_array orelse return generic_err;
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, arr.elem_ty, .fromInterned(peer_info.child))) |pointee| {
|
|
ptr_info.flags.size = .slice;
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
if (arr.elem_ty.toIntern() == .noreturn_type) {
|
|
// []T + *struct{} -> []T
|
|
ptr_info.flags.size = .slice;
|
|
ptr_info.child = peer_info.child;
|
|
break :good;
|
|
}
|
|
return generic_err;
|
|
},
|
|
.many => {
|
|
// Impossible! (current peer is an actual slice)
|
|
return generic_err;
|
|
},
|
|
.slice => {
|
|
if (try sema.resolvePairInMemoryCoercible(block, src, .fromInterned(ptr_info.child), .fromInterned(peer_info.child))) |pointee| {
|
|
ptr_info.child = pointee.toIntern();
|
|
break :good;
|
|
}
|
|
return generic_err;
|
|
},
|
|
.c => unreachable,
|
|
},
|
|
.c => unreachable,
|
|
}
|
|
}
|
|
|
|
const sentinel_ty = switch (ptr_info.flags.size) {
|
|
.one => switch (ip.indexToKey(ptr_info.child)) {
|
|
.array_type => |array_type| array_type.child,
|
|
else => ptr_info.child,
|
|
},
|
|
.many, .slice, .c => ptr_info.child,
|
|
};
|
|
|
|
sentinel: {
|
|
no_sentinel: {
|
|
if (peer_sentinel == .none) break :no_sentinel;
|
|
if (cur_sentinel == .none) break :no_sentinel;
|
|
const peer_sent_coerced = try ip.getCoerced(sema.gpa, pt.tid, peer_sentinel, sentinel_ty);
|
|
const cur_sent_coerced = try ip.getCoerced(sema.gpa, pt.tid, cur_sentinel, sentinel_ty);
|
|
if (peer_sent_coerced != cur_sent_coerced) break :no_sentinel;
|
|
// Sentinels match
|
|
if (ptr_info.flags.size == .one) switch (ip.indexToKey(ptr_info.child)) {
|
|
.array_type => |array_type| ptr_info.child = (try pt.arrayType(.{
|
|
.len = array_type.len,
|
|
.child = array_type.child,
|
|
.sentinel = cur_sent_coerced,
|
|
})).toIntern(),
|
|
else => unreachable,
|
|
} else {
|
|
ptr_info.sentinel = cur_sent_coerced;
|
|
}
|
|
break :sentinel;
|
|
}
|
|
// Clear existing sentinel
|
|
ptr_info.sentinel = .none;
|
|
if (ptr_info.flags.size == .one) switch (ip.indexToKey(ptr_info.child)) {
|
|
.array_type => |array_type| ptr_info.child = (try pt.arrayType(.{
|
|
.len = array_type.len,
|
|
.child = array_type.child,
|
|
.sentinel = .none,
|
|
})).toIntern(),
|
|
else => {},
|
|
};
|
|
}
|
|
|
|
opt_ptr_info = ptr_info;
|
|
}
|
|
|
|
// Before we succeed, check the pointee type. If we tried to apply PTR to (for instance)
|
|
// &.{} and &.{}, we'll currently have a pointer type of `*[0]noreturn` - we wanted to
|
|
// coerce the empty struct to a specific type, but no peer provided one. We need to
|
|
// detect this case and emit an error.
|
|
const pointee = opt_ptr_info.?.child;
|
|
switch (pointee) {
|
|
.noreturn_type => return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = other_idx,
|
|
} },
|
|
else => switch (ip.indexToKey(pointee)) {
|
|
.array_type => |array_type| if (array_type.child == .noreturn_type) return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = other_idx,
|
|
} },
|
|
else => {},
|
|
},
|
|
}
|
|
|
|
if (any_abi_aligned and opt_ptr_info.?.flags.alignment != .none) {
|
|
opt_ptr_info.?.flags.alignment = opt_ptr_info.?.flags.alignment.minStrict(
|
|
try Type.fromInterned(pointee).abiAlignmentSema(pt),
|
|
);
|
|
}
|
|
|
|
return .{ .success = try pt.ptrTypeSema(opt_ptr_info.?) };
|
|
},
|
|
|
|
.func => {
|
|
var opt_cur_ty: ?Type = null;
|
|
var first_idx: usize = undefined;
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
const cur_ty = opt_cur_ty orelse {
|
|
opt_cur_ty = ty;
|
|
first_idx = i;
|
|
continue;
|
|
};
|
|
if (ty.zigTypeTag(zcu) != .@"fn") return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
// ty -> cur_ty
|
|
if (.ok == try sema.coerceInMemoryAllowedFns(block, cur_ty, ty, false, target, src, src)) {
|
|
continue;
|
|
}
|
|
// cur_ty -> ty
|
|
if (.ok == try sema.coerceInMemoryAllowedFns(block, ty, cur_ty, false, target, src, src)) {
|
|
opt_cur_ty = ty;
|
|
continue;
|
|
}
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
return .{ .success = opt_cur_ty.? };
|
|
},
|
|
|
|
.enum_or_union => {
|
|
var opt_cur_ty: ?Type = null;
|
|
// The peer index which gave the current type
|
|
var cur_ty_idx: usize = undefined;
|
|
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.enum_literal, .@"enum", .@"union" => {},
|
|
else => return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} },
|
|
}
|
|
const cur_ty = opt_cur_ty orelse {
|
|
opt_cur_ty = ty;
|
|
cur_ty_idx = i;
|
|
continue;
|
|
};
|
|
|
|
// We want to return this in a lot of cases, so alias it here for convenience
|
|
const generic_err: PeerResolveResult = .{ .conflict = .{
|
|
.peer_idx_a = cur_ty_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
|
|
switch (cur_ty.zigTypeTag(zcu)) {
|
|
.enum_literal => {
|
|
opt_cur_ty = ty;
|
|
cur_ty_idx = i;
|
|
},
|
|
.@"enum" => switch (ty.zigTypeTag(zcu)) {
|
|
.enum_literal => {},
|
|
.@"enum" => {
|
|
if (!ty.eql(cur_ty, zcu)) return generic_err;
|
|
},
|
|
.@"union" => {
|
|
const tag_ty = ty.unionTagTypeHypothetical(zcu);
|
|
if (!tag_ty.eql(cur_ty, zcu)) return generic_err;
|
|
opt_cur_ty = ty;
|
|
cur_ty_idx = i;
|
|
},
|
|
else => unreachable,
|
|
},
|
|
.@"union" => switch (ty.zigTypeTag(zcu)) {
|
|
.enum_literal => {},
|
|
.@"enum" => {
|
|
const cur_tag_ty = cur_ty.unionTagTypeHypothetical(zcu);
|
|
if (!ty.eql(cur_tag_ty, zcu)) return generic_err;
|
|
},
|
|
.@"union" => {
|
|
if (!ty.eql(cur_ty, zcu)) return generic_err;
|
|
},
|
|
else => unreachable,
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
return .{ .success = opt_cur_ty.? };
|
|
},
|
|
|
|
.comptime_int => {
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.comptime_int => {},
|
|
else => return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} },
|
|
}
|
|
}
|
|
return .{ .success = .comptime_int };
|
|
},
|
|
|
|
.comptime_float => {
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.comptime_int, .comptime_float => {},
|
|
else => return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} },
|
|
}
|
|
}
|
|
return .{ .success = .comptime_float };
|
|
},
|
|
|
|
.fixed_int => {
|
|
var idx_unsigned: ?usize = null;
|
|
var idx_signed: ?usize = null;
|
|
|
|
// TODO: this is for compatibility with legacy behavior. See beneath the loop.
|
|
var any_comptime_known = false;
|
|
|
|
for (peer_tys, peer_vals, 0..) |opt_ty, *ptr_opt_val, i| {
|
|
const ty = opt_ty orelse continue;
|
|
const opt_val = ptr_opt_val.*;
|
|
|
|
const peer_tag = ty.zigTypeTag(zcu);
|
|
switch (peer_tag) {
|
|
.comptime_int => {
|
|
// If the value is undefined, we can't refine to a fixed-width int
|
|
if (opt_val == null or opt_val.?.isUndef(zcu)) return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
any_comptime_known = true;
|
|
ptr_opt_val.* = try sema.resolveLazyValue(opt_val.?);
|
|
continue;
|
|
},
|
|
.int => {},
|
|
else => return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} },
|
|
}
|
|
|
|
if (opt_val != null) any_comptime_known = true;
|
|
|
|
const info = ty.intInfo(zcu);
|
|
|
|
const idx_ptr = switch (info.signedness) {
|
|
.unsigned => &idx_unsigned,
|
|
.signed => &idx_signed,
|
|
};
|
|
|
|
const largest_idx = idx_ptr.* orelse {
|
|
idx_ptr.* = i;
|
|
continue;
|
|
};
|
|
|
|
const cur_info = peer_tys[largest_idx].?.intInfo(zcu);
|
|
if (info.bits > cur_info.bits) {
|
|
idx_ptr.* = i;
|
|
}
|
|
}
|
|
|
|
if (idx_signed == null) {
|
|
return .{ .success = peer_tys[idx_unsigned.?].? };
|
|
}
|
|
|
|
if (idx_unsigned == null) {
|
|
return .{ .success = peer_tys[idx_signed.?].? };
|
|
}
|
|
|
|
const unsigned_info = peer_tys[idx_unsigned.?].?.intInfo(zcu);
|
|
const signed_info = peer_tys[idx_signed.?].?.intInfo(zcu);
|
|
if (signed_info.bits > unsigned_info.bits) {
|
|
return .{ .success = peer_tys[idx_signed.?].? };
|
|
}
|
|
|
|
// TODO: this is for compatibility with legacy behavior. Before this version of PTR was
|
|
// implemented, the algorithm very often returned false positives, with the expectation
|
|
// that you'd just hit a coercion error later. One of these was that for integers, the
|
|
// largest type would always be returned, even if it couldn't fit everything. This had
|
|
// an unintentional consequence to semantics, which is that if values were known at
|
|
// comptime, they would be coerced down to the smallest type where possible. This
|
|
// behavior is unintuitive and order-dependent, so in my opinion should be eliminated,
|
|
// but for now we'll retain compatibility.
|
|
if (any_comptime_known) {
|
|
if (unsigned_info.bits > signed_info.bits) {
|
|
return .{ .success = peer_tys[idx_unsigned.?].? };
|
|
}
|
|
const idx = @min(idx_unsigned.?, idx_signed.?);
|
|
return .{ .success = peer_tys[idx].? };
|
|
}
|
|
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = idx_unsigned.?,
|
|
.peer_idx_b = idx_signed.?,
|
|
} };
|
|
},
|
|
|
|
.fixed_float => {
|
|
var opt_cur_ty: ?Type = null;
|
|
|
|
for (peer_tys, peer_vals, 0..) |opt_ty, opt_val, i| {
|
|
const ty = opt_ty orelse continue;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.comptime_float, .comptime_int => {},
|
|
.int => {
|
|
if (opt_val == null) return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
},
|
|
.float => {
|
|
if (opt_cur_ty) |cur_ty| {
|
|
if (cur_ty.eql(ty, zcu)) continue;
|
|
// Recreate the type so we eliminate any c_longdouble
|
|
const bits = @max(cur_ty.floatBits(target), ty.floatBits(target));
|
|
opt_cur_ty = switch (bits) {
|
|
16 => .f16,
|
|
32 => .f32,
|
|
64 => .f64,
|
|
80 => .f80,
|
|
128 => .f128,
|
|
else => unreachable,
|
|
};
|
|
} else {
|
|
opt_cur_ty = ty;
|
|
}
|
|
},
|
|
else => return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} },
|
|
}
|
|
}
|
|
|
|
// Note that fixed_float is only chosen if there is at least one fixed-width float peer,
|
|
// so opt_cur_ty must be non-null.
|
|
return .{ .success = opt_cur_ty.? };
|
|
},
|
|
|
|
.tuple => {
|
|
// First, check that every peer has the same approximate structure (field count)
|
|
|
|
var opt_first_idx: ?usize = null;
|
|
var is_tuple: bool = undefined;
|
|
var field_count: usize = undefined;
|
|
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
|
|
if (!ty.isTuple(zcu)) {
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = strat_reason,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
|
|
const first_idx = opt_first_idx orelse {
|
|
opt_first_idx = i;
|
|
is_tuple = ty.isTuple(zcu);
|
|
field_count = ty.structFieldCount(zcu);
|
|
continue;
|
|
};
|
|
|
|
if (ty.structFieldCount(zcu) != field_count) {
|
|
return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
}
|
|
}
|
|
|
|
assert(opt_first_idx != null);
|
|
|
|
// Now, we'll recursively resolve the field types
|
|
const field_types = try sema.arena.alloc(InternPool.Index, field_count);
|
|
// Values for `comptime` fields - `.none` used for non-comptime fields
|
|
const field_vals = try sema.arena.alloc(InternPool.Index, field_count);
|
|
const sub_peer_tys = try sema.arena.alloc(?Type, peer_tys.len);
|
|
const sub_peer_vals = try sema.arena.alloc(?Value, peer_vals.len);
|
|
|
|
for (field_types, field_vals, 0..) |*field_ty, *field_val, field_index| {
|
|
// Fill buffers with types and values of the field
|
|
for (peer_tys, peer_vals, sub_peer_tys, sub_peer_vals) |opt_ty, opt_val, *peer_field_ty, *peer_field_val| {
|
|
const ty = opt_ty orelse {
|
|
peer_field_ty.* = null;
|
|
peer_field_val.* = null;
|
|
continue;
|
|
};
|
|
peer_field_ty.* = ty.fieldType(field_index, zcu);
|
|
peer_field_val.* = if (opt_val) |val| try val.fieldValue(pt, field_index) else null;
|
|
}
|
|
|
|
// Resolve field type recursively
|
|
field_ty.* = switch (try sema.resolvePeerTypesInner(block, src, sub_peer_tys, sub_peer_vals)) {
|
|
.success => |ty| ty.toIntern(),
|
|
else => |result| {
|
|
const result_buf = try sema.arena.create(PeerResolveResult);
|
|
result_buf.* = result;
|
|
const field_name = try ip.getOrPutStringFmt(sema.gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
|
|
|
|
// The error info needs the field types, but we can't reuse sub_peer_tys
|
|
// since the recursive call may have clobbered it.
|
|
const peer_field_tys = try sema.arena.alloc(Type, peer_tys.len);
|
|
for (peer_tys, peer_field_tys) |opt_ty, *peer_field_ty| {
|
|
// Already-resolved types won't be referenced by the error so it's fine
|
|
// to leave them undefined.
|
|
const ty = opt_ty orelse continue;
|
|
peer_field_ty.* = ty.fieldType(field_index, zcu);
|
|
}
|
|
|
|
return .{ .field_error = .{
|
|
.field_name = field_name,
|
|
.field_types = peer_field_tys,
|
|
.sub_result = result_buf,
|
|
} };
|
|
},
|
|
};
|
|
|
|
// Decide if this is a comptime field. If it is comptime in all peers, and the
|
|
// coerced comptime values are all the same, we say it is comptime, else not.
|
|
|
|
var comptime_val: ?Value = null;
|
|
for (peer_tys) |opt_ty| {
|
|
const struct_ty = opt_ty orelse continue;
|
|
try struct_ty.resolveStructFieldInits(pt);
|
|
|
|
const uncoerced_field_val = try struct_ty.structFieldValueComptime(pt, field_index) orelse {
|
|
comptime_val = null;
|
|
break;
|
|
};
|
|
const uncoerced_field = Air.internedToRef(uncoerced_field_val.toIntern());
|
|
const coerced_inst = sema.coerceExtra(block, .fromInterned(field_ty.*), uncoerced_field, src, .{ .report_err = false }) catch |err| switch (err) {
|
|
// It's possible for PTR to give false positives. Just give up on making this a comptime field, we'll get an error later anyway
|
|
error.NotCoercible => {
|
|
comptime_val = null;
|
|
break;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
const coerced_val = (try sema.resolveValue(coerced_inst)) orelse continue;
|
|
const existing = comptime_val orelse {
|
|
comptime_val = coerced_val;
|
|
continue;
|
|
};
|
|
if (!coerced_val.eql(existing, .fromInterned(field_ty.*), zcu)) {
|
|
comptime_val = null;
|
|
break;
|
|
}
|
|
}
|
|
|
|
field_val.* = if (comptime_val) |v| v.toIntern() else .none;
|
|
}
|
|
|
|
const final_ty = try ip.getTupleType(zcu.gpa, pt.tid, .{
|
|
.types = field_types,
|
|
.values = field_vals,
|
|
});
|
|
|
|
return .{ .success = .fromInterned(final_ty) };
|
|
},
|
|
|
|
.exact => {
|
|
var expect_ty: ?Type = null;
|
|
var first_idx: usize = undefined;
|
|
for (peer_tys, 0..) |opt_ty, i| {
|
|
const ty = opt_ty orelse continue;
|
|
if (expect_ty) |expect| {
|
|
if (!ty.eql(expect, zcu)) return .{ .conflict = .{
|
|
.peer_idx_a = first_idx,
|
|
.peer_idx_b = i,
|
|
} };
|
|
} else {
|
|
expect_ty = ty;
|
|
first_idx = i;
|
|
}
|
|
}
|
|
return .{ .success = expect_ty.? };
|
|
},
|
|
}
|
|
}
|
|
|
|
fn maybeMergeErrorSets(sema: *Sema, block: *Block, src: LazySrcLoc, e0: Type, e1: Type) !Type {
|
|
// e0 -> e1
|
|
if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, e1, e0, src, src)) {
|
|
return e1;
|
|
}
|
|
|
|
// e1 -> e0
|
|
if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, e0, e1, src, src)) {
|
|
return e0;
|
|
}
|
|
|
|
return sema.errorSetMerge(e0, e1);
|
|
}
|
|
|
|
fn resolvePairInMemoryCoercible(sema: *Sema, block: *Block, src: LazySrcLoc, ty_a: Type, ty_b: Type) !?Type {
|
|
const target = sema.pt.zcu.getTarget();
|
|
|
|
// ty_b -> ty_a
|
|
if (.ok == try sema.coerceInMemoryAllowed(block, ty_a, ty_b, false, target, src, src, null)) {
|
|
return ty_a;
|
|
}
|
|
|
|
// ty_a -> ty_b
|
|
if (.ok == try sema.coerceInMemoryAllowed(block, ty_b, ty_a, false, target, src, src, null)) {
|
|
return ty_b;
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
const ArrayLike = struct {
|
|
len: u64,
|
|
/// `noreturn` indicates that this type is `struct{}` so can coerce to anything
|
|
elem_ty: Type,
|
|
};
|
|
fn typeIsArrayLike(sema: *Sema, ty: Type) ?ArrayLike {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
return switch (ty.zigTypeTag(zcu)) {
|
|
.array => .{
|
|
.len = ty.arrayLen(zcu),
|
|
.elem_ty = ty.childType(zcu),
|
|
},
|
|
.@"struct" => {
|
|
const field_count = ty.structFieldCount(zcu);
|
|
if (field_count == 0) return .{
|
|
.len = 0,
|
|
.elem_ty = .noreturn,
|
|
};
|
|
if (!ty.isTuple(zcu)) return null;
|
|
const elem_ty = ty.fieldType(0, zcu);
|
|
for (1..field_count) |i| {
|
|
if (!ty.fieldType(i, zcu).eql(elem_ty, zcu)) {
|
|
return null;
|
|
}
|
|
}
|
|
return .{
|
|
.len = field_count,
|
|
.elem_ty = elem_ty,
|
|
};
|
|
},
|
|
else => null,
|
|
};
|
|
}
|
|
|
|
pub fn resolveIes(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
if (sema.fn_ret_ty_ies) |ies| {
|
|
try sema.resolveInferredErrorSetPtr(block, src, ies);
|
|
assert(ies.resolved != .none);
|
|
ip.funcIesResolved(sema.func_index).* = ies.resolved;
|
|
}
|
|
}
|
|
|
|
pub fn resolveFnTypes(sema: *Sema, fn_ty: Type, src: LazySrcLoc) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const fn_ty_info = zcu.typeToFunc(fn_ty).?;
|
|
|
|
try Type.fromInterned(fn_ty_info.return_type).resolveFully(pt);
|
|
|
|
if (zcu.comp.config.any_error_tracing and
|
|
Type.fromInterned(fn_ty_info.return_type).isError(zcu))
|
|
{
|
|
// Ensure the type exists so that backends can assume that.
|
|
_ = try sema.getBuiltinType(src, .StackTrace);
|
|
}
|
|
|
|
for (0..fn_ty_info.param_types.len) |i| {
|
|
try Type.fromInterned(fn_ty_info.param_types.get(ip)[i]).resolveFully(pt);
|
|
}
|
|
}
|
|
|
|
fn resolveLazyValue(sema: *Sema, val: Value) CompileError!Value {
|
|
return val.resolveLazy(sema.arena, sema.pt);
|
|
}
|
|
|
|
/// Resolve a struct's alignment only without triggering resolution of its layout.
|
|
/// Asserts that the alignment is not yet resolved and the layout is non-packed.
|
|
pub fn resolveStructAlignment(
|
|
sema: *Sema,
|
|
ty: InternPool.Index,
|
|
struct_type: InternPool.LoadedStructType,
|
|
) SemaError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const target = zcu.getTarget();
|
|
|
|
assert(sema.owner.unwrap().type == ty);
|
|
|
|
assert(struct_type.layout != .@"packed");
|
|
assert(struct_type.flagsUnordered(ip).alignment == .none);
|
|
|
|
const ptr_align = Alignment.fromByteUnits(@divExact(target.ptrBitWidth(), 8));
|
|
|
|
// We'll guess "pointer-aligned", if the struct has an
|
|
// underaligned pointer field then some allocations
|
|
// might require explicit alignment.
|
|
if (struct_type.assumePointerAlignedIfFieldTypesWip(ip, ptr_align)) return;
|
|
|
|
try sema.resolveStructFieldTypes(ty, struct_type);
|
|
|
|
// We'll guess "pointer-aligned", if the struct has an
|
|
// underaligned pointer field then some allocations
|
|
// might require explicit alignment.
|
|
if (struct_type.assumePointerAlignedIfWip(ip, ptr_align)) return;
|
|
defer struct_type.clearAlignmentWip(ip);
|
|
|
|
// No `zcu.trackUnitSema` calls, since this phase isn't really doing any semantic analysis.
|
|
// It's just triggering *other* analysis, alongside a simple loop over already-resolved info.
|
|
|
|
var alignment: Alignment = .@"1";
|
|
|
|
for (0..struct_type.field_types.len) |i| {
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
if (struct_type.fieldIsComptime(ip, i) or try field_ty.comptimeOnlySema(pt))
|
|
continue;
|
|
const field_align = try field_ty.structFieldAlignmentSema(
|
|
struct_type.fieldAlign(ip, i),
|
|
struct_type.layout,
|
|
pt,
|
|
);
|
|
alignment = alignment.maxStrict(field_align);
|
|
}
|
|
|
|
struct_type.setAlignment(ip, alignment);
|
|
}
|
|
|
|
pub fn resolveStructLayout(sema: *Sema, ty: Type) SemaError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const struct_type = zcu.typeToStruct(ty) orelse return;
|
|
|
|
assert(sema.owner.unwrap().type == ty.toIntern());
|
|
|
|
if (struct_type.haveLayout(ip))
|
|
return;
|
|
|
|
try sema.resolveStructFieldTypes(ty.toIntern(), struct_type);
|
|
|
|
// No `zcu.trackUnitSema` calls, since this phase isn't really doing any semantic analysis.
|
|
// It's just triggering *other* analysis, alongside a simple loop over already-resolved info.
|
|
|
|
if (struct_type.layout == .@"packed") {
|
|
sema.backingIntType(struct_type) catch |err| switch (err) {
|
|
error.OutOfMemory, error.AnalysisFail => |e| return e,
|
|
error.ComptimeBreak, error.ComptimeReturn => unreachable,
|
|
};
|
|
return;
|
|
}
|
|
|
|
if (struct_type.setLayoutWip(ip)) {
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(zcu),
|
|
"struct '{f}' depends on itself",
|
|
.{ty.fmt(pt)},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
}
|
|
defer struct_type.clearLayoutWip(ip);
|
|
|
|
const aligns = try sema.arena.alloc(Alignment, struct_type.field_types.len);
|
|
const sizes = try sema.arena.alloc(u64, struct_type.field_types.len);
|
|
|
|
var big_align: Alignment = .@"1";
|
|
|
|
for (aligns, sizes, 0..) |*field_align, *field_size, i| {
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
if (struct_type.fieldIsComptime(ip, i) or try field_ty.comptimeOnlySema(pt)) {
|
|
struct_type.offsets.get(ip)[i] = 0;
|
|
field_size.* = 0;
|
|
field_align.* = .none;
|
|
continue;
|
|
}
|
|
|
|
field_size.* = field_ty.abiSizeSema(pt) catch |err| switch (err) {
|
|
error.AnalysisFail => {
|
|
const msg = sema.err orelse return err;
|
|
try sema.addFieldErrNote(ty, i, msg, "while checking this field", .{});
|
|
return err;
|
|
},
|
|
else => return err,
|
|
};
|
|
field_align.* = try field_ty.structFieldAlignmentSema(
|
|
struct_type.fieldAlign(ip, i),
|
|
struct_type.layout,
|
|
pt,
|
|
);
|
|
big_align = big_align.maxStrict(field_align.*);
|
|
}
|
|
|
|
if (struct_type.flagsUnordered(ip).assumed_runtime_bits and !(try ty.hasRuntimeBitsSema(pt))) {
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(zcu),
|
|
"struct layout depends on it having runtime bits",
|
|
.{},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
}
|
|
|
|
if (struct_type.flagsUnordered(ip).assumed_pointer_aligned and
|
|
big_align.compareStrict(.neq, Alignment.fromByteUnits(@divExact(zcu.getTarget().ptrBitWidth(), 8))))
|
|
{
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(zcu),
|
|
"struct layout depends on being pointer aligned",
|
|
.{},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
}
|
|
|
|
if (struct_type.hasReorderedFields()) {
|
|
const runtime_order = struct_type.runtime_order.get(ip);
|
|
|
|
for (runtime_order, 0..) |*ro, i| {
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
if (struct_type.fieldIsComptime(ip, i) or try field_ty.comptimeOnlySema(pt)) {
|
|
ro.* = .omitted;
|
|
} else {
|
|
ro.* = @enumFromInt(i);
|
|
}
|
|
}
|
|
|
|
const RuntimeOrder = InternPool.LoadedStructType.RuntimeOrder;
|
|
|
|
const AlignSortContext = struct {
|
|
aligns: []const Alignment,
|
|
|
|
fn lessThan(ctx: @This(), a: RuntimeOrder, b: RuntimeOrder) bool {
|
|
if (a == .omitted) return false;
|
|
if (b == .omitted) return true;
|
|
const a_align = ctx.aligns[@intFromEnum(a)];
|
|
const b_align = ctx.aligns[@intFromEnum(b)];
|
|
return a_align.compare(.gt, b_align);
|
|
}
|
|
};
|
|
if (!zcu.backendSupportsFeature(.field_reordering)) {
|
|
// TODO: we should probably also reorder tuple fields? This is a bit weird because it'll involve
|
|
// mutating the `InternPool` for a non-container type.
|
|
//
|
|
// TODO: implement field reordering support in all the backends!
|
|
//
|
|
// This logic does not reorder fields; it only moves the omitted ones to the end
|
|
// so that logic elsewhere does not need to special-case here.
|
|
var i: usize = 0;
|
|
var off: usize = 0;
|
|
while (i + off < runtime_order.len) {
|
|
if (runtime_order[i + off] == .omitted) {
|
|
off += 1;
|
|
continue;
|
|
}
|
|
runtime_order[i] = runtime_order[i + off];
|
|
i += 1;
|
|
}
|
|
@memset(runtime_order[i..], .omitted);
|
|
} else {
|
|
mem.sortUnstable(RuntimeOrder, runtime_order, AlignSortContext{
|
|
.aligns = aligns,
|
|
}, AlignSortContext.lessThan);
|
|
}
|
|
}
|
|
|
|
// Calculate size, alignment, and field offsets.
|
|
const offsets = struct_type.offsets.get(ip);
|
|
var it = struct_type.iterateRuntimeOrder(ip);
|
|
var offset: u64 = 0;
|
|
while (it.next()) |i| {
|
|
offsets[i] = @intCast(aligns[i].forward(offset));
|
|
offset = offsets[i] + sizes[i];
|
|
}
|
|
const size = std.math.cast(u32, big_align.forward(offset)) orelse {
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(zcu),
|
|
"struct layout requires size {d}, this compiler implementation supports up to {d}",
|
|
.{ big_align.forward(offset), std.math.maxInt(u32) },
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
};
|
|
struct_type.setLayoutResolved(ip, size, big_align);
|
|
_ = try ty.comptimeOnlySema(pt);
|
|
}
|
|
|
|
fn backingIntType(
|
|
sema: *Sema,
|
|
struct_type: InternPool.LoadedStructType,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
var analysis_arena = std.heap.ArenaAllocator.init(gpa);
|
|
defer analysis_arena.deinit();
|
|
|
|
var block: Block = .{
|
|
.parent = null,
|
|
.sema = sema,
|
|
.namespace = struct_type.namespace,
|
|
.instructions = .{},
|
|
.inlining = null,
|
|
.comptime_reason = null, // set below if needed
|
|
.src_base_inst = struct_type.zir_index,
|
|
.type_name_ctx = struct_type.name,
|
|
};
|
|
defer assert(block.instructions.items.len == 0);
|
|
|
|
const fields_bit_sum = blk: {
|
|
var accumulator: u64 = 0;
|
|
for (0..struct_type.field_types.len) |i| {
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
accumulator += try field_ty.bitSizeSema(pt);
|
|
}
|
|
break :blk accumulator;
|
|
};
|
|
|
|
const zir = zcu.namespacePtr(struct_type.namespace).fileScope(zcu).zir.?;
|
|
const zir_index = struct_type.zir_index.resolve(ip) orelse return error.AnalysisFail;
|
|
const extended = zir.instructions.items(.data)[@intFromEnum(zir_index)].extended;
|
|
assert(extended.opcode == .struct_decl);
|
|
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
|
|
|
|
if (small.has_backing_int) {
|
|
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).@"struct".fields.len;
|
|
const captures_len = if (small.has_captures_len) blk: {
|
|
const captures_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk captures_len;
|
|
} else 0;
|
|
extra_index += @intFromBool(small.has_fields_len);
|
|
extra_index += @intFromBool(small.has_decls_len);
|
|
|
|
extra_index += captures_len * 2;
|
|
|
|
const backing_int_body_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
|
|
const backing_int_src: LazySrcLoc = .{
|
|
.base_node_inst = struct_type.zir_index,
|
|
.offset = .{ .node_offset_container_tag = .zero },
|
|
};
|
|
block.comptime_reason = .{ .reason = .{
|
|
.src = backing_int_src,
|
|
.r = .{ .simple = .type },
|
|
} };
|
|
const backing_int_ty = blk: {
|
|
if (backing_int_body_len == 0) {
|
|
const backing_int_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
|
|
break :blk try sema.resolveType(&block, backing_int_src, backing_int_ref);
|
|
} else {
|
|
const body = zir.bodySlice(extra_index, backing_int_body_len);
|
|
const ty_ref = try sema.resolveInlineBody(&block, body, zir_index);
|
|
break :blk try sema.analyzeAsType(&block, backing_int_src, ty_ref);
|
|
}
|
|
};
|
|
|
|
try sema.checkBackingIntType(&block, backing_int_src, backing_int_ty, fields_bit_sum);
|
|
struct_type.setBackingIntType(ip, backing_int_ty.toIntern());
|
|
} else {
|
|
if (fields_bit_sum > std.math.maxInt(u16)) {
|
|
return sema.fail(&block, block.nodeOffset(.zero), "size of packed struct '{d}' exceeds maximum bit width of 65535", .{fields_bit_sum});
|
|
}
|
|
const backing_int_ty = try pt.intType(.unsigned, @intCast(fields_bit_sum));
|
|
struct_type.setBackingIntType(ip, backing_int_ty.toIntern());
|
|
}
|
|
|
|
try sema.flushExports();
|
|
}
|
|
|
|
fn checkBackingIntType(sema: *Sema, block: *Block, src: LazySrcLoc, backing_int_ty: Type, fields_bit_sum: u64) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (!backing_int_ty.isInt(zcu)) {
|
|
return sema.fail(block, src, "expected backing integer type, found '{f}'", .{backing_int_ty.fmt(pt)});
|
|
}
|
|
if (backing_int_ty.bitSize(zcu) != fields_bit_sum) {
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"backing integer type '{f}' has bit size {d} but the struct fields have a total bit size of {d}",
|
|
.{ backing_int_ty.fmt(pt), backing_int_ty.bitSize(zcu), fields_bit_sum },
|
|
);
|
|
}
|
|
}
|
|
|
|
fn checkIndexable(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
|
|
const pt = sema.pt;
|
|
if (!ty.isIndexable(pt.zcu)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "type '{f}' does not support indexing", .{ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "operand must be an array, slice, tuple, or vector", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
|
|
fn checkMemOperand(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (ty.zigTypeTag(zcu) == .pointer) {
|
|
switch (ty.ptrSize(zcu)) {
|
|
.slice, .many, .c => return,
|
|
.one => {
|
|
const elem_ty = ty.childType(zcu);
|
|
if (elem_ty.zigTypeTag(zcu) == .array) return;
|
|
// TODO https://github.com/ziglang/zig/issues/15479
|
|
// if (elem_ty.isTuple()) return;
|
|
},
|
|
}
|
|
}
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "type '{f}' is not an indexable pointer", .{ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(src, msg, "operand must be a slice, a many pointer or a pointer to an array", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
|
|
/// Resolve a unions's alignment only without triggering resolution of its layout.
|
|
/// Asserts that the alignment is not yet resolved.
|
|
pub fn resolveUnionAlignment(
|
|
sema: *Sema,
|
|
ty: Type,
|
|
union_type: InternPool.LoadedUnionType,
|
|
) SemaError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const target = zcu.getTarget();
|
|
|
|
assert(sema.owner.unwrap().type == ty.toIntern());
|
|
|
|
assert(!union_type.haveLayout(ip));
|
|
|
|
const ptr_align = Alignment.fromByteUnits(@divExact(target.ptrBitWidth(), 8));
|
|
|
|
// We'll guess "pointer-aligned", if the union has an
|
|
// underaligned pointer field then some allocations
|
|
// might require explicit alignment.
|
|
if (union_type.assumePointerAlignedIfFieldTypesWip(ip, ptr_align)) return;
|
|
|
|
try sema.resolveUnionFieldTypes(ty, union_type);
|
|
|
|
// No `zcu.trackUnitSema` calls, since this phase isn't really doing any semantic analysis.
|
|
// It's just triggering *other* analysis, alongside a simple loop over already-resolved info.
|
|
|
|
var max_align: Alignment = .@"1";
|
|
for (0..union_type.field_types.len) |field_index| {
|
|
const field_ty: Type = .fromInterned(union_type.field_types.get(ip)[field_index]);
|
|
if (!(try field_ty.hasRuntimeBitsSema(pt))) continue;
|
|
|
|
const explicit_align = union_type.fieldAlign(ip, field_index);
|
|
const field_align = if (explicit_align != .none)
|
|
explicit_align
|
|
else
|
|
try field_ty.abiAlignmentSema(sema.pt);
|
|
|
|
max_align = max_align.max(field_align);
|
|
}
|
|
|
|
union_type.setAlignment(ip, max_align);
|
|
}
|
|
|
|
/// This logic must be kept in sync with `Type.getUnionLayout`.
|
|
pub fn resolveUnionLayout(sema: *Sema, ty: Type) SemaError!void {
|
|
const pt = sema.pt;
|
|
const ip = &pt.zcu.intern_pool;
|
|
|
|
try sema.resolveUnionFieldTypes(ty, ip.loadUnionType(ty.ip_index));
|
|
|
|
// Load again, since the tag type might have changed due to resolution.
|
|
const union_type = ip.loadUnionType(ty.ip_index);
|
|
|
|
assert(sema.owner.unwrap().type == ty.toIntern());
|
|
|
|
const old_flags = union_type.flagsUnordered(ip);
|
|
switch (old_flags.status) {
|
|
.none, .have_field_types => {},
|
|
.field_types_wip, .layout_wip => {
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(pt.zcu),
|
|
"union '{f}' depends on itself",
|
|
.{ty.fmt(pt)},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
},
|
|
.have_layout, .fully_resolved_wip, .fully_resolved => return,
|
|
}
|
|
|
|
errdefer union_type.setStatusIfLayoutWip(ip, old_flags.status);
|
|
|
|
union_type.setStatus(ip, .layout_wip);
|
|
|
|
// No `zcu.trackUnitSema` calls, since this phase isn't really doing any semantic analysis.
|
|
// It's just triggering *other* analysis, alongside a simple loop over already-resolved info.
|
|
|
|
var max_size: u64 = 0;
|
|
var max_align: Alignment = .@"1";
|
|
for (0..union_type.field_types.len) |field_index| {
|
|
const field_ty: Type = .fromInterned(union_type.field_types.get(ip)[field_index]);
|
|
if (field_ty.isNoReturn(pt.zcu)) continue;
|
|
|
|
// We need to call `hasRuntimeBits` before calling `abiSize` to prevent reachable `unreachable`s,
|
|
// but `hasRuntimeBits` only resolves field types and so may infinite recurse on a layout wip type,
|
|
// so we must resolve the layout manually first, instead of waiting for `abiSize` to do it for us.
|
|
// This is arguably just hacking around bugs in both `abiSize` for not allowing arbitrary types to
|
|
// be queried, enabling failures to be handled with the emission of a compile error, and also in
|
|
// `hasRuntimeBits` for ever being able to infinite recurse in the first place.
|
|
try field_ty.resolveLayout(pt);
|
|
|
|
if (try field_ty.hasRuntimeBitsSema(pt)) {
|
|
max_size = @max(max_size, field_ty.abiSizeSema(pt) catch |err| switch (err) {
|
|
error.AnalysisFail => {
|
|
const msg = sema.err orelse return err;
|
|
try sema.addFieldErrNote(ty, field_index, msg, "while checking this field", .{});
|
|
return err;
|
|
},
|
|
else => return err,
|
|
});
|
|
}
|
|
|
|
const explicit_align = union_type.fieldAlign(ip, field_index);
|
|
const field_align = if (explicit_align != .none)
|
|
explicit_align
|
|
else
|
|
try field_ty.abiAlignmentSema(pt);
|
|
max_align = max_align.max(field_align);
|
|
}
|
|
|
|
const has_runtime_tag = union_type.flagsUnordered(ip).runtime_tag.hasTag() and
|
|
try Type.fromInterned(union_type.enum_tag_ty).hasRuntimeBitsSema(pt);
|
|
const size, const alignment, const padding = if (has_runtime_tag) layout: {
|
|
const enum_tag_type: Type = .fromInterned(union_type.enum_tag_ty);
|
|
const tag_align = try enum_tag_type.abiAlignmentSema(pt);
|
|
const tag_size = try enum_tag_type.abiSizeSema(pt);
|
|
|
|
// Put the tag before or after the payload depending on which one's
|
|
// alignment is greater.
|
|
var size: u64 = 0;
|
|
var padding: u32 = 0;
|
|
if (tag_align.order(max_align).compare(.gte)) {
|
|
// {Tag, Payload}
|
|
size += tag_size;
|
|
size = max_align.forward(size);
|
|
size += max_size;
|
|
const prev_size = size;
|
|
size = tag_align.forward(size);
|
|
padding = @intCast(size - prev_size);
|
|
} else {
|
|
// {Payload, Tag}
|
|
size += max_size;
|
|
size = switch (pt.zcu.getTarget().ofmt) {
|
|
.c => max_align,
|
|
else => tag_align,
|
|
}.forward(size);
|
|
size += tag_size;
|
|
const prev_size = size;
|
|
size = max_align.forward(size);
|
|
padding = @intCast(size - prev_size);
|
|
}
|
|
|
|
break :layout .{ size, max_align.max(tag_align), padding };
|
|
} else .{ max_align.forward(max_size), max_align, 0 };
|
|
|
|
const casted_size = std.math.cast(u32, size) orelse {
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(pt.zcu),
|
|
"union layout requires size {d}, this compiler implementation supports up to {d}",
|
|
.{ size, std.math.maxInt(u32) },
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
};
|
|
union_type.setHaveLayout(ip, casted_size, padding, alignment);
|
|
|
|
if (union_type.flagsUnordered(ip).assumed_runtime_bits and !(try ty.hasRuntimeBitsSema(pt))) {
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(pt.zcu),
|
|
"union layout depends on it having runtime bits",
|
|
.{},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
}
|
|
|
|
if (union_type.flagsUnordered(ip).assumed_pointer_aligned and
|
|
alignment.compareStrict(.neq, Alignment.fromByteUnits(@divExact(pt.zcu.getTarget().ptrBitWidth(), 8))))
|
|
{
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(pt.zcu),
|
|
"union layout depends on being pointer aligned",
|
|
.{},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
}
|
|
_ = try ty.comptimeOnlySema(pt);
|
|
}
|
|
|
|
/// Returns `error.AnalysisFail` if any of the types (recursively) failed to
|
|
/// be resolved.
|
|
pub fn resolveStructFully(sema: *Sema, ty: Type) SemaError!void {
|
|
try sema.resolveStructLayout(ty);
|
|
try sema.resolveStructFieldInits(ty);
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const struct_type = zcu.typeToStruct(ty).?;
|
|
|
|
assert(sema.owner.unwrap().type == ty.toIntern());
|
|
|
|
if (struct_type.setFullyResolved(ip)) return;
|
|
errdefer struct_type.clearFullyResolved(ip);
|
|
|
|
// No `zcu.trackUnitSema` calls, since this phase isn't really doing any semantic analysis.
|
|
// It's just triggering *other* analysis, alongside a simple loop over already-resolved info.
|
|
|
|
// After we have resolve struct layout we have to go over the fields again to
|
|
// make sure pointer fields get their child types resolved as well.
|
|
// See also similar code for unions.
|
|
|
|
for (0..struct_type.field_types.len) |i| {
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
try field_ty.resolveFully(pt);
|
|
}
|
|
}
|
|
|
|
pub fn resolveUnionFully(sema: *Sema, ty: Type) SemaError!void {
|
|
try sema.resolveUnionLayout(ty);
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const union_obj = zcu.typeToUnion(ty).?;
|
|
|
|
assert(sema.owner.unwrap().type == ty.toIntern());
|
|
|
|
switch (union_obj.flagsUnordered(ip).status) {
|
|
.none, .have_field_types, .field_types_wip, .layout_wip, .have_layout => {},
|
|
.fully_resolved_wip, .fully_resolved => return,
|
|
}
|
|
|
|
// No `zcu.trackUnitSema` calls, since this phase isn't really doing any semantic analysis.
|
|
// It's just triggering *other* analysis, alongside a simple loop over already-resolved info.
|
|
|
|
{
|
|
// After we have resolve union layout we have to go over the fields again to
|
|
// make sure pointer fields get their child types resolved as well.
|
|
// See also similar code for structs.
|
|
const prev_status = union_obj.flagsUnordered(ip).status;
|
|
errdefer union_obj.setStatus(ip, prev_status);
|
|
|
|
union_obj.setStatus(ip, .fully_resolved_wip);
|
|
for (0..union_obj.field_types.len) |field_index| {
|
|
const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[field_index]);
|
|
try field_ty.resolveFully(pt);
|
|
}
|
|
union_obj.setStatus(ip, .fully_resolved);
|
|
}
|
|
|
|
// And let's not forget comptime-only status.
|
|
_ = try ty.comptimeOnlySema(pt);
|
|
}
|
|
|
|
pub fn resolveStructFieldTypes(
|
|
sema: *Sema,
|
|
ty: InternPool.Index,
|
|
struct_type: InternPool.LoadedStructType,
|
|
) SemaError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
assert(sema.owner.unwrap().type == ty);
|
|
|
|
if (struct_type.haveFieldTypes(ip)) return;
|
|
|
|
if (struct_type.setFieldTypesWip(ip)) {
|
|
const msg = try sema.errMsg(
|
|
Type.fromInterned(ty).srcLoc(zcu),
|
|
"struct '{f}' depends on itself",
|
|
.{Type.fromInterned(ty).fmt(pt)},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
}
|
|
defer struct_type.clearFieldTypesWip(ip);
|
|
|
|
// can't happen earlier than this because we only want the progress node if not already resolved
|
|
const tracked_unit = zcu.trackUnitSema(struct_type.name.toSlice(ip), null);
|
|
defer tracked_unit.end(zcu);
|
|
|
|
sema.structFields(struct_type) catch |err| switch (err) {
|
|
error.AnalysisFail, error.OutOfMemory => |e| return e,
|
|
error.ComptimeBreak, error.ComptimeReturn => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn resolveStructFieldInits(sema: *Sema, ty: Type) SemaError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const struct_type = zcu.typeToStruct(ty) orelse return;
|
|
|
|
assert(sema.owner.unwrap().type == ty.toIntern());
|
|
|
|
// Inits can start as resolved
|
|
if (struct_type.haveFieldInits(ip)) return;
|
|
|
|
try sema.resolveStructLayout(ty);
|
|
|
|
if (struct_type.setInitsWip(ip)) {
|
|
const msg = try sema.errMsg(
|
|
ty.srcLoc(zcu),
|
|
"struct '{f}' depends on itself",
|
|
.{ty.fmt(pt)},
|
|
);
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
}
|
|
defer struct_type.clearInitsWip(ip);
|
|
|
|
// can't happen earlier than this because we only want the progress node if not already resolved
|
|
const tracked_unit = zcu.trackUnitSema(struct_type.name.toSlice(ip), null);
|
|
defer tracked_unit.end(zcu);
|
|
|
|
sema.structFieldInits(struct_type) catch |err| switch (err) {
|
|
error.AnalysisFail, error.OutOfMemory => |e| return e,
|
|
error.ComptimeBreak, error.ComptimeReturn => unreachable,
|
|
};
|
|
struct_type.setHaveFieldInits(ip);
|
|
}
|
|
|
|
pub fn resolveUnionFieldTypes(sema: *Sema, ty: Type, union_type: InternPool.LoadedUnionType) SemaError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
assert(sema.owner.unwrap().type == ty.toIntern());
|
|
|
|
switch (union_type.flagsUnordered(ip).status) {
|
|
.none => {},
|
|
.field_types_wip => {
|
|
const msg = try sema.errMsg(ty.srcLoc(zcu), "union '{f}' depends on itself", .{ty.fmt(pt)});
|
|
return sema.failWithOwnedErrorMsg(null, msg);
|
|
},
|
|
.have_field_types,
|
|
.have_layout,
|
|
.layout_wip,
|
|
.fully_resolved_wip,
|
|
.fully_resolved,
|
|
=> return,
|
|
}
|
|
|
|
// can't happen earlier than this because we only want the progress node if not already resolved
|
|
const tracked_unit = zcu.trackUnitSema(union_type.name.toSlice(ip), null);
|
|
defer tracked_unit.end(zcu);
|
|
|
|
union_type.setStatus(ip, .field_types_wip);
|
|
errdefer union_type.setStatus(ip, .none);
|
|
sema.unionFields(ty.toIntern(), union_type) catch |err| switch (err) {
|
|
error.AnalysisFail, error.OutOfMemory => |e| return e,
|
|
error.ComptimeBreak, error.ComptimeReturn => unreachable,
|
|
};
|
|
union_type.setStatus(ip, .have_field_types);
|
|
}
|
|
|
|
/// Returns a normal error set corresponding to the fully populated inferred
|
|
/// error set.
|
|
fn resolveInferredErrorSet(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ies_index: InternPool.Index,
|
|
) CompileError!InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const func_index = ip.iesFuncIndex(ies_index);
|
|
const func = zcu.funcInfo(func_index);
|
|
|
|
try sema.declareDependency(.{ .interned = func_index }); // resolved IES
|
|
|
|
try zcu.maybeUnresolveIes(func_index);
|
|
const resolved_ty = func.resolvedErrorSetUnordered(ip);
|
|
if (resolved_ty != .none) return resolved_ty;
|
|
|
|
if (zcu.analysis_in_progress.contains(.wrap(.{ .func = func_index }))) {
|
|
return sema.fail(block, src, "unable to resolve inferred error set", .{});
|
|
}
|
|
|
|
// In order to ensure that all dependencies are properly added to the set,
|
|
// we need to ensure the function body is analyzed of the inferred error
|
|
// set. However, in the case of comptime/inline function calls with
|
|
// inferred error sets, each call gets an adhoc InferredErrorSet object, which
|
|
// has no corresponding function body.
|
|
const ies_func_info = zcu.typeToFunc(.fromInterned(func.ty)).?;
|
|
// if ies declared by a inline function with generic return type, the return_type should be generic_poison,
|
|
// because inline function does not create a new declaration, and the ies has been filled with analyzeCall,
|
|
// so here we can simply skip this case.
|
|
if (ies_func_info.return_type == .generic_poison_type) {
|
|
assert(ies_func_info.cc == .@"inline");
|
|
} else if (ip.errorUnionSet(ies_func_info.return_type) == ies_index) {
|
|
if (ies_func_info.is_generic) {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "unable to resolve inferred error set of generic function", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(zcu.navSrcLoc(func.owner_nav), msg, "generic function declared here", .{});
|
|
break :msg msg;
|
|
});
|
|
}
|
|
// In this case we are dealing with the actual InferredErrorSet object that
|
|
// corresponds to the function, not one created to track an inline/comptime call.
|
|
const orig_func_index = ip.unwrapCoercedFunc(func_index);
|
|
try sema.addReferenceEntry(block, src, .wrap(.{ .func = orig_func_index }));
|
|
try pt.ensureFuncBodyUpToDate(orig_func_index);
|
|
}
|
|
|
|
// This will now have been resolved by the logic at the end of `Zcu.analyzeFnBody`
|
|
// which calls `resolveInferredErrorSetPtr`.
|
|
const final_resolved_ty = func.resolvedErrorSetUnordered(ip);
|
|
assert(final_resolved_ty != .none);
|
|
return final_resolved_ty;
|
|
}
|
|
|
|
pub fn resolveInferredErrorSetPtr(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ies: *InferredErrorSet,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const ip = &pt.zcu.intern_pool;
|
|
|
|
if (ies.resolved != .none) return;
|
|
|
|
const ies_index = ip.errorUnionSet(sema.fn_ret_ty.toIntern());
|
|
|
|
for (ies.inferred_error_sets.keys()) |other_ies_index| {
|
|
if (ies_index == other_ies_index) continue;
|
|
switch (try sema.resolveInferredErrorSet(block, src, other_ies_index)) {
|
|
.anyerror_type => {
|
|
ies.resolved = .anyerror_type;
|
|
return;
|
|
},
|
|
else => |error_set_ty_index| {
|
|
const names = ip.indexToKey(error_set_ty_index).error_set_type.names;
|
|
for (names.get(ip)) |name| {
|
|
try ies.errors.put(sema.arena, name, {});
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
const resolved_error_set_ty = try pt.errorSetFromUnsortedNames(ies.errors.keys());
|
|
ies.resolved = resolved_error_set_ty.toIntern();
|
|
}
|
|
|
|
fn resolveAdHocInferredErrorSet(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
value: InternPool.Index,
|
|
) CompileError!InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const new_ty = try resolveAdHocInferredErrorSetTy(sema, block, src, ip.typeOf(value));
|
|
if (new_ty == .none) return value;
|
|
return ip.getCoerced(gpa, pt.tid, value, new_ty);
|
|
}
|
|
|
|
fn resolveAdHocInferredErrorSetTy(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ty: InternPool.Index,
|
|
) CompileError!InternPool.Index {
|
|
const ies = sema.fn_ret_ty_ies orelse return .none;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const error_union_info = switch (ip.indexToKey(ty)) {
|
|
.error_union_type => |x| x,
|
|
else => return .none,
|
|
};
|
|
if (error_union_info.error_set_type != .adhoc_inferred_error_set_type)
|
|
return .none;
|
|
|
|
try sema.resolveInferredErrorSetPtr(block, src, ies);
|
|
const new_ty = try pt.intern(.{ .error_union_type = .{
|
|
.error_set_type = ies.resolved,
|
|
.payload_type = error_union_info.payload_type,
|
|
} });
|
|
return new_ty;
|
|
}
|
|
|
|
fn resolveInferredErrorSetTy(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
ty: InternPool.Index,
|
|
) CompileError!InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
if (ty == .anyerror_type) return ty;
|
|
switch (ip.indexToKey(ty)) {
|
|
.error_set_type => return ty,
|
|
.inferred_error_set_type => return sema.resolveInferredErrorSet(block, src, ty),
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn structZirInfo(zir: Zir, zir_index: Zir.Inst.Index) struct {
|
|
/// fields_len
|
|
usize,
|
|
Zir.Inst.StructDecl.Small,
|
|
/// extra_index
|
|
usize,
|
|
} {
|
|
const extended = zir.instructions.items(.data)[@intFromEnum(zir_index)].extended;
|
|
assert(extended.opcode == .struct_decl);
|
|
const small: Zir.Inst.StructDecl.Small = @bitCast(extended.small);
|
|
var extra_index: usize = extended.operand + @typeInfo(Zir.Inst.StructDecl).@"struct".fields.len;
|
|
|
|
const captures_len = if (small.has_captures_len) blk: {
|
|
const captures_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk captures_len;
|
|
} else 0;
|
|
|
|
const fields_len = if (small.has_fields_len) blk: {
|
|
const fields_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk fields_len;
|
|
} else 0;
|
|
|
|
const decls_len = if (small.has_decls_len) decls_len: {
|
|
const decls_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :decls_len decls_len;
|
|
} else 0;
|
|
|
|
extra_index += captures_len * 2;
|
|
|
|
// The backing integer cannot be handled until `resolveStructLayout()`.
|
|
if (small.has_backing_int) {
|
|
const backing_int_body_len = zir.extra[extra_index];
|
|
extra_index += 1; // backing_int_body_len
|
|
if (backing_int_body_len == 0) {
|
|
extra_index += 1; // backing_int_ref
|
|
} else {
|
|
extra_index += backing_int_body_len; // backing_int_body_inst
|
|
}
|
|
}
|
|
|
|
// Skip over decls.
|
|
extra_index += decls_len;
|
|
|
|
return .{ fields_len, small, extra_index };
|
|
}
|
|
|
|
fn structFields(
|
|
sema: *Sema,
|
|
struct_type: InternPool.LoadedStructType,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const namespace_index = struct_type.namespace;
|
|
const zir = zcu.namespacePtr(namespace_index).fileScope(zcu).zir.?;
|
|
const zir_index = struct_type.zir_index.resolve(ip) orelse return error.AnalysisFail;
|
|
|
|
const fields_len, _, var extra_index = structZirInfo(zir, zir_index);
|
|
|
|
if (fields_len == 0) switch (struct_type.layout) {
|
|
.@"packed" => {
|
|
try sema.backingIntType(struct_type);
|
|
return;
|
|
},
|
|
.auto, .@"extern" => {
|
|
struct_type.setLayoutResolved(ip, 0, .none);
|
|
return;
|
|
},
|
|
};
|
|
|
|
var block_scope: Block = .{
|
|
.parent = null,
|
|
.sema = sema,
|
|
.namespace = namespace_index,
|
|
.instructions = .{},
|
|
.inlining = null,
|
|
.comptime_reason = .{ .reason = .{
|
|
.src = .{
|
|
.base_node_inst = struct_type.zir_index,
|
|
.offset = .nodeOffset(.zero),
|
|
},
|
|
.r = .{ .simple = .struct_fields },
|
|
} },
|
|
.src_base_inst = struct_type.zir_index,
|
|
.type_name_ctx = struct_type.name,
|
|
};
|
|
defer assert(block_scope.instructions.items.len == 0);
|
|
|
|
const Field = struct {
|
|
type_body_len: u32 = 0,
|
|
align_body_len: u32 = 0,
|
|
init_body_len: u32 = 0,
|
|
type_ref: Zir.Inst.Ref = .none,
|
|
};
|
|
const fields = try sema.arena.alloc(Field, fields_len);
|
|
|
|
var any_inits = false;
|
|
var any_aligned = false;
|
|
|
|
{
|
|
const bits_per_field = 4;
|
|
const fields_per_u32 = 32 / bits_per_field;
|
|
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
|
|
const flags_index = extra_index;
|
|
var bit_bag_index: usize = flags_index;
|
|
extra_index += bit_bags_count;
|
|
var cur_bit_bag: u32 = undefined;
|
|
var field_i: u32 = 0;
|
|
while (field_i < fields_len) : (field_i += 1) {
|
|
if (field_i % fields_per_u32 == 0) {
|
|
cur_bit_bag = zir.extra[bit_bag_index];
|
|
bit_bag_index += 1;
|
|
}
|
|
const has_align = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
const has_init = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
const is_comptime = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
const has_type_body = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
|
|
if (is_comptime) struct_type.setFieldComptime(ip, field_i);
|
|
|
|
const field_name_zir: [:0]const u8 = zir.nullTerminatedString(@enumFromInt(zir.extra[extra_index]));
|
|
extra_index += 1; // field_name
|
|
|
|
fields[field_i] = .{};
|
|
|
|
if (has_type_body) {
|
|
fields[field_i].type_body_len = zir.extra[extra_index];
|
|
} else {
|
|
fields[field_i].type_ref = @enumFromInt(zir.extra[extra_index]);
|
|
}
|
|
extra_index += 1;
|
|
|
|
// This string needs to outlive the ZIR code.
|
|
const field_name = try ip.getOrPutString(gpa, pt.tid, field_name_zir, .no_embedded_nulls);
|
|
assert(struct_type.addFieldName(ip, field_name) == null);
|
|
|
|
if (has_align) {
|
|
fields[field_i].align_body_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
any_aligned = true;
|
|
}
|
|
if (has_init) {
|
|
fields[field_i].init_body_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
any_inits = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next we do only types and alignments, saving the inits for a second pass,
|
|
// so that init values may depend on type layout.
|
|
|
|
for (fields, 0..) |zir_field, field_i| {
|
|
const ty_src: LazySrcLoc = .{
|
|
.base_node_inst = struct_type.zir_index,
|
|
.offset = .{ .container_field_type = @intCast(field_i) },
|
|
};
|
|
const field_ty: Type = ty: {
|
|
if (zir_field.type_ref != .none) {
|
|
break :ty try sema.resolveType(&block_scope, ty_src, zir_field.type_ref);
|
|
}
|
|
assert(zir_field.type_body_len != 0);
|
|
const body = zir.bodySlice(extra_index, zir_field.type_body_len);
|
|
extra_index += body.len;
|
|
const ty_ref = try sema.resolveInlineBody(&block_scope, body, zir_index);
|
|
break :ty try sema.analyzeAsType(&block_scope, ty_src, ty_ref);
|
|
};
|
|
|
|
struct_type.field_types.get(ip)[field_i] = field_ty.toIntern();
|
|
|
|
if (field_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ty_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
if (field_ty.zigTypeTag(zcu) == .noreturn) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ty_src, "struct fields cannot be 'noreturn'", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
switch (struct_type.layout) {
|
|
.@"extern" => if (!try sema.validateExternType(field_ty, .struct_field)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ty_src, "extern structs cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, ty_src, field_ty, .struct_field);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
},
|
|
.@"packed" => if (!try sema.validatePackedType(field_ty)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(ty_src, "packed structs cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotPacked(msg, ty_src, field_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
if (zir_field.align_body_len > 0) {
|
|
const body = zir.bodySlice(extra_index, zir_field.align_body_len);
|
|
extra_index += body.len;
|
|
const align_ref = try sema.resolveInlineBody(&block_scope, body, zir_index);
|
|
const align_src: LazySrcLoc = .{
|
|
.base_node_inst = struct_type.zir_index,
|
|
.offset = .{ .container_field_align = @intCast(field_i) },
|
|
};
|
|
const field_align = try sema.analyzeAsAlign(&block_scope, align_src, align_ref);
|
|
struct_type.field_aligns.get(ip)[field_i] = field_align;
|
|
}
|
|
|
|
extra_index += zir_field.init_body_len;
|
|
}
|
|
|
|
struct_type.clearFieldTypesWip(ip);
|
|
if (!any_inits) struct_type.setHaveFieldInits(ip);
|
|
|
|
try sema.flushExports();
|
|
}
|
|
|
|
// This logic must be kept in sync with `structFields`
|
|
fn structFieldInits(
|
|
sema: *Sema,
|
|
struct_type: InternPool.LoadedStructType,
|
|
) CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
assert(!struct_type.haveFieldInits(ip));
|
|
|
|
const namespace_index = struct_type.namespace;
|
|
const zir = zcu.namespacePtr(namespace_index).fileScope(zcu).zir.?;
|
|
const zir_index = struct_type.zir_index.resolve(ip) orelse return error.AnalysisFail;
|
|
const fields_len, _, var extra_index = structZirInfo(zir, zir_index);
|
|
|
|
var block_scope: Block = .{
|
|
.parent = null,
|
|
.sema = sema,
|
|
.namespace = namespace_index,
|
|
.instructions = .{},
|
|
.inlining = null,
|
|
.comptime_reason = undefined, // set when `block_scope` is used
|
|
.src_base_inst = struct_type.zir_index,
|
|
.type_name_ctx = struct_type.name,
|
|
};
|
|
defer assert(block_scope.instructions.items.len == 0);
|
|
|
|
const Field = struct {
|
|
type_body_len: u32 = 0,
|
|
align_body_len: u32 = 0,
|
|
init_body_len: u32 = 0,
|
|
};
|
|
const fields = try sema.arena.alloc(Field, fields_len);
|
|
|
|
var any_inits = false;
|
|
|
|
{
|
|
const bits_per_field = 4;
|
|
const fields_per_u32 = 32 / bits_per_field;
|
|
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
|
|
const flags_index = extra_index;
|
|
var bit_bag_index: usize = flags_index;
|
|
extra_index += bit_bags_count;
|
|
var cur_bit_bag: u32 = undefined;
|
|
var field_i: u32 = 0;
|
|
while (field_i < fields_len) : (field_i += 1) {
|
|
if (field_i % fields_per_u32 == 0) {
|
|
cur_bit_bag = zir.extra[bit_bag_index];
|
|
bit_bag_index += 1;
|
|
}
|
|
const has_align = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
const has_init = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 2;
|
|
const has_type_body = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
|
|
extra_index += 1; // field_name
|
|
|
|
fields[field_i] = .{};
|
|
|
|
if (has_type_body) fields[field_i].type_body_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
|
|
if (has_align) {
|
|
fields[field_i].align_body_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
}
|
|
if (has_init) {
|
|
fields[field_i].init_body_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
any_inits = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (any_inits) {
|
|
for (fields, 0..) |zir_field, field_i| {
|
|
extra_index += zir_field.type_body_len;
|
|
extra_index += zir_field.align_body_len;
|
|
const body = zir.bodySlice(extra_index, zir_field.init_body_len);
|
|
extra_index += zir_field.init_body_len;
|
|
|
|
if (body.len == 0) continue;
|
|
|
|
// Pre-populate the type mapping the body expects to be there.
|
|
// In init bodies, the zir index of the struct itself is used
|
|
// to refer to the current field type.
|
|
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_i]);
|
|
const type_ref = Air.internedToRef(field_ty.toIntern());
|
|
try sema.inst_map.ensureSpaceForInstructions(sema.gpa, &.{zir_index});
|
|
sema.inst_map.putAssumeCapacity(zir_index, type_ref);
|
|
|
|
const init_src: LazySrcLoc = .{
|
|
.base_node_inst = struct_type.zir_index,
|
|
.offset = .{ .container_field_value = @intCast(field_i) },
|
|
};
|
|
|
|
block_scope.comptime_reason = .{ .reason = .{
|
|
.src = init_src,
|
|
.r = .{ .simple = .struct_field_default_value },
|
|
} };
|
|
const init = try sema.resolveInlineBody(&block_scope, body, zir_index);
|
|
const coerced = try sema.coerce(&block_scope, field_ty, init, init_src);
|
|
const default_val = try sema.resolveConstValue(&block_scope, init_src, coerced, null);
|
|
|
|
if (default_val.canMutateComptimeVarState(zcu)) {
|
|
const field_name = struct_type.fieldName(ip, field_i).unwrap().?;
|
|
return sema.failWithContainsReferenceToComptimeVar(&block_scope, init_src, field_name, "field default value", default_val);
|
|
}
|
|
struct_type.field_inits.get(ip)[field_i] = default_val.toIntern();
|
|
}
|
|
}
|
|
|
|
try sema.flushExports();
|
|
}
|
|
|
|
fn unionFields(
|
|
sema: *Sema,
|
|
union_ty: InternPool.Index,
|
|
union_type: InternPool.LoadedUnionType,
|
|
) CompileError!void {
|
|
const tracy = trace(@src());
|
|
defer tracy.end();
|
|
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
const zir = zcu.namespacePtr(union_type.namespace).fileScope(zcu).zir.?;
|
|
const zir_index = union_type.zir_index.resolve(ip) orelse return error.AnalysisFail;
|
|
const extended = zir.instructions.items(.data)[@intFromEnum(zir_index)].extended;
|
|
assert(extended.opcode == .union_decl);
|
|
const small: Zir.Inst.UnionDecl.Small = @bitCast(extended.small);
|
|
const extra = zir.extraData(Zir.Inst.UnionDecl, extended.operand);
|
|
var extra_index: usize = extra.end;
|
|
|
|
const tag_type_ref: Zir.Inst.Ref = if (small.has_tag_type) blk: {
|
|
const ty_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk ty_ref;
|
|
} else .none;
|
|
|
|
const captures_len = if (small.has_captures_len) blk: {
|
|
const captures_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk captures_len;
|
|
} else 0;
|
|
|
|
const body_len = if (small.has_body_len) blk: {
|
|
const body_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk body_len;
|
|
} else 0;
|
|
|
|
const fields_len = if (small.has_fields_len) blk: {
|
|
const fields_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :blk fields_len;
|
|
} else 0;
|
|
|
|
const decls_len = if (small.has_decls_len) decls_len: {
|
|
const decls_len = zir.extra[extra_index];
|
|
extra_index += 1;
|
|
break :decls_len decls_len;
|
|
} else 0;
|
|
|
|
// Skip over captures and decls.
|
|
extra_index += captures_len * 2 + decls_len;
|
|
|
|
const body = zir.bodySlice(extra_index, body_len);
|
|
extra_index += body.len;
|
|
|
|
const src: LazySrcLoc = .{
|
|
.base_node_inst = union_type.zir_index,
|
|
.offset = .nodeOffset(.zero),
|
|
};
|
|
|
|
var block_scope: Block = .{
|
|
.parent = null,
|
|
.sema = sema,
|
|
.namespace = union_type.namespace,
|
|
.instructions = .{},
|
|
.inlining = null,
|
|
.comptime_reason = .{ .reason = .{
|
|
.src = src,
|
|
.r = .{ .simple = .union_fields },
|
|
} },
|
|
.src_base_inst = union_type.zir_index,
|
|
.type_name_ctx = union_type.name,
|
|
};
|
|
defer assert(block_scope.instructions.items.len == 0);
|
|
|
|
if (body.len != 0) {
|
|
_ = try sema.analyzeInlineBody(&block_scope, body, zir_index);
|
|
}
|
|
|
|
var int_tag_ty: Type = undefined;
|
|
var enum_field_names: []InternPool.NullTerminatedString = &.{};
|
|
var enum_field_vals: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .empty;
|
|
var explicit_tags_seen: []bool = &.{};
|
|
if (tag_type_ref != .none) {
|
|
const tag_ty_src: LazySrcLoc = .{
|
|
.base_node_inst = union_type.zir_index,
|
|
.offset = .{ .node_offset_container_tag = .zero },
|
|
};
|
|
const provided_ty = try sema.resolveType(&block_scope, tag_ty_src, tag_type_ref);
|
|
if (small.auto_enum_tag) {
|
|
// The provided type is an integer type and we must construct the enum tag type here.
|
|
int_tag_ty = provided_ty;
|
|
if (int_tag_ty.zigTypeTag(zcu) != .int and int_tag_ty.zigTypeTag(zcu) != .comptime_int) {
|
|
return sema.fail(&block_scope, tag_ty_src, "expected integer tag type, found '{f}'", .{int_tag_ty.fmt(pt)});
|
|
}
|
|
|
|
if (fields_len > 0) {
|
|
const field_count_val = try pt.intValue(.comptime_int, fields_len - 1);
|
|
if (!(try sema.intFitsInType(field_count_val, int_tag_ty, null))) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(tag_ty_src, "specified integer tag type cannot represent every field", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(tag_ty_src, msg, "type '{f}' cannot fit values in range 0...{d}", .{
|
|
int_tag_ty.fmt(pt),
|
|
fields_len - 1,
|
|
});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
enum_field_names = try sema.arena.alloc(InternPool.NullTerminatedString, fields_len);
|
|
try enum_field_vals.ensureTotalCapacity(sema.arena, fields_len);
|
|
}
|
|
} else {
|
|
// The provided type is the enum tag type.
|
|
const enum_type = switch (ip.indexToKey(provided_ty.toIntern())) {
|
|
.enum_type => ip.loadEnumType(provided_ty.toIntern()),
|
|
else => return sema.fail(&block_scope, tag_ty_src, "expected enum tag type, found '{f}'", .{provided_ty.fmt(pt)}),
|
|
};
|
|
union_type.setTagType(ip, provided_ty.toIntern());
|
|
// The fields of the union must match the enum exactly.
|
|
// A flag per field is used to check for missing and extraneous fields.
|
|
explicit_tags_seen = try sema.arena.alloc(bool, enum_type.names.len);
|
|
@memset(explicit_tags_seen, false);
|
|
}
|
|
} else {
|
|
// If auto_enum_tag is false, this is an untagged union. However, for semantic analysis
|
|
// purposes, we still auto-generate an enum tag type the same way. That the union is
|
|
// untagged is represented by the Type tag (union vs union_tagged).
|
|
enum_field_names = try sema.arena.alloc(InternPool.NullTerminatedString, fields_len);
|
|
}
|
|
|
|
var field_types: std.ArrayListUnmanaged(InternPool.Index) = .empty;
|
|
var field_aligns: std.ArrayListUnmanaged(InternPool.Alignment) = .empty;
|
|
|
|
try field_types.ensureTotalCapacityPrecise(sema.arena, fields_len);
|
|
if (small.any_aligned_fields)
|
|
try field_aligns.ensureTotalCapacityPrecise(sema.arena, fields_len);
|
|
|
|
var max_bits: u64 = 0;
|
|
var min_bits: u64 = std.math.maxInt(u64);
|
|
var max_bits_src: LazySrcLoc = undefined;
|
|
var min_bits_src: LazySrcLoc = undefined;
|
|
var max_bits_ty: Type = undefined;
|
|
var min_bits_ty: Type = undefined;
|
|
const bits_per_field = 4;
|
|
const fields_per_u32 = 32 / bits_per_field;
|
|
const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable;
|
|
var bit_bag_index: usize = extra_index;
|
|
extra_index += bit_bags_count;
|
|
var cur_bit_bag: u32 = undefined;
|
|
var field_i: u32 = 0;
|
|
var last_tag_val: ?Value = null;
|
|
const layout = union_type.flagsUnordered(ip).layout;
|
|
while (field_i < fields_len) : (field_i += 1) {
|
|
if (field_i % fields_per_u32 == 0) {
|
|
cur_bit_bag = zir.extra[bit_bag_index];
|
|
bit_bag_index += 1;
|
|
}
|
|
const has_type = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
const has_align = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
const has_tag = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
const unused = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
_ = unused;
|
|
|
|
const field_name_index: Zir.NullTerminatedString = @enumFromInt(zir.extra[extra_index]);
|
|
const field_name_zir = zir.nullTerminatedString(field_name_index);
|
|
extra_index += 1;
|
|
|
|
const field_type_ref: Zir.Inst.Ref = if (has_type) blk: {
|
|
const field_type_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk field_type_ref;
|
|
} else .none;
|
|
|
|
const align_ref: Zir.Inst.Ref = if (has_align) blk: {
|
|
const align_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk align_ref;
|
|
} else .none;
|
|
|
|
const tag_ref: Air.Inst.Ref = if (has_tag) blk: {
|
|
const tag_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
|
|
extra_index += 1;
|
|
break :blk try sema.resolveInst(tag_ref);
|
|
} else .none;
|
|
|
|
const name_src: LazySrcLoc = .{
|
|
.base_node_inst = union_type.zir_index,
|
|
.offset = .{ .container_field_name = field_i },
|
|
};
|
|
const value_src: LazySrcLoc = .{
|
|
.base_node_inst = union_type.zir_index,
|
|
.offset = .{ .container_field_value = field_i },
|
|
};
|
|
const align_src: LazySrcLoc = .{
|
|
.base_node_inst = union_type.zir_index,
|
|
.offset = .{ .container_field_align = field_i },
|
|
};
|
|
const type_src: LazySrcLoc = .{
|
|
.base_node_inst = union_type.zir_index,
|
|
.offset = .{ .container_field_type = field_i },
|
|
};
|
|
|
|
if (enum_field_vals.capacity() > 0) {
|
|
const enum_tag_val = if (tag_ref != .none) blk: {
|
|
const coerced = try sema.coerce(&block_scope, int_tag_ty, tag_ref, value_src);
|
|
const val = try sema.resolveConstDefinedValue(&block_scope, value_src, coerced, .{ .simple = .enum_field_tag_value });
|
|
last_tag_val = val;
|
|
|
|
break :blk val;
|
|
} else blk: {
|
|
if (last_tag_val) |last_tag| {
|
|
const result = try arith.incrementDefinedInt(sema, int_tag_ty, last_tag);
|
|
if (result.overflow) return sema.fail(
|
|
&block_scope,
|
|
value_src,
|
|
"enumeration value '{f}' too large for type '{f}'",
|
|
.{ result.val.fmtValueSema(pt, sema), int_tag_ty.fmt(pt) },
|
|
);
|
|
last_tag_val = result.val;
|
|
} else {
|
|
last_tag_val = try pt.intValue(int_tag_ty, 0);
|
|
}
|
|
break :blk last_tag_val.?;
|
|
};
|
|
const gop = enum_field_vals.getOrPutAssumeCapacity(enum_tag_val.toIntern());
|
|
if (gop.found_existing) {
|
|
const other_value_src: LazySrcLoc = .{
|
|
.base_node_inst = union_type.zir_index,
|
|
.offset = .{ .container_field_value = @intCast(gop.index) },
|
|
};
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(
|
|
value_src,
|
|
"enum tag value {f} already taken",
|
|
.{enum_tag_val.fmtValueSema(pt, sema)},
|
|
);
|
|
errdefer msg.destroy(gpa);
|
|
try sema.errNote(other_value_src, msg, "other occurrence here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
}
|
|
|
|
// This string needs to outlive the ZIR code.
|
|
const field_name = try ip.getOrPutString(gpa, pt.tid, field_name_zir, .no_embedded_nulls);
|
|
if (enum_field_names.len != 0) {
|
|
enum_field_names[field_i] = field_name;
|
|
}
|
|
|
|
const field_ty: Type = if (!has_type)
|
|
.void
|
|
else if (field_type_ref == .none)
|
|
.noreturn
|
|
else
|
|
try sema.resolveType(&block_scope, type_src, field_type_ref);
|
|
|
|
if (explicit_tags_seen.len > 0) {
|
|
const tag_ty = union_type.tagTypeUnordered(ip);
|
|
const tag_info = ip.loadEnumType(tag_ty);
|
|
const enum_index = tag_info.nameIndex(ip, field_name) orelse {
|
|
return sema.fail(&block_scope, name_src, "no field named '{f}' in enum '{f}'", .{
|
|
field_name.fmt(ip), Type.fromInterned(tag_ty).fmt(pt),
|
|
});
|
|
};
|
|
|
|
// No check for duplicate because the check already happened in order
|
|
// to create the enum type in the first place.
|
|
assert(!explicit_tags_seen[enum_index]);
|
|
explicit_tags_seen[enum_index] = true;
|
|
|
|
// Enforce the enum fields and the union fields being in the same order.
|
|
if (enum_index != field_i) {
|
|
const msg = msg: {
|
|
const enum_field_src: LazySrcLoc = .{
|
|
.base_node_inst = Type.fromInterned(tag_ty).typeDeclInstAllowGeneratedTag(zcu).?,
|
|
.offset = .{ .container_field_name = enum_index },
|
|
};
|
|
const msg = try sema.errMsg(name_src, "union field '{f}' ordered differently than corresponding enum field", .{
|
|
field_name.fmt(ip),
|
|
});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(enum_field_src, msg, "enum field here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
}
|
|
|
|
if (field_ty.zigTypeTag(zcu) == .@"opaque") {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(type_src, "opaque types have unknown size and therefore cannot be directly embedded in unions", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
switch (layout) {
|
|
.@"extern" => if (!try sema.validateExternType(field_ty, .union_field)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(type_src, "extern unions cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotExtern(msg, type_src, field_ty, .union_field);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
},
|
|
.@"packed" => {
|
|
if (!try sema.validatePackedType(field_ty)) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(type_src, "packed unions cannot contain fields of type '{f}'", .{field_ty.fmt(pt)});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
try sema.explainWhyTypeIsNotPacked(msg, type_src, field_ty);
|
|
|
|
try sema.addDeclaredHereNote(msg, field_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
const field_bits = try field_ty.bitSizeSema(pt);
|
|
if (field_bits >= max_bits) {
|
|
max_bits = field_bits;
|
|
max_bits_src = type_src;
|
|
max_bits_ty = field_ty;
|
|
}
|
|
if (field_bits <= min_bits) {
|
|
min_bits = field_bits;
|
|
min_bits_src = type_src;
|
|
min_bits_ty = field_ty;
|
|
}
|
|
},
|
|
.auto => {},
|
|
}
|
|
|
|
field_types.appendAssumeCapacity(field_ty.toIntern());
|
|
|
|
if (small.any_aligned_fields) {
|
|
field_aligns.appendAssumeCapacity(if (align_ref != .none)
|
|
try sema.resolveAlign(&block_scope, align_src, align_ref)
|
|
else
|
|
.none);
|
|
} else {
|
|
assert(align_ref == .none);
|
|
}
|
|
}
|
|
|
|
union_type.setFieldTypes(ip, field_types.items);
|
|
union_type.setFieldAligns(ip, field_aligns.items);
|
|
|
|
if (layout == .@"packed" and fields_len != 0 and min_bits != max_bits) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "packed union has fields with mismatching bit sizes", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(min_bits_src, msg, "{d} bits here", .{min_bits});
|
|
try sema.addDeclaredHereNote(msg, min_bits_ty);
|
|
try sema.errNote(max_bits_src, msg, "{d} bits here", .{max_bits});
|
|
try sema.addDeclaredHereNote(msg, max_bits_ty);
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
|
|
if (explicit_tags_seen.len > 0) {
|
|
const tag_ty = union_type.tagTypeUnordered(ip);
|
|
const tag_info = ip.loadEnumType(tag_ty);
|
|
if (tag_info.names.len > fields_len) {
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(src, "enum field(s) missing in union", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
|
|
for (tag_info.names.get(ip), 0..) |field_name, field_index| {
|
|
if (explicit_tags_seen[field_index]) continue;
|
|
try sema.addFieldErrNote(.fromInterned(tag_ty), field_index, msg, "field '{f}' missing, declared here", .{
|
|
field_name.fmt(ip),
|
|
});
|
|
}
|
|
try sema.addDeclaredHereNote(msg, .fromInterned(tag_ty));
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(&block_scope, msg);
|
|
}
|
|
} else if (enum_field_vals.count() > 0) {
|
|
const enum_ty = try sema.generateUnionTagTypeNumbered(&block_scope, enum_field_names, enum_field_vals.keys(), union_ty, union_type.name);
|
|
union_type.setTagType(ip, enum_ty);
|
|
} else {
|
|
const enum_ty = try sema.generateUnionTagTypeSimple(&block_scope, enum_field_names, union_ty, union_type.name);
|
|
union_type.setTagType(ip, enum_ty);
|
|
}
|
|
|
|
try sema.flushExports();
|
|
}
|
|
|
|
fn generateUnionTagTypeNumbered(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
enum_field_names: []const InternPool.NullTerminatedString,
|
|
enum_field_vals: []const InternPool.Index,
|
|
union_type: InternPool.Index,
|
|
union_name: InternPool.NullTerminatedString,
|
|
) !InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = sema.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const name = try ip.getOrPutStringFmt(
|
|
gpa,
|
|
pt.tid,
|
|
"@typeInfo({f}).@\"union\".tag_type.?",
|
|
.{union_name.fmt(ip)},
|
|
.no_embedded_nulls,
|
|
);
|
|
|
|
const enum_ty = try ip.getGeneratedTagEnumType(gpa, pt.tid, .{
|
|
.name = name,
|
|
.owner_union_ty = union_type,
|
|
.tag_ty = if (enum_field_vals.len == 0)
|
|
(try pt.intType(.unsigned, 0)).toIntern()
|
|
else
|
|
ip.typeOf(enum_field_vals[0]),
|
|
.names = enum_field_names,
|
|
.values = enum_field_vals,
|
|
.tag_mode = .explicit,
|
|
.parent_namespace = block.namespace,
|
|
});
|
|
|
|
return enum_ty;
|
|
}
|
|
|
|
fn generateUnionTagTypeSimple(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
enum_field_names: []const InternPool.NullTerminatedString,
|
|
union_type: InternPool.Index,
|
|
union_name: InternPool.NullTerminatedString,
|
|
) !InternPool.Index {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const gpa = sema.gpa;
|
|
|
|
const name = try ip.getOrPutStringFmt(
|
|
gpa,
|
|
pt.tid,
|
|
"@typeInfo({f}).@\"union\".tag_type.?",
|
|
.{union_name.fmt(ip)},
|
|
.no_embedded_nulls,
|
|
);
|
|
|
|
const enum_ty = try ip.getGeneratedTagEnumType(gpa, pt.tid, .{
|
|
.name = name,
|
|
.owner_union_ty = union_type,
|
|
.tag_ty = (try pt.smallestUnsignedInt(enum_field_names.len -| 1)).toIntern(),
|
|
.names = enum_field_names,
|
|
.values = &.{},
|
|
.tag_mode = .auto,
|
|
.parent_namespace = block.namespace,
|
|
});
|
|
|
|
return enum_ty;
|
|
}
|
|
|
|
/// There is another implementation of this in `Type.onePossibleValue`. This one
|
|
/// in `Sema` is for calling during semantic analysis, and performs field resolution
|
|
/// to get the answer. The one in `Type` is for calling during codegen and asserts
|
|
/// that the types are already resolved.
|
|
/// TODO assert the return value matches `ty.onePossibleValue`
|
|
pub fn typeHasOnePossibleValue(sema: *Sema, ty: Type) CompileError!?Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
return switch (ty.toIntern()) {
|
|
.u0_type,
|
|
.i0_type,
|
|
=> try pt.intValue(ty, 0),
|
|
.u1_type,
|
|
.u8_type,
|
|
.i8_type,
|
|
.u16_type,
|
|
.i16_type,
|
|
.u29_type,
|
|
.u32_type,
|
|
.i32_type,
|
|
.u64_type,
|
|
.i64_type,
|
|
.u80_type,
|
|
.u128_type,
|
|
.i128_type,
|
|
.u256_type,
|
|
.usize_type,
|
|
.isize_type,
|
|
.c_char_type,
|
|
.c_short_type,
|
|
.c_ushort_type,
|
|
.c_int_type,
|
|
.c_uint_type,
|
|
.c_long_type,
|
|
.c_ulong_type,
|
|
.c_longlong_type,
|
|
.c_ulonglong_type,
|
|
.c_longdouble_type,
|
|
.f16_type,
|
|
.f32_type,
|
|
.f64_type,
|
|
.f80_type,
|
|
.f128_type,
|
|
.anyopaque_type,
|
|
.bool_type,
|
|
.type_type,
|
|
.anyerror_type,
|
|
.adhoc_inferred_error_set_type,
|
|
.comptime_int_type,
|
|
.comptime_float_type,
|
|
.enum_literal_type,
|
|
.ptr_usize_type,
|
|
.ptr_const_comptime_int_type,
|
|
.manyptr_u8_type,
|
|
.manyptr_const_u8_type,
|
|
.manyptr_const_u8_sentinel_0_type,
|
|
.slice_const_u8_type,
|
|
.slice_const_u8_sentinel_0_type,
|
|
.vector_8_i8_type,
|
|
.vector_16_i8_type,
|
|
.vector_32_i8_type,
|
|
.vector_64_i8_type,
|
|
.vector_1_u8_type,
|
|
.vector_2_u8_type,
|
|
.vector_4_u8_type,
|
|
.vector_8_u8_type,
|
|
.vector_16_u8_type,
|
|
.vector_32_u8_type,
|
|
.vector_64_u8_type,
|
|
.vector_2_i16_type,
|
|
.vector_4_i16_type,
|
|
.vector_8_i16_type,
|
|
.vector_16_i16_type,
|
|
.vector_32_i16_type,
|
|
.vector_4_u16_type,
|
|
.vector_8_u16_type,
|
|
.vector_16_u16_type,
|
|
.vector_32_u16_type,
|
|
.vector_2_i32_type,
|
|
.vector_4_i32_type,
|
|
.vector_8_i32_type,
|
|
.vector_16_i32_type,
|
|
.vector_4_u32_type,
|
|
.vector_8_u32_type,
|
|
.vector_16_u32_type,
|
|
.vector_2_i64_type,
|
|
.vector_4_i64_type,
|
|
.vector_8_i64_type,
|
|
.vector_2_u64_type,
|
|
.vector_4_u64_type,
|
|
.vector_8_u64_type,
|
|
.vector_1_u128_type,
|
|
.vector_2_u128_type,
|
|
.vector_1_u256_type,
|
|
.vector_4_f16_type,
|
|
.vector_8_f16_type,
|
|
.vector_16_f16_type,
|
|
.vector_32_f16_type,
|
|
.vector_2_f32_type,
|
|
.vector_4_f32_type,
|
|
.vector_8_f32_type,
|
|
.vector_16_f32_type,
|
|
.vector_2_f64_type,
|
|
.vector_4_f64_type,
|
|
.vector_8_f64_type,
|
|
.anyerror_void_error_union_type,
|
|
=> null,
|
|
.void_type => Value.void,
|
|
.noreturn_type => Value.@"unreachable",
|
|
.anyframe_type => unreachable,
|
|
.null_type => Value.null,
|
|
.undefined_type => Value.undef,
|
|
.optional_noreturn_type => try pt.nullValue(ty),
|
|
.generic_poison_type => unreachable,
|
|
.empty_tuple_type => Value.empty_tuple,
|
|
// values, not types
|
|
.undef,
|
|
.undef_bool,
|
|
.undef_usize,
|
|
.undef_u1,
|
|
.zero,
|
|
.zero_usize,
|
|
.zero_u1,
|
|
.zero_u8,
|
|
.one,
|
|
.one_usize,
|
|
.one_u1,
|
|
.one_u8,
|
|
.four_u8,
|
|
.negative_one,
|
|
.void_value,
|
|
.unreachable_value,
|
|
.null_value,
|
|
.bool_true,
|
|
.bool_false,
|
|
.empty_tuple,
|
|
// invalid
|
|
.none,
|
|
=> unreachable,
|
|
|
|
_ => switch (ty.toIntern().unwrap(ip).getTag(ip)) {
|
|
.removed => unreachable,
|
|
|
|
.type_int_signed, // i0 handled above
|
|
.type_int_unsigned, // u0 handled above
|
|
.type_pointer,
|
|
.type_slice,
|
|
.type_anyframe,
|
|
.type_error_union,
|
|
.type_anyerror_union,
|
|
.type_error_set,
|
|
.type_inferred_error_set,
|
|
.type_opaque,
|
|
.type_function,
|
|
=> null,
|
|
|
|
.simple_type, // handled above
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.ptr_nav,
|
|
.ptr_uav,
|
|
.ptr_uav_aligned,
|
|
.ptr_comptime_alloc,
|
|
.ptr_comptime_field,
|
|
.ptr_int,
|
|
.ptr_eu_payload,
|
|
.ptr_opt_payload,
|
|
.ptr_elem,
|
|
.ptr_field,
|
|
.ptr_slice,
|
|
.opt_payload,
|
|
.opt_null,
|
|
.int_u8,
|
|
.int_u16,
|
|
.int_u32,
|
|
.int_i32,
|
|
.int_usize,
|
|
.int_comptime_int_u32,
|
|
.int_comptime_int_i32,
|
|
.int_small,
|
|
.int_positive,
|
|
.int_negative,
|
|
.int_lazy_align,
|
|
.int_lazy_size,
|
|
.error_set_error,
|
|
.error_union_error,
|
|
.error_union_payload,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.float_f16,
|
|
.float_f32,
|
|
.float_f64,
|
|
.float_f80,
|
|
.float_f128,
|
|
.float_c_longdouble_f80,
|
|
.float_c_longdouble_f128,
|
|
.float_comptime_float,
|
|
.variable,
|
|
.threadlocal_variable,
|
|
.@"extern",
|
|
.func_decl,
|
|
.func_instance,
|
|
.func_coerced,
|
|
.only_possible_value,
|
|
.union_value,
|
|
.bytes,
|
|
.aggregate,
|
|
.repeated,
|
|
// memoized value, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
|
|
.type_array_big,
|
|
.type_array_small,
|
|
.type_vector,
|
|
.type_enum_auto,
|
|
.type_enum_explicit,
|
|
.type_enum_nonexhaustive,
|
|
.type_struct,
|
|
.type_struct_packed,
|
|
.type_struct_packed_inits,
|
|
.type_tuple,
|
|
.type_union,
|
|
=> switch (ip.indexToKey(ty.toIntern())) {
|
|
inline .array_type, .vector_type => |seq_type, seq_tag| {
|
|
const has_sentinel = seq_tag == .array_type and seq_type.sentinel != .none;
|
|
if (seq_type.len + @intFromBool(has_sentinel) == 0) return try pt.aggregateValue(ty, &.{});
|
|
if (try sema.typeHasOnePossibleValue(.fromInterned(seq_type.child))) |opv| {
|
|
return try pt.aggregateSplatValue(ty, opv);
|
|
}
|
|
return null;
|
|
},
|
|
|
|
.struct_type => {
|
|
// Resolving the layout first helps to avoid loops.
|
|
// If the type has a coherent layout, we can recurse through fields safely.
|
|
try ty.resolveLayout(pt);
|
|
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
|
|
if (struct_type.field_types.len == 0) {
|
|
// In this case the struct has no fields at all and
|
|
// therefore has one possible value.
|
|
return try pt.aggregateValue(ty, &.{});
|
|
}
|
|
|
|
const field_vals = try sema.arena.alloc(
|
|
InternPool.Index,
|
|
struct_type.field_types.len,
|
|
);
|
|
for (field_vals, 0..) |*field_val, i| {
|
|
if (struct_type.fieldIsComptime(ip, i)) {
|
|
try ty.resolveStructFieldInits(pt);
|
|
field_val.* = struct_type.field_inits.get(ip)[i];
|
|
continue;
|
|
}
|
|
const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[i]);
|
|
if (try sema.typeHasOnePossibleValue(field_ty)) |field_opv| {
|
|
field_val.* = field_opv.toIntern();
|
|
} else return null;
|
|
}
|
|
|
|
// In this case the struct has no runtime-known fields and
|
|
// therefore has one possible value.
|
|
return try pt.aggregateValue(ty, field_vals);
|
|
},
|
|
|
|
.tuple_type => |tuple| {
|
|
try ty.resolveLayout(pt);
|
|
|
|
if (tuple.types.len == 0) {
|
|
return try pt.aggregateValue(ty, &.{});
|
|
}
|
|
|
|
const field_vals = try sema.arena.alloc(
|
|
InternPool.Index,
|
|
tuple.types.len,
|
|
);
|
|
for (
|
|
field_vals,
|
|
tuple.types.get(ip),
|
|
tuple.values.get(ip),
|
|
) |*field_val, field_ty, field_comptime_val| {
|
|
if (field_comptime_val != .none) {
|
|
field_val.* = field_comptime_val;
|
|
continue;
|
|
}
|
|
if (try sema.typeHasOnePossibleValue(.fromInterned(field_ty))) |opv| {
|
|
field_val.* = opv.toIntern();
|
|
} else return null;
|
|
}
|
|
|
|
return try pt.aggregateValue(ty, field_vals);
|
|
},
|
|
|
|
.union_type => {
|
|
// Resolving the layout first helps to avoid loops.
|
|
// If the type has a coherent layout, we can recurse through fields safely.
|
|
try ty.resolveLayout(pt);
|
|
|
|
const union_obj = ip.loadUnionType(ty.toIntern());
|
|
const tag_val = (try sema.typeHasOnePossibleValue(.fromInterned(union_obj.tagTypeUnordered(ip)))) orelse
|
|
return null;
|
|
if (union_obj.field_types.len == 0) {
|
|
const only = try pt.intern(.{ .empty_enum_value = ty.toIntern() });
|
|
return Value.fromInterned(only);
|
|
}
|
|
const only_field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[0]);
|
|
const val_val = (try sema.typeHasOnePossibleValue(only_field_ty)) orelse
|
|
return null;
|
|
const only = try pt.internUnion(.{
|
|
.ty = ty.toIntern(),
|
|
.tag = tag_val.toIntern(),
|
|
.val = val_val.toIntern(),
|
|
});
|
|
return Value.fromInterned(only);
|
|
},
|
|
|
|
.enum_type => {
|
|
const enum_type = ip.loadEnumType(ty.toIntern());
|
|
switch (enum_type.tag_mode) {
|
|
.nonexhaustive => {
|
|
if (enum_type.tag_ty == .comptime_int_type) return null;
|
|
|
|
if (try sema.typeHasOnePossibleValue(.fromInterned(enum_type.tag_ty))) |int_opv| {
|
|
const only = try pt.intern(.{ .enum_tag = .{
|
|
.ty = ty.toIntern(),
|
|
.int = int_opv.toIntern(),
|
|
} });
|
|
return Value.fromInterned(only);
|
|
}
|
|
|
|
return null;
|
|
},
|
|
.auto, .explicit => {
|
|
if (Type.fromInterned(enum_type.tag_ty).hasRuntimeBits(zcu)) return null;
|
|
|
|
return Value.fromInterned(switch (enum_type.names.len) {
|
|
0 => try pt.intern(.{ .empty_enum_value = ty.toIntern() }),
|
|
1 => try pt.intern(.{ .enum_tag = .{
|
|
.ty = ty.toIntern(),
|
|
.int = if (enum_type.values.len == 0)
|
|
(try pt.intValue(.fromInterned(enum_type.tag_ty), 0)).toIntern()
|
|
else
|
|
try ip.getCoercedInts(
|
|
zcu.gpa,
|
|
pt.tid,
|
|
ip.indexToKey(enum_type.values.get(ip)[0]).int,
|
|
enum_type.tag_ty,
|
|
),
|
|
} }),
|
|
else => return null,
|
|
});
|
|
},
|
|
}
|
|
},
|
|
|
|
else => unreachable,
|
|
},
|
|
|
|
.type_optional => {
|
|
const payload_ip = ip.indexToKey(ty.toIntern()).opt_type;
|
|
// Although ?noreturn is handled above, the element type
|
|
// can be effectively noreturn for example via an empty
|
|
// enum or error set.
|
|
if (ip.isNoReturn(payload_ip)) return try pt.nullValue(ty);
|
|
return null;
|
|
},
|
|
},
|
|
};
|
|
}
|
|
|
|
/// Returns the type of the AIR instruction.
|
|
fn typeOf(sema: *Sema, inst: Air.Inst.Ref) Type {
|
|
return sema.getTmpAir().typeOf(inst, &sema.pt.zcu.intern_pool);
|
|
}
|
|
|
|
pub fn getTmpAir(sema: Sema) Air {
|
|
return .{
|
|
.instructions = sema.air_instructions.slice(),
|
|
.extra = sema.air_extra,
|
|
};
|
|
}
|
|
|
|
pub fn addExtra(sema: *Sema, extra: anytype) Allocator.Error!u32 {
|
|
const fields = std.meta.fields(@TypeOf(extra));
|
|
try sema.air_extra.ensureUnusedCapacity(sema.gpa, fields.len);
|
|
return sema.addExtraAssumeCapacity(extra);
|
|
}
|
|
|
|
pub fn addExtraAssumeCapacity(sema: *Sema, extra: anytype) u32 {
|
|
const result: u32 = @intCast(sema.air_extra.items.len);
|
|
sema.air_extra.appendSliceAssumeCapacity(&payloadToExtraItems(extra));
|
|
return result;
|
|
}
|
|
|
|
fn payloadToExtraItems(data: anytype) [@typeInfo(@TypeOf(data)).@"struct".fields.len]u32 {
|
|
const fields = @typeInfo(@TypeOf(data)).@"struct".fields;
|
|
var result: [fields.len]u32 = undefined;
|
|
inline for (&result, fields) |*val, field| {
|
|
val.* = switch (field.type) {
|
|
u32 => @field(data, field.name),
|
|
i32, Air.CondBr.BranchHints, Air.Asm.Flags => @bitCast(@field(data, field.name)),
|
|
Air.Inst.Ref, InternPool.Index => @intFromEnum(@field(data, field.name)),
|
|
else => @compileError("bad field type: " ++ @typeName(field.type)),
|
|
};
|
|
}
|
|
return result;
|
|
}
|
|
|
|
fn appendRefsAssumeCapacity(sema: *Sema, refs: []const Air.Inst.Ref) void {
|
|
sema.air_extra.appendSliceAssumeCapacity(@ptrCast(refs));
|
|
}
|
|
|
|
fn getBreakBlock(sema: *Sema, inst_index: Air.Inst.Index) ?Air.Inst.Index {
|
|
const air_datas = sema.air_instructions.items(.data);
|
|
const air_tags = sema.air_instructions.items(.tag);
|
|
switch (air_tags[@intFromEnum(inst_index)]) {
|
|
.br => return air_datas[@intFromEnum(inst_index)].br.block_inst,
|
|
else => return null,
|
|
}
|
|
}
|
|
|
|
fn isComptimeKnown(
|
|
sema: *Sema,
|
|
inst: Air.Inst.Ref,
|
|
) !bool {
|
|
return (try sema.resolveValue(inst)) != null;
|
|
}
|
|
|
|
fn analyzeComptimeAlloc(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
var_type: Type,
|
|
alignment: Alignment,
|
|
) CompileError!Air.Inst.Ref {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
// Needed to make an anon decl with type `var_type` (the `finish()` call below).
|
|
_ = try sema.typeHasOnePossibleValue(var_type);
|
|
|
|
const ptr_type = try pt.ptrTypeSema(.{
|
|
.child = var_type.toIntern(),
|
|
.flags = .{
|
|
.alignment = alignment,
|
|
.address_space = target_util.defaultAddressSpace(zcu.getTarget(), .global_constant),
|
|
},
|
|
});
|
|
|
|
const alloc = try sema.newComptimeAlloc(block, src, var_type, alignment);
|
|
|
|
return Air.internedToRef((try pt.intern(.{ .ptr = .{
|
|
.ty = ptr_type.toIntern(),
|
|
.base_addr = .{ .comptime_alloc = alloc },
|
|
.byte_offset = 0,
|
|
} })));
|
|
}
|
|
|
|
fn resolveAddressSpace(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
zir_ref: Zir.Inst.Ref,
|
|
ctx: std.Target.AddressSpaceContext,
|
|
) !std.builtin.AddressSpace {
|
|
const air_ref = try sema.resolveInst(zir_ref);
|
|
return sema.analyzeAsAddressSpace(block, src, air_ref, ctx);
|
|
}
|
|
|
|
pub fn analyzeAsAddressSpace(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
air_ref: Air.Inst.Ref,
|
|
ctx: std.Target.AddressSpaceContext,
|
|
) !std.builtin.AddressSpace {
|
|
const pt = sema.pt;
|
|
const addrspace_ty = try sema.getBuiltinType(src, .AddressSpace);
|
|
const coerced = try sema.coerce(block, addrspace_ty, air_ref, src);
|
|
const addrspace_val = try sema.resolveConstDefinedValue(block, src, coerced, .{ .simple = .@"addrspace" });
|
|
const address_space = try sema.interpretBuiltinType(block, src, addrspace_val, std.builtin.AddressSpace);
|
|
const target = pt.zcu.getTarget();
|
|
|
|
if (!target.supportsAddressSpace(address_space, ctx)) {
|
|
// TODO error messages could be made more elaborate here
|
|
const entity = switch (ctx) {
|
|
.function => "functions",
|
|
.variable => "mutable values",
|
|
.constant => "constant values",
|
|
.pointer => "pointers",
|
|
};
|
|
return sema.fail(
|
|
block,
|
|
src,
|
|
"{s} with address space '{s}' are not supported on {s}",
|
|
.{ entity, @tagName(address_space), @tagName(target.cpu.arch.family()) },
|
|
);
|
|
}
|
|
|
|
return address_space;
|
|
}
|
|
|
|
/// Asserts the value is a pointer and dereferences it.
|
|
/// Returns `null` if the pointer contents cannot be loaded at comptime.
|
|
fn pointerDeref(sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, ptr_ty: Type) CompileError!?Value {
|
|
// TODO: audit use sites to eliminate this coercion
|
|
const pt = sema.pt;
|
|
const coerced_ptr_val = try pt.getCoerced(ptr_val, ptr_ty);
|
|
switch (try sema.pointerDerefExtra(block, src, coerced_ptr_val)) {
|
|
.runtime_load => return null,
|
|
.val => |v| return v,
|
|
.needed_well_defined => |ty| return sema.fail(
|
|
block,
|
|
src,
|
|
"comptime dereference requires '{f}' to have a well-defined layout",
|
|
.{ty.fmt(pt)},
|
|
),
|
|
.out_of_bounds => |ty| return sema.fail(
|
|
block,
|
|
src,
|
|
"dereference of '{f}' exceeds bounds of containing decl of type '{f}'",
|
|
.{ ptr_ty.fmt(pt), ty.fmt(pt) },
|
|
),
|
|
}
|
|
}
|
|
|
|
const DerefResult = union(enum) {
|
|
runtime_load,
|
|
val: Value,
|
|
needed_well_defined: Type,
|
|
out_of_bounds: Type,
|
|
};
|
|
|
|
fn pointerDerefExtra(sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value) CompileError!DerefResult {
|
|
const pt = sema.pt;
|
|
const ip = &pt.zcu.intern_pool;
|
|
switch (try sema.loadComptimePtr(block, src, ptr_val)) {
|
|
.success => |mv| return .{ .val = try mv.intern(pt, sema.arena) },
|
|
.runtime_load => return .runtime_load,
|
|
.undef => return sema.failWithUseOfUndef(block, src, null),
|
|
.err_payload => |err_name| return sema.fail(block, src, "attempt to unwrap error: {f}", .{err_name.fmt(ip)}),
|
|
.null_payload => return sema.fail(block, src, "attempt to use null value", .{}),
|
|
.inactive_union_field => return sema.fail(block, src, "access of inactive union field", .{}),
|
|
.needed_well_defined => |ty| return .{ .needed_well_defined = ty },
|
|
.out_of_bounds => |ty| return .{ .out_of_bounds = ty },
|
|
.exceeds_host_size => return sema.fail(block, src, "bit-pointer target exceeds host size", .{}),
|
|
}
|
|
}
|
|
|
|
/// Used to convert a u64 value to a usize value, emitting a compile error if the number
|
|
/// is too big to fit.
|
|
fn usizeCast(sema: *Sema, block: *Block, src: LazySrcLoc, int: u64) CompileError!usize {
|
|
if (@bitSizeOf(u64) <= @bitSizeOf(usize)) return int;
|
|
return std.math.cast(usize, int) orelse return sema.fail(block, src, "expression produces integer value '{d}' which is too big for this compiler implementation to handle", .{int});
|
|
}
|
|
|
|
/// For pointer-like optionals, it returns the pointer type. For pointers,
|
|
/// the type is returned unmodified.
|
|
/// This can return `error.AnalysisFail` because it sometimes requires resolving whether
|
|
/// a type has zero bits, which can cause a "foo depends on itself" compile error.
|
|
/// This logic must be kept in sync with `Type.isPtrLikeOptional`.
|
|
fn typePtrOrOptionalPtrTy(sema: *Sema, ty: Type) !?Type {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
return switch (zcu.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.one, .many, .c => ty,
|
|
.slice => null,
|
|
},
|
|
.opt_type => |opt_child| switch (zcu.intern_pool.indexToKey(opt_child)) {
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.slice, .c => null,
|
|
.many, .one => {
|
|
if (ptr_type.flags.is_allowzero) return null;
|
|
|
|
// optionals of zero sized types behave like bools, not pointers
|
|
const payload_ty: Type = .fromInterned(opt_child);
|
|
if ((try sema.typeHasOnePossibleValue(payload_ty)) != null) {
|
|
return null;
|
|
}
|
|
|
|
return payload_ty;
|
|
},
|
|
},
|
|
else => null,
|
|
},
|
|
else => null,
|
|
};
|
|
}
|
|
|
|
fn unionFieldIndex(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
union_ty: Type,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_src: LazySrcLoc,
|
|
) !u32 {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
try union_ty.resolveFields(pt);
|
|
const union_obj = zcu.typeToUnion(union_ty).?;
|
|
const field_index = union_obj.loadTagType(ip).nameIndex(ip, field_name) orelse
|
|
return sema.failWithBadUnionFieldAccess(block, union_ty, union_obj, field_src, field_name);
|
|
return @intCast(field_index);
|
|
}
|
|
|
|
fn structFieldIndex(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
struct_ty: Type,
|
|
field_name: InternPool.NullTerminatedString,
|
|
field_src: LazySrcLoc,
|
|
) !u32 {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
try struct_ty.resolveFields(pt);
|
|
const struct_type = zcu.typeToStruct(struct_ty).?;
|
|
return struct_type.nameIndex(ip, field_name) orelse
|
|
return sema.failWithBadStructFieldAccess(block, struct_ty, struct_type, field_src, field_name);
|
|
}
|
|
|
|
const IntFromFloatMode = enum { exact, truncate };
|
|
|
|
fn intFromFloat(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
val: Value,
|
|
float_ty: Type,
|
|
int_ty: Type,
|
|
mode: IntFromFloatMode,
|
|
) CompileError!Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (float_ty.zigTypeTag(zcu) == .vector) {
|
|
const result_data = try sema.arena.alloc(InternPool.Index, float_ty.vectorLen(zcu));
|
|
for (result_data, 0..) |*scalar, elem_idx| {
|
|
const elem_val = try val.elemValue(pt, elem_idx);
|
|
scalar.* = (try sema.intFromFloatScalar(block, src, elem_val, int_ty.scalarType(zcu), mode, elem_idx)).toIntern();
|
|
}
|
|
return pt.aggregateValue(int_ty, result_data);
|
|
}
|
|
return sema.intFromFloatScalar(block, src, val, int_ty, mode, null);
|
|
}
|
|
|
|
fn intFromFloatScalar(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
val: Value,
|
|
int_ty: Type,
|
|
mode: IntFromFloatMode,
|
|
vec_idx: ?usize,
|
|
) CompileError!Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (val.isUndef(zcu)) return sema.failWithUseOfUndef(block, src, vec_idx);
|
|
|
|
const float = val.toFloat(f128, zcu);
|
|
if (std.math.isNan(float)) {
|
|
return sema.fail(block, src, "float value NaN cannot be stored in integer type '{f}'", .{
|
|
int_ty.fmt(pt),
|
|
});
|
|
}
|
|
if (std.math.isInf(float)) {
|
|
return sema.fail(block, src, "float value Inf cannot be stored in integer type '{f}'", .{
|
|
int_ty.fmt(pt),
|
|
});
|
|
}
|
|
|
|
var big_int: std.math.big.int.Mutable = .{
|
|
.limbs = try sema.arena.alloc(std.math.big.Limb, std.math.big.int.calcLimbLen(float)),
|
|
.len = undefined,
|
|
.positive = undefined,
|
|
};
|
|
switch (big_int.setFloat(float, .trunc)) {
|
|
.inexact => switch (mode) {
|
|
.exact => return sema.fail(
|
|
block,
|
|
src,
|
|
"fractional component prevents float value '{f}' from coercion to type '{f}'",
|
|
.{ val.fmtValueSema(pt, sema), int_ty.fmt(pt) },
|
|
),
|
|
.truncate => {},
|
|
},
|
|
.exact => {},
|
|
}
|
|
const cti_result = try pt.intValue_big(.comptime_int, big_int.toConst());
|
|
if (int_ty.toIntern() == .comptime_int_type) return cti_result;
|
|
|
|
const int_info = int_ty.intInfo(zcu);
|
|
if (!big_int.toConst().fitsInTwosComp(int_info.signedness, int_info.bits)) {
|
|
return sema.fail(block, src, "float value '{f}' cannot be stored in integer type '{f}'", .{
|
|
val.fmtValueSema(pt, sema), int_ty.fmt(pt),
|
|
});
|
|
}
|
|
return pt.getCoerced(cti_result, int_ty);
|
|
}
|
|
|
|
/// Asserts the value is an integer, and the destination type is ComptimeInt or Int.
|
|
/// Vectors are also accepted. Vector results are reduced with AND.
|
|
///
|
|
/// If provided, `vector_index` reports the first element that failed the range check.
|
|
fn intFitsInType(
|
|
sema: *Sema,
|
|
val: Value,
|
|
ty: Type,
|
|
vector_index: ?*usize,
|
|
) CompileError!bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (ty.toIntern() == .comptime_int_type) return true;
|
|
const info = ty.intInfo(zcu);
|
|
switch (val.toIntern()) {
|
|
.zero_usize, .zero_u8 => return true,
|
|
else => switch (zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
.undef => return true,
|
|
.variable, .@"extern", .func, .ptr => {
|
|
const target = zcu.getTarget();
|
|
const ptr_bits = target.ptrBitWidth();
|
|
return switch (info.signedness) {
|
|
.signed => info.bits > ptr_bits,
|
|
.unsigned => info.bits >= ptr_bits,
|
|
};
|
|
},
|
|
.int => |int| switch (int.storage) {
|
|
.u64, .i64, .big_int => {
|
|
var buffer: InternPool.Key.Int.Storage.BigIntSpace = undefined;
|
|
const big_int = int.storage.toBigInt(&buffer);
|
|
return big_int.fitsInTwosComp(info.signedness, info.bits);
|
|
},
|
|
.lazy_align => |lazy_ty| {
|
|
const max_needed_bits = @as(u16, 16) + @intFromBool(info.signedness == .signed);
|
|
// If it is u16 or bigger we know the alignment fits without resolving it.
|
|
if (info.bits >= max_needed_bits) return true;
|
|
const x = try Type.fromInterned(lazy_ty).abiAlignmentSema(pt);
|
|
if (x == .none) return true;
|
|
const actual_needed_bits = @as(usize, x.toLog2Units()) + 1 + @intFromBool(info.signedness == .signed);
|
|
return info.bits >= actual_needed_bits;
|
|
},
|
|
.lazy_size => |lazy_ty| {
|
|
const max_needed_bits = @as(u16, 64) + @intFromBool(info.signedness == .signed);
|
|
// If it is u64 or bigger we know the size fits without resolving it.
|
|
if (info.bits >= max_needed_bits) return true;
|
|
const x = try Type.fromInterned(lazy_ty).abiSizeSema(pt);
|
|
if (x == 0) return true;
|
|
const actual_needed_bits = std.math.log2(x) + 1 + @intFromBool(info.signedness == .signed);
|
|
return info.bits >= actual_needed_bits;
|
|
},
|
|
},
|
|
.aggregate => |aggregate| {
|
|
assert(ty.zigTypeTag(zcu) == .vector);
|
|
return switch (aggregate.storage) {
|
|
.bytes => |bytes| for (bytes.toSlice(ty.vectorLen(zcu), &zcu.intern_pool), 0..) |byte, i| {
|
|
if (byte == 0) continue;
|
|
const actual_needed_bits = std.math.log2(byte) + 1 + @intFromBool(info.signedness == .signed);
|
|
if (info.bits >= actual_needed_bits) continue;
|
|
if (vector_index) |vi| vi.* = i;
|
|
break false;
|
|
} else true,
|
|
.elems, .repeated_elem => for (switch (aggregate.storage) {
|
|
.bytes => unreachable,
|
|
.elems => |elems| elems,
|
|
.repeated_elem => |elem| @as(*const [1]InternPool.Index, &elem),
|
|
}, 0..) |elem, i| {
|
|
if (try sema.intFitsInType(Value.fromInterned(elem), ty.scalarType(zcu), null)) continue;
|
|
if (vector_index) |vi| vi.* = i;
|
|
break false;
|
|
} else true,
|
|
};
|
|
},
|
|
else => unreachable,
|
|
},
|
|
}
|
|
}
|
|
|
|
fn intInRange(sema: *Sema, tag_ty: Type, int_val: Value, end: usize) !bool {
|
|
const pt = sema.pt;
|
|
if (!(try int_val.compareAllWithZeroSema(.gte, pt))) return false;
|
|
const end_val = try pt.intValue(tag_ty, end);
|
|
if (!(try sema.compareAll(int_val, .lt, end_val, tag_ty))) return false;
|
|
return true;
|
|
}
|
|
|
|
/// Asserts the type is an enum.
|
|
fn enumHasInt(sema: *Sema, ty: Type, int: Value) CompileError!bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const enum_type = zcu.intern_pool.loadEnumType(ty.toIntern());
|
|
assert(enum_type.tag_mode != .nonexhaustive);
|
|
// The `tagValueIndex` function call below relies on the type being the integer tag type.
|
|
// `getCoerced` assumes the value will fit the new type.
|
|
if (!(try sema.intFitsInType(int, .fromInterned(enum_type.tag_ty), null))) return false;
|
|
const int_coerced = try pt.getCoerced(int, .fromInterned(enum_type.tag_ty));
|
|
|
|
return enum_type.tagValueIndex(&zcu.intern_pool, int_coerced.toIntern()) != null;
|
|
}
|
|
|
|
/// Asserts the values are comparable. Both operands have type `ty`.
|
|
/// For vectors, returns true if the comparison is true for ALL elements.
|
|
///
|
|
/// Note that `!compareAll(.eq, ...) != compareAll(.neq, ...)`
|
|
fn compareAll(
|
|
sema: *Sema,
|
|
lhs: Value,
|
|
op: std.math.CompareOperator,
|
|
rhs: Value,
|
|
ty: Type,
|
|
) CompileError!bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
if (ty.zigTypeTag(zcu) == .vector) {
|
|
var i: usize = 0;
|
|
while (i < ty.vectorLen(zcu)) : (i += 1) {
|
|
const lhs_elem = try lhs.elemValue(pt, i);
|
|
const rhs_elem = try rhs.elemValue(pt, i);
|
|
if (!(try sema.compareScalar(lhs_elem, op, rhs_elem, ty.scalarType(zcu)))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return sema.compareScalar(lhs, op, rhs, ty);
|
|
}
|
|
|
|
/// Asserts the values are comparable. Both operands have type `ty`.
|
|
fn compareScalar(
|
|
sema: *Sema,
|
|
lhs: Value,
|
|
op: std.math.CompareOperator,
|
|
rhs: Value,
|
|
ty: Type,
|
|
) CompileError!bool {
|
|
const pt = sema.pt;
|
|
const coerced_lhs = try pt.getCoerced(lhs, ty);
|
|
const coerced_rhs = try pt.getCoerced(rhs, ty);
|
|
|
|
// Equality comparisons of signed zero and NaN need to use floating point semantics
|
|
if (coerced_lhs.isFloat(pt.zcu) or coerced_rhs.isFloat(pt.zcu))
|
|
return Value.compareHeteroSema(coerced_lhs, op, coerced_rhs, pt);
|
|
|
|
switch (op) {
|
|
.eq => return sema.valuesEqual(coerced_lhs, coerced_rhs, ty),
|
|
.neq => return !(try sema.valuesEqual(coerced_lhs, coerced_rhs, ty)),
|
|
else => return Value.compareHeteroSema(coerced_lhs, op, coerced_rhs, pt),
|
|
}
|
|
}
|
|
|
|
fn valuesEqual(
|
|
sema: *Sema,
|
|
lhs: Value,
|
|
rhs: Value,
|
|
ty: Type,
|
|
) CompileError!bool {
|
|
return lhs.eql(rhs, ty, sema.pt.zcu);
|
|
}
|
|
|
|
/// Asserts the values are comparable vectors of type `ty`.
|
|
fn compareVector(
|
|
sema: *Sema,
|
|
lhs: Value,
|
|
op: std.math.CompareOperator,
|
|
rhs: Value,
|
|
ty: Type,
|
|
) !Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
assert(ty.zigTypeTag(zcu) == .vector);
|
|
const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(zcu));
|
|
for (result_data, 0..) |*scalar, i| {
|
|
const lhs_elem = try lhs.elemValue(pt, i);
|
|
const rhs_elem = try rhs.elemValue(pt, i);
|
|
if (lhs_elem.isUndef(zcu) or rhs_elem.isUndef(zcu)) {
|
|
scalar.* = .undef_bool;
|
|
} else {
|
|
const res_bool = try sema.compareScalar(lhs_elem, op, rhs_elem, ty.scalarType(zcu));
|
|
scalar.* = Value.makeBool(res_bool).toIntern();
|
|
}
|
|
}
|
|
return pt.aggregateValue(try pt.vectorType(.{
|
|
.len = ty.vectorLen(zcu),
|
|
.child = .bool_type,
|
|
}), result_data);
|
|
}
|
|
|
|
/// Merge lhs with rhs.
|
|
/// Asserts that lhs and rhs are both error sets and are resolved.
|
|
fn errorSetMerge(sema: *Sema, lhs: Type, rhs: Type) !Type {
|
|
const pt = sema.pt;
|
|
const ip = &pt.zcu.intern_pool;
|
|
const arena = sema.arena;
|
|
const lhs_names = lhs.errorSetNames(pt.zcu);
|
|
const rhs_names = rhs.errorSetNames(pt.zcu);
|
|
var names: InferredErrorSet.NameMap = .{};
|
|
try names.ensureUnusedCapacity(arena, lhs_names.len);
|
|
|
|
for (0..lhs_names.len) |lhs_index| {
|
|
names.putAssumeCapacityNoClobber(lhs_names.get(ip)[lhs_index], {});
|
|
}
|
|
for (0..rhs_names.len) |rhs_index| {
|
|
try names.put(arena, rhs_names.get(ip)[rhs_index], {});
|
|
}
|
|
|
|
return pt.errorSetFromUnsortedNames(names.keys());
|
|
}
|
|
|
|
/// Avoids crashing the compiler when asking if inferred allocations are noreturn.
|
|
fn isNoReturn(sema: *Sema, ref: Air.Inst.Ref) bool {
|
|
if (ref == .unreachable_value) return true;
|
|
if (ref.toIndex()) |inst| switch (sema.air_instructions.items(.tag)[@intFromEnum(inst)]) {
|
|
.inferred_alloc, .inferred_alloc_comptime => return false,
|
|
else => {},
|
|
};
|
|
return sema.typeOf(ref).isNoReturn(sema.pt.zcu);
|
|
}
|
|
|
|
/// Avoids crashing the compiler when asking if inferred allocations are known to be a certain zig type.
|
|
fn isKnownZigType(sema: *Sema, ref: Air.Inst.Ref, tag: std.builtin.TypeId) bool {
|
|
if (ref.toIndex()) |inst| switch (sema.air_instructions.items(.tag)[@intFromEnum(inst)]) {
|
|
.inferred_alloc, .inferred_alloc_comptime => return false,
|
|
else => {},
|
|
};
|
|
return sema.typeOf(ref).zigTypeTag(sema.pt.zcu) == tag;
|
|
}
|
|
|
|
pub fn declareDependency(sema: *Sema, dependee: InternPool.Dependee) !void {
|
|
const pt = sema.pt;
|
|
if (!pt.zcu.comp.config.incremental) return;
|
|
|
|
const gop = try sema.dependencies.getOrPut(sema.gpa, dependee);
|
|
if (gop.found_existing) return;
|
|
|
|
// Avoid creating dependencies on ourselves. This situation can arise when we analyze the fields
|
|
// of a type and they use `@This()`. This dependency would be unnecessary, and in fact would
|
|
// just result in over-analysis since `Zcu.findOutdatedToAnalyze` would never be able to resolve
|
|
// the loop.
|
|
// Note that this also disallows a `nav_val`
|
|
switch (sema.owner.unwrap()) {
|
|
.nav_val => |this_nav| switch (dependee) {
|
|
.nav_val => |other_nav| if (this_nav == other_nav) return,
|
|
else => {},
|
|
},
|
|
.nav_ty => |this_nav| switch (dependee) {
|
|
.nav_ty => |other_nav| if (this_nav == other_nav) return,
|
|
else => {},
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
try pt.addDependency(sema.owner, dependee);
|
|
}
|
|
|
|
fn isComptimeMutablePtr(sema: *Sema, val: Value) bool {
|
|
return switch (sema.pt.zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
.slice => |slice| sema.isComptimeMutablePtr(Value.fromInterned(slice.ptr)),
|
|
.ptr => |ptr| switch (ptr.base_addr) {
|
|
.uav, .nav, .int => false,
|
|
.comptime_field => true,
|
|
.comptime_alloc => |alloc_index| !sema.getComptimeAlloc(alloc_index).is_const,
|
|
.eu_payload, .opt_payload => |base| sema.isComptimeMutablePtr(Value.fromInterned(base)),
|
|
.arr_elem, .field => |bi| sema.isComptimeMutablePtr(Value.fromInterned(bi.base)),
|
|
},
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
fn checkRuntimeValue(sema: *Sema, ptr: Air.Inst.Ref) bool {
|
|
const val = ptr.toInterned() orelse return true;
|
|
return !Value.fromInterned(val).canMutateComptimeVarState(sema.pt.zcu);
|
|
}
|
|
|
|
fn validateRuntimeValue(sema: *Sema, block: *Block, val_src: LazySrcLoc, val: Air.Inst.Ref) CompileError!void {
|
|
if (sema.checkRuntimeValue(val)) return;
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(val_src, "runtime value contains reference to comptime var", .{});
|
|
errdefer msg.destroy(sema.gpa);
|
|
try sema.errNote(val_src, msg, "comptime var pointers are not available at runtime", .{});
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const val_str = try zcu.intern_pool.getOrPutString(zcu.gpa, pt.tid, "runtime_value", .no_embedded_nulls);
|
|
try sema.explainWhyValueContainsReferenceToComptimeVar(msg, val_src, val_str, .fromInterned(val.toInterned().?));
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
fn failWithContainsReferenceToComptimeVar(sema: *Sema, block: *Block, src: LazySrcLoc, value_name: InternPool.NullTerminatedString, kind_of_value: []const u8, val: ?Value) CompileError {
|
|
return sema.failWithOwnedErrorMsg(block, msg: {
|
|
const msg = try sema.errMsg(src, "{s} contains reference to comptime var", .{kind_of_value});
|
|
errdefer msg.destroy(sema.gpa);
|
|
if (val) |v| try sema.explainWhyValueContainsReferenceToComptimeVar(msg, src, value_name, v);
|
|
break :msg msg;
|
|
});
|
|
}
|
|
|
|
fn explainWhyValueContainsReferenceToComptimeVar(sema: *Sema, msg: *Zcu.ErrorMsg, src: LazySrcLoc, value_name: InternPool.NullTerminatedString, val: Value) Allocator.Error!void {
|
|
// Our goal is something like this:
|
|
// note: '(value.? catch unreachable)[0]' points to 'v0.?.foo'
|
|
// note: '(v0.?.bar catch unreachable)' points to 'v1'
|
|
// note: 'v1.?' points to a comptime var
|
|
|
|
var intermediate_value_count: u32 = 0;
|
|
var cur_val: Value = val;
|
|
while (true) {
|
|
switch (try sema.notePathToComptimeAllocPtr(msg, src, cur_val, intermediate_value_count, value_name)) {
|
|
.done => return,
|
|
.new_val => |new_val| {
|
|
intermediate_value_count += 1;
|
|
cur_val = new_val;
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
fn notePathToComptimeAllocPtr(
|
|
sema: *Sema,
|
|
msg: *Zcu.ErrorMsg,
|
|
src: LazySrcLoc,
|
|
val: Value,
|
|
intermediate_value_count: u32,
|
|
start_value_name: InternPool.NullTerminatedString,
|
|
) Allocator.Error!union(enum) {
|
|
done,
|
|
new_val: Value,
|
|
} {
|
|
const arena = sema.arena;
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
var first_path: std.ArrayListUnmanaged(u8) = .empty;
|
|
if (intermediate_value_count == 0) {
|
|
try first_path.print(arena, "{f}", .{start_value_name.fmt(ip)});
|
|
} else {
|
|
try first_path.print(arena, "v{d}", .{intermediate_value_count - 1});
|
|
}
|
|
|
|
const comptime_ptr = try sema.notePathToComptimeAllocPtrInner(val, &first_path);
|
|
|
|
switch (ip.indexToKey(comptime_ptr.toIntern()).ptr.base_addr) {
|
|
.comptime_field => {
|
|
try sema.errNote(src, msg, "'{s}' points to comptime field", .{first_path.items});
|
|
return .done;
|
|
},
|
|
.comptime_alloc => |idx| {
|
|
const cta = sema.getComptimeAlloc(idx);
|
|
if (!cta.is_const) {
|
|
try sema.errNote(cta.src, msg, "'{s}' points to comptime var declared here", .{first_path.items});
|
|
return .done;
|
|
}
|
|
},
|
|
else => {}, // there will be another stage
|
|
}
|
|
|
|
const derivation = comptime_ptr.pointerDerivationAdvanced(arena, pt, false, sema) catch |err| switch (err) {
|
|
error.OutOfMemory => |e| return e,
|
|
error.AnalysisFail => unreachable,
|
|
};
|
|
|
|
var second_path_aw: std.Io.Writer.Allocating = .init(arena);
|
|
defer second_path_aw.deinit();
|
|
const inter_name = try std.fmt.allocPrint(arena, "v{d}", .{intermediate_value_count});
|
|
const deriv_start = @import("print_value.zig").printPtrDerivation(
|
|
derivation,
|
|
&second_path_aw.writer,
|
|
pt,
|
|
.lvalue,
|
|
.{ .str = inter_name },
|
|
20,
|
|
) catch return error.OutOfMemory;
|
|
|
|
switch (deriv_start) {
|
|
.int, .nav_ptr => unreachable,
|
|
.uav_ptr => |uav| {
|
|
try sema.errNote(src, msg, "'{s}' points to '{s}', where", .{ first_path.items, second_path_aw.written() });
|
|
return .{ .new_val = .fromInterned(uav.val) };
|
|
},
|
|
.comptime_alloc_ptr => |cta_info| {
|
|
try sema.errNote(src, msg, "'{s}' points to '{s}', where", .{ first_path.items, second_path_aw.written() });
|
|
const cta = sema.getComptimeAlloc(cta_info.idx);
|
|
if (cta.is_const) {
|
|
return .{ .new_val = cta_info.val };
|
|
} else {
|
|
try sema.errNote(cta.src, msg, "'{s}' is a comptime var declared here", .{inter_name});
|
|
return .done;
|
|
}
|
|
},
|
|
.comptime_field_ptr => {
|
|
try sema.errNote(src, msg, "'{s}' points to '{s}', where", .{ first_path.items, second_path_aw.written() });
|
|
try sema.errNote(src, msg, "'{s}' is a comptime field", .{inter_name});
|
|
return .done;
|
|
},
|
|
.eu_payload_ptr,
|
|
.opt_payload_ptr,
|
|
.field_ptr,
|
|
.elem_ptr,
|
|
.offset_and_cast,
|
|
=> unreachable,
|
|
}
|
|
}
|
|
|
|
fn notePathToComptimeAllocPtrInner(sema: *Sema, val: Value, path: *std.ArrayListUnmanaged(u8)) Allocator.Error!Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const arena = sema.arena;
|
|
assert(val.canMutateComptimeVarState(zcu));
|
|
switch (ip.indexToKey(val.toIntern())) {
|
|
.ptr => return val,
|
|
.error_union => |eu| {
|
|
try path.insert(arena, 0, '(');
|
|
try path.appendSlice(arena, " catch unreachable)");
|
|
return sema.notePathToComptimeAllocPtrInner(.fromInterned(eu.val.payload), path);
|
|
},
|
|
.slice => |slice| {
|
|
try path.appendSlice(arena, ".ptr");
|
|
return sema.notePathToComptimeAllocPtrInner(.fromInterned(slice.ptr), path);
|
|
},
|
|
.opt => |opt| {
|
|
try path.appendSlice(arena, ".?");
|
|
return sema.notePathToComptimeAllocPtrInner(.fromInterned(opt.val), path);
|
|
},
|
|
.un => |un| {
|
|
assert(un.tag != .none);
|
|
const union_ty: Type = .fromInterned(un.ty);
|
|
const backing_enum = union_ty.unionTagTypeHypothetical(zcu);
|
|
const field_idx = backing_enum.enumTagFieldIndex(.fromInterned(un.tag), zcu).?;
|
|
const field_name = backing_enum.enumFieldName(field_idx, zcu);
|
|
try path.print(arena, ".{f}", .{field_name.fmt(ip)});
|
|
return sema.notePathToComptimeAllocPtrInner(.fromInterned(un.val), path);
|
|
},
|
|
.aggregate => |agg| {
|
|
const elem: InternPool.Index, const elem_idx: usize = switch (agg.storage) {
|
|
.bytes => unreachable,
|
|
.repeated_elem => |elem| .{ elem, 0 },
|
|
.elems => |elems| for (elems, 0..) |elem, elem_idx| {
|
|
if (Value.fromInterned(elem).canMutateComptimeVarState(zcu)) {
|
|
break .{ elem, elem_idx };
|
|
}
|
|
} else unreachable,
|
|
};
|
|
const agg_ty: Type = .fromInterned(agg.ty);
|
|
switch (agg_ty.zigTypeTag(zcu)) {
|
|
.array, .vector => try path.print(arena, "[{d}]", .{elem_idx}),
|
|
.pointer => switch (elem_idx) {
|
|
Value.slice_ptr_index => try path.appendSlice(arena, ".ptr"),
|
|
Value.slice_len_index => try path.appendSlice(arena, ".len"),
|
|
else => unreachable,
|
|
},
|
|
.@"struct" => if (agg_ty.isTuple(zcu)) {
|
|
try path.print(arena, "[{d}]", .{elem_idx});
|
|
} else {
|
|
const name = agg_ty.structFieldName(elem_idx, zcu).unwrap().?;
|
|
try path.print(arena, ".{f}", .{name.fmt(ip)});
|
|
},
|
|
else => unreachable,
|
|
}
|
|
return sema.notePathToComptimeAllocPtrInner(.fromInterned(elem), path);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
/// Returns true if any value contained in `val` is undefined.
|
|
fn anyUndef(sema: *Sema, block: *Block, src: LazySrcLoc, val: Value) !bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
.undef => true,
|
|
.simple_value => |v| v == .undefined,
|
|
.slice => {
|
|
// If the slice contents are runtime-known, reification will fail later on with a
|
|
// specific error message.
|
|
const arr = try sema.maybeDerefSliceAsArray(block, src, val) orelse return false;
|
|
return sema.anyUndef(block, src, arr);
|
|
},
|
|
.aggregate => |aggregate| for (0..aggregate.storage.values().len) |i| {
|
|
const elem = zcu.intern_pool.indexToKey(val.toIntern()).aggregate.storage.values()[i];
|
|
if (try sema.anyUndef(block, src, Value.fromInterned(elem))) break true;
|
|
} else false,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Asserts that `slice_val` is a slice of `u8`.
|
|
fn sliceToIpString(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
slice_val: Value,
|
|
reason: ComptimeReason,
|
|
) CompileError!InternPool.NullTerminatedString {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const slice_ty = slice_val.typeOf(zcu);
|
|
assert(slice_ty.isSlice(zcu));
|
|
assert(slice_ty.childType(zcu).toIntern() == .u8_type);
|
|
const array_val = try sema.derefSliceAsArray(block, src, slice_val, reason);
|
|
const array_ty = array_val.typeOf(zcu);
|
|
return array_val.toIpString(array_ty, pt);
|
|
}
|
|
|
|
/// Given a slice value, attempts to dereference it into a comptime-known array.
|
|
/// Emits a compile error if the contents of the slice are not comptime-known.
|
|
/// Asserts that `slice_val` is a slice.
|
|
fn derefSliceAsArray(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
slice_val: Value,
|
|
reason: ComptimeReason,
|
|
) CompileError!Value {
|
|
return try sema.maybeDerefSliceAsArray(block, src, slice_val) orelse {
|
|
return sema.failWithNeededComptime(block, src, reason);
|
|
};
|
|
}
|
|
|
|
/// Given a slice value, attempts to dereference it into a comptime-known array.
|
|
/// Returns `null` if the contents of the slice are not comptime-known.
|
|
/// Asserts that `slice_val` is a slice.
|
|
fn maybeDerefSliceAsArray(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
src: LazySrcLoc,
|
|
slice_val: Value,
|
|
) CompileError!?Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
assert(slice_val.typeOf(zcu).isSlice(zcu));
|
|
const slice = switch (ip.indexToKey(slice_val.toIntern())) {
|
|
.undef => return sema.failWithUseOfUndef(block, src, null),
|
|
.slice => |slice| slice,
|
|
else => unreachable,
|
|
};
|
|
const elem_ty = Type.fromInterned(slice.ty).childType(zcu);
|
|
const len = try Value.fromInterned(slice.len).toUnsignedIntSema(pt);
|
|
const array_ty = try pt.arrayType(.{
|
|
.child = elem_ty.toIntern(),
|
|
.len = len,
|
|
});
|
|
const ptr_ty = try pt.ptrTypeSema(p: {
|
|
var p = Type.fromInterned(slice.ty).ptrInfo(zcu);
|
|
p.flags.size = .one;
|
|
p.child = array_ty.toIntern();
|
|
p.sentinel = .none;
|
|
break :p p;
|
|
});
|
|
const casted_ptr = try pt.getCoerced(Value.fromInterned(slice.ptr), ptr_ty);
|
|
return sema.pointerDeref(block, src, casted_ptr, ptr_ty);
|
|
}
|
|
|
|
fn analyzeUnreachable(sema: *Sema, block: *Block, src: LazySrcLoc, safety_check: bool) !void {
|
|
if (safety_check and block.wantSafety()) {
|
|
// We only apply the first hint in a branch.
|
|
// This allows user-provided hints to override implicit cold hints.
|
|
if (sema.branch_hint == null) {
|
|
sema.branch_hint = .cold;
|
|
}
|
|
|
|
try sema.safetyPanic(block, src, .reached_unreachable);
|
|
} else {
|
|
_ = try block.addNoOp(.unreach);
|
|
}
|
|
}
|
|
|
|
/// This should be called exactly once, at the end of a `Sema`'s lifetime.
|
|
/// It takes the exports stored in `sema.export` and flushes them to the `Zcu`
|
|
/// to be processed by the linker after the update.
|
|
pub fn flushExports(sema: *Sema) !void {
|
|
if (sema.exports.items.len == 0) return;
|
|
|
|
const zcu = sema.pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
|
|
// There may be existing exports. For instance, a struct may export
|
|
// things during both field type resolution and field default resolution.
|
|
//
|
|
// So, pick up and delete any existing exports. This strategy performs
|
|
// redundant work, but that's okay, because this case is exceedingly rare.
|
|
if (zcu.single_exports.get(sema.owner)) |export_idx| {
|
|
try sema.exports.append(gpa, export_idx.ptr(zcu).*);
|
|
} else if (zcu.multi_exports.get(sema.owner)) |info| {
|
|
try sema.exports.appendSlice(gpa, zcu.all_exports.items[info.index..][0..info.len]);
|
|
}
|
|
zcu.deleteUnitExports(sema.owner);
|
|
|
|
// `sema.exports` is completed; store the data into the `Zcu`.
|
|
if (sema.exports.items.len == 1) {
|
|
try zcu.single_exports.ensureUnusedCapacity(gpa, 1);
|
|
const export_idx: Zcu.Export.Index = zcu.free_exports.pop() orelse idx: {
|
|
_ = try zcu.all_exports.addOne(gpa);
|
|
break :idx @enumFromInt(zcu.all_exports.items.len - 1);
|
|
};
|
|
export_idx.ptr(zcu).* = sema.exports.items[0];
|
|
zcu.single_exports.putAssumeCapacityNoClobber(sema.owner, export_idx);
|
|
} else {
|
|
try zcu.multi_exports.ensureUnusedCapacity(gpa, 1);
|
|
const exports_base = zcu.all_exports.items.len;
|
|
try zcu.all_exports.appendSlice(gpa, sema.exports.items);
|
|
zcu.multi_exports.putAssumeCapacityNoClobber(sema.owner, .{
|
|
.index = @intCast(exports_base),
|
|
.len = @intCast(sema.exports.items.len),
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Called as soon as a `declared` enum type is created.
|
|
/// Resolves the tag type and field inits.
|
|
/// Marks the `src_inst` dependency on the enum's declaration, so call sites need not do this.
|
|
pub fn resolveDeclaredEnum(
|
|
pt: Zcu.PerThread,
|
|
wip_ty: InternPool.WipEnumType,
|
|
inst: Zir.Inst.Index,
|
|
tracked_inst: InternPool.TrackedInst.Index,
|
|
namespace: InternPool.NamespaceIndex,
|
|
type_name: InternPool.NullTerminatedString,
|
|
small: Zir.Inst.EnumDecl.Small,
|
|
body: []const Zir.Inst.Index,
|
|
tag_type_ref: Zir.Inst.Ref,
|
|
any_values: bool,
|
|
fields_len: u32,
|
|
zir: Zir,
|
|
body_end: usize,
|
|
) Zcu.SemaError!void {
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
|
|
const src: LazySrcLoc = .{ .base_node_inst = tracked_inst, .offset = LazySrcLoc.Offset.nodeOffset(.zero) };
|
|
|
|
var arena: std.heap.ArenaAllocator = .init(gpa);
|
|
defer arena.deinit();
|
|
|
|
var comptime_err_ret_trace: std.array_list.Managed(Zcu.LazySrcLoc) = .init(gpa);
|
|
defer comptime_err_ret_trace.deinit();
|
|
|
|
var sema: Sema = .{
|
|
.pt = pt,
|
|
.gpa = gpa,
|
|
.arena = arena.allocator(),
|
|
.code = zir,
|
|
.owner = .wrap(.{ .type = wip_ty.index }),
|
|
.func_index = .none,
|
|
.func_is_naked = false,
|
|
.fn_ret_ty = .void,
|
|
.fn_ret_ty_ies = null,
|
|
.comptime_err_ret_trace = &comptime_err_ret_trace,
|
|
};
|
|
defer sema.deinit();
|
|
|
|
if (zcu.comp.debugIncremental()) {
|
|
const info = try zcu.incremental_debug_state.getUnitInfo(gpa, sema.owner);
|
|
info.last_update_gen = zcu.generation;
|
|
}
|
|
|
|
try sema.declareDependency(.{ .src_hash = tracked_inst });
|
|
|
|
var block: Block = .{
|
|
.parent = null,
|
|
.sema = &sema,
|
|
.namespace = namespace,
|
|
.instructions = .{},
|
|
.inlining = null,
|
|
.comptime_reason = .{ .reason = .{
|
|
.src = src,
|
|
.r = .{ .simple = .enum_fields },
|
|
} },
|
|
.src_base_inst = tracked_inst,
|
|
.type_name_ctx = type_name,
|
|
};
|
|
defer block.instructions.deinit(gpa);
|
|
|
|
sema.resolveDeclaredEnumInner(
|
|
&block,
|
|
wip_ty,
|
|
inst,
|
|
tracked_inst,
|
|
src,
|
|
small,
|
|
body,
|
|
tag_type_ref,
|
|
any_values,
|
|
fields_len,
|
|
zir,
|
|
body_end,
|
|
) catch |err| switch (err) {
|
|
error.ComptimeBreak => unreachable,
|
|
error.ComptimeReturn => unreachable,
|
|
error.OutOfMemory => |e| return e,
|
|
error.AnalysisFail => {
|
|
if (!zcu.failed_analysis.contains(sema.owner)) {
|
|
try zcu.transitive_failed_analysis.put(gpa, sema.owner, {});
|
|
}
|
|
return error.AnalysisFail;
|
|
},
|
|
};
|
|
}
|
|
|
|
fn resolveDeclaredEnumInner(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
wip_ty: InternPool.WipEnumType,
|
|
inst: Zir.Inst.Index,
|
|
tracked_inst: InternPool.TrackedInst.Index,
|
|
src: LazySrcLoc,
|
|
small: Zir.Inst.EnumDecl.Small,
|
|
body: []const Zir.Inst.Index,
|
|
tag_type_ref: Zir.Inst.Ref,
|
|
any_values: bool,
|
|
fields_len: u32,
|
|
zir: Zir,
|
|
body_end: usize,
|
|
) Zcu.CompileError!void {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const bit_bags_count = std.math.divCeil(usize, fields_len, 32) catch unreachable;
|
|
|
|
const tag_ty_src: LazySrcLoc = .{ .base_node_inst = tracked_inst, .offset = .{ .node_offset_container_tag = .zero } };
|
|
|
|
const int_tag_ty = ty: {
|
|
if (body.len != 0) {
|
|
_ = try sema.analyzeInlineBody(block, body, inst);
|
|
}
|
|
|
|
if (tag_type_ref != .none) {
|
|
const ty = try sema.resolveType(block, tag_ty_src, tag_type_ref);
|
|
if (ty.zigTypeTag(zcu) != .int and ty.zigTypeTag(zcu) != .comptime_int) {
|
|
return sema.fail(block, tag_ty_src, "expected integer tag type, found '{f}'", .{ty.fmt(pt)});
|
|
}
|
|
break :ty ty;
|
|
} else if (fields_len == 0) {
|
|
break :ty try pt.intType(.unsigned, 0);
|
|
} else {
|
|
const bits = std.math.log2_int_ceil(usize, fields_len);
|
|
break :ty try pt.intType(.unsigned, bits);
|
|
}
|
|
};
|
|
|
|
wip_ty.setTagTy(ip, int_tag_ty.toIntern());
|
|
|
|
var extra_index = body_end + bit_bags_count;
|
|
var bit_bag_index: usize = body_end;
|
|
var cur_bit_bag: u32 = undefined;
|
|
var last_tag_val: ?Value = null;
|
|
for (0..fields_len) |field_i_usize| {
|
|
const field_i: u32 = @intCast(field_i_usize);
|
|
if (field_i % 32 == 0) {
|
|
cur_bit_bag = zir.extra[bit_bag_index];
|
|
bit_bag_index += 1;
|
|
}
|
|
const has_tag_value = @as(u1, @truncate(cur_bit_bag)) != 0;
|
|
cur_bit_bag >>= 1;
|
|
|
|
const field_name_index: Zir.NullTerminatedString = @enumFromInt(zir.extra[extra_index]);
|
|
const field_name_zir = zir.nullTerminatedString(field_name_index);
|
|
extra_index += 1; // field name
|
|
|
|
const field_name = try ip.getOrPutString(gpa, pt.tid, field_name_zir, .no_embedded_nulls);
|
|
|
|
const value_src: LazySrcLoc = .{
|
|
.base_node_inst = tracked_inst,
|
|
.offset = .{ .container_field_value = field_i },
|
|
};
|
|
|
|
const tag_overflow = if (has_tag_value) overflow: {
|
|
const tag_val_ref: Zir.Inst.Ref = @enumFromInt(zir.extra[extra_index]);
|
|
extra_index += 1;
|
|
const tag_inst = try sema.resolveInst(tag_val_ref);
|
|
last_tag_val = try sema.resolveConstDefinedValue(block, .{
|
|
.base_node_inst = tracked_inst,
|
|
.offset = .{ .container_field_name = field_i },
|
|
}, tag_inst, .{ .simple = .enum_field_tag_value });
|
|
if (!(try sema.intFitsInType(last_tag_val.?, int_tag_ty, null))) break :overflow true;
|
|
last_tag_val = try pt.getCoerced(last_tag_val.?, int_tag_ty);
|
|
if (wip_ty.nextField(ip, field_name, last_tag_val.?.toIntern())) |conflict| {
|
|
assert(conflict.kind == .value); // AstGen validated names are unique
|
|
const other_field_src: LazySrcLoc = .{
|
|
.base_node_inst = tracked_inst,
|
|
.offset = .{ .container_field_value = conflict.prev_field_idx },
|
|
};
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(value_src, "enum tag value {f} already taken", .{last_tag_val.?.fmtValueSema(pt, sema)});
|
|
errdefer msg.destroy(gpa);
|
|
try sema.errNote(other_field_src, msg, "other occurrence here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
break :overflow false;
|
|
} else if (any_values) overflow: {
|
|
if (last_tag_val) |last_tag| {
|
|
const result = try arith.incrementDefinedInt(sema, int_tag_ty, last_tag);
|
|
last_tag_val = result.val;
|
|
if (result.overflow) break :overflow true;
|
|
} else {
|
|
last_tag_val = try pt.intValue(int_tag_ty, 0);
|
|
}
|
|
if (wip_ty.nextField(ip, field_name, last_tag_val.?.toIntern())) |conflict| {
|
|
assert(conflict.kind == .value); // AstGen validated names are unique
|
|
const other_field_src: LazySrcLoc = .{
|
|
.base_node_inst = tracked_inst,
|
|
.offset = .{ .container_field_value = conflict.prev_field_idx },
|
|
};
|
|
const msg = msg: {
|
|
const msg = try sema.errMsg(value_src, "enum tag value {f} already taken", .{last_tag_val.?.fmtValueSema(pt, sema)});
|
|
errdefer msg.destroy(gpa);
|
|
try sema.errNote(other_field_src, msg, "other occurrence here", .{});
|
|
break :msg msg;
|
|
};
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
break :overflow false;
|
|
} else overflow: {
|
|
assert(wip_ty.nextField(ip, field_name, .none) == null);
|
|
last_tag_val = try pt.intValue(.comptime_int, field_i);
|
|
if (!try sema.intFitsInType(last_tag_val.?, int_tag_ty, null)) break :overflow true;
|
|
last_tag_val = try pt.getCoerced(last_tag_val.?, int_tag_ty);
|
|
break :overflow false;
|
|
};
|
|
|
|
if (tag_overflow) {
|
|
const msg = try sema.errMsg(value_src, "enumeration value '{f}' too large for type '{f}'", .{
|
|
last_tag_val.?.fmtValueSema(pt, sema), int_tag_ty.fmt(pt),
|
|
});
|
|
return sema.failWithOwnedErrorMsg(block, msg);
|
|
}
|
|
}
|
|
if (small.nonexhaustive and int_tag_ty.toIntern() != .comptime_int_type) {
|
|
if (fields_len >= 1 and std.math.log2_int(u64, fields_len) == int_tag_ty.bitSize(zcu)) {
|
|
return sema.fail(block, src, "non-exhaustive enum specifies every value", .{});
|
|
}
|
|
}
|
|
}
|
|
|
|
pub const bitCastVal = @import("Sema/bitcast.zig").bitCast;
|
|
pub const bitCastSpliceVal = @import("Sema/bitcast.zig").bitCastSplice;
|
|
|
|
const loadComptimePtr = @import("Sema/comptime_ptr_access.zig").loadComptimePtr;
|
|
const ComptimeLoadResult = @import("Sema/comptime_ptr_access.zig").ComptimeLoadResult;
|
|
const storeComptimePtr = @import("Sema/comptime_ptr_access.zig").storeComptimePtr;
|
|
const ComptimeStoreResult = @import("Sema/comptime_ptr_access.zig").ComptimeStoreResult;
|
|
|
|
pub fn getBuiltinType(sema: *Sema, src: LazySrcLoc, decl: Zcu.BuiltinDecl) SemaError!Type {
|
|
assert(decl.kind() == .type);
|
|
try sema.ensureMemoizedStateResolved(src, decl.stage());
|
|
return .fromInterned(sema.pt.zcu.builtin_decl_values.get(decl));
|
|
}
|
|
pub fn getBuiltin(sema: *Sema, src: LazySrcLoc, decl: Zcu.BuiltinDecl) SemaError!InternPool.Index {
|
|
assert(decl.kind() != .type);
|
|
try sema.ensureMemoizedStateResolved(src, decl.stage());
|
|
return sema.pt.zcu.builtin_decl_values.get(decl);
|
|
}
|
|
|
|
pub const NavPtrModifiers = struct {
|
|
alignment: Alignment,
|
|
@"linksection": InternPool.OptionalNullTerminatedString,
|
|
@"addrspace": std.builtin.AddressSpace,
|
|
};
|
|
|
|
pub fn resolveNavPtrModifiers(
|
|
sema: *Sema,
|
|
block: *Block,
|
|
zir_decl: Zir.Inst.Declaration.Unwrapped,
|
|
decl_inst: Zir.Inst.Index,
|
|
nav_ty: Type,
|
|
) CompileError!NavPtrModifiers {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const gpa = zcu.gpa;
|
|
const ip = &zcu.intern_pool;
|
|
|
|
const align_src = block.src(.{ .node_offset_var_decl_align = .zero });
|
|
const section_src = block.src(.{ .node_offset_var_decl_section = .zero });
|
|
const addrspace_src = block.src(.{ .node_offset_var_decl_addrspace = .zero });
|
|
|
|
const alignment: InternPool.Alignment = a: {
|
|
const align_body = zir_decl.align_body orelse break :a .none;
|
|
const align_ref = try sema.resolveInlineBody(block, align_body, decl_inst);
|
|
break :a try sema.analyzeAsAlign(block, align_src, align_ref);
|
|
};
|
|
|
|
const @"linksection": InternPool.OptionalNullTerminatedString = ls: {
|
|
const linksection_body = zir_decl.linksection_body orelse break :ls .none;
|
|
const linksection_ref = try sema.resolveInlineBody(block, linksection_body, decl_inst);
|
|
const bytes = try sema.toConstString(block, section_src, linksection_ref, .{ .simple = .@"linksection" });
|
|
if (std.mem.indexOfScalar(u8, bytes, 0) != null) {
|
|
return sema.fail(block, section_src, "linksection cannot contain null bytes", .{});
|
|
} else if (bytes.len == 0) {
|
|
return sema.fail(block, section_src, "linksection cannot be empty", .{});
|
|
}
|
|
break :ls try ip.getOrPutStringOpt(gpa, pt.tid, bytes, .no_embedded_nulls);
|
|
};
|
|
|
|
const @"addrspace": std.builtin.AddressSpace = as: {
|
|
const addrspace_ctx: std.Target.AddressSpaceContext = switch (zir_decl.kind) {
|
|
.@"var" => .variable,
|
|
else => switch (nav_ty.zigTypeTag(zcu)) {
|
|
.@"fn" => .function,
|
|
else => .constant,
|
|
},
|
|
};
|
|
const target = zcu.getTarget();
|
|
const addrspace_body = zir_decl.addrspace_body orelse break :as switch (addrspace_ctx) {
|
|
.function => target_util.defaultAddressSpace(target, .function),
|
|
.variable => target_util.defaultAddressSpace(target, .global_mutable),
|
|
.constant => target_util.defaultAddressSpace(target, .global_constant),
|
|
else => unreachable,
|
|
};
|
|
const addrspace_ref = try sema.resolveInlineBody(block, addrspace_body, decl_inst);
|
|
break :as try sema.analyzeAsAddressSpace(block, addrspace_src, addrspace_ref, addrspace_ctx);
|
|
};
|
|
|
|
return .{
|
|
.alignment = alignment,
|
|
.@"linksection" = @"linksection",
|
|
.@"addrspace" = @"addrspace",
|
|
};
|
|
}
|
|
|
|
pub fn analyzeMemoizedState(sema: *Sema, block: *Block, simple_src: LazySrcLoc, builtin_namespace: InternPool.NamespaceIndex, stage: InternPool.MemoizedStateStage) CompileError!bool {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const ip = &zcu.intern_pool;
|
|
const gpa = zcu.gpa;
|
|
|
|
var any_changed = false;
|
|
|
|
inline for (comptime std.enums.values(Zcu.BuiltinDecl)) |builtin_decl| {
|
|
if (stage == comptime builtin_decl.stage()) {
|
|
const parent_ns: Zcu.Namespace.Index, const parent_name: []const u8, const name: []const u8 = switch (comptime builtin_decl.access()) {
|
|
.direct => |name| .{ builtin_namespace, "std.builtin", name },
|
|
.nested => |nested| access: {
|
|
const parent_ty: Type = .fromInterned(zcu.builtin_decl_values.get(nested[0]));
|
|
const parent_ns = parent_ty.getNamespace(zcu).unwrap() orelse {
|
|
return sema.fail(block, simple_src, "std.builtin.{s} is not a container type", .{@tagName(nested[0])});
|
|
};
|
|
break :access .{ parent_ns, "std.builtin." ++ @tagName(nested[0]), nested[1] };
|
|
},
|
|
};
|
|
|
|
const name_nts = try ip.getOrPutString(gpa, pt.tid, name, .no_embedded_nulls);
|
|
const nav = try sema.namespaceLookup(block, simple_src, parent_ns, name_nts) orelse
|
|
return sema.fail(block, simple_src, "{s} missing {s}", .{ parent_name, name });
|
|
|
|
const src: LazySrcLoc = .{
|
|
.base_node_inst = ip.getNav(nav).srcInst(ip),
|
|
.offset = .nodeOffset(.zero),
|
|
};
|
|
|
|
const result = try sema.analyzeNavVal(block, src, nav);
|
|
|
|
const uncoerced_val = try sema.resolveConstDefinedValue(block, src, result, null);
|
|
const maybe_lazy_val: Value = switch (builtin_decl.kind()) {
|
|
.type => if (uncoerced_val.typeOf(zcu).zigTypeTag(zcu) != .type) {
|
|
return sema.fail(block, src, "{s}.{s} is not a type", .{ parent_name, name });
|
|
} else val: {
|
|
try uncoerced_val.toType().resolveFully(pt);
|
|
break :val uncoerced_val;
|
|
},
|
|
.func => val: {
|
|
const func_ty = try sema.getExpectedBuiltinFnType(builtin_decl);
|
|
const coerced = try sema.coerce(block, func_ty, Air.internedToRef(uncoerced_val.toIntern()), src);
|
|
break :val .fromInterned(coerced.toInterned().?);
|
|
},
|
|
.string => val: {
|
|
const coerced = try sema.coerce(block, .slice_const_u8, Air.internedToRef(uncoerced_val.toIntern()), src);
|
|
break :val .fromInterned(coerced.toInterned().?);
|
|
},
|
|
};
|
|
const val = try sema.resolveLazyValue(maybe_lazy_val);
|
|
|
|
const prev = zcu.builtin_decl_values.get(builtin_decl);
|
|
if (val.toIntern() != prev) {
|
|
zcu.builtin_decl_values.set(builtin_decl, val.toIntern());
|
|
any_changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return any_changed;
|
|
}
|
|
|
|
/// Given that `decl.kind() == .func`, get the type expected of the function.
|
|
fn getExpectedBuiltinFnType(sema: *Sema, decl: Zcu.BuiltinDecl) CompileError!Type {
|
|
const pt = sema.pt;
|
|
return switch (decl) {
|
|
// `noinline fn () void`
|
|
.returnError => try pt.funcType(.{
|
|
.param_types = &.{},
|
|
.return_type = .void_type,
|
|
.is_noinline = true,
|
|
}),
|
|
|
|
// `fn ([]const u8, ?usize) noreturn`
|
|
.@"panic.call" => try pt.funcType(.{
|
|
.param_types = &.{
|
|
.slice_const_u8_type,
|
|
(try pt.optionalType(.usize_type)).toIntern(),
|
|
},
|
|
.return_type = .noreturn_type,
|
|
}),
|
|
|
|
// `fn (anytype, anytype) noreturn`
|
|
.@"panic.sentinelMismatch",
|
|
.@"panic.inactiveUnionField",
|
|
=> try pt.funcType(.{
|
|
.param_types = &.{ .generic_poison_type, .generic_poison_type },
|
|
.return_type = .noreturn_type,
|
|
.is_generic = true,
|
|
}),
|
|
|
|
// `fn (anyerror) noreturn`
|
|
.@"panic.unwrapError" => try pt.funcType(.{
|
|
.param_types = &.{.anyerror_type},
|
|
.return_type = .noreturn_type,
|
|
}),
|
|
|
|
// `fn (usize) noreturn`
|
|
.@"panic.sliceCastLenRemainder" => try pt.funcType(.{
|
|
.param_types = &.{.usize_type},
|
|
.return_type = .noreturn_type,
|
|
}),
|
|
|
|
// `fn (usize, usize) noreturn`
|
|
.@"panic.outOfBounds",
|
|
.@"panic.startGreaterThanEnd",
|
|
=> try pt.funcType(.{
|
|
.param_types = &.{ .usize_type, .usize_type },
|
|
.return_type = .noreturn_type,
|
|
}),
|
|
|
|
// `fn () noreturn`
|
|
.@"panic.reachedUnreachable",
|
|
.@"panic.unwrapNull",
|
|
.@"panic.castToNull",
|
|
.@"panic.incorrectAlignment",
|
|
.@"panic.invalidErrorCode",
|
|
.@"panic.integerOutOfBounds",
|
|
.@"panic.integerOverflow",
|
|
.@"panic.shlOverflow",
|
|
.@"panic.shrOverflow",
|
|
.@"panic.divideByZero",
|
|
.@"panic.exactDivisionRemainder",
|
|
.@"panic.integerPartOutOfBounds",
|
|
.@"panic.corruptSwitch",
|
|
.@"panic.shiftRhsTooBig",
|
|
.@"panic.invalidEnumValue",
|
|
.@"panic.forLenMismatch",
|
|
.@"panic.copyLenMismatch",
|
|
.@"panic.memcpyAlias",
|
|
.@"panic.noreturnReturned",
|
|
=> try pt.funcType(.{
|
|
.param_types = &.{},
|
|
.return_type = .noreturn_type,
|
|
}),
|
|
|
|
else => unreachable,
|
|
};
|
|
}
|