zig/src/codegen/spirv/Module.zig
Jacob Young 917640810e Target: pass and use locals by pointer instead of by value
This struct is larger than 256 bytes and code that copies it
consistently shows up in profiles of the compiler.
2025-06-19 11:45:06 -04:00

795 lines
29 KiB
Zig

//! This structure represents a SPIR-V (sections) module being compiled, and keeps track of all relevant information.
//! That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
//! of data which needs to be persistent over different calls to Decl code generation.
//!
//! A SPIR-V binary module supports both little- and big endian layout. The layout is detected by the magic word in the
//! header. Therefore, we can ignore any byte order throughout the implementation, and just use the host byte order,
//! and make this a problem for the consumer.
const Module = @This();
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const autoHashStrat = std.hash.autoHashStrat;
const Wyhash = std.hash.Wyhash;
const spec = @import("spec.zig");
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const Section = @import("Section.zig");
/// This structure represents a function that isc in-progress of being emitted.
/// Commonly, the contents of this structure will be merged with the appropriate
/// sections of the module and re-used. Note that the SPIR-V module system makes
/// no attempt of compacting result-id's, so any Fn instance should ultimately
/// be merged into the module it's result-id's are allocated from.
pub const Fn = struct {
/// The prologue of this function; this section contains the function's
/// OpFunction, OpFunctionParameter, OpLabel and OpVariable instructions, and
/// is separated from the actual function contents as OpVariable instructions
/// must appear in the first block of a function definition.
prologue: Section = .{},
/// The code of the body of this function.
/// This section should also contain the OpFunctionEnd instruction marking
/// the end of this function definition.
body: Section = .{},
/// The decl dependencies that this function depends on.
decl_deps: std.AutoArrayHashMapUnmanaged(Decl.Index, void) = .empty,
/// Reset this function without deallocating resources, so that
/// it may be used to emit code for another function.
pub fn reset(self: *Fn) void {
self.prologue.reset();
self.body.reset();
self.decl_deps.clearRetainingCapacity();
}
/// Free the resources owned by this function.
pub fn deinit(self: *Fn, a: Allocator) void {
self.prologue.deinit(a);
self.body.deinit(a);
self.decl_deps.deinit(a);
self.* = undefined;
}
};
/// Declarations, both functions and globals, can have dependencies. These are used for 2 things:
/// - Globals must be declared before they are used, also between globals. The compiler processes
/// globals unordered, so we must use the dependencies here to figure out how to order the globals
/// in the final module. The Globals structure is also used for that.
/// - Entry points must declare the complete list of OpVariable instructions that they access.
/// For these we use the same dependency structure.
/// In this mechanism, globals will only depend on other globals, while functions may depend on
/// globals or other functions.
pub const Decl = struct {
/// Index to refer to a Decl by.
pub const Index = enum(u32) { _ };
/// Useful to tell what kind of decl this is, and hold the result-id or field index
/// to be used for this decl.
pub const Kind = enum {
func,
global,
invocation_global,
};
/// See comment on Kind
kind: Kind,
/// The result-id associated to this decl. The specific meaning of this depends on `kind`:
/// - For `func`, this is the result-id of the associated OpFunction instruction.
/// - For `global`, this is the result-id of the associated OpVariable instruction.
/// - For `invocation_global`, this is the result-id of the associated InvocationGlobal instruction.
result_id: IdRef,
/// The offset of the first dependency of this decl in the `decl_deps` array.
begin_dep: u32,
/// The past-end offset of the dependencies of this decl in the `decl_deps` array.
end_dep: u32,
};
/// This models a kernel entry point.
pub const EntryPoint = struct {
/// The declaration that should be exported.
decl_index: ?Decl.Index = null,
/// The name of the kernel to be exported.
name: ?[]const u8 = null,
/// Calling Convention
exec_model: ?spec.ExecutionModel = null,
exec_mode: ?spec.ExecutionMode = null,
};
/// A general-purpose allocator which may be used to allocate resources for this module
gpa: Allocator,
/// Arena for things that need to live for the length of this program.
arena: std.heap.ArenaAllocator,
/// Target info
target: *const std.Target,
/// The target SPIR-V version
version: spec.Version,
/// Module layout, according to SPIR-V Spec section 2.4, "Logical Layout of a Module".
sections: struct {
/// Capability instructions
capabilities: Section = .{},
/// OpExtension instructions
extensions: Section = .{},
/// OpExtInstImport
extended_instruction_set: Section = .{},
/// memory model defined by target
memory_model: Section = .{},
/// OpEntryPoint instructions - Handled by `self.entry_points`.
/// OpExecutionMode and OpExecutionModeId instructions.
execution_modes: Section = .{},
/// OpString, OpSourcExtension, OpSource, OpSourceContinued.
debug_strings: Section = .{},
// OpName, OpMemberName.
debug_names: Section = .{},
// OpModuleProcessed - skip for now.
/// Annotation instructions (OpDecorate etc).
annotations: Section = .{},
/// Type declarations, constants, global variables
/// From this section, OpLine and OpNoLine is allowed.
/// According to the SPIR-V documentation, this section normally
/// also holds type and constant instructions. These are managed
/// via the cache instead, which is the sole structure that
/// manages that section. These will be inserted between this and
/// the previous section when emitting the final binary.
/// TODO: Do we need this section? Globals are also managed with another mechanism.
types_globals_constants: Section = .{},
// Functions without a body - skip for now.
/// Regular function definitions.
functions: Section = .{},
} = .{},
/// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these.
next_result_id: Word,
/// Cache for results of OpString instructions.
strings: std.StringArrayHashMapUnmanaged(IdRef) = .empty,
/// Some types shouldn't be emitted more than one time, but cannot be caught by
/// the `intern_map` during codegen. Sometimes, IDs are compared to check if
/// types are the same, so we can't delay until the dedup pass. Therefore,
/// this is an ad-hoc structure to cache types where required.
/// According to the SPIR-V specification, section 2.8, this includes all non-aggregate
/// non-pointer types.
/// Additionally, this is used for other values which can be cached, for example,
/// built-in variables.
cache: struct {
bool_type: ?IdRef = null,
void_type: ?IdRef = null,
int_types: std.AutoHashMapUnmanaged(std.builtin.Type.Int, IdRef) = .empty,
float_types: std.AutoHashMapUnmanaged(std.builtin.Type.Float, IdRef) = .empty,
vector_types: std.AutoHashMapUnmanaged(struct { IdRef, u32 }, IdRef) = .empty,
array_types: std.AutoHashMapUnmanaged(struct { IdRef, IdRef }, IdRef) = .empty,
capabilities: std.AutoHashMapUnmanaged(spec.Capability, void) = .empty,
extensions: std.StringHashMapUnmanaged(void) = .empty,
extended_instruction_set: std.AutoHashMapUnmanaged(spec.InstructionSet, IdRef) = .empty,
decorations: std.AutoHashMapUnmanaged(struct { IdRef, spec.Decoration }, void) = .empty,
builtins: std.AutoHashMapUnmanaged(struct { IdRef, spec.BuiltIn }, Decl.Index) = .empty,
bool_const: [2]?IdRef = .{ null, null },
} = .{},
/// Set of Decls, referred to by Decl.Index.
decls: std.ArrayListUnmanaged(Decl) = .empty,
/// List of dependencies, per decl. This list holds all the dependencies, sliced by the
/// begin_dep and end_dep in `self.decls`.
decl_deps: std.ArrayListUnmanaged(Decl.Index) = .empty,
/// The list of entry points that should be exported from this module.
entry_points: std.AutoArrayHashMapUnmanaged(IdRef, EntryPoint) = .empty,
pub fn init(gpa: Allocator, target: *const std.Target) Module {
const version_minor: u8 = blk: {
// Prefer higher versions
if (target.cpu.has(.spirv, .v1_6)) break :blk 6;
if (target.cpu.has(.spirv, .v1_5)) break :blk 5;
if (target.cpu.has(.spirv, .v1_4)) break :blk 4;
if (target.cpu.has(.spirv, .v1_3)) break :blk 3;
if (target.cpu.has(.spirv, .v1_2)) break :blk 2;
if (target.cpu.has(.spirv, .v1_1)) break :blk 1;
break :blk 0;
};
return .{
.gpa = gpa,
.arena = std.heap.ArenaAllocator.init(gpa),
.target = target,
.version = .{ .major = 1, .minor = version_minor },
.next_result_id = 1, // 0 is an invalid SPIR-V result id, so start counting at 1.
};
}
pub fn deinit(self: *Module) void {
self.sections.capabilities.deinit(self.gpa);
self.sections.extensions.deinit(self.gpa);
self.sections.extended_instruction_set.deinit(self.gpa);
self.sections.memory_model.deinit(self.gpa);
self.sections.execution_modes.deinit(self.gpa);
self.sections.debug_strings.deinit(self.gpa);
self.sections.debug_names.deinit(self.gpa);
self.sections.annotations.deinit(self.gpa);
self.sections.types_globals_constants.deinit(self.gpa);
self.sections.functions.deinit(self.gpa);
self.strings.deinit(self.gpa);
self.cache.int_types.deinit(self.gpa);
self.cache.float_types.deinit(self.gpa);
self.cache.vector_types.deinit(self.gpa);
self.cache.array_types.deinit(self.gpa);
self.cache.capabilities.deinit(self.gpa);
self.cache.extensions.deinit(self.gpa);
self.cache.extended_instruction_set.deinit(self.gpa);
self.cache.decorations.deinit(self.gpa);
self.cache.builtins.deinit(self.gpa);
self.decls.deinit(self.gpa);
self.decl_deps.deinit(self.gpa);
self.entry_points.deinit(self.gpa);
self.arena.deinit();
self.* = undefined;
}
pub const IdRange = struct {
base: u32,
len: u32,
pub fn at(range: IdRange, i: usize) IdResult {
assert(i < range.len);
return @enumFromInt(range.base + i);
}
};
pub fn allocIds(self: *Module, n: u32) IdRange {
defer self.next_result_id += n;
return .{
.base = self.next_result_id,
.len = n,
};
}
pub fn allocId(self: *Module) IdResult {
return self.allocIds(1).at(0);
}
pub fn idBound(self: Module) Word {
return self.next_result_id;
}
pub fn hasFeature(self: *Module, feature: std.Target.spirv.Feature) bool {
return self.target.cpu.has(.spirv, feature);
}
fn addEntryPointDeps(
self: *Module,
decl_index: Decl.Index,
seen: *std.DynamicBitSetUnmanaged,
interface: *std.ArrayList(IdRef),
) !void {
const decl = self.declPtr(decl_index);
const deps = self.decl_deps.items[decl.begin_dep..decl.end_dep];
if (seen.isSet(@intFromEnum(decl_index))) {
return;
}
seen.set(@intFromEnum(decl_index));
if (decl.kind == .global) {
try interface.append(decl.result_id);
}
for (deps) |dep| {
try self.addEntryPointDeps(dep, seen, interface);
}
}
fn entryPoints(self: *Module) !Section {
var entry_points = Section{};
errdefer entry_points.deinit(self.gpa);
var interface = std.ArrayList(IdRef).init(self.gpa);
defer interface.deinit();
var seen = try std.DynamicBitSetUnmanaged.initEmpty(self.gpa, self.decls.items.len);
defer seen.deinit(self.gpa);
for (self.entry_points.keys(), self.entry_points.values()) |entry_point_id, entry_point| {
interface.items.len = 0;
seen.setRangeValue(.{ .start = 0, .end = self.decls.items.len }, false);
try self.addEntryPointDeps(entry_point.decl_index.?, &seen, &interface);
try entry_points.emit(self.gpa, .OpEntryPoint, .{
.execution_model = entry_point.exec_model.?,
.entry_point = entry_point_id,
.name = entry_point.name.?,
.interface = interface.items,
});
if (entry_point.exec_mode == null and entry_point.exec_model == .Fragment) {
switch (self.target.os.tag) {
.vulkan, .opengl => |tag| {
try self.sections.execution_modes.emit(self.gpa, .OpExecutionMode, .{
.entry_point = entry_point_id,
.mode = if (tag == .vulkan) .OriginUpperLeft else .OriginLowerLeft,
});
},
.opencl => {},
else => unreachable,
}
}
}
return entry_points;
}
pub fn finalize(self: *Module, a: Allocator) ![]Word {
// Emit capabilities and extensions
for (std.Target.spirv.all_features) |feature| {
if (self.target.cpu.features.isEnabled(feature.index)) {
const feature_tag: std.Target.spirv.Feature = @enumFromInt(feature.index);
switch (feature_tag) {
// Versions
.v1_0, .v1_1, .v1_2, .v1_3, .v1_4, .v1_5, .v1_6 => {},
// Features with no dependencies
.int64 => try self.addCapability(.Int64),
.float16 => try self.addCapability(.Float16),
.float64 => try self.addCapability(.Float64),
.matrix => try self.addCapability(.Matrix),
.storage_push_constant16 => {
try self.addExtension("SPV_KHR_16bit_storage");
try self.addCapability(.StoragePushConstant16);
},
.arbitrary_precision_integers => {
try self.addExtension("SPV_INTEL_arbitrary_precision_integers");
try self.addCapability(.ArbitraryPrecisionIntegersINTEL);
},
.addresses => try self.addCapability(.Addresses),
// Kernel
.kernel => try self.addCapability(.Kernel),
.generic_pointer => try self.addCapability(.GenericPointer),
.vector16 => try self.addCapability(.Vector16),
// Shader
.shader => try self.addCapability(.Shader),
.variable_pointers => {
try self.addExtension("SPV_KHR_variable_pointers");
try self.addCapability(.VariablePointersStorageBuffer);
try self.addCapability(.VariablePointers);
},
.physical_storage_buffer => {
try self.addExtension("SPV_KHR_physical_storage_buffer");
try self.addCapability(.PhysicalStorageBufferAddresses);
},
}
}
}
// These are well supported
try self.addCapability(.Int8);
try self.addCapability(.Int16);
// Emit memory model
const addressing_model: spec.AddressingModel = blk: {
if (self.hasFeature(.shader)) {
if (self.hasFeature(.physical_storage_buffer)) {
assert(self.target.cpu.arch == .spirv64);
break :blk .PhysicalStorageBuffer64;
}
assert(self.target.cpu.arch == .spirv);
break :blk .Logical;
}
assert(self.hasFeature(.kernel));
break :blk switch (self.target.cpu.arch) {
.spirv32 => .Physical32,
.spirv64 => .Physical64,
else => unreachable,
};
};
try self.sections.memory_model.emit(self.gpa, .OpMemoryModel, .{
.addressing_model = addressing_model,
.memory_model = switch (self.target.os.tag) {
.opencl => .OpenCL,
.vulkan, .opengl => .GLSL450,
else => unreachable,
},
});
// See SPIR-V Spec section 2.3, "Physical Layout of a SPIR-V Module and Instruction"
// TODO: Audit calls to allocId() in this function to make it idempotent.
var entry_points = try self.entryPoints();
defer entry_points.deinit(self.gpa);
const header = [_]Word{
spec.magic_number,
self.version.toWord(),
spec.zig_generator_id,
self.idBound(),
0, // Schema (currently reserved for future use)
};
var source = Section{};
defer source.deinit(self.gpa);
try self.sections.debug_strings.emit(self.gpa, .OpSource, .{
.source_language = .Zig,
.version = 0,
// We cannot emit these because the Khronos translator does not parse this instruction
// correctly.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/2188
.file = null,
.source = null,
});
// Note: needs to be kept in order according to section 2.3!
const buffers = &[_][]const Word{
&header,
self.sections.capabilities.toWords(),
self.sections.extensions.toWords(),
self.sections.extended_instruction_set.toWords(),
self.sections.memory_model.toWords(),
entry_points.toWords(),
self.sections.execution_modes.toWords(),
source.toWords(),
self.sections.debug_strings.toWords(),
self.sections.debug_names.toWords(),
self.sections.annotations.toWords(),
self.sections.types_globals_constants.toWords(),
self.sections.functions.toWords(),
};
var total_result_size: usize = 0;
for (buffers) |buffer| {
total_result_size += buffer.len;
}
const result = try a.alloc(Word, total_result_size);
errdefer a.free(result);
var offset: usize = 0;
for (buffers) |buffer| {
@memcpy(result[offset..][0..buffer.len], buffer);
offset += buffer.len;
}
return result;
}
/// Merge the sections making up a function declaration into this module.
pub fn addFunction(self: *Module, decl_index: Decl.Index, func: Fn) !void {
try self.sections.functions.append(self.gpa, func.prologue);
try self.sections.functions.append(self.gpa, func.body);
try self.declareDeclDeps(decl_index, func.decl_deps.keys());
}
pub fn addCapability(self: *Module, cap: spec.Capability) !void {
const entry = try self.cache.capabilities.getOrPut(self.gpa, cap);
if (entry.found_existing) return;
try self.sections.capabilities.emit(self.gpa, .OpCapability, .{ .capability = cap });
}
pub fn addExtension(self: *Module, ext: []const u8) !void {
const entry = try self.cache.extensions.getOrPut(self.gpa, ext);
if (entry.found_existing) return;
try self.sections.extensions.emit(self.gpa, .OpExtension, .{ .name = ext });
}
/// Imports or returns the existing id of an extended instruction set
pub fn importInstructionSet(self: *Module, set: spec.InstructionSet) !IdRef {
assert(set != .core);
const gop = try self.cache.extended_instruction_set.getOrPut(self.gpa, set);
if (gop.found_existing) return gop.value_ptr.*;
const result_id = self.allocId();
try self.sections.extended_instruction_set.emit(self.gpa, .OpExtInstImport, .{
.id_result = result_id,
.name = @tagName(set),
});
gop.value_ptr.* = result_id;
return result_id;
}
/// Fetch the result-id of an instruction corresponding to a string.
pub fn resolveString(self: *Module, string: []const u8) !IdRef {
if (self.strings.get(string)) |id| {
return id;
}
const id = self.allocId();
try self.strings.put(self.gpa, try self.arena.allocator().dupe(u8, string), id);
try self.sections.debug_strings.emit(self.gpa, .OpString, .{
.id_result = id,
.string = string,
});
return id;
}
pub fn structType(self: *Module, result_id: IdResult, types: []const IdRef, maybe_names: ?[]const []const u8) !void {
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeStruct, .{
.id_result = result_id,
.id_ref = types,
});
if (maybe_names) |names| {
assert(names.len == types.len);
for (names, 0..) |name, i| {
try self.memberDebugName(result_id, @intCast(i), name);
}
}
}
pub fn boolType(self: *Module) !IdRef {
if (self.cache.bool_type) |id| return id;
const result_id = self.allocId();
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeBool, .{
.id_result = result_id,
});
self.cache.bool_type = result_id;
return result_id;
}
pub fn voidType(self: *Module) !IdRef {
if (self.cache.void_type) |id| return id;
const result_id = self.allocId();
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeVoid, .{
.id_result = result_id,
});
self.cache.void_type = result_id;
try self.debugName(result_id, "void");
return result_id;
}
pub fn intType(self: *Module, signedness: std.builtin.Signedness, bits: u16) !IdRef {
assert(bits > 0);
const entry = try self.cache.int_types.getOrPut(self.gpa, .{ .signedness = signedness, .bits = bits });
if (!entry.found_existing) {
const result_id = self.allocId();
entry.value_ptr.* = result_id;
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeInt, .{
.id_result = result_id,
.width = bits,
.signedness = switch (signedness) {
.signed => 1,
.unsigned => 0,
},
});
switch (signedness) {
.signed => try self.debugNameFmt(result_id, "i{}", .{bits}),
.unsigned => try self.debugNameFmt(result_id, "u{}", .{bits}),
}
}
return entry.value_ptr.*;
}
pub fn floatType(self: *Module, bits: u16) !IdRef {
assert(bits > 0);
const entry = try self.cache.float_types.getOrPut(self.gpa, .{ .bits = bits });
if (!entry.found_existing) {
const result_id = self.allocId();
entry.value_ptr.* = result_id;
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeFloat, .{
.id_result = result_id,
.width = bits,
});
try self.debugNameFmt(result_id, "f{}", .{bits});
}
return entry.value_ptr.*;
}
pub fn vectorType(self: *Module, len: u32, child_ty_id: IdRef) !IdRef {
const entry = try self.cache.vector_types.getOrPut(self.gpa, .{ child_ty_id, len });
if (!entry.found_existing) {
const result_id = self.allocId();
entry.value_ptr.* = result_id;
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeVector, .{
.id_result = result_id,
.component_type = child_ty_id,
.component_count = len,
});
}
return entry.value_ptr.*;
}
pub fn arrayType(self: *Module, len_id: IdRef, child_ty_id: IdRef) !IdRef {
const entry = try self.cache.array_types.getOrPut(self.gpa, .{ child_ty_id, len_id });
if (!entry.found_existing) {
const result_id = self.allocId();
entry.value_ptr.* = result_id;
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeArray, .{
.id_result = result_id,
.element_type = child_ty_id,
.length = len_id,
});
}
return entry.value_ptr.*;
}
pub fn functionType(self: *Module, return_ty_id: IdRef, param_type_ids: []const IdRef) !IdRef {
const result_id = self.allocId();
try self.sections.types_globals_constants.emit(self.gpa, .OpTypeFunction, .{
.id_result = result_id,
.return_type = return_ty_id,
.id_ref_2 = param_type_ids,
});
return result_id;
}
pub fn constant(self: *Module, result_ty_id: IdRef, value: spec.LiteralContextDependentNumber) !IdRef {
const result_id = self.allocId();
const section = &self.sections.types_globals_constants;
try section.emit(self.gpa, .OpConstant, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.value = value,
});
return result_id;
}
pub fn constBool(self: *Module, value: bool) !IdRef {
if (self.cache.bool_const[@intFromBool(value)]) |b| return b;
const result_ty_id = try self.boolType();
const result_id = self.allocId();
self.cache.bool_const[@intFromBool(value)] = result_id;
switch (value) {
inline else => |value_ct| try self.sections.types_globals_constants.emit(
self.gpa,
if (value_ct) .OpConstantTrue else .OpConstantFalse,
.{
.id_result_type = result_ty_id,
.id_result = result_id,
},
),
}
return result_id;
}
/// Return a pointer to a builtin variable. `result_ty_id` must be a **pointer**
/// with storage class `.Input`.
pub fn builtin(self: *Module, result_ty_id: IdRef, spirv_builtin: spec.BuiltIn) !Decl.Index {
const entry = try self.cache.builtins.getOrPut(self.gpa, .{ result_ty_id, spirv_builtin });
if (!entry.found_existing) {
const decl_index = try self.allocDecl(.global);
const result_id = self.declPtr(decl_index).result_id;
entry.value_ptr.* = decl_index;
try self.sections.types_globals_constants.emit(self.gpa, .OpVariable, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.storage_class = .Input,
});
try self.decorate(result_id, .{ .BuiltIn = .{ .built_in = spirv_builtin } });
try self.declareDeclDeps(decl_index, &.{});
}
return entry.value_ptr.*;
}
pub fn constUndef(self: *Module, ty_id: IdRef) !IdRef {
const result_id = self.allocId();
try self.sections.types_globals_constants.emit(self.gpa, .OpUndef, .{
.id_result_type = ty_id,
.id_result = result_id,
});
return result_id;
}
pub fn constNull(self: *Module, ty_id: IdRef) !IdRef {
const result_id = self.allocId();
try self.sections.types_globals_constants.emit(self.gpa, .OpConstantNull, .{
.id_result_type = ty_id,
.id_result = result_id,
});
return result_id;
}
/// Decorate a result-id.
pub fn decorate(
self: *Module,
target: IdRef,
decoration: spec.Decoration.Extended,
) !void {
const entry = try self.cache.decorations.getOrPut(self.gpa, .{ target, decoration });
if (!entry.found_existing) {
try self.sections.annotations.emit(self.gpa, .OpDecorate, .{
.target = target,
.decoration = decoration,
});
}
}
/// Decorate a result-id which is a member of some struct.
/// We really don't have to and shouldn't need to cache this.
pub fn decorateMember(
self: *Module,
structure_type: IdRef,
member: u32,
decoration: spec.Decoration.Extended,
) !void {
try self.sections.annotations.emit(self.gpa, .OpMemberDecorate, .{
.structure_type = structure_type,
.member = member,
.decoration = decoration,
});
}
pub fn allocDecl(self: *Module, kind: Decl.Kind) !Decl.Index {
try self.decls.append(self.gpa, .{
.kind = kind,
.result_id = self.allocId(),
.begin_dep = undefined,
.end_dep = undefined,
});
return @as(Decl.Index, @enumFromInt(@as(u32, @intCast(self.decls.items.len - 1))));
}
pub fn declPtr(self: *Module, index: Decl.Index) *Decl {
return &self.decls.items[@intFromEnum(index)];
}
/// Declare ALL dependencies for a decl.
pub fn declareDeclDeps(self: *Module, decl_index: Decl.Index, deps: []const Decl.Index) !void {
const begin_dep: u32 = @intCast(self.decl_deps.items.len);
try self.decl_deps.appendSlice(self.gpa, deps);
const end_dep: u32 = @intCast(self.decl_deps.items.len);
const decl = self.declPtr(decl_index);
decl.begin_dep = begin_dep;
decl.end_dep = end_dep;
}
/// Declare a SPIR-V function as an entry point. This causes an extra wrapper
/// function to be generated, which is then exported as the real entry point. The purpose of this
/// wrapper is to allocate and initialize the structure holding the instance globals.
pub fn declareEntryPoint(
self: *Module,
decl_index: Decl.Index,
name: []const u8,
exec_model: spec.ExecutionModel,
exec_mode: ?spec.ExecutionMode,
) !void {
const gop = try self.entry_points.getOrPut(self.gpa, self.declPtr(decl_index).result_id);
gop.value_ptr.decl_index = decl_index;
gop.value_ptr.name = try self.arena.allocator().dupe(u8, name);
gop.value_ptr.exec_model = exec_model;
// Might've been set by assembler
if (!gop.found_existing) gop.value_ptr.exec_mode = exec_mode;
}
pub fn debugName(self: *Module, target: IdResult, name: []const u8) !void {
try self.sections.debug_names.emit(self.gpa, .OpName, .{
.target = target,
.name = name,
});
}
pub fn debugNameFmt(self: *Module, target: IdResult, comptime fmt: []const u8, args: anytype) !void {
const name = try std.fmt.allocPrint(self.gpa, fmt, args);
defer self.gpa.free(name);
try self.debugName(target, name);
}
pub fn memberDebugName(self: *Module, target: IdResult, member: u32, name: []const u8) !void {
try self.sections.debug_names.emit(self.gpa, .OpMemberName, .{
.type = target,
.member = member,
.name = name,
});
}