mirror of
https://github.com/ziglang/zig.git
synced 2025-12-25 15:43:06 +00:00
If these functions are called more than once, then the array list would no longer be guaranteed to have enough capacity during the appendAssumeCapacity calls. With ensureUnusedCapacity, they will always be guaranteed to have enough capacity regardless of how many times the function is called.
987 lines
44 KiB
Zig
987 lines
44 KiB
Zig
const std = @import("std");
|
|
const Allocator = std.mem.Allocator;
|
|
const Target = std.Target;
|
|
const log = std.log.scoped(.codegen);
|
|
const assert = std.debug.assert;
|
|
|
|
const spec = @import("spirv/spec.zig");
|
|
const Opcode = spec.Opcode;
|
|
|
|
const Module = @import("../Module.zig");
|
|
const Decl = Module.Decl;
|
|
const Type = @import("../type.zig").Type;
|
|
const Value = @import("../value.zig").Value;
|
|
const LazySrcLoc = Module.LazySrcLoc;
|
|
const Air = @import("../Air.zig");
|
|
const Liveness = @import("../Liveness.zig");
|
|
|
|
pub const Word = u32;
|
|
pub const ResultId = u32;
|
|
|
|
pub const TypeMap = std.HashMap(Type, u32, Type.HashContext64, std.hash_map.default_max_load_percentage);
|
|
pub const InstMap = std.AutoHashMap(Air.Inst.Index, ResultId);
|
|
|
|
const IncomingBlock = struct {
|
|
src_label_id: ResultId,
|
|
break_value_id: ResultId,
|
|
};
|
|
|
|
pub const BlockMap = std.AutoHashMap(Air.Inst.Index, struct {
|
|
label_id: ResultId,
|
|
incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
|
|
});
|
|
|
|
pub fn writeOpcode(code: *std.ArrayList(Word), opcode: Opcode, arg_count: u16) !void {
|
|
const word_count: Word = arg_count + 1;
|
|
try code.append((word_count << 16) | @enumToInt(opcode));
|
|
}
|
|
|
|
pub fn writeInstruction(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word) !void {
|
|
try writeOpcode(code, opcode, @intCast(u16, args.len));
|
|
try code.appendSlice(args);
|
|
}
|
|
|
|
pub fn writeInstructionWithString(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word, str: []const u8) !void {
|
|
// Str needs to be written zero-terminated, so we need to add one to the length.
|
|
const zero_terminated_len = str.len + 1;
|
|
const str_words = (zero_terminated_len + @sizeOf(Word) - 1) / @sizeOf(Word);
|
|
|
|
try writeOpcode(code, opcode, @intCast(u16, args.len + str_words));
|
|
try code.ensureUnusedCapacity(args.len + str_words);
|
|
code.appendSliceAssumeCapacity(args);
|
|
|
|
// TODO: Not actually sure whether this is correct for big-endian.
|
|
// See https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#Literal
|
|
var i: usize = 0;
|
|
while (i < zero_terminated_len) : (i += @sizeOf(Word)) {
|
|
var word: Word = 0;
|
|
|
|
var j: usize = 0;
|
|
while (j < @sizeOf(Word) and i + j < str.len) : (j += 1) {
|
|
word |= @as(Word, str[i + j]) << @intCast(std.math.Log2Int(Word), j * std.meta.bitCount(u8));
|
|
}
|
|
|
|
code.appendAssumeCapacity(word);
|
|
}
|
|
}
|
|
|
|
/// This structure represents a SPIR-V (binary) module being compiled, and keeps track of all relevant information.
|
|
/// That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
|
|
/// of data which needs to be persistent over different calls to Decl code generation.
|
|
pub const SPIRVModule = struct {
|
|
/// A general-purpose allocator which may be used to allocate temporary resources required for compilation.
|
|
gpa: *Allocator,
|
|
|
|
/// The parent module.
|
|
module: *Module,
|
|
|
|
/// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these.
|
|
next_result_id: ResultId,
|
|
|
|
/// Code of the actual SPIR-V binary, divided into the relevant logical sections.
|
|
/// Note: To save some bytes, these could also be unmanaged, but since there is only one instance of SPIRVModule
|
|
/// and this removes some clutter in the rest of the backend, it's fine like this.
|
|
binary: struct {
|
|
/// OpCapability and OpExtension instructions (in that order).
|
|
capabilities_and_extensions: std.ArrayList(Word),
|
|
|
|
/// OpString, OpSourceExtension, OpSource, OpSourceContinued.
|
|
debug_strings: std.ArrayList(Word),
|
|
|
|
/// Type declaration instructions, constant instructions, global variable declarations, OpUndef instructions.
|
|
types_globals_constants: std.ArrayList(Word),
|
|
|
|
/// Regular functions.
|
|
fn_decls: std.ArrayList(Word),
|
|
},
|
|
|
|
/// Global type cache to reduce the amount of generated types.
|
|
types: TypeMap,
|
|
|
|
/// Cache for results of OpString instructions for module file names fed to OpSource.
|
|
/// Since OpString is pretty much only used for those, we don't need to keep track of all strings,
|
|
/// just the ones for OpLine. Note that OpLine needs the result of OpString, and not that of OpSource.
|
|
file_names: std.StringHashMap(ResultId),
|
|
|
|
pub fn init(gpa: *Allocator, module: *Module) SPIRVModule {
|
|
return .{
|
|
.gpa = gpa,
|
|
.module = module,
|
|
.next_result_id = 1, // 0 is an invalid SPIR-V result ID.
|
|
.binary = .{
|
|
.capabilities_and_extensions = std.ArrayList(Word).init(gpa),
|
|
.debug_strings = std.ArrayList(Word).init(gpa),
|
|
.types_globals_constants = std.ArrayList(Word).init(gpa),
|
|
.fn_decls = std.ArrayList(Word).init(gpa),
|
|
},
|
|
.types = TypeMap.init(gpa),
|
|
.file_names = std.StringHashMap(ResultId).init(gpa),
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *SPIRVModule) void {
|
|
self.file_names.deinit();
|
|
self.types.deinit();
|
|
|
|
self.binary.fn_decls.deinit();
|
|
self.binary.types_globals_constants.deinit();
|
|
self.binary.debug_strings.deinit();
|
|
self.binary.capabilities_and_extensions.deinit();
|
|
}
|
|
|
|
pub fn allocResultId(self: *SPIRVModule) Word {
|
|
defer self.next_result_id += 1;
|
|
return self.next_result_id;
|
|
}
|
|
|
|
pub fn resultIdBound(self: *SPIRVModule) Word {
|
|
return self.next_result_id;
|
|
}
|
|
|
|
fn resolveSourceFileName(self: *SPIRVModule, decl: *Decl) !ResultId {
|
|
const path = decl.getFileScope().sub_file_path;
|
|
const result = try self.file_names.getOrPut(path);
|
|
if (!result.found_existing) {
|
|
result.value_ptr.* = self.allocResultId();
|
|
try writeInstructionWithString(&self.binary.debug_strings, .OpString, &[_]Word{result.value_ptr.*}, path);
|
|
try writeInstruction(&self.binary.debug_strings, .OpSource, &[_]Word{
|
|
@enumToInt(spec.SourceLanguage.Unknown), // TODO: Register Zig source language.
|
|
0, // TODO: Zig version as u32?
|
|
result.value_ptr.*,
|
|
});
|
|
}
|
|
|
|
return result.value_ptr.*;
|
|
}
|
|
};
|
|
|
|
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
|
|
pub const DeclGen = struct {
|
|
/// The SPIR-V module code should be put in.
|
|
spv: *SPIRVModule,
|
|
|
|
air: Air,
|
|
liveness: Liveness,
|
|
|
|
/// An array of function argument result-ids. Each index corresponds with the
|
|
/// function argument of the same index.
|
|
args: std.ArrayList(ResultId),
|
|
|
|
/// A counter to keep track of how many `arg` instructions we've seen yet.
|
|
next_arg_index: u32,
|
|
|
|
/// A map keeping track of which instruction generated which result-id.
|
|
inst_results: InstMap,
|
|
|
|
/// We need to keep track of result ids for block labels, as well as the 'incoming'
|
|
/// blocks for a block.
|
|
blocks: BlockMap,
|
|
|
|
/// The label of the SPIR-V block we are currently generating.
|
|
current_block_label_id: ResultId,
|
|
|
|
/// The actual instructions for this function. We need to declare all locals in
|
|
/// the first block, and because we don't know which locals there are going to be,
|
|
/// we're just going to generate everything after the locals-section in this array.
|
|
/// Note: It will not contain OpFunction, OpFunctionParameter, OpVariable and the
|
|
/// initial OpLabel. These will be generated into spv.binary.fn_decls directly.
|
|
code: std.ArrayList(Word),
|
|
|
|
/// The decl we are currently generating code for.
|
|
decl: *Decl,
|
|
|
|
/// If `gen` returned `Error.AnalysisFail`, this contains an explanatory message.
|
|
/// Memory is owned by `module.gpa`.
|
|
error_msg: ?*Module.ErrorMsg,
|
|
|
|
/// Possible errors the `gen` function may return.
|
|
const Error = error{ AnalysisFail, OutOfMemory };
|
|
|
|
/// This structure is used to return information about a type typically used for
|
|
/// arithmetic operations. These types may either be integers, floats, or a vector
|
|
/// of these. Most scalar operations also work on vectors, so we can easily represent
|
|
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
|
|
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
|
|
const ArithmeticTypeInfo = struct {
|
|
/// A classification of the inner type.
|
|
const Class = enum {
|
|
/// A boolean.
|
|
bool,
|
|
|
|
/// A regular, **native**, integer.
|
|
/// This is only returned when the backend supports this int as a native type (when
|
|
/// the relevant capability is enabled).
|
|
integer,
|
|
|
|
/// A regular float. These are all required to be natively supported. Floating points
|
|
/// for which the relevant capability is not enabled are not emulated.
|
|
float,
|
|
|
|
/// An integer of a 'strange' size (which' bit size is not the same as its backing
|
|
/// type. **Note**: this may **also** include power-of-2 integers for which the
|
|
/// relevant capability is not enabled), but still within the limits of the largest
|
|
/// natively supported integer type.
|
|
strange_integer,
|
|
|
|
/// An integer with more bits than the largest natively supported integer type.
|
|
composite_integer,
|
|
};
|
|
|
|
/// The number of bits in the inner type.
|
|
/// This is the actual number of bits of the type, not the size of the backing integer.
|
|
bits: u16,
|
|
|
|
/// Whether the type is a vector.
|
|
is_vector: bool,
|
|
|
|
/// Whether the inner type is signed. Only relevant for integers.
|
|
signedness: std.builtin.Signedness,
|
|
|
|
/// A classification of the inner type. These scenarios
|
|
/// will all have to be handled slightly different.
|
|
class: Class,
|
|
};
|
|
|
|
/// Initialize the common resources of a DeclGen. Some fields are left uninitialized,
|
|
/// only set when `gen` is called.
|
|
pub fn init(spv: *SPIRVModule) DeclGen {
|
|
return .{
|
|
.spv = spv,
|
|
.air = undefined,
|
|
.liveness = undefined,
|
|
.args = std.ArrayList(ResultId).init(spv.gpa),
|
|
.next_arg_index = undefined,
|
|
.inst_results = InstMap.init(spv.gpa),
|
|
.blocks = BlockMap.init(spv.gpa),
|
|
.current_block_label_id = undefined,
|
|
.code = std.ArrayList(Word).init(spv.gpa),
|
|
.decl = undefined,
|
|
.error_msg = undefined,
|
|
};
|
|
}
|
|
|
|
/// Generate the code for `decl`. If a reportable error occurred during code generation,
|
|
/// a message is returned by this function. Callee owns the memory. If this function
|
|
/// returns such a reportable error, it is valid to be called again for a different decl.
|
|
pub fn gen(self: *DeclGen, decl: *Decl, air: Air, liveness: Liveness) !?*Module.ErrorMsg {
|
|
// Reset internal resources, we don't want to re-allocate these.
|
|
self.air = air;
|
|
self.liveness = liveness;
|
|
self.args.items.len = 0;
|
|
self.next_arg_index = 0;
|
|
self.inst_results.clearRetainingCapacity();
|
|
self.blocks.clearRetainingCapacity();
|
|
self.current_block_label_id = undefined;
|
|
self.code.items.len = 0;
|
|
self.decl = decl;
|
|
self.error_msg = null;
|
|
|
|
try self.genDecl();
|
|
return self.error_msg;
|
|
}
|
|
|
|
/// Free resources owned by the DeclGen.
|
|
pub fn deinit(self: *DeclGen) void {
|
|
self.args.deinit();
|
|
self.inst_results.deinit();
|
|
self.blocks.deinit();
|
|
self.code.deinit();
|
|
}
|
|
|
|
fn getTarget(self: *DeclGen) std.Target {
|
|
return self.spv.module.getTarget();
|
|
}
|
|
|
|
fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
|
|
@setCold(true);
|
|
const src: LazySrcLoc = .{ .node_offset = 0 };
|
|
const src_loc = src.toSrcLoc(self.decl);
|
|
self.error_msg = try Module.ErrorMsg.create(self.spv.module.gpa, src_loc, format, args);
|
|
return error.AnalysisFail;
|
|
}
|
|
|
|
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !ResultId {
|
|
if (self.air.value(inst)) |val| {
|
|
return self.genConstant(self.air.typeOf(inst), val);
|
|
}
|
|
const index = Air.refToIndex(inst).?;
|
|
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
|
|
}
|
|
|
|
fn beginSPIRVBlock(self: *DeclGen, label_id: ResultId) !void {
|
|
try writeInstruction(&self.code, .OpLabel, &[_]Word{label_id});
|
|
self.current_block_label_id = label_id;
|
|
}
|
|
|
|
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
|
|
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
|
|
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
|
|
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
|
|
/// that size. In this case, multiple elements of the largest type should be used.
|
|
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
|
|
/// The result is valid to be used with OpTypeInt.
|
|
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
|
|
/// TODO: Should the result of this function be cached?
|
|
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
|
|
const target = self.getTarget();
|
|
|
|
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
|
|
assert(bits != 0);
|
|
|
|
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
|
|
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
|
|
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
|
|
.{ .bits = 8, .feature = .Int8 },
|
|
.{ .bits = 16, .feature = .Int16 },
|
|
.{ .bits = 32, .feature = null },
|
|
.{ .bits = 64, .feature = .Int64 },
|
|
};
|
|
|
|
for (ints) |int| {
|
|
const has_feature = if (int.feature) |feature|
|
|
Target.spirv.featureSetHas(target.cpu.features, feature)
|
|
else
|
|
true;
|
|
|
|
if (bits <= int.bits and has_feature) {
|
|
return int.bits;
|
|
}
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
|
|
/// the Int64 capability is enabled).
|
|
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
|
|
/// is no way of knowing whether those are actually supported.
|
|
/// TODO: Maybe this should be cached?
|
|
fn largestSupportedIntBits(self: *DeclGen) u16 {
|
|
const target = self.getTarget();
|
|
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
|
|
64
|
|
else
|
|
32;
|
|
}
|
|
|
|
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
|
|
/// arrays of largestSupportedIntBits().
|
|
/// Asserts `ty` is an integer.
|
|
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
|
|
return self.backingIntBits(ty) == null;
|
|
}
|
|
|
|
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
|
|
const target = self.getTarget();
|
|
return switch (ty.zigTypeTag()) {
|
|
.Bool => ArithmeticTypeInfo{
|
|
.bits = 1, // Doesn't matter for this class.
|
|
.is_vector = false,
|
|
.signedness = .unsigned, // Technically, but doesn't matter for this class.
|
|
.class = .bool,
|
|
},
|
|
.Float => ArithmeticTypeInfo{
|
|
.bits = ty.floatBits(target),
|
|
.is_vector = false,
|
|
.signedness = .signed, // Technically, but doesn't matter for this class.
|
|
.class = .float,
|
|
},
|
|
.Int => blk: {
|
|
const int_info = ty.intInfo(target);
|
|
// TODO: Maybe it's useful to also return this value.
|
|
const maybe_backing_bits = self.backingIntBits(int_info.bits);
|
|
break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits|
|
|
if (backing_bits == int_info.bits)
|
|
ArithmeticTypeInfo.Class.integer
|
|
else
|
|
ArithmeticTypeInfo.Class.strange_integer
|
|
else
|
|
.composite_integer };
|
|
},
|
|
// As of yet, there is no vector support in the self-hosted compiler.
|
|
.Vector => self.fail("TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}),
|
|
// TODO: For which types is this the case?
|
|
else => self.fail("TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}),
|
|
};
|
|
}
|
|
|
|
/// Generate a constant representing `val`.
|
|
/// TODO: Deduplication?
|
|
fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!ResultId {
|
|
const target = self.getTarget();
|
|
const code = &self.spv.binary.types_globals_constants;
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(ty);
|
|
|
|
if (val.isUndef()) {
|
|
try writeInstruction(code, .OpUndef, &[_]Word{ result_type_id, result_id });
|
|
return result_id;
|
|
}
|
|
|
|
switch (ty.zigTypeTag()) {
|
|
.Int => {
|
|
const int_info = ty.intInfo(target);
|
|
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
|
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
|
|
return self.fail("TODO: SPIR-V backend: implement composite int constants for {}", .{ty});
|
|
};
|
|
|
|
// We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any
|
|
// SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this
|
|
// might need to be updated.
|
|
assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64));
|
|
var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt();
|
|
|
|
// Mask the low bits which make up the actual integer. This is to make sure that negative values
|
|
// only use the actual bits of the type.
|
|
// TODO: Should this be the backing type bits or the actual type bits?
|
|
int_bits &= (@as(u64, 1) << @intCast(u6, backing_bits)) - 1;
|
|
|
|
switch (backing_bits) {
|
|
0 => unreachable,
|
|
1...32 => try writeInstruction(code, .OpConstant, &[_]Word{
|
|
result_type_id,
|
|
result_id,
|
|
@truncate(u32, int_bits),
|
|
}),
|
|
33...64 => try writeInstruction(code, .OpConstant, &[_]Word{
|
|
result_type_id,
|
|
result_id,
|
|
@truncate(u32, int_bits),
|
|
@truncate(u32, int_bits >> @bitSizeOf(u32)),
|
|
}),
|
|
else => unreachable, // backing_bits is bounded by largestSupportedIntBits.
|
|
}
|
|
},
|
|
.Bool => {
|
|
const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
|
|
try writeInstruction(code, opcode, &[_]Word{ result_type_id, result_id });
|
|
},
|
|
.Float => {
|
|
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
|
|
// would have exited at genType(ty).
|
|
|
|
// f16 and f32 require one word of storage. f64 requires 2, low-order first.
|
|
|
|
switch (ty.floatBits(target)) {
|
|
16 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u16, val.toFloat(f16)) }),
|
|
32 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u32, val.toFloat(f32)) }),
|
|
64 => {
|
|
const float_bits = @bitCast(u64, val.toFloat(f64));
|
|
try writeInstruction(code, .OpConstant, &[_]Word{
|
|
result_type_id,
|
|
result_id,
|
|
@truncate(u32, float_bits),
|
|
@truncate(u32, float_bits >> @bitSizeOf(u32)),
|
|
});
|
|
},
|
|
128 => unreachable, // Filtered out in the call to genType.
|
|
// TODO: Insert case for long double when the layout for that is determined.
|
|
else => unreachable,
|
|
}
|
|
},
|
|
.Void => unreachable,
|
|
else => return self.fail("TODO: SPIR-V backend: constant generation of type {}", .{ty}),
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn genType(self: *DeclGen, ty: Type) Error!ResultId {
|
|
// We can't use getOrPut here so we can recursively generate types.
|
|
if (self.spv.types.get(ty)) |already_generated| {
|
|
return already_generated;
|
|
}
|
|
|
|
const target = self.getTarget();
|
|
const code = &self.spv.binary.types_globals_constants;
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
switch (ty.zigTypeTag()) {
|
|
.Void => try writeInstruction(code, .OpTypeVoid, &[_]Word{result_id}),
|
|
.Bool => try writeInstruction(code, .OpTypeBool, &[_]Word{result_id}),
|
|
.Int => {
|
|
const int_info = ty.intInfo(target);
|
|
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
|
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
|
|
return self.fail("TODO: SPIR-V backend: implement composite int {}", .{ty});
|
|
};
|
|
|
|
// TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
|
|
try writeInstruction(code, .OpTypeInt, &[_]Word{
|
|
result_id,
|
|
backing_bits,
|
|
switch (int_info.signedness) {
|
|
.unsigned => 0,
|
|
.signed => 1,
|
|
},
|
|
});
|
|
},
|
|
.Float => {
|
|
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
|
|
// so if the float is not supported, just return an error.
|
|
const bits = ty.floatBits(target);
|
|
const supported = switch (bits) {
|
|
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
|
|
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
|
|
32 => true,
|
|
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
|
|
else => false,
|
|
};
|
|
|
|
if (!supported) {
|
|
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
|
|
}
|
|
|
|
try writeInstruction(code, .OpTypeFloat, &[_]Word{ result_id, bits });
|
|
},
|
|
.Fn => {
|
|
// We only support zig-calling-convention functions, no varargs.
|
|
if (ty.fnCallingConvention() != .Unspecified)
|
|
return self.fail("Unsupported calling convention for SPIR-V", .{});
|
|
if (ty.fnIsVarArgs())
|
|
return self.fail("VarArgs unsupported for SPIR-V", .{});
|
|
|
|
// In order to avoid a temporary here, first generate all the required types and then simply look them up
|
|
// when generating the function type.
|
|
const params = ty.fnParamLen();
|
|
var i: usize = 0;
|
|
while (i < params) : (i += 1) {
|
|
_ = try self.genType(ty.fnParamType(i));
|
|
}
|
|
|
|
const return_type_id = try self.genType(ty.fnReturnType());
|
|
|
|
// result id + result type id + parameter type ids.
|
|
try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u16, ty.fnParamLen()));
|
|
try code.appendSlice(&.{ result_id, return_type_id });
|
|
|
|
i = 0;
|
|
while (i < params) : (i += 1) {
|
|
const param_type_id = self.spv.types.get(ty.fnParamType(i)).?;
|
|
try code.append(param_type_id);
|
|
}
|
|
},
|
|
// When recursively generating a type, we cannot infer the pointer's storage class. See genPointerType.
|
|
.Pointer => return self.fail("Cannot create pointer with unknown storage class", .{}),
|
|
.Vector => {
|
|
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
|
|
// which work on them), so simply use those.
|
|
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
|
|
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
|
|
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
|
|
// is adequate at all for this.
|
|
|
|
// TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
|
|
return self.fail("TODO: SPIR-V backend: implement type Vector", .{});
|
|
},
|
|
.Null,
|
|
.Undefined,
|
|
.EnumLiteral,
|
|
.ComptimeFloat,
|
|
.ComptimeInt,
|
|
.Type,
|
|
=> unreachable, // Must be const or comptime.
|
|
|
|
.BoundFn => unreachable, // this type will be deleted from the language.
|
|
|
|
else => |tag| return self.fail("TODO: SPIR-V backend: implement type {}s", .{tag}),
|
|
}
|
|
|
|
try self.spv.types.putNoClobber(ty, result_id);
|
|
return result_id;
|
|
}
|
|
|
|
/// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that.
|
|
/// TODO: The result of this needs to be cached.
|
|
fn genPointerType(self: *DeclGen, ty: Type, storage_class: spec.StorageClass) !ResultId {
|
|
assert(ty.zigTypeTag() == .Pointer);
|
|
|
|
const code = &self.spv.binary.types_globals_constants;
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
// TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types
|
|
// if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled.
|
|
// These also relates to the pointer's address space.
|
|
const child_id = try self.genType(ty.elemType());
|
|
|
|
try writeInstruction(code, .OpTypePointer, &[_]Word{ result_id, @enumToInt(storage_class), child_id });
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn genDecl(self: *DeclGen) !void {
|
|
const decl = self.decl;
|
|
const result_id = decl.fn_link.spirv.id;
|
|
|
|
if (decl.val.castTag(.function)) |_| {
|
|
assert(decl.ty.zigTypeTag() == .Fn);
|
|
const prototype_id = try self.genType(decl.ty);
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpFunction, &[_]Word{
|
|
self.spv.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
|
|
result_id,
|
|
@bitCast(Word, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
|
|
prototype_id,
|
|
});
|
|
|
|
const params = decl.ty.fnParamLen();
|
|
var i: usize = 0;
|
|
|
|
try self.args.ensureUnusedCapacity(params);
|
|
while (i < params) : (i += 1) {
|
|
const param_type_id = self.spv.types.get(decl.ty.fnParamType(i)).?;
|
|
const arg_result_id = self.spv.allocResultId();
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionParameter, &[_]Word{ param_type_id, arg_result_id });
|
|
self.args.appendAssumeCapacity(arg_result_id);
|
|
}
|
|
|
|
// TODO: This could probably be done in a better way...
|
|
const root_block_id = self.spv.allocResultId();
|
|
|
|
// We need to generate the label directly in the fn_decls here because we're going to write the local variables after
|
|
// here. Since we're not generating in self.code, we're just going to bypass self.beginSPIRVBlock here.
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpLabel, &[_]Word{root_block_id});
|
|
self.current_block_label_id = root_block_id;
|
|
|
|
const main_body = self.air.getMainBody();
|
|
try self.genBody(main_body);
|
|
|
|
// Append the actual code into the fn_decls section.
|
|
try self.spv.binary.fn_decls.appendSlice(self.code.items);
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionEnd, &[_]Word{});
|
|
} else {
|
|
return self.fail("TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()});
|
|
}
|
|
}
|
|
|
|
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
|
|
for (body) |inst| {
|
|
try self.genInst(inst);
|
|
}
|
|
}
|
|
|
|
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const air_tags = self.air.instructions.items(.tag);
|
|
const result_id = switch (air_tags[inst]) {
|
|
// zig fmt: off
|
|
.add, .addwrap => try self.airArithOp(inst, .{.OpFAdd, .OpIAdd, .OpIAdd}),
|
|
.sub, .subwrap => try self.airArithOp(inst, .{.OpFSub, .OpISub, .OpISub}),
|
|
.mul, .mulwrap => try self.airArithOp(inst, .{.OpFMul, .OpIMul, .OpIMul}),
|
|
|
|
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
|
|
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
|
|
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
|
|
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
|
|
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
|
|
|
|
.not => try self.airNot(inst),
|
|
|
|
.cmp_eq => try self.airCmp(inst, .{.OpFOrdEqual, .OpLogicalEqual, .OpIEqual}),
|
|
.cmp_neq => try self.airCmp(inst, .{.OpFOrdNotEqual, .OpLogicalNotEqual, .OpINotEqual}),
|
|
.cmp_gt => try self.airCmp(inst, .{.OpFOrdGreaterThan, .OpSGreaterThan, .OpUGreaterThan}),
|
|
.cmp_gte => try self.airCmp(inst, .{.OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual}),
|
|
.cmp_lt => try self.airCmp(inst, .{.OpFOrdLessThan, .OpSLessThan, .OpULessThan}),
|
|
.cmp_lte => try self.airCmp(inst, .{.OpFOrdLessThanEqual, .OpSLessThanEqual, .OpULessThanEqual}),
|
|
|
|
.arg => self.airArg(),
|
|
.alloc => try self.airAlloc(inst),
|
|
.block => (try self.airBlock(inst)) orelse return,
|
|
.load => try self.airLoad(inst),
|
|
|
|
.br => return self.airBr(inst),
|
|
.breakpoint => return,
|
|
.cond_br => return self.airCondBr(inst),
|
|
.constant => unreachable,
|
|
.dbg_stmt => return self.airDbgStmt(inst),
|
|
.loop => return self.airLoop(inst),
|
|
.ret => return self.airRet(inst),
|
|
.store => return self.airStore(inst),
|
|
.unreach => return self.airUnreach(),
|
|
// zig fmt: on
|
|
|
|
else => |tag| return self.fail("TODO: SPIR-V backend: implement AIR tag {s}", .{
|
|
@tagName(tag),
|
|
}),
|
|
};
|
|
|
|
try self.inst_results.putNoClobber(inst, result_id);
|
|
}
|
|
|
|
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, opcode: Opcode) !ResultId {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(self.air.typeOfIndex(inst));
|
|
try writeInstruction(&self.code, opcode, &[_]Word{
|
|
result_type_id, result_id, lhs_id, rhs_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airArithOp(self: *DeclGen, inst: Air.Inst.Index, ops: [3]Opcode) !ResultId {
|
|
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
|
|
// the result to be the same as the LHS and RHS, which matches SPIR-V.
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(ty);
|
|
|
|
assert(self.air.typeOf(bin_op.lhs).eql(ty));
|
|
assert(self.air.typeOf(bin_op.rhs).eql(ty));
|
|
|
|
// Binary operations are generally applicable to both scalar and vector operations
|
|
// in SPIR-V, but int and float versions of operations require different opcodes.
|
|
const info = try self.arithmeticTypeInfo(ty);
|
|
|
|
const opcode_index: usize = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.fail("TODO: SPIR-V backend: binary operations for composite integers", .{});
|
|
},
|
|
.strange_integer => {
|
|
return self.fail("TODO: SPIR-V backend: binary operations for strange integers", .{});
|
|
},
|
|
.integer => switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
},
|
|
.float => 0,
|
|
else => unreachable,
|
|
};
|
|
const opcode = ops[opcode_index];
|
|
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
|
|
|
|
// TODO: Trap on overflow? Probably going to be annoying.
|
|
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airCmp(self: *DeclGen, inst: Air.Inst.Index, ops: [3]Opcode) !ResultId {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(Type.initTag(.bool));
|
|
const op_ty = self.air.typeOf(bin_op.lhs);
|
|
assert(op_ty.eql(self.air.typeOf(bin_op.rhs)));
|
|
|
|
// Comparisons are generally applicable to both scalar and vector operations in SPIR-V,
|
|
// but int and float versions of operations require different opcodes.
|
|
const info = try self.arithmeticTypeInfo(op_ty);
|
|
|
|
const opcode_index: usize = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.fail("TODO: SPIR-V backend: binary operations for composite integers", .{});
|
|
},
|
|
.strange_integer => {
|
|
return self.fail("TODO: SPIR-V backend: comparison for strange integers", .{});
|
|
},
|
|
.float => 0,
|
|
.bool => 1,
|
|
.integer => switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
},
|
|
};
|
|
const opcode = ops[opcode_index];
|
|
|
|
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
|
|
return result_id;
|
|
}
|
|
|
|
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(Type.initTag(.bool));
|
|
const opcode: Opcode = .OpLogicalNot;
|
|
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, operand_id });
|
|
return result_id;
|
|
}
|
|
|
|
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const storage_class = spec.StorageClass.Function;
|
|
const result_type_id = try self.genPointerType(ty, storage_class);
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
// Rather than generating into code here, we're just going to generate directly into the fn_decls section so that
|
|
// variable declarations appear in the first block of the function.
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpVariable, &[_]Word{ result_type_id, result_id, @enumToInt(storage_class) });
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airArg(self: *DeclGen) ResultId {
|
|
defer self.next_arg_index += 1;
|
|
return self.args.items[self.next_arg_index];
|
|
}
|
|
|
|
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?ResultId {
|
|
// In IR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
|
|
// "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
|
|
// the current block by first generating the code of the block, then a label, and then generate the rest of the current
|
|
// ir.Block in a different SPIR-V block.
|
|
|
|
const label_id = self.spv.allocResultId();
|
|
|
|
// 4 chosen as arbitrary initial capacity.
|
|
var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.spv.gpa, 4);
|
|
|
|
try self.blocks.putNoClobber(inst, .{
|
|
.label_id = label_id,
|
|
.incoming_blocks = &incoming_blocks,
|
|
});
|
|
defer {
|
|
assert(self.blocks.remove(inst));
|
|
incoming_blocks.deinit(self.spv.gpa);
|
|
}
|
|
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const inst_datas = self.air.instructions.items(.data);
|
|
const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
|
|
try self.genBody(body);
|
|
try self.beginSPIRVBlock(label_id);
|
|
|
|
// If this block didn't produce a value, simply return here.
|
|
if (!ty.hasCodeGenBits())
|
|
return null;
|
|
|
|
// Combine the result from the blocks using the Phi instruction.
|
|
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
// TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
|
|
// are not allowed to be created from a phi node, and throw an error for those. For now, genType already throws
|
|
// an error for pointers.
|
|
const result_type_id = try self.genType(ty);
|
|
_ = result_type_id;
|
|
|
|
try writeOpcode(&self.code, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent...
|
|
|
|
for (incoming_blocks.items) |incoming| {
|
|
try self.code.appendSlice(&[_]Word{ incoming.break_value_id, incoming.src_label_id });
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const br = self.air.instructions.items(.data)[inst].br;
|
|
const block = self.blocks.get(br.block_inst).?;
|
|
const operand_ty = self.air.typeOf(br.operand);
|
|
|
|
if (operand_ty.hasCodeGenBits()) {
|
|
const operand_id = try self.resolve(br.operand);
|
|
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
|
|
try block.incoming_blocks.append(self.spv.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id });
|
|
}
|
|
|
|
try writeInstruction(&self.code, .OpBranch, &[_]Word{block.label_id});
|
|
}
|
|
|
|
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
|
|
const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
|
|
const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
|
|
const condition_id = try self.resolve(pl_op.operand);
|
|
|
|
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
|
|
const then_label_id = self.spv.allocResultId();
|
|
const else_label_id = self.spv.allocResultId();
|
|
|
|
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
|
|
// but i don't know if those will always resolve to the same block.
|
|
|
|
try writeInstruction(&self.code, .OpBranchConditional, &[_]Word{
|
|
condition_id,
|
|
then_label_id,
|
|
else_label_id,
|
|
});
|
|
|
|
try self.beginSPIRVBlock(then_label_id);
|
|
try self.genBody(then_body);
|
|
try self.beginSPIRVBlock(else_label_id);
|
|
try self.genBody(else_body);
|
|
}
|
|
|
|
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
|
|
const src_fname_id = try self.spv.resolveSourceFileName(self.decl);
|
|
try writeInstruction(&self.code, .OpLine, &[_]Word{ src_fname_id, dbg_stmt.line, dbg_stmt.column });
|
|
}
|
|
|
|
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const ty = self.air.typeOfIndex(inst);
|
|
|
|
const result_type_id = try self.genType(ty);
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
const operands = if (ty.isVolatilePtr())
|
|
&[_]Word{ result_type_id, result_id, operand_id, @bitCast(u32, spec.MemoryAccess{ .Volatile = true }) }
|
|
else
|
|
&[_]Word{ result_type_id, result_id, operand_id };
|
|
|
|
try writeInstruction(&self.code, .OpLoad, operands);
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const loop = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[loop.end..][0..loop.data.body_len];
|
|
const loop_label_id = self.spv.allocResultId();
|
|
|
|
// Jump to the loop entry point
|
|
try writeInstruction(&self.code, .OpBranch, &[_]Word{loop_label_id});
|
|
|
|
// TODO: Look into OpLoopMerge.
|
|
|
|
try self.beginSPIRVBlock(loop_label_id);
|
|
try self.genBody(body);
|
|
|
|
try writeInstruction(&self.code, .OpBranch, &[_]Word{loop_label_id});
|
|
}
|
|
|
|
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const operand = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand_ty = self.air.typeOf(operand);
|
|
if (operand_ty.hasCodeGenBits()) {
|
|
const operand_id = try self.resolve(operand);
|
|
try writeInstruction(&self.code, .OpReturnValue, &[_]Word{operand_id});
|
|
} else {
|
|
try writeInstruction(&self.code, .OpReturn, &[_]Word{});
|
|
}
|
|
}
|
|
|
|
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const dst_ptr_id = try self.resolve(bin_op.lhs);
|
|
const src_val_id = try self.resolve(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
|
|
const operands = if (lhs_ty.isVolatilePtr())
|
|
&[_]Word{ dst_ptr_id, src_val_id, @bitCast(u32, spec.MemoryAccess{ .Volatile = true }) }
|
|
else
|
|
&[_]Word{ dst_ptr_id, src_val_id };
|
|
|
|
try writeInstruction(&self.code, .OpStore, operands);
|
|
}
|
|
|
|
fn airUnreach(self: *DeclGen) !void {
|
|
try writeInstruction(&self.code, .OpUnreachable, &[_]Word{});
|
|
}
|
|
};
|