zig/src/Value.zig
2024-08-25 15:16:46 -07:00

4510 lines
182 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const Type = @import("Type.zig");
const assert = std.debug.assert;
const BigIntConst = std.math.big.int.Const;
const BigIntMutable = std.math.big.int.Mutable;
const Target = std.Target;
const Allocator = std.mem.Allocator;
const Zcu = @import("Zcu.zig");
const Sema = @import("Sema.zig");
const InternPool = @import("InternPool.zig");
const print_value = @import("print_value.zig");
const Value = @This();
ip_index: InternPool.Index,
pub fn format(val: Value, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = val;
_ = fmt;
_ = options;
_ = writer;
@compileError("do not use format values directly; use either fmtDebug or fmtValue");
}
/// This is a debug function. In order to print values in a meaningful way
/// we also need access to the type.
pub fn dump(
start_val: Value,
comptime fmt: []const u8,
_: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
comptime assert(fmt.len == 0);
try out_stream.print("(interned: {})", .{start_val.toIntern()});
}
pub fn fmtDebug(val: Value) std.fmt.Formatter(dump) {
return .{ .data = val };
}
pub fn fmtValue(val: Value, pt: Zcu.PerThread) std.fmt.Formatter(print_value.format) {
return .{ .data = .{
.val = val,
.pt = pt,
.opt_sema = null,
.depth = 3,
} };
}
pub fn fmtValueSema(val: Value, pt: Zcu.PerThread, sema: *Sema) std.fmt.Formatter(print_value.formatSema) {
return .{ .data = .{
.val = val,
.pt = pt,
.opt_sema = sema,
.depth = 3,
} };
}
pub fn fmtValueSemaFull(ctx: print_value.FormatContext) std.fmt.Formatter(print_value.formatSema) {
return .{ .data = ctx };
}
/// Converts `val` to a null-terminated string stored in the InternPool.
/// Asserts `val` is an array of `u8`
pub fn toIpString(val: Value, ty: Type, pt: Zcu.PerThread) !InternPool.NullTerminatedString {
const zcu = pt.zcu;
assert(ty.zigTypeTag(zcu) == .Array);
assert(ty.childType(zcu).toIntern() == .u8_type);
const ip = &zcu.intern_pool;
switch (zcu.intern_pool.indexToKey(val.toIntern()).aggregate.storage) {
.bytes => |bytes| return bytes.toNullTerminatedString(ty.arrayLen(zcu), ip),
.elems => return arrayToIpString(val, ty.arrayLen(zcu), pt),
.repeated_elem => |elem| {
const byte: u8 = @intCast(Value.fromInterned(elem).toUnsignedInt(zcu));
const len: u32 = @intCast(ty.arrayLen(zcu));
const strings = ip.getLocal(pt.tid).getMutableStrings(zcu.gpa);
try strings.appendNTimes(.{byte}, len);
return ip.getOrPutTrailingString(zcu.gpa, pt.tid, len, .no_embedded_nulls);
},
}
}
/// Asserts that the value is representable as an array of bytes.
/// Copies the value into a freshly allocated slice of memory, which is owned by the caller.
pub fn toAllocatedBytes(val: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) ![]u8 {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
return switch (ip.indexToKey(val.toIntern())) {
.enum_literal => |enum_literal| allocator.dupe(u8, enum_literal.toSlice(ip)),
.slice => |slice| try arrayToAllocatedBytes(val, Value.fromInterned(slice.len).toUnsignedInt(zcu), allocator, pt),
.aggregate => |aggregate| switch (aggregate.storage) {
.bytes => |bytes| try allocator.dupe(u8, bytes.toSlice(ty.arrayLenIncludingSentinel(zcu), ip)),
.elems => try arrayToAllocatedBytes(val, ty.arrayLen(zcu), allocator, pt),
.repeated_elem => |elem| {
const byte: u8 = @intCast(Value.fromInterned(elem).toUnsignedInt(zcu));
const result = try allocator.alloc(u8, @intCast(ty.arrayLen(zcu)));
@memset(result, byte);
return result;
},
},
else => unreachable,
};
}
fn arrayToAllocatedBytes(val: Value, len: u64, allocator: Allocator, pt: Zcu.PerThread) ![]u8 {
const result = try allocator.alloc(u8, @intCast(len));
for (result, 0..) |*elem, i| {
const elem_val = try val.elemValue(pt, i);
elem.* = @intCast(elem_val.toUnsignedInt(pt.zcu));
}
return result;
}
fn arrayToIpString(val: Value, len_u64: u64, pt: Zcu.PerThread) !InternPool.NullTerminatedString {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const ip = &zcu.intern_pool;
const len: u32 = @intCast(len_u64);
const strings = ip.getLocal(pt.tid).getMutableStrings(gpa);
try strings.ensureUnusedCapacity(len);
for (0..len) |i| {
// I don't think elemValue has the possibility to affect ip.string_bytes. Let's
// assert just to be sure.
const prev_len = strings.mutate.len;
const elem_val = try val.elemValue(pt, i);
assert(strings.mutate.len == prev_len);
const byte: u8 = @intCast(elem_val.toUnsignedInt(zcu));
strings.appendAssumeCapacity(.{byte});
}
return ip.getOrPutTrailingString(gpa, pt.tid, len, .no_embedded_nulls);
}
pub fn fromInterned(i: InternPool.Index) Value {
assert(i != .none);
return .{ .ip_index = i };
}
pub fn toIntern(val: Value) InternPool.Index {
assert(val.ip_index != .none);
return val.ip_index;
}
/// Asserts that the value is representable as a type.
pub fn toType(self: Value) Type {
return Type.fromInterned(self.toIntern());
}
pub fn intFromEnum(val: Value, ty: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const ip = &pt.zcu.intern_pool;
const enum_ty = ip.typeOf(val.toIntern());
return switch (ip.indexToKey(enum_ty)) {
// Assume it is already an integer and return it directly.
.simple_type, .int_type => val,
.enum_literal => |enum_literal| {
const field_index = ty.enumFieldIndex(enum_literal, pt.zcu).?;
switch (ip.indexToKey(ty.toIntern())) {
// Assume it is already an integer and return it directly.
.simple_type, .int_type => return val,
.enum_type => {
const enum_type = ip.loadEnumType(ty.toIntern());
if (enum_type.values.len != 0) {
return Value.fromInterned(enum_type.values.get(ip)[field_index]);
} else {
// Field index and integer values are the same.
return pt.intValue(Type.fromInterned(enum_type.tag_ty), field_index);
}
},
else => unreachable,
}
},
.enum_type => try pt.getCoerced(val, Type.fromInterned(ip.loadEnumType(enum_ty).tag_ty)),
else => unreachable,
};
}
pub const ResolveStrat = Type.ResolveStrat;
/// Asserts the value is an integer.
pub fn toBigInt(val: Value, space: *BigIntSpace, zcu: *Zcu) BigIntConst {
return val.toBigIntAdvanced(space, .normal, zcu, {}) catch unreachable;
}
pub fn toBigIntSema(val: Value, space: *BigIntSpace, pt: Zcu.PerThread) !BigIntConst {
return try val.toBigIntAdvanced(space, .sema, pt.zcu, pt.tid);
}
/// Asserts the value is an integer.
pub fn toBigIntAdvanced(
val: Value,
space: *BigIntSpace,
comptime strat: ResolveStrat,
zcu: *Zcu,
tid: strat.Tid(),
) Zcu.CompileError!BigIntConst {
return switch (val.toIntern()) {
.bool_false => BigIntMutable.init(&space.limbs, 0).toConst(),
.bool_true => BigIntMutable.init(&space.limbs, 1).toConst(),
.null_value => BigIntMutable.init(&space.limbs, 0).toConst(),
else => switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.u64, .i64, .big_int => int.storage.toBigInt(space),
.lazy_align, .lazy_size => |ty| {
if (strat == .sema) try Type.fromInterned(ty).resolveLayout(strat.pt(zcu, tid));
const x = switch (int.storage) {
else => unreachable,
.lazy_align => Type.fromInterned(ty).abiAlignment(zcu).toByteUnits() orelse 0,
.lazy_size => Type.fromInterned(ty).abiSize(zcu),
};
return BigIntMutable.init(&space.limbs, x).toConst();
},
},
.enum_tag => |enum_tag| Value.fromInterned(enum_tag.int).toBigIntAdvanced(space, strat, zcu, tid),
.opt, .ptr => BigIntMutable.init(
&space.limbs,
(try val.getUnsignedIntInner(strat, zcu, tid)).?,
).toConst(),
else => unreachable,
},
};
}
pub fn isFuncBody(val: Value, zcu: *Zcu) bool {
return zcu.intern_pool.isFuncBody(val.toIntern());
}
pub fn getFunction(val: Value, zcu: *Zcu) ?InternPool.Key.Func {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.func => |x| x,
else => null,
};
}
pub fn getVariable(val: Value, mod: *Zcu) ?InternPool.Key.Variable {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.variable => |variable| variable,
else => null,
};
}
/// If the value fits in a u64, return it, otherwise null.
/// Asserts not undefined.
pub fn getUnsignedInt(val: Value, zcu: *Zcu) ?u64 {
return getUnsignedIntInner(val, .normal, zcu, {}) catch unreachable;
}
/// Asserts the value is an integer and it fits in a u64
pub fn toUnsignedInt(val: Value, zcu: *Zcu) u64 {
return getUnsignedInt(val, zcu).?;
}
pub fn getUnsignedIntSema(val: Value, pt: Zcu.PerThread) !?u64 {
return try val.getUnsignedIntInner(.sema, pt.zcu, pt.tid);
}
/// If the value fits in a u64, return it, otherwise null.
/// Asserts not undefined.
pub fn getUnsignedIntInner(
val: Value,
comptime strat: ResolveStrat,
zcu: *Zcu,
tid: strat.Tid(),
) !?u64 {
return switch (val.toIntern()) {
.undef => unreachable,
.bool_false => 0,
.bool_true => 1,
else => switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.undef => unreachable,
.int => |int| switch (int.storage) {
.big_int => |big_int| big_int.to(u64) catch null,
.u64 => |x| x,
.i64 => |x| std.math.cast(u64, x),
.lazy_align => |ty| (try Type.fromInterned(ty).abiAlignmentInner(strat.toLazy(), zcu, tid)).scalar.toByteUnits() orelse 0,
.lazy_size => |ty| (try Type.fromInterned(ty).abiSizeInner(strat.toLazy(), zcu, tid)).scalar,
},
.ptr => |ptr| switch (ptr.base_addr) {
.int => ptr.byte_offset,
.field => |field| {
const base_addr = (try Value.fromInterned(field.base).getUnsignedIntInner(strat, zcu, tid)) orelse return null;
const struct_ty = Value.fromInterned(field.base).typeOf(zcu).childType(zcu);
if (strat == .sema) {
const pt = strat.pt(zcu, tid);
try struct_ty.resolveLayout(pt);
}
return base_addr + struct_ty.structFieldOffset(@intCast(field.index), zcu) + ptr.byte_offset;
},
else => null,
},
.opt => |opt| switch (opt.val) {
.none => 0,
else => |payload| Value.fromInterned(payload).getUnsignedIntInner(strat, zcu, tid),
},
else => null,
},
};
}
/// Asserts the value is an integer and it fits in a u64
pub fn toUnsignedIntSema(val: Value, pt: Zcu.PerThread) !u64 {
return (try getUnsignedIntInner(val, .sema, pt.zcu, pt.tid)).?;
}
/// Asserts the value is an integer and it fits in a i64
pub fn toSignedInt(val: Value, zcu: *Zcu) i64 {
return switch (val.toIntern()) {
.bool_false => 0,
.bool_true => 1,
else => switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.big_int => |big_int| big_int.to(i64) catch unreachable,
.i64 => |x| x,
.u64 => |x| @intCast(x),
.lazy_align => |ty| @intCast(Type.fromInterned(ty).abiAlignment(zcu).toByteUnits() orelse 0),
.lazy_size => |ty| @intCast(Type.fromInterned(ty).abiSize(zcu)),
},
else => unreachable,
},
};
}
pub fn toBool(val: Value) bool {
return switch (val.toIntern()) {
.bool_true => true,
.bool_false => false,
else => unreachable,
};
}
fn ptrHasIntAddr(val: Value, zcu: *Zcu) bool {
return zcu.intern_pool.getBackingAddrTag(val.toIntern()).? == .int;
}
/// Write a Value's contents to `buffer`.
///
/// Asserts that buffer.len >= ty.abiSize(). The buffer is allowed to extend past
/// the end of the value in memory.
pub fn writeToMemory(val: Value, ty: Type, pt: Zcu.PerThread, buffer: []u8) error{
ReinterpretDeclRef,
IllDefinedMemoryLayout,
Unimplemented,
OutOfMemory,
}!void {
const zcu = pt.zcu;
const target = zcu.getTarget();
const endian = target.cpu.arch.endian();
if (val.isUndef(zcu)) {
const size: usize = @intCast(ty.abiSize(zcu));
@memset(buffer[0..size], 0xaa);
return;
}
const ip = &zcu.intern_pool;
switch (ty.zigTypeTag(zcu)) {
.Void => {},
.Bool => {
buffer[0] = @intFromBool(val.toBool());
},
.Int, .Enum => {
const int_info = ty.intInfo(zcu);
const bits = int_info.bits;
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
var bigint_buffer: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buffer, zcu);
bigint.writeTwosComplement(buffer[0..byte_count], endian);
},
.Float => switch (ty.floatBits(target)) {
16 => std.mem.writeInt(u16, buffer[0..2], @bitCast(val.toFloat(f16, zcu)), endian),
32 => std.mem.writeInt(u32, buffer[0..4], @bitCast(val.toFloat(f32, zcu)), endian),
64 => std.mem.writeInt(u64, buffer[0..8], @bitCast(val.toFloat(f64, zcu)), endian),
80 => std.mem.writeInt(u80, buffer[0..10], @bitCast(val.toFloat(f80, zcu)), endian),
128 => std.mem.writeInt(u128, buffer[0..16], @bitCast(val.toFloat(f128, zcu)), endian),
else => unreachable,
},
.Array => {
const len = ty.arrayLen(zcu);
const elem_ty = ty.childType(zcu);
const elem_size: usize = @intCast(elem_ty.abiSize(zcu));
var elem_i: usize = 0;
var buf_off: usize = 0;
while (elem_i < len) : (elem_i += 1) {
const elem_val = try val.elemValue(pt, elem_i);
try elem_val.writeToMemory(elem_ty, pt, buffer[buf_off..]);
buf_off += elem_size;
}
},
.Vector => {
// We use byte_count instead of abi_size here, so that any padding bytes
// follow the data bytes, on both big- and little-endian systems.
const byte_count = (@as(usize, @intCast(ty.bitSize(zcu))) + 7) / 8;
return writeToPackedMemory(val, ty, pt, buffer[0..byte_count], 0);
},
.Struct => {
const struct_type = zcu.typeToStruct(ty) orelse return error.IllDefinedMemoryLayout;
switch (struct_type.layout) {
.auto => return error.IllDefinedMemoryLayout,
.@"extern" => for (0..struct_type.field_types.len) |field_index| {
const off: usize = @intCast(ty.structFieldOffset(field_index, zcu));
const field_val = Value.fromInterned(switch (ip.indexToKey(val.toIntern()).aggregate.storage) {
.bytes => |bytes| {
buffer[off] = bytes.at(field_index, ip);
continue;
},
.elems => |elems| elems[field_index],
.repeated_elem => |elem| elem,
});
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
try writeToMemory(field_val, field_ty, pt, buffer[off..]);
},
.@"packed" => {
const byte_count = (@as(usize, @intCast(ty.bitSize(zcu))) + 7) / 8;
return writeToPackedMemory(val, ty, pt, buffer[0..byte_count], 0);
},
}
},
.ErrorSet => {
const bits = zcu.errorSetBits();
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
const name = switch (ip.indexToKey(val.toIntern())) {
.err => |err| err.name,
.error_union => |error_union| error_union.val.err_name,
else => unreachable,
};
var bigint_buffer: BigIntSpace = undefined;
const bigint = BigIntMutable.init(
&bigint_buffer.limbs,
ip.getErrorValueIfExists(name).?,
).toConst();
bigint.writeTwosComplement(buffer[0..byte_count], endian);
},
.Union => switch (ty.containerLayout(zcu)) {
.auto => return error.IllDefinedMemoryLayout, // Sema is supposed to have emitted a compile error already
.@"extern" => {
if (val.unionTag(zcu)) |union_tag| {
const union_obj = zcu.typeToUnion(ty).?;
const field_index = zcu.unionTagFieldIndex(union_obj, union_tag).?;
const field_type = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
const field_val = try val.fieldValue(pt, field_index);
const byte_count: usize = @intCast(field_type.abiSize(zcu));
return writeToMemory(field_val, field_type, pt, buffer[0..byte_count]);
} else {
const backing_ty = try ty.unionBackingType(pt);
const byte_count: usize = @intCast(backing_ty.abiSize(zcu));
return writeToMemory(val.unionValue(zcu), backing_ty, pt, buffer[0..byte_count]);
}
},
.@"packed" => {
const backing_ty = try ty.unionBackingType(pt);
const byte_count: usize = @intCast(backing_ty.abiSize(zcu));
return writeToPackedMemory(val, ty, pt, buffer[0..byte_count], 0);
},
},
.Pointer => {
if (ty.isSlice(zcu)) return error.IllDefinedMemoryLayout;
if (!val.ptrHasIntAddr(zcu)) return error.ReinterpretDeclRef;
return val.writeToMemory(Type.usize, pt, buffer);
},
.Optional => {
if (!ty.isPtrLikeOptional(zcu)) return error.IllDefinedMemoryLayout;
const child = ty.optionalChild(zcu);
const opt_val = val.optionalValue(zcu);
if (opt_val) |some| {
return some.writeToMemory(child, pt, buffer);
} else {
return writeToMemory(try pt.intValue(Type.usize, 0), Type.usize, pt, buffer);
}
},
else => return error.Unimplemented,
}
}
/// Write a Value's contents to `buffer`.
///
/// Both the start and the end of the provided buffer must be tight, since
/// big-endian packed memory layouts start at the end of the buffer.
pub fn writeToPackedMemory(
val: Value,
ty: Type,
pt: Zcu.PerThread,
buffer: []u8,
bit_offset: usize,
) error{ ReinterpretDeclRef, OutOfMemory }!void {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const target = zcu.getTarget();
const endian = target.cpu.arch.endian();
if (val.isUndef(zcu)) {
const bit_size: usize = @intCast(ty.bitSize(zcu));
if (bit_size != 0) {
std.mem.writeVarPackedInt(buffer, bit_offset, bit_size, @as(u1, 0), endian);
}
return;
}
switch (ty.zigTypeTag(zcu)) {
.Void => {},
.Bool => {
const byte_index = switch (endian) {
.little => bit_offset / 8,
.big => buffer.len - bit_offset / 8 - 1,
};
if (val.toBool()) {
buffer[byte_index] |= (@as(u8, 1) << @as(u3, @intCast(bit_offset % 8)));
} else {
buffer[byte_index] &= ~(@as(u8, 1) << @as(u3, @intCast(bit_offset % 8)));
}
},
.Int, .Enum => {
if (buffer.len == 0) return;
const bits = ty.intInfo(zcu).bits;
if (bits == 0) return;
switch (ip.indexToKey((try val.intFromEnum(ty, pt)).toIntern()).int.storage) {
inline .u64, .i64 => |int| std.mem.writeVarPackedInt(buffer, bit_offset, bits, int, endian),
.big_int => |bigint| bigint.writePackedTwosComplement(buffer, bit_offset, bits, endian),
.lazy_align => |lazy_align| {
const num = Type.fromInterned(lazy_align).abiAlignment(zcu).toByteUnits() orelse 0;
std.mem.writeVarPackedInt(buffer, bit_offset, bits, num, endian);
},
.lazy_size => |lazy_size| {
const num = Type.fromInterned(lazy_size).abiSize(zcu);
std.mem.writeVarPackedInt(buffer, bit_offset, bits, num, endian);
},
}
},
.Float => switch (ty.floatBits(target)) {
16 => std.mem.writePackedInt(u16, buffer, bit_offset, @bitCast(val.toFloat(f16, zcu)), endian),
32 => std.mem.writePackedInt(u32, buffer, bit_offset, @bitCast(val.toFloat(f32, zcu)), endian),
64 => std.mem.writePackedInt(u64, buffer, bit_offset, @bitCast(val.toFloat(f64, zcu)), endian),
80 => std.mem.writePackedInt(u80, buffer, bit_offset, @bitCast(val.toFloat(f80, zcu)), endian),
128 => std.mem.writePackedInt(u128, buffer, bit_offset, @bitCast(val.toFloat(f128, zcu)), endian),
else => unreachable,
},
.Vector => {
const elem_ty = ty.childType(zcu);
const elem_bit_size: u16 = @intCast(elem_ty.bitSize(zcu));
const len: usize = @intCast(ty.arrayLen(zcu));
var bits: u16 = 0;
var elem_i: usize = 0;
while (elem_i < len) : (elem_i += 1) {
// On big-endian systems, LLVM reverses the element order of vectors by default
const tgt_elem_i = if (endian == .big) len - elem_i - 1 else elem_i;
const elem_val = try val.elemValue(pt, tgt_elem_i);
try elem_val.writeToPackedMemory(elem_ty, pt, buffer, bit_offset + bits);
bits += elem_bit_size;
}
},
.Struct => {
const struct_type = ip.loadStructType(ty.toIntern());
// Sema is supposed to have emitted a compile error already in the case of Auto,
// and Extern is handled in non-packed writeToMemory.
assert(struct_type.layout == .@"packed");
var bits: u16 = 0;
for (0..struct_type.field_types.len) |i| {
const field_val = Value.fromInterned(switch (ip.indexToKey(val.toIntern()).aggregate.storage) {
.bytes => unreachable,
.elems => |elems| elems[i],
.repeated_elem => |elem| elem,
});
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
const field_bits: u16 = @intCast(field_ty.bitSize(zcu));
try field_val.writeToPackedMemory(field_ty, pt, buffer, bit_offset + bits);
bits += field_bits;
}
},
.Union => {
const union_obj = zcu.typeToUnion(ty).?;
switch (union_obj.flagsUnordered(ip).layout) {
.auto, .@"extern" => unreachable, // Handled in non-packed writeToMemory
.@"packed" => {
if (val.unionTag(zcu)) |union_tag| {
const field_index = zcu.unionTagFieldIndex(union_obj, union_tag).?;
const field_type = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
const field_val = try val.fieldValue(pt, field_index);
return field_val.writeToPackedMemory(field_type, pt, buffer, bit_offset);
} else {
const backing_ty = try ty.unionBackingType(pt);
return val.unionValue(zcu).writeToPackedMemory(backing_ty, pt, buffer, bit_offset);
}
},
}
},
.Pointer => {
assert(!ty.isSlice(zcu)); // No well defined layout.
if (!val.ptrHasIntAddr(zcu)) return error.ReinterpretDeclRef;
return val.writeToPackedMemory(Type.usize, pt, buffer, bit_offset);
},
.Optional => {
assert(ty.isPtrLikeOptional(zcu));
const child = ty.optionalChild(zcu);
const opt_val = val.optionalValue(zcu);
if (opt_val) |some| {
return some.writeToPackedMemory(child, pt, buffer, bit_offset);
} else {
return writeToPackedMemory(try pt.intValue(Type.usize, 0), Type.usize, pt, buffer, bit_offset);
}
},
else => @panic("TODO implement writeToPackedMemory for more types"),
}
}
/// Load a Value from the contents of `buffer`.
///
/// Asserts that buffer.len >= ty.abiSize(). The buffer is allowed to extend past
/// the end of the value in memory.
pub fn readFromMemory(
ty: Type,
pt: Zcu.PerThread,
buffer: []const u8,
arena: Allocator,
) error{
IllDefinedMemoryLayout,
Unimplemented,
OutOfMemory,
}!Value {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const target = zcu.getTarget();
const endian = target.cpu.arch.endian();
switch (ty.zigTypeTag(zcu)) {
.Void => return Value.void,
.Bool => {
if (buffer[0] == 0) {
return Value.false;
} else {
return Value.true;
}
},
.Int, .Enum => |ty_tag| {
const int_ty = switch (ty_tag) {
.Int => ty,
.Enum => ty.intTagType(zcu),
else => unreachable,
};
const int_info = int_ty.intInfo(zcu);
const bits = int_info.bits;
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
if (bits == 0 or buffer.len == 0) return zcu.getCoerced(try zcu.intValue(int_ty, 0), ty);
if (bits <= 64) switch (int_info.signedness) { // Fast path for integers <= u64
.signed => {
const val = std.mem.readVarInt(i64, buffer[0..byte_count], endian);
const result = (val << @as(u6, @intCast(64 - bits))) >> @as(u6, @intCast(64 - bits));
return zcu.getCoerced(try zcu.intValue(int_ty, result), ty);
},
.unsigned => {
const val = std.mem.readVarInt(u64, buffer[0..byte_count], endian);
const result = (val << @as(u6, @intCast(64 - bits))) >> @as(u6, @intCast(64 - bits));
return zcu.getCoerced(try zcu.intValue(int_ty, result), ty);
},
} else { // Slow path, we have to construct a big-int
const Limb = std.math.big.Limb;
const limb_count = (byte_count + @sizeOf(Limb) - 1) / @sizeOf(Limb);
const limbs_buffer = try arena.alloc(Limb, limb_count);
var bigint = BigIntMutable.init(limbs_buffer, 0);
bigint.readTwosComplement(buffer[0..byte_count], bits, endian, int_info.signedness);
return zcu.getCoerced(try zcu.intValue_big(int_ty, bigint.toConst()), ty);
}
},
.Float => return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = switch (ty.floatBits(target)) {
16 => .{ .f16 = @bitCast(std.mem.readInt(u16, buffer[0..2], endian)) },
32 => .{ .f32 = @bitCast(std.mem.readInt(u32, buffer[0..4], endian)) },
64 => .{ .f64 = @bitCast(std.mem.readInt(u64, buffer[0..8], endian)) },
80 => .{ .f80 = @bitCast(std.mem.readInt(u80, buffer[0..10], endian)) },
128 => .{ .f128 = @bitCast(std.mem.readInt(u128, buffer[0..16], endian)) },
else => unreachable,
},
} })),
.Array => {
const elem_ty = ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
const elems = try arena.alloc(InternPool.Index, @intCast(ty.arrayLen(zcu)));
var offset: usize = 0;
for (elems) |*elem| {
elem.* = (try readFromMemory(elem_ty, zcu, buffer[offset..], arena)).toIntern();
offset += @intCast(elem_size);
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = elems },
} }));
},
.Vector => {
// We use byte_count instead of abi_size here, so that any padding bytes
// follow the data bytes, on both big- and little-endian systems.
const byte_count = (@as(usize, @intCast(ty.bitSize(zcu))) + 7) / 8;
return readFromPackedMemory(ty, zcu, buffer[0..byte_count], 0, arena);
},
.Struct => {
const struct_type = zcu.typeToStruct(ty).?;
switch (struct_type.layout) {
.auto => unreachable, // Sema is supposed to have emitted a compile error already
.@"extern" => {
const field_types = struct_type.field_types;
const field_vals = try arena.alloc(InternPool.Index, field_types.len);
for (field_vals, 0..) |*field_val, i| {
const field_ty = Type.fromInterned(field_types.get(ip)[i]);
const off: usize = @intCast(ty.structFieldOffset(i, zcu));
const sz: usize = @intCast(field_ty.abiSize(zcu));
field_val.* = (try readFromMemory(field_ty, zcu, buffer[off..(off + sz)], arena)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = field_vals },
} }));
},
.@"packed" => {
const byte_count = (@as(usize, @intCast(ty.bitSize(zcu))) + 7) / 8;
return readFromPackedMemory(ty, zcu, buffer[0..byte_count], 0, arena);
},
}
},
.ErrorSet => {
const bits = zcu.errorSetBits();
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
const int = std.mem.readVarInt(u64, buffer[0..byte_count], endian);
const index = (int << @as(u6, @intCast(64 - bits))) >> @as(u6, @intCast(64 - bits));
const name = zcu.global_error_set.keys()[@intCast(index)];
return Value.fromInterned(try pt.intern(.{ .err = .{
.ty = ty.toIntern(),
.name = name,
} }));
},
.Union => switch (ty.containerLayout(zcu)) {
.auto => return error.IllDefinedMemoryLayout,
.@"extern" => {
const union_size = ty.abiSize(zcu);
const array_ty = try zcu.arrayType(.{ .len = union_size, .child = .u8_type });
const val = (try readFromMemory(array_ty, zcu, buffer, arena)).toIntern();
return Value.fromInterned(try pt.intern(.{ .un = .{
.ty = ty.toIntern(),
.tag = .none,
.val = val,
} }));
},
.@"packed" => {
const byte_count = (@as(usize, @intCast(ty.bitSize(zcu))) + 7) / 8;
return readFromPackedMemory(ty, zcu, buffer[0..byte_count], 0, arena);
},
},
.Pointer => {
assert(!ty.isSlice(zcu)); // No well defined layout.
const int_val = try readFromMemory(Type.usize, zcu, buffer, arena);
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = ty.toIntern(),
.base_addr = .int,
.byte_offset = int_val.toUnsignedInt(zcu),
} }));
},
.Optional => {
assert(ty.isPtrLikeOptional(zcu));
const child_ty = ty.optionalChild(zcu);
const child_val = try readFromMemory(child_ty, zcu, buffer, arena);
return Value.fromInterned(try pt.intern(.{ .opt = .{
.ty = ty.toIntern(),
.val = switch (child_val.orderAgainstZero(pt)) {
.lt => unreachable,
.eq => .none,
.gt => child_val.toIntern(),
},
} }));
},
else => return error.Unimplemented,
}
}
/// Load a Value from the contents of `buffer`.
///
/// Both the start and the end of the provided buffer must be tight, since
/// big-endian packed memory layouts start at the end of the buffer.
pub fn readFromPackedMemory(
ty: Type,
pt: Zcu.PerThread,
buffer: []const u8,
bit_offset: usize,
arena: Allocator,
) error{
IllDefinedMemoryLayout,
OutOfMemory,
}!Value {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const target = zcu.getTarget();
const endian = target.cpu.arch.endian();
switch (ty.zigTypeTag(zcu)) {
.Void => return Value.void,
.Bool => {
const byte = switch (endian) {
.big => buffer[buffer.len - bit_offset / 8 - 1],
.little => buffer[bit_offset / 8],
};
if (((byte >> @as(u3, @intCast(bit_offset % 8))) & 1) == 0) {
return Value.false;
} else {
return Value.true;
}
},
.Int => {
if (buffer.len == 0) return pt.intValue(ty, 0);
const int_info = ty.intInfo(zcu);
const bits = int_info.bits;
if (bits == 0) return pt.intValue(ty, 0);
// Fast path for integers <= u64
if (bits <= 64) switch (int_info.signedness) {
// Use different backing types for unsigned vs signed to avoid the need to go via
// a larger type like `i128`.
.unsigned => return pt.intValue(ty, std.mem.readVarPackedInt(u64, buffer, bit_offset, bits, endian, .unsigned)),
.signed => return pt.intValue(ty, std.mem.readVarPackedInt(i64, buffer, bit_offset, bits, endian, .signed)),
};
// Slow path, we have to construct a big-int
const abi_size: usize = @intCast(ty.abiSize(zcu));
const Limb = std.math.big.Limb;
const limb_count = (abi_size + @sizeOf(Limb) - 1) / @sizeOf(Limb);
const limbs_buffer = try arena.alloc(Limb, limb_count);
var bigint = BigIntMutable.init(limbs_buffer, 0);
bigint.readPackedTwosComplement(buffer, bit_offset, bits, endian, int_info.signedness);
return pt.intValue_big(ty, bigint.toConst());
},
.Enum => {
const int_ty = ty.intTagType(zcu);
const int_val = try Value.readFromPackedMemory(int_ty, pt, buffer, bit_offset, arena);
return pt.getCoerced(int_val, ty);
},
.Float => return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = switch (ty.floatBits(target)) {
16 => .{ .f16 = @bitCast(std.mem.readPackedInt(u16, buffer, bit_offset, endian)) },
32 => .{ .f32 = @bitCast(std.mem.readPackedInt(u32, buffer, bit_offset, endian)) },
64 => .{ .f64 = @bitCast(std.mem.readPackedInt(u64, buffer, bit_offset, endian)) },
80 => .{ .f80 = @bitCast(std.mem.readPackedInt(u80, buffer, bit_offset, endian)) },
128 => .{ .f128 = @bitCast(std.mem.readPackedInt(u128, buffer, bit_offset, endian)) },
else => unreachable,
},
} })),
.Vector => {
const elem_ty = ty.childType(zcu);
const elems = try arena.alloc(InternPool.Index, @intCast(ty.arrayLen(zcu)));
var bits: u16 = 0;
const elem_bit_size: u16 = @intCast(elem_ty.bitSize(zcu));
for (elems, 0..) |_, i| {
// On big-endian systems, LLVM reverses the element order of vectors by default
const tgt_elem_i = if (endian == .big) elems.len - i - 1 else i;
elems[tgt_elem_i] = (try readFromPackedMemory(elem_ty, pt, buffer, bit_offset + bits, arena)).toIntern();
bits += elem_bit_size;
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = elems },
} }));
},
.Struct => {
// Sema is supposed to have emitted a compile error already for Auto layout structs,
// and Extern is handled by non-packed readFromMemory.
const struct_type = zcu.typeToPackedStruct(ty).?;
var bits: u16 = 0;
const field_vals = try arena.alloc(InternPool.Index, struct_type.field_types.len);
for (field_vals, 0..) |*field_val, i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
const field_bits: u16 = @intCast(field_ty.bitSize(zcu));
field_val.* = (try readFromPackedMemory(field_ty, pt, buffer, bit_offset + bits, arena)).toIntern();
bits += field_bits;
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = field_vals },
} }));
},
.Union => switch (ty.containerLayout(zcu)) {
.auto, .@"extern" => unreachable, // Handled by non-packed readFromMemory
.@"packed" => {
const backing_ty = try ty.unionBackingType(pt);
const val = (try readFromPackedMemory(backing_ty, pt, buffer, bit_offset, arena)).toIntern();
return Value.fromInterned(try pt.intern(.{ .un = .{
.ty = ty.toIntern(),
.tag = .none,
.val = val,
} }));
},
},
.Pointer => {
assert(!ty.isSlice(zcu)); // No well defined layout.
const int_val = try readFromPackedMemory(Type.usize, pt, buffer, bit_offset, arena);
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = ty.toIntern(),
.base_addr = .int,
.byte_offset = int_val.toUnsignedInt(zcu),
} }));
},
.Optional => {
assert(ty.isPtrLikeOptional(zcu));
const child_ty = ty.optionalChild(zcu);
const child_val = try readFromPackedMemory(child_ty, pt, buffer, bit_offset, arena);
return Value.fromInterned(try pt.intern(.{ .opt = .{
.ty = ty.toIntern(),
.val = switch (child_val.orderAgainstZero(zcu)) {
.lt => unreachable,
.eq => .none,
.gt => child_val.toIntern(),
},
} }));
},
else => @panic("TODO implement readFromPackedMemory for more types"),
}
}
/// Asserts that the value is a float or an integer.
pub fn toFloat(val: Value, comptime T: type, zcu: *Zcu) T {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.big_int => |big_int| @floatCast(bigIntToFloat(big_int.limbs, big_int.positive)),
inline .u64, .i64 => |x| {
if (T == f80) {
@panic("TODO we can't lower this properly on non-x86 llvm backend yet");
}
return @floatFromInt(x);
},
.lazy_align => |ty| @floatFromInt(Type.fromInterned(ty).abiAlignment(zcu).toByteUnits() orelse 0),
.lazy_size => |ty| @floatFromInt(Type.fromInterned(ty).abiSize(zcu)),
},
.float => |float| switch (float.storage) {
inline else => |x| @floatCast(x),
},
else => unreachable,
};
}
/// TODO move this to std lib big int code
fn bigIntToFloat(limbs: []const std.math.big.Limb, positive: bool) f128 {
if (limbs.len == 0) return 0;
const base = std.math.maxInt(std.math.big.Limb) + 1;
var result: f128 = 0;
var i: usize = limbs.len;
while (i != 0) {
i -= 1;
const limb: f128 = @floatFromInt(limbs[i]);
result = @mulAdd(f128, base, result, limb);
}
if (positive) {
return result;
} else {
return -result;
}
}
pub fn clz(val: Value, ty: Type, zcu: *Zcu) u64 {
var bigint_buf: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buf, zcu);
return bigint.clz(ty.intInfo(zcu).bits);
}
pub fn ctz(val: Value, ty: Type, zcu: *Zcu) u64 {
var bigint_buf: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buf, zcu);
return bigint.ctz(ty.intInfo(zcu).bits);
}
pub fn popCount(val: Value, ty: Type, zcu: *Zcu) u64 {
var bigint_buf: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buf, zcu);
return @intCast(bigint.popCount(ty.intInfo(zcu).bits));
}
pub fn bitReverse(val: Value, ty: Type, pt: Zcu.PerThread, arena: Allocator) !Value {
const zcu = pt.zcu;
const info = ty.intInfo(zcu);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitReverse(operand_bigint, info.signedness, info.bits);
return pt.intValue_big(ty, result_bigint.toConst());
}
pub fn byteSwap(val: Value, ty: Type, pt: Zcu.PerThread, arena: Allocator) !Value {
const zcu = pt.zcu;
const info = ty.intInfo(zcu);
// Bit count must be evenly divisible by 8
assert(info.bits % 8 == 0);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.byteSwap(operand_bigint, info.signedness, info.bits / 8);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// Asserts the value is an integer and not undefined.
/// Returns the number of bits the value requires to represent stored in twos complement form.
pub fn intBitCountTwosComp(self: Value, zcu: *Zcu) usize {
var buffer: BigIntSpace = undefined;
const big_int = self.toBigInt(&buffer, zcu);
return big_int.bitCountTwosComp();
}
/// Converts an integer or a float to a float. May result in a loss of information.
/// Caller can find out by equality checking the result against the operand.
pub fn floatCast(val: Value, dest_ty: Type, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
if (val.isUndef(zcu)) return pt.undefValue(dest_ty);
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = dest_ty.toIntern(),
.storage = switch (dest_ty.floatBits(target)) {
16 => .{ .f16 = val.toFloat(f16, zcu) },
32 => .{ .f32 = val.toFloat(f32, zcu) },
64 => .{ .f64 = val.toFloat(f64, zcu) },
80 => .{ .f80 = val.toFloat(f80, zcu) },
128 => .{ .f128 = val.toFloat(f128, zcu) },
else => unreachable,
},
} }));
}
/// Asserts the value is a float
pub fn floatHasFraction(self: Value, zcu: *const Zcu) bool {
return switch (zcu.intern_pool.indexToKey(self.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| @rem(x, 1) != 0,
},
else => unreachable,
};
}
pub fn orderAgainstZero(lhs: Value, zcu: *Zcu) std.math.Order {
return orderAgainstZeroInner(lhs, .normal, zcu, {}) catch unreachable;
}
pub fn orderAgainstZeroSema(lhs: Value, pt: Zcu.PerThread) !std.math.Order {
return try orderAgainstZeroInner(lhs, .sema, pt.zcu, pt.tid);
}
pub fn orderAgainstZeroInner(
lhs: Value,
comptime strat: ResolveStrat,
zcu: *Zcu,
tid: strat.Tid(),
) Zcu.CompileError!std.math.Order {
return switch (lhs.toIntern()) {
.bool_false => .eq,
.bool_true => .gt,
else => switch (zcu.intern_pool.indexToKey(lhs.toIntern())) {
.ptr => |ptr| if (ptr.byte_offset > 0) .gt else switch (ptr.base_addr) {
.nav, .comptime_alloc, .comptime_field => .gt,
.int => .eq,
else => unreachable,
},
.int => |int| switch (int.storage) {
.big_int => |big_int| big_int.orderAgainstScalar(0),
inline .u64, .i64 => |x| std.math.order(x, 0),
.lazy_align => .gt, // alignment is never 0
.lazy_size => |ty| return if (Type.fromInterned(ty).hasRuntimeBitsInner(
false,
strat.toLazy(),
zcu,
tid,
) catch |err| switch (err) {
error.NeedLazy => unreachable,
else => |e| return e,
}) .gt else .eq,
},
.enum_tag => |enum_tag| Value.fromInterned(enum_tag.int).orderAgainstZeroInner(strat, zcu, tid),
.float => |float| switch (float.storage) {
inline else => |x| std.math.order(x, 0),
},
else => unreachable,
},
};
}
/// Asserts the value is comparable.
pub fn order(lhs: Value, rhs: Value, zcu: *Zcu) std.math.Order {
return orderAdvanced(lhs, rhs, .normal, zcu, {}) catch unreachable;
}
/// Asserts the value is comparable.
pub fn orderAdvanced(
lhs: Value,
rhs: Value,
comptime strat: ResolveStrat,
zcu: *Zcu,
tid: strat.Tid(),
) !std.math.Order {
const lhs_against_zero = try lhs.orderAgainstZeroInner(strat, zcu, tid);
const rhs_against_zero = try rhs.orderAgainstZeroInner(strat, zcu, tid);
switch (lhs_against_zero) {
.lt => if (rhs_against_zero != .lt) return .lt,
.eq => return rhs_against_zero.invert(),
.gt => {},
}
switch (rhs_against_zero) {
.lt => if (lhs_against_zero != .lt) return .gt,
.eq => return lhs_against_zero,
.gt => {},
}
if (lhs.isFloat(zcu) or rhs.isFloat(zcu)) {
const lhs_f128 = lhs.toFloat(f128, zcu);
const rhs_f128 = rhs.toFloat(f128, zcu);
return std.math.order(lhs_f128, rhs_f128);
}
var lhs_bigint_space: BigIntSpace = undefined;
var rhs_bigint_space: BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_bigint_space, strat, zcu, tid);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_bigint_space, strat, zcu, tid);
return lhs_bigint.order(rhs_bigint);
}
/// Asserts the value is comparable. Does not take a type parameter because it supports
/// comparisons between heterogeneous types.
pub fn compareHetero(lhs: Value, op: std.math.CompareOperator, rhs: Value, zcu: *Zcu) bool {
return compareHeteroAdvanced(lhs, op, rhs, .normal, zcu, {}) catch unreachable;
}
pub fn compareHeteroSema(lhs: Value, op: std.math.CompareOperator, rhs: Value, pt: Zcu.PerThread) !bool {
return try compareHeteroAdvanced(lhs, op, rhs, .sema, pt.zcu, pt.tid);
}
pub fn compareHeteroAdvanced(
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
comptime strat: ResolveStrat,
zcu: *Zcu,
tid: strat.Tid(),
) !bool {
if (lhs.pointerNav(zcu)) |lhs_nav| {
if (rhs.pointerNav(zcu)) |rhs_nav| {
switch (op) {
.eq => return lhs_nav == rhs_nav,
.neq => return lhs_nav != rhs_nav,
else => {},
}
} else {
switch (op) {
.eq => return false,
.neq => return true,
else => {},
}
}
} else if (rhs.pointerNav(zcu)) |_| {
switch (op) {
.eq => return false,
.neq => return true,
else => {},
}
}
return (try orderAdvanced(lhs, rhs, strat, zcu, tid)).compare(op);
}
/// Asserts the values are comparable. Both operands have type `ty`.
/// For vectors, returns true if comparison is true for ALL elements.
pub fn compareAll(lhs: Value, op: std.math.CompareOperator, rhs: Value, ty: Type, pt: Zcu.PerThread) !bool {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const scalar_ty = ty.scalarType(zcu);
for (0..ty.vectorLen(zcu)) |i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
if (!compareScalar(lhs_elem, op, rhs_elem, scalar_ty, zcu)) {
return false;
}
}
return true;
}
return compareScalar(lhs, op, rhs, ty, zcu);
}
/// Asserts the values are comparable. Both operands have type `ty`.
pub fn compareScalar(
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
ty: Type,
zcu: *Zcu,
) bool {
return switch (op) {
.eq => lhs.eql(rhs, ty, zcu),
.neq => !lhs.eql(rhs, ty, zcu),
else => compareHetero(lhs, op, rhs, zcu),
};
}
/// Asserts the value is comparable.
/// For vectors, returns true if comparison is true for ALL elements.
/// Returns `false` if the value or any vector element is undefined.
///
/// Note that `!compareAllWithZero(.eq, ...) != compareAllWithZero(.neq, ...)`
pub fn compareAllWithZero(lhs: Value, op: std.math.CompareOperator, zcu: *Zcu) bool {
return compareAllWithZeroAdvancedExtra(lhs, op, .normal, zcu, {}) catch unreachable;
}
pub fn compareAllWithZeroSema(
lhs: Value,
op: std.math.CompareOperator,
pt: Zcu.PerThread,
) Zcu.CompileError!bool {
return compareAllWithZeroAdvancedExtra(lhs, op, .sema, pt.zcu, pt.tid);
}
pub fn compareAllWithZeroAdvancedExtra(
lhs: Value,
op: std.math.CompareOperator,
comptime strat: ResolveStrat,
zcu: *Zcu,
tid: strat.Tid(),
) Zcu.CompileError!bool {
if (lhs.isInf(zcu)) {
switch (op) {
.neq => return true,
.eq => return false,
.gt, .gte => return !lhs.isNegativeInf(zcu),
.lt, .lte => return lhs.isNegativeInf(zcu),
}
}
switch (zcu.intern_pool.indexToKey(lhs.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| if (std.math.isNan(x)) return op == .neq,
},
.aggregate => |aggregate| return switch (aggregate.storage) {
.bytes => |bytes| for (bytes.toSlice(lhs.typeOf(zcu).arrayLenIncludingSentinel(zcu), &zcu.intern_pool)) |byte| {
if (!std.math.order(byte, 0).compare(op)) break false;
} else true,
.elems => |elems| for (elems) |elem| {
if (!try Value.fromInterned(elem).compareAllWithZeroAdvancedExtra(op, strat, zcu, tid)) break false;
} else true,
.repeated_elem => |elem| Value.fromInterned(elem).compareAllWithZeroAdvancedExtra(op, strat, zcu, tid),
},
.undef => return false,
else => {},
}
return (try orderAgainstZeroInner(lhs, strat, zcu, tid)).compare(op);
}
pub fn eql(a: Value, b: Value, ty: Type, zcu: *Zcu) bool {
assert(zcu.intern_pool.typeOf(a.toIntern()) == ty.toIntern());
assert(zcu.intern_pool.typeOf(b.toIntern()) == ty.toIntern());
return a.toIntern() == b.toIntern();
}
pub fn canMutateComptimeVarState(val: Value, zcu: *Zcu) bool {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.error_union => |error_union| switch (error_union.val) {
.err_name => false,
.payload => |payload| Value.fromInterned(payload).canMutateComptimeVarState(zcu),
},
.ptr => |ptr| switch (ptr.base_addr) {
.nav => false, // The value of a Nav can never reference a comptime alloc.
.int => false,
.comptime_alloc => true, // A comptime alloc is either mutable or references comptime-mutable memory.
.comptime_field => true, // Comptime field pointers are comptime-mutable, albeit only to the "correct" value.
.eu_payload, .opt_payload => |base| Value.fromInterned(base).canMutateComptimeVarState(zcu),
.uav => |uav| Value.fromInterned(uav.val).canMutateComptimeVarState(zcu),
.arr_elem, .field => |base_index| Value.fromInterned(base_index.base).canMutateComptimeVarState(zcu),
},
.slice => |slice| return Value.fromInterned(slice.ptr).canMutateComptimeVarState(zcu),
.opt => |opt| switch (opt.val) {
.none => false,
else => |payload| Value.fromInterned(payload).canMutateComptimeVarState(zcu),
},
.aggregate => |aggregate| for (aggregate.storage.values()) |elem| {
if (Value.fromInterned(elem).canMutateComptimeVarState(zcu)) break true;
} else false,
.un => |un| Value.fromInterned(un.val).canMutateComptimeVarState(zcu),
else => false,
};
}
/// Gets the `Nav` referenced by this pointer. If the pointer does not point
/// to a `Nav`, or if it points to some part of one (like a field or element),
/// returns null.
pub fn pointerNav(val: Value, zcu: *Zcu) ?InternPool.Nav.Index {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
// TODO: these 3 cases are weird; these aren't pointer values!
.variable => |v| v.owner_nav,
.@"extern" => |e| e.owner_nav,
.func => |func| func.owner_nav,
.ptr => |ptr| if (ptr.byte_offset == 0) switch (ptr.base_addr) {
.nav => |nav| nav,
else => null,
} else null,
else => null,
};
}
pub const slice_ptr_index = 0;
pub const slice_len_index = 1;
pub fn slicePtr(val: Value, zcu: *Zcu) Value {
return Value.fromInterned(zcu.intern_pool.slicePtr(val.toIntern()));
}
/// Gets the `len` field of a slice value as a `u64`.
/// Resolves the length using `Sema` if necessary.
pub fn sliceLen(val: Value, pt: Zcu.PerThread) !u64 {
return Value.fromInterned(pt.zcu.intern_pool.sliceLen(val.toIntern())).toUnsignedIntSema(pt);
}
/// Asserts the value is an aggregate, and returns the element value at the given index.
pub fn elemValue(val: Value, pt: Zcu.PerThread, index: usize) Allocator.Error!Value {
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.undef => |ty| {
return Value.fromInterned(try pt.intern(.{ .undef = Type.fromInterned(ty).childType(zcu).toIntern() }));
},
.aggregate => |aggregate| {
const len = ip.aggregateTypeLen(aggregate.ty);
if (index < len) return Value.fromInterned(switch (aggregate.storage) {
.bytes => |bytes| try pt.intern(.{ .int = .{
.ty = .u8_type,
.storage = .{ .u64 = bytes.at(index, ip) },
} }),
.elems => |elems| elems[index],
.repeated_elem => |elem| elem,
});
assert(index == len);
return Type.fromInterned(aggregate.ty).sentinel(zcu).?;
},
else => unreachable,
}
}
pub fn isLazyAlign(val: Value, zcu: *Zcu) bool {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.int => |int| int.storage == .lazy_align,
else => false,
};
}
pub fn isLazySize(val: Value, zcu: *Zcu) bool {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.int => |int| int.storage == .lazy_size,
else => false,
};
}
pub fn isPtrToThreadLocal(val: Value, zcu: *Zcu) bool {
const ip = &zcu.intern_pool;
const nav = ip.getBackingNav(val.toIntern()).unwrap() orelse return false;
return switch (ip.indexToKey(ip.getNav(nav).status.resolved.val)) {
.@"extern" => |e| e.is_threadlocal,
.variable => |v| v.is_threadlocal,
else => false,
};
}
// Asserts that the provided start/end are in-bounds.
pub fn sliceArray(
val: Value,
sema: *Sema,
start: usize,
end: usize,
) error{OutOfMemory}!Value {
const pt = sema.pt;
const ip = &pt.zcu.intern_pool;
return Value.fromInterned(try pt.intern(.{
.aggregate = .{
.ty = switch (pt.zcu.intern_pool.indexToKey(pt.zcu.intern_pool.typeOf(val.toIntern()))) {
.array_type => |array_type| try pt.arrayType(.{
.len = @intCast(end - start),
.child = array_type.child,
.sentinel = if (end == array_type.len) array_type.sentinel else .none,
}),
.vector_type => |vector_type| try pt.vectorType(.{
.len = @intCast(end - start),
.child = vector_type.child,
}),
else => unreachable,
}.toIntern(),
.storage = switch (ip.indexToKey(val.toIntern()).aggregate.storage) {
.bytes => |bytes| storage: {
try ip.string_bytes.ensureUnusedCapacity(sema.gpa, end - start + 1);
break :storage .{ .bytes = try ip.getOrPutString(
sema.gpa,
bytes.toSlice(end, ip)[start..],
.maybe_embedded_nulls,
) };
},
// TODO: write something like getCoercedInts to avoid needing to dupe
.elems => |elems| .{ .elems = try sema.arena.dupe(InternPool.Index, elems[start..end]) },
.repeated_elem => |elem| .{ .repeated_elem = elem },
},
},
}));
}
pub fn fieldValue(val: Value, pt: Zcu.PerThread, index: usize) !Value {
const zcu = pt.zcu;
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.undef => |ty| Value.fromInterned(try pt.intern(.{
.undef = Type.fromInterned(ty).fieldType(index, zcu).toIntern(),
})),
.aggregate => |aggregate| Value.fromInterned(switch (aggregate.storage) {
.bytes => |bytes| try pt.intern(.{ .int = .{
.ty = .u8_type,
.storage = .{ .u64 = bytes.at(index, &zcu.intern_pool) },
} }),
.elems => |elems| elems[index],
.repeated_elem => |elem| elem,
}),
// TODO assert the tag is correct
.un => |un| Value.fromInterned(un.val),
else => unreachable,
};
}
pub fn unionTag(val: Value, zcu: *Zcu) ?Value {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.undef, .enum_tag => val,
.un => |un| if (un.tag != .none) Value.fromInterned(un.tag) else return null,
else => unreachable,
};
}
pub fn unionValue(val: Value, zcu: *Zcu) Value {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.un => |un| Value.fromInterned(un.val),
else => unreachable,
};
}
pub fn isUndef(val: Value, zcu: *Zcu) bool {
return zcu.intern_pool.isUndef(val.toIntern());
}
/// TODO: check for cases such as array that is not marked undef but all the element
/// values are marked undef, or struct that is not marked undef but all fields are marked
/// undef, etc.
pub fn isUndefDeep(val: Value, zcu: *Zcu) bool {
return val.isUndef(zcu);
}
/// Asserts the value is not undefined and not unreachable.
/// C pointers with an integer value of 0 are also considered null.
pub fn isNull(val: Value, zcu: *Zcu) bool {
return switch (val.toIntern()) {
.undef => unreachable,
.unreachable_value => unreachable,
.null_value => true,
else => return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.undef => unreachable,
.ptr => |ptr| switch (ptr.base_addr) {
.int => ptr.byte_offset == 0,
else => false,
},
.opt => |opt| opt.val == .none,
else => false,
},
};
}
/// Valid only for error (union) types. Asserts the value is not undefined and not unreachable.
pub fn getErrorName(val: Value, zcu: *const Zcu) InternPool.OptionalNullTerminatedString {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.err => |err| err.name.toOptional(),
.error_union => |error_union| switch (error_union.val) {
.err_name => |err_name| err_name.toOptional(),
.payload => .none,
},
else => unreachable,
};
}
pub fn getErrorInt(val: Value, zcu: *Zcu) Zcu.ErrorInt {
return if (getErrorName(val, zcu).unwrap()) |err_name|
zcu.intern_pool.getErrorValueIfExists(err_name).?
else
0;
}
/// Assumes the type is an error union. Returns true if and only if the value is
/// the error union payload, not an error.
pub fn errorUnionIsPayload(val: Value, zcu: *const Zcu) bool {
return zcu.intern_pool.indexToKey(val.toIntern()).error_union.val == .payload;
}
/// Value of the optional, null if optional has no payload.
pub fn optionalValue(val: Value, zcu: *const Zcu) ?Value {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.opt => |opt| switch (opt.val) {
.none => null,
else => |payload| Value.fromInterned(payload),
},
.ptr => val,
else => unreachable,
};
}
/// Valid for all types. Asserts the value is not undefined.
pub fn isFloat(self: Value, zcu: *const Zcu) bool {
return switch (self.toIntern()) {
.undef => unreachable,
else => switch (zcu.intern_pool.indexToKey(self.toIntern())) {
.undef => unreachable,
.float => true,
else => false,
},
};
}
pub fn floatFromInt(val: Value, arena: Allocator, int_ty: Type, float_ty: Type, zcu: *Zcu) !Value {
return floatFromIntAdvanced(val, arena, int_ty, float_ty, zcu, .normal) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => unreachable,
};
}
pub fn floatFromIntAdvanced(
val: Value,
arena: Allocator,
int_ty: Type,
float_ty: Type,
pt: Zcu.PerThread,
comptime strat: ResolveStrat,
) !Value {
const zcu = pt.zcu;
if (int_ty.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, int_ty.vectorLen(zcu));
const scalar_ty = float_ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try floatFromIntScalar(elem_val, scalar_ty, pt, strat)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatFromIntScalar(val, float_ty, pt, strat);
}
pub fn floatFromIntScalar(val: Value, float_ty: Type, pt: Zcu.PerThread, comptime strat: ResolveStrat) !Value {
const zcu = pt.zcu;
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.undef => try pt.undefValue(float_ty),
.int => |int| switch (int.storage) {
.big_int => |big_int| {
const float = bigIntToFloat(big_int.limbs, big_int.positive);
return pt.floatValue(float_ty, float);
},
inline .u64, .i64 => |x| floatFromIntInner(x, float_ty, pt),
.lazy_align => |ty| return floatFromIntInner((try Type.fromInterned(ty).abiAlignmentInner(strat.toLazy(), pt.zcu, pt.tid)).scalar.toByteUnits() orelse 0, float_ty, pt),
.lazy_size => |ty| return floatFromIntInner((try Type.fromInterned(ty).abiSizeInner(strat.toLazy(), pt.zcu, pt.tid)).scalar, float_ty, pt),
},
else => unreachable,
};
}
fn floatFromIntInner(x: anytype, dest_ty: Type, pt: Zcu.PerThread) !Value {
const target = pt.zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (dest_ty.floatBits(target)) {
16 => .{ .f16 = @floatFromInt(x) },
32 => .{ .f32 = @floatFromInt(x) },
64 => .{ .f64 = @floatFromInt(x) },
80 => .{ .f80 = @floatFromInt(x) },
128 => .{ .f128 = @floatFromInt(x) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = dest_ty.toIntern(),
.storage = storage,
} }));
}
fn calcLimbLenFloat(scalar: anytype) usize {
if (scalar == 0) {
return 1;
}
const w_value = @abs(scalar);
return @divFloor(@as(std.math.big.Limb, @intFromFloat(std.math.log2(w_value))), @typeInfo(std.math.big.Limb).Int.bits) + 1;
}
pub const OverflowArithmeticResult = struct {
overflow_bit: Value,
wrapped_result: Value,
};
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intAddSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try intAddSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intAddSatScalar(lhs, rhs, ty, arena, pt);
}
/// Supports integers only; asserts neither operand is undefined.
pub fn intAddSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
assert(!lhs.isUndef(zcu));
assert(!rhs.isUndef(zcu));
const info = ty.intInfo(zcu);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.addSat(lhs_bigint, rhs_bigint, info.signedness, info.bits);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intSubSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try intSubSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intSubSatScalar(lhs, rhs, ty, arena, pt);
}
/// Supports integers only; asserts neither operand is undefined.
pub fn intSubSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
assert(!lhs.isUndef(zcu));
assert(!rhs.isUndef(zcu));
const info = ty.intInfo(zcu);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.subSat(lhs_bigint, rhs_bigint, info.signedness, info.bits);
return pt.intValue_big(ty, result_bigint.toConst());
}
pub fn intMulWithOverflow(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !OverflowArithmeticResult {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const vec_len = ty.vectorLen(zcu);
const overflowed_data = try arena.alloc(InternPool.Index, vec_len);
const result_data = try arena.alloc(InternPool.Index, vec_len);
const scalar_ty = ty.scalarType(zcu);
for (overflowed_data, result_data, 0..) |*of, *scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
const of_math_result = try intMulWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt);
of.* = of_math_result.overflow_bit.toIntern();
scalar.* = of_math_result.wrapped_result.toIntern();
}
return OverflowArithmeticResult{
.overflow_bit = Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = (try pt.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(),
.storage = .{ .elems = overflowed_data },
} })),
.wrapped_result = Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })),
};
}
return intMulWithOverflowScalar(lhs, rhs, ty, arena, pt);
}
pub fn intMulWithOverflowScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !OverflowArithmeticResult {
const zcu = pt.zcu;
const info = ty.intInfo(zcu);
if (lhs.isUndef(zcu) or rhs.isUndef(zcu)) {
return .{
.overflow_bit = try pt.undefValue(Type.u1),
.wrapped_result = try pt.undefValue(ty),
};
}
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const limbs_buffer = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, arena);
const overflowed = !result_bigint.toConst().fitsInTwosComp(info.signedness, info.bits);
if (overflowed) {
result_bigint.truncate(result_bigint.toConst(), info.signedness, info.bits);
}
return OverflowArithmeticResult{
.overflow_bit = try pt.intValue(Type.u1, @intFromBool(overflowed)),
.wrapped_result = try pt.intValue_big(ty, result_bigint.toConst()),
};
}
/// Supports both (vectors of) floats and ints; handles undefined scalars.
pub fn numberMulWrap(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try numberMulWrapScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return numberMulWrapScalar(lhs, rhs, ty, arena, pt);
}
/// Supports both floats and ints; handles undefined.
pub fn numberMulWrapScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (lhs.isUndef(zcu) or rhs.isUndef(zcu)) return Value.undef;
if (ty.zigTypeTag(zcu) == .ComptimeInt) {
return intMul(lhs, rhs, ty, undefined, arena, pt);
}
if (ty.isAnyFloat()) {
return floatMul(lhs, rhs, ty, arena, pt);
}
const overflow_result = try intMulWithOverflow(lhs, rhs, ty, arena, pt);
return overflow_result.wrapped_result;
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intMulSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try intMulSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intMulSatScalar(lhs, rhs, ty, arena, pt);
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intMulSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
assert(!lhs.isUndef(zcu));
assert(!rhs.isUndef(zcu));
const info = ty.intInfo(zcu);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
@max(
// For the saturate
std.math.big.int.calcTwosCompLimbCount(info.bits),
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const limbs_buffer = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, arena);
result_bigint.saturate(result_bigint.toConst(), info.signedness, info.bits);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// Supports both floats and ints; handles undefined.
pub fn numberMax(lhs: Value, rhs: Value, zcu: *Zcu) Value {
if (lhs.isUndef(zcu) or rhs.isUndef(zcu)) return undef;
if (lhs.isNan(zcu)) return rhs;
if (rhs.isNan(zcu)) return lhs;
return switch (order(lhs, rhs, zcu)) {
.lt => rhs,
.gt, .eq => lhs,
};
}
/// Supports both floats and ints; handles undefined.
pub fn numberMin(lhs: Value, rhs: Value, zcu: *Zcu) Value {
if (lhs.isUndef(zcu) or rhs.isUndef(zcu)) return undef;
if (lhs.isNan(zcu)) return rhs;
if (rhs.isNan(zcu)) return lhs;
return switch (order(lhs, rhs, zcu)) {
.lt => lhs,
.gt, .eq => rhs,
};
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseNot(val: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try bitwiseNotScalar(elem_val, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return bitwiseNotScalar(val, ty, arena, pt);
}
/// operands must be integers; handles undefined.
pub fn bitwiseNotScalar(val: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (val.isUndef(zcu)) return Value.fromInterned(try pt.intern(.{ .undef = ty.toIntern() }));
if (ty.toIntern() == .bool_type) return makeBool(!val.toBool());
const info = ty.intInfo(zcu);
if (info.bits == 0) {
return val;
}
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var val_space: Value.BigIntSpace = undefined;
const val_bigint = val.toBigInt(&val_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitNotWrap(val_bigint, info.signedness, info.bits);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseAnd(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try bitwiseAndScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return bitwiseAndScalar(lhs, rhs, ty, allocator, pt);
}
/// operands must be integers; handles undefined.
pub fn bitwiseAndScalar(orig_lhs: Value, orig_rhs: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
// If one operand is defined, we turn the other into `0xAA` so the bitwise AND can
// still zero out some bits.
// TODO: ideally we'd still like tracking for the undef bits. Related: #19634.
const lhs: Value, const rhs: Value = make_defined: {
const lhs_undef = orig_lhs.isUndef(zcu);
const rhs_undef = orig_rhs.isUndef(zcu);
break :make_defined switch ((@as(u2, @intFromBool(lhs_undef)) << 1) | @intFromBool(rhs_undef)) {
0b00 => .{ orig_lhs, orig_rhs },
0b01 => .{ orig_lhs, try intValueAa(ty, arena, pt) },
0b10 => .{ try intValueAa(ty, arena, pt), orig_rhs },
0b11 => return pt.undefValue(ty),
};
};
if (ty.toIntern() == .bool_type) return makeBool(lhs.toBool() and rhs.toBool());
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
// + 1 for negatives
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitAnd(lhs_bigint, rhs_bigint);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// Given an integer or boolean type, creates an value of that with the bit pattern 0xAA.
/// This is used to convert undef values into 0xAA when performing e.g. bitwise operations.
fn intValueAa(ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.toIntern() == .bool_type) return Value.true;
const info = ty.intInfo(zcu);
const buf = try arena.alloc(u8, (info.bits + 7) / 8);
@memset(buf, 0xAA);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.readTwosComplement(buf, info.bits, zcu.getTarget().cpu.arch.endian(), info.signedness);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseNand(lhs: Value, rhs: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try bitwiseNandScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return bitwiseNandScalar(lhs, rhs, ty, arena, pt);
}
/// operands must be integers; handles undefined.
pub fn bitwiseNandScalar(lhs: Value, rhs: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (lhs.isUndef(zcu) or rhs.isUndef(zcu)) return Value.fromInterned(try pt.intern(.{ .undef = ty.toIntern() }));
if (ty.toIntern() == .bool_type) return makeBool(!(lhs.toBool() and rhs.toBool()));
const anded = try bitwiseAnd(lhs, rhs, ty, arena, pt);
const all_ones = if (ty.isSignedInt(zcu)) try pt.intValue(ty, -1) else try ty.maxIntScalar(pt, ty);
return bitwiseXor(anded, all_ones, ty, arena, pt);
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseOr(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try bitwiseOrScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return bitwiseOrScalar(lhs, rhs, ty, allocator, pt);
}
/// operands must be integers; handles undefined.
pub fn bitwiseOrScalar(orig_lhs: Value, orig_rhs: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
// If one operand is defined, we turn the other into `0xAA` so the bitwise AND can
// still zero out some bits.
// TODO: ideally we'd still like tracking for the undef bits. Related: #19634.
const zcu = pt.zcu;
const lhs: Value, const rhs: Value = make_defined: {
const lhs_undef = orig_lhs.isUndef(zcu);
const rhs_undef = orig_rhs.isUndef(zcu);
break :make_defined switch ((@as(u2, @intFromBool(lhs_undef)) << 1) | @intFromBool(rhs_undef)) {
0b00 => .{ orig_lhs, orig_rhs },
0b01 => .{ orig_lhs, try intValueAa(ty, arena, pt) },
0b10 => .{ try intValueAa(ty, arena, pt), orig_rhs },
0b11 => return pt.undefValue(ty),
};
};
if (ty.toIntern() == .bool_type) return makeBool(lhs.toBool() or rhs.toBool());
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitOr(lhs_bigint, rhs_bigint);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseXor(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try bitwiseXorScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return bitwiseXorScalar(lhs, rhs, ty, allocator, pt);
}
/// operands must be integers; handles undefined.
pub fn bitwiseXorScalar(lhs: Value, rhs: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (lhs.isUndef(zcu) or rhs.isUndef(zcu)) return Value.fromInterned(try pt.intern(.{ .undef = ty.toIntern() }));
if (ty.toIntern() == .bool_type) return makeBool(lhs.toBool() != rhs.toBool());
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try arena.alloc(
std.math.big.Limb,
// + 1 for negatives
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitXor(lhs_bigint, rhs_bigint);
return pt.intValue_big(ty, result_bigint.toConst());
}
/// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting
/// overflow_idx to the vector index the overflow was at (or 0 for a scalar).
pub fn intDiv(lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize, allocator: Allocator, pt: Zcu.PerThread) !Value {
var overflow: usize = undefined;
return intDivInner(lhs, rhs, ty, &overflow, allocator, pt) catch |err| switch (err) {
error.Overflow => {
const is_vec = ty.isVector(pt.zcu);
overflow_idx.* = if (is_vec) overflow else 0;
const safe_ty = if (is_vec) try pt.vectorType(.{
.len = ty.vectorLen(pt.zcu),
.child = .comptime_int_type,
}) else Type.comptime_int;
return intDivInner(lhs, rhs, safe_ty, undefined, allocator, pt) catch |err1| switch (err1) {
error.Overflow => unreachable,
else => |e| return e,
};
},
else => |e| return e,
};
}
fn intDivInner(lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize, allocator: Allocator, pt: Zcu.PerThread) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
const val = intDivScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt) catch |err| switch (err) {
error.Overflow => {
overflow_idx.* = i;
return error.Overflow;
},
else => |e| return e,
};
scalar.* = val.toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intDivScalar(lhs, rhs, ty, allocator, pt);
}
pub fn intDivScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const zcu = pt.zcu;
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
if (ty.toIntern() != .comptime_int_type) {
const info = ty.intInfo(pt.zcu);
if (!result_q.toConst().fitsInTwosComp(info.signedness, info.bits)) {
return error.Overflow;
}
}
return pt.intValue_big(ty, result_q.toConst());
}
pub fn intDivFloor(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try intDivFloorScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intDivFloorScalar(lhs, rhs, ty, allocator, pt);
}
pub fn intDivFloorScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const zcu = pt.zcu;
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return pt.intValue_big(ty, result_q.toConst());
}
pub fn intMod(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try intModScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intModScalar(lhs, rhs, ty, allocator, pt);
}
pub fn intModScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const zcu = pt.zcu;
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return pt.intValue_big(ty, result_r.toConst());
}
/// Returns true if the value is a floating point type and is NaN. Returns false otherwise.
pub fn isNan(val: Value, zcu: *const Zcu) bool {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| std.math.isNan(x),
},
else => false,
};
}
/// Returns true if the value is a floating point type and is infinite. Returns false otherwise.
pub fn isInf(val: Value, zcu: *const Zcu) bool {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| std.math.isInf(x),
},
else => false,
};
}
pub fn isNegativeInf(val: Value, zcu: *const Zcu) bool {
return switch (zcu.intern_pool.indexToKey(val.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| std.math.isNegativeInf(x),
},
else => false,
};
}
pub fn floatRem(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
if (float_type.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(pt.zcu));
const scalar_ty = float_type.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatRemScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatRemScalar(lhs, rhs, float_type, pt);
}
pub fn floatRemScalar(lhs: Value, rhs: Value, float_type: Type, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const target = pt.zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @rem(lhs.toFloat(f16, zcu), rhs.toFloat(f16, zcu)) },
32 => .{ .f32 = @rem(lhs.toFloat(f32, zcu), rhs.toFloat(f32, zcu)) },
64 => .{ .f64 = @rem(lhs.toFloat(f64, zcu), rhs.toFloat(f64, zcu)) },
80 => .{ .f80 = @rem(lhs.toFloat(f80, zcu), rhs.toFloat(f80, zcu)) },
128 => .{ .f128 = @rem(lhs.toFloat(f128, zcu), rhs.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn floatMod(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
if (float_type.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(pt.zcu));
const scalar_ty = float_type.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatModScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatModScalar(lhs, rhs, float_type, pt);
}
pub fn floatModScalar(lhs: Value, rhs: Value, float_type: Type, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @mod(lhs.toFloat(f16, zcu), rhs.toFloat(f16, zcu)) },
32 => .{ .f32 = @mod(lhs.toFloat(f32, zcu), rhs.toFloat(f32, zcu)) },
64 => .{ .f64 = @mod(lhs.toFloat(f64, zcu), rhs.toFloat(f64, zcu)) },
80 => .{ .f80 = @mod(lhs.toFloat(f80, zcu), rhs.toFloat(f80, zcu)) },
128 => .{ .f128 = @mod(lhs.toFloat(f128, zcu), rhs.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
/// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting
/// overflow_idx to the vector index the overflow was at (or 0 for a scalar).
pub fn intMul(lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize, allocator: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
var overflow: usize = undefined;
return intMulInner(lhs, rhs, ty, &overflow, allocator, pt) catch |err| switch (err) {
error.Overflow => {
const is_vec = ty.isVector(zcu);
overflow_idx.* = if (is_vec) overflow else 0;
const safe_ty = if (is_vec) try pt.vectorType(.{
.len = ty.vectorLen(zcu),
.child = .comptime_int_type,
}) else Type.comptime_int;
return intMulInner(lhs, rhs, safe_ty, undefined, allocator, pt) catch |err1| switch (err1) {
error.Overflow => unreachable,
else => |e| return e,
};
},
else => |e| return e,
};
}
fn intMulInner(lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize, allocator: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
const val = intMulScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt) catch |err| switch (err) {
error.Overflow => {
overflow_idx.* = i;
return error.Overflow;
},
else => |e| return e,
};
scalar.* = val.toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intMulScalar(lhs, rhs, ty, allocator, pt);
}
pub fn intMulScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.toIntern() != .comptime_int_type) {
const res = try intMulWithOverflowScalar(lhs, rhs, ty, allocator, pt);
if (res.overflow_bit.compareAllWithZero(.neq, zcu)) return error.Overflow;
return res.wrapped_result;
}
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const rhs_bigint = rhs.toBigInt(&rhs_space, zcu);
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
defer allocator.free(limbs_buffer);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, allocator);
return pt.intValue_big(ty, result_bigint.toConst());
}
pub fn intTrunc(val: Value, ty: Type, allocator: Allocator, signedness: std.builtin.Signedness, bits: u16, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try intTruncScalar(elem_val, scalar_ty, allocator, signedness, bits, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intTruncScalar(val, ty, allocator, signedness, bits, pt);
}
/// This variant may vectorize on `bits`. Asserts that `bits` is a (vector of) `u16`.
pub fn intTruncBitsAsValue(
val: Value,
ty: Type,
allocator: Allocator,
signedness: std.builtin.Signedness,
bits: Value,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
const bits_elem = try bits.elemValue(pt, i);
scalar.* = (try intTruncScalar(elem_val, scalar_ty, allocator, signedness, @intCast(bits_elem.toUnsignedInt(zcu)), pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return intTruncScalar(val, ty, allocator, signedness, @intCast(bits.toUnsignedInt(zcu)), pt);
}
pub fn intTruncScalar(
val: Value,
ty: Type,
allocator: Allocator,
signedness: std.builtin.Signedness,
bits: u16,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (bits == 0) return pt.intValue(ty, 0);
if (val.isUndef(zcu)) return pt.undefValue(ty);
var val_space: Value.BigIntSpace = undefined;
const val_bigint = val.toBigInt(&val_space, zcu);
const limbs = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.truncate(val_bigint, signedness, bits);
return pt.intValue_big(ty, result_bigint.toConst());
}
pub fn shl(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try shlScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return shlScalar(lhs, rhs, ty, allocator, pt);
}
pub fn shlScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const zcu = pt.zcu;
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const shift: usize = @intCast(rhs.toUnsignedInt(zcu));
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + (shift / (@sizeOf(std.math.big.Limb) * 8)) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeft(lhs_bigint, shift);
if (ty.toIntern() != .comptime_int_type) {
const int_info = ty.intInfo(zcu);
result_bigint.truncate(result_bigint.toConst(), int_info.signedness, int_info.bits);
}
return pt.intValue_big(ty, result_bigint.toConst());
}
pub fn shlWithOverflow(
lhs: Value,
rhs: Value,
ty: Type,
allocator: Allocator,
pt: Zcu.PerThread,
) !OverflowArithmeticResult {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const vec_len = ty.vectorLen(pt.zcu);
const overflowed_data = try allocator.alloc(InternPool.Index, vec_len);
const result_data = try allocator.alloc(InternPool.Index, vec_len);
const scalar_ty = ty.scalarType(pt.zcu);
for (overflowed_data, result_data, 0..) |*of, *scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
const of_math_result = try shlWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt);
of.* = of_math_result.overflow_bit.toIntern();
scalar.* = of_math_result.wrapped_result.toIntern();
}
return OverflowArithmeticResult{
.overflow_bit = Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = (try pt.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(),
.storage = .{ .elems = overflowed_data },
} })),
.wrapped_result = Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })),
};
}
return shlWithOverflowScalar(lhs, rhs, ty, allocator, pt);
}
pub fn shlWithOverflowScalar(
lhs: Value,
rhs: Value,
ty: Type,
allocator: Allocator,
pt: Zcu.PerThread,
) !OverflowArithmeticResult {
const zcu = pt.zcu;
const info = ty.intInfo(zcu);
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const shift: usize = @intCast(rhs.toUnsignedInt(zcu));
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + (shift / (@sizeOf(std.math.big.Limb) * 8)) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeft(lhs_bigint, shift);
const overflowed = !result_bigint.toConst().fitsInTwosComp(info.signedness, info.bits);
if (overflowed) {
result_bigint.truncate(result_bigint.toConst(), info.signedness, info.bits);
}
return OverflowArithmeticResult{
.overflow_bit = try pt.intValue(Type.u1, @intFromBool(overflowed)),
.wrapped_result = try pt.intValue_big(ty, result_bigint.toConst()),
};
}
pub fn shlSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try shlSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return shlSatScalar(lhs, rhs, ty, arena, pt);
}
pub fn shlSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const zcu = pt.zcu;
const info = ty.intInfo(zcu);
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const shift: usize = @intCast(rhs.toUnsignedInt(zcu));
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeftSat(lhs_bigint, shift, info.signedness, info.bits);
return pt.intValue_big(ty, result_bigint.toConst());
}
pub fn shlTrunc(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try shlTruncScalar(lhs_elem, rhs_elem, scalar_ty, arena, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return shlTruncScalar(lhs, rhs, ty, arena, pt);
}
pub fn shlTruncScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const shifted = try lhs.shl(rhs, ty, arena, pt);
const int_info = ty.intInfo(pt.zcu);
const truncated = try shifted.intTrunc(ty, arena, int_info.signedness, int_info.bits, pt);
return truncated;
}
pub fn shr(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
if (ty.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(pt.zcu));
const scalar_ty = ty.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try shrScalar(lhs_elem, rhs_elem, scalar_ty, allocator, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return shrScalar(lhs, rhs, ty, allocator, pt);
}
pub fn shrScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, pt: Zcu.PerThread) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const zcu = pt.zcu;
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, zcu);
const shift: usize = @intCast(rhs.toUnsignedInt(zcu));
const result_limbs = lhs_bigint.limbs.len -| (shift / (@sizeOf(std.math.big.Limb) * 8));
if (result_limbs == 0) {
// The shift is enough to remove all the bits from the number, which means the
// result is 0 or -1 depending on the sign.
if (lhs_bigint.positive) {
return pt.intValue(ty, 0);
} else {
return pt.intValue(ty, -1);
}
}
const limbs = try allocator.alloc(
std.math.big.Limb,
result_limbs,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftRight(lhs_bigint, shift);
return pt.intValue_big(ty, result_bigint.toConst());
}
pub fn floatNeg(
val: Value,
float_type: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try floatNegScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatNegScalar(val, float_type, pt);
}
pub fn floatNegScalar(val: Value, float_type: Type, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = -val.toFloat(f16, zcu) },
32 => .{ .f32 = -val.toFloat(f32, zcu) },
64 => .{ .f64 = -val.toFloat(f64, zcu) },
80 => .{ .f80 = -val.toFloat(f80, zcu) },
128 => .{ .f128 = -val.toFloat(f128, zcu) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn floatAdd(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatAddScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatAddScalar(lhs, rhs, float_type, pt);
}
pub fn floatAddScalar(
lhs: Value,
rhs: Value,
float_type: Type,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, zcu) + rhs.toFloat(f16, zcu) },
32 => .{ .f32 = lhs.toFloat(f32, zcu) + rhs.toFloat(f32, zcu) },
64 => .{ .f64 = lhs.toFloat(f64, zcu) + rhs.toFloat(f64, zcu) },
80 => .{ .f80 = lhs.toFloat(f80, zcu) + rhs.toFloat(f80, zcu) },
128 => .{ .f128 = lhs.toFloat(f128, zcu) + rhs.toFloat(f128, zcu) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn floatSub(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatSubScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatSubScalar(lhs, rhs, float_type, pt);
}
pub fn floatSubScalar(
lhs: Value,
rhs: Value,
float_type: Type,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, zcu) - rhs.toFloat(f16, zcu) },
32 => .{ .f32 = lhs.toFloat(f32, zcu) - rhs.toFloat(f32, zcu) },
64 => .{ .f64 = lhs.toFloat(f64, zcu) - rhs.toFloat(f64, zcu) },
80 => .{ .f80 = lhs.toFloat(f80, zcu) - rhs.toFloat(f80, zcu) },
128 => .{ .f128 = lhs.toFloat(f128, zcu) - rhs.toFloat(f128, zcu) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn floatDiv(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (float_type.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(pt.zcu));
const scalar_ty = float_type.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatDivScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatDivScalar(lhs, rhs, float_type, pt);
}
pub fn floatDivScalar(
lhs: Value,
rhs: Value,
float_type: Type,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, zcu) / rhs.toFloat(f16, zcu) },
32 => .{ .f32 = lhs.toFloat(f32, zcu) / rhs.toFloat(f32, zcu) },
64 => .{ .f64 = lhs.toFloat(f64, zcu) / rhs.toFloat(f64, zcu) },
80 => .{ .f80 = lhs.toFloat(f80, zcu) / rhs.toFloat(f80, zcu) },
128 => .{ .f128 = lhs.toFloat(f128, zcu) / rhs.toFloat(f128, zcu) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn floatDivFloor(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (float_type.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(pt.zcu));
const scalar_ty = float_type.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatDivFloorScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatDivFloorScalar(lhs, rhs, float_type, pt);
}
pub fn floatDivFloorScalar(
lhs: Value,
rhs: Value,
float_type: Type,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @divFloor(lhs.toFloat(f16, zcu), rhs.toFloat(f16, zcu)) },
32 => .{ .f32 = @divFloor(lhs.toFloat(f32, zcu), rhs.toFloat(f32, zcu)) },
64 => .{ .f64 = @divFloor(lhs.toFloat(f64, zcu), rhs.toFloat(f64, zcu)) },
80 => .{ .f80 = @divFloor(lhs.toFloat(f80, zcu), rhs.toFloat(f80, zcu)) },
128 => .{ .f128 = @divFloor(lhs.toFloat(f128, zcu), rhs.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn floatDivTrunc(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
if (float_type.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(pt.zcu));
const scalar_ty = float_type.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatDivTruncScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatDivTruncScalar(lhs, rhs, float_type, pt);
}
pub fn floatDivTruncScalar(
lhs: Value,
rhs: Value,
float_type: Type,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @divTrunc(lhs.toFloat(f16, zcu), rhs.toFloat(f16, zcu)) },
32 => .{ .f32 = @divTrunc(lhs.toFloat(f32, zcu), rhs.toFloat(f32, zcu)) },
64 => .{ .f64 = @divTrunc(lhs.toFloat(f64, zcu), rhs.toFloat(f64, zcu)) },
80 => .{ .f80 = @divTrunc(lhs.toFloat(f80, zcu), rhs.toFloat(f80, zcu)) },
128 => .{ .f128 = @divTrunc(lhs.toFloat(f128, zcu), rhs.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn floatMul(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(pt, i);
const rhs_elem = try rhs.elemValue(pt, i);
scalar.* = (try floatMulScalar(lhs_elem, rhs_elem, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floatMulScalar(lhs, rhs, float_type, pt);
}
pub fn floatMulScalar(
lhs: Value,
rhs: Value,
float_type: Type,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, zcu) * rhs.toFloat(f16, zcu) },
32 => .{ .f32 = lhs.toFloat(f32, zcu) * rhs.toFloat(f32, zcu) },
64 => .{ .f64 = lhs.toFloat(f64, zcu) * rhs.toFloat(f64, zcu) },
80 => .{ .f80 = lhs.toFloat(f80, zcu) * rhs.toFloat(f80, zcu) },
128 => .{ .f128 = lhs.toFloat(f128, zcu) * rhs.toFloat(f128, zcu) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn sqrt(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
if (float_type.zigTypeTag(pt.zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(pt.zcu));
const scalar_ty = float_type.scalarType(pt.zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try sqrtScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return sqrtScalar(val, float_type, pt);
}
pub fn sqrtScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @sqrt(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @sqrt(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @sqrt(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @sqrt(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @sqrt(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn sin(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try sinScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return sinScalar(val, float_type, pt);
}
pub fn sinScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @sin(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @sin(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @sin(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @sin(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @sin(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn cos(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try cosScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return cosScalar(val, float_type, pt);
}
pub fn cosScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @cos(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @cos(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @cos(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @cos(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @cos(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn tan(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try tanScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return tanScalar(val, float_type, pt);
}
pub fn tanScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @tan(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @tan(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @tan(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @tan(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @tan(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn exp(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try expScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return expScalar(val, float_type, pt);
}
pub fn expScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @exp(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @exp(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @exp(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @exp(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @exp(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn exp2(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try exp2Scalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return exp2Scalar(val, float_type, pt);
}
pub fn exp2Scalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @exp2(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @exp2(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @exp2(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @exp2(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @exp2(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn log(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try logScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return logScalar(val, float_type, pt);
}
pub fn logScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @log(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @log(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @log(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @log(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @log(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn log2(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try log2Scalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return log2Scalar(val, float_type, pt);
}
pub fn log2Scalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @log2(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @log2(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @log2(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @log2(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @log2(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn log10(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try log10Scalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return log10Scalar(val, float_type, pt);
}
pub fn log10Scalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @log10(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @log10(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @log10(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @log10(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @log10(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn abs(val: Value, ty: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (ty.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(zcu));
const scalar_ty = ty.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try absScalar(elem_val, scalar_ty, pt, arena)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return absScalar(val, ty, pt, arena);
}
pub fn absScalar(val: Value, ty: Type, pt: Zcu.PerThread, arena: Allocator) Allocator.Error!Value {
const zcu = pt.zcu;
switch (ty.zigTypeTag(zcu)) {
.Int => {
var buffer: Value.BigIntSpace = undefined;
var operand_bigint = try val.toBigInt(&buffer, zcu).toManaged(arena);
operand_bigint.abs();
return pt.intValue_big(try ty.toUnsigned(pt), operand_bigint.toConst());
},
.ComptimeInt => {
var buffer: Value.BigIntSpace = undefined;
var operand_bigint = try val.toBigInt(&buffer, zcu).toManaged(arena);
operand_bigint.abs();
return pt.intValue_big(ty, operand_bigint.toConst());
},
.ComptimeFloat, .Float => {
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (ty.floatBits(target)) {
16 => .{ .f16 = @abs(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @abs(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @abs(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @abs(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @abs(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = storage,
} }));
},
else => unreachable,
}
}
pub fn floor(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try floorScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return floorScalar(val, float_type, pt);
}
pub fn floorScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @floor(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @floor(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @floor(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @floor(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @floor(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn ceil(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try ceilScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return ceilScalar(val, float_type, pt);
}
pub fn ceilScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @ceil(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @ceil(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @ceil(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @ceil(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @ceil(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn round(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try roundScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return roundScalar(val, float_type, pt);
}
pub fn roundScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @round(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @round(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @round(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @round(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @round(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn trunc(val: Value, float_type: Type, arena: Allocator, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(pt, i);
scalar.* = (try truncScalar(elem_val, scalar_ty, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return truncScalar(val, float_type, pt);
}
pub fn truncScalar(val: Value, float_type: Type, pt: Zcu.PerThread) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @trunc(val.toFloat(f16, zcu)) },
32 => .{ .f32 = @trunc(val.toFloat(f32, zcu)) },
64 => .{ .f64 = @trunc(val.toFloat(f64, zcu)) },
80 => .{ .f80 = @trunc(val.toFloat(f80, zcu)) },
128 => .{ .f128 = @trunc(val.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
pub fn mulAdd(
float_type: Type,
mulend1: Value,
mulend2: Value,
addend: Value,
arena: Allocator,
pt: Zcu.PerThread,
) !Value {
const zcu = pt.zcu;
if (float_type.zigTypeTag(zcu) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(zcu));
const scalar_ty = float_type.scalarType(zcu);
for (result_data, 0..) |*scalar, i| {
const mulend1_elem = try mulend1.elemValue(pt, i);
const mulend2_elem = try mulend2.elemValue(pt, i);
const addend_elem = try addend.elemValue(pt, i);
scalar.* = (try mulAddScalar(scalar_ty, mulend1_elem, mulend2_elem, addend_elem, pt)).toIntern();
}
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} }));
}
return mulAddScalar(float_type, mulend1, mulend2, addend, pt);
}
pub fn mulAddScalar(
float_type: Type,
mulend1: Value,
mulend2: Value,
addend: Value,
pt: Zcu.PerThread,
) Allocator.Error!Value {
const zcu = pt.zcu;
const target = zcu.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @mulAdd(f16, mulend1.toFloat(f16, zcu), mulend2.toFloat(f16, zcu), addend.toFloat(f16, zcu)) },
32 => .{ .f32 = @mulAdd(f32, mulend1.toFloat(f32, zcu), mulend2.toFloat(f32, zcu), addend.toFloat(f32, zcu)) },
64 => .{ .f64 = @mulAdd(f64, mulend1.toFloat(f64, zcu), mulend2.toFloat(f64, zcu), addend.toFloat(f64, zcu)) },
80 => .{ .f80 = @mulAdd(f80, mulend1.toFloat(f80, zcu), mulend2.toFloat(f80, zcu), addend.toFloat(f80, zcu)) },
128 => .{ .f128 = @mulAdd(f128, mulend1.toFloat(f128, zcu), mulend2.toFloat(f128, zcu), addend.toFloat(f128, zcu)) },
else => unreachable,
};
return Value.fromInterned(try pt.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} }));
}
/// If the value is represented in-memory as a series of bytes that all
/// have the same value, return that byte value, otherwise null.
pub fn hasRepeatedByteRepr(val: Value, ty: Type, pt: Zcu.PerThread) !?u8 {
const zcu = pt.zcu;
const abi_size = std.math.cast(usize, ty.abiSize(zcu)) orelse return null;
assert(abi_size >= 1);
const byte_buffer = try zcu.gpa.alloc(u8, abi_size);
defer zcu.gpa.free(byte_buffer);
writeToMemory(val, ty, pt, byte_buffer) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => return null,
// TODO: The writeToMemory function was originally created for the purpose
// of comptime pointer casting. However, it is now additionally being used
// for checking the actual memory layout that will be generated by machine
// code late in compilation. So, this error handling is too aggressive and
// causes some false negatives, causing less-than-ideal code generation.
error.IllDefinedMemoryLayout => return null,
error.Unimplemented => return null,
};
const first_byte = byte_buffer[0];
for (byte_buffer[1..]) |byte| {
if (byte != first_byte) return null;
}
return first_byte;
}
pub fn isGenericPoison(val: Value) bool {
return val.toIntern() == .generic_poison;
}
pub fn typeOf(val: Value, zcu: *const Zcu) Type {
return Type.fromInterned(zcu.intern_pool.typeOf(val.toIntern()));
}
/// For an integer (comptime or fixed-width) `val`, returns the comptime-known bounds of the value.
/// If `val` is not undef, the bounds are both `val`.
/// If `val` is undef and has a fixed-width type, the bounds are the bounds of the type.
/// If `val` is undef and is a `comptime_int`, returns null.
pub fn intValueBounds(val: Value, pt: Zcu.PerThread) !?[2]Value {
if (!val.isUndef(pt.zcu)) return .{ val, val };
const ty = pt.zcu.intern_pool.typeOf(val.toIntern());
if (ty == .comptime_int_type) return null;
return .{
try Type.fromInterned(ty).minInt(pt, Type.fromInterned(ty)),
try Type.fromInterned(ty).maxInt(pt, Type.fromInterned(ty)),
};
}
pub const BigIntSpace = InternPool.Key.Int.Storage.BigIntSpace;
pub const zero_usize: Value = .{ .ip_index = .zero_usize };
pub const zero_u8: Value = .{ .ip_index = .zero_u8 };
pub const zero_comptime_int: Value = .{ .ip_index = .zero };
pub const one_comptime_int: Value = .{ .ip_index = .one };
pub const negative_one_comptime_int: Value = .{ .ip_index = .negative_one };
pub const undef: Value = .{ .ip_index = .undef };
pub const @"void": Value = .{ .ip_index = .void_value };
pub const @"null": Value = .{ .ip_index = .null_value };
pub const @"false": Value = .{ .ip_index = .bool_false };
pub const @"true": Value = .{ .ip_index = .bool_true };
pub const @"unreachable": Value = .{ .ip_index = .unreachable_value };
pub const generic_poison: Value = .{ .ip_index = .generic_poison };
pub const generic_poison_type: Value = .{ .ip_index = .generic_poison_type };
pub const empty_struct: Value = .{ .ip_index = .empty_struct };
pub fn makeBool(x: bool) Value {
return if (x) Value.true else Value.false;
}
pub const RuntimeIndex = InternPool.RuntimeIndex;
/// `parent_ptr` must be a single-pointer to some optional.
/// Returns a pointer to the payload of the optional.
/// May perform type resolution.
pub fn ptrOptPayload(parent_ptr: Value, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const parent_ptr_ty = parent_ptr.typeOf(zcu);
const opt_ty = parent_ptr_ty.childType(zcu);
assert(parent_ptr_ty.ptrSize(zcu) == .One);
assert(opt_ty.zigTypeTag(zcu) == .Optional);
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_ty.ptrInfo(zcu);
// We can correctly preserve alignment `.none`, since an optional has the same
// natural alignment as its child type.
new.child = opt_ty.childType(zcu).toIntern();
break :info new;
});
if (parent_ptr.isUndef(zcu)) return pt.undefValue(result_ty);
if (opt_ty.isPtrLikeOptional(zcu)) {
// Just reinterpret the pointer, since the layout is well-defined
return pt.getCoerced(parent_ptr, result_ty);
}
const base_ptr = try parent_ptr.canonicalizeBasePtr(.One, opt_ty, pt);
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = result_ty.toIntern(),
.base_addr = .{ .opt_payload = base_ptr.toIntern() },
.byte_offset = 0,
} }));
}
/// `parent_ptr` must be a single-pointer to some error union.
/// Returns a pointer to the payload of the error union.
/// May perform type resolution.
pub fn ptrEuPayload(parent_ptr: Value, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const parent_ptr_ty = parent_ptr.typeOf(zcu);
const eu_ty = parent_ptr_ty.childType(zcu);
assert(parent_ptr_ty.ptrSize(zcu) == .One);
assert(eu_ty.zigTypeTag(zcu) == .ErrorUnion);
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_ty.ptrInfo(zcu);
// We can correctly preserve alignment `.none`, since an error union has a
// natural alignment greater than or equal to that of its payload type.
new.child = eu_ty.errorUnionPayload(zcu).toIntern();
break :info new;
});
if (parent_ptr.isUndef(zcu)) return pt.undefValue(result_ty);
const base_ptr = try parent_ptr.canonicalizeBasePtr(.One, eu_ty, pt);
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = result_ty.toIntern(),
.base_addr = .{ .eu_payload = base_ptr.toIntern() },
.byte_offset = 0,
} }));
}
/// `parent_ptr` must be a single-pointer to a struct, union, or slice.
/// Returns a pointer to the aggregate field at the specified index.
/// For slices, uses `slice_ptr_index` and `slice_len_index`.
/// May perform type resolution.
pub fn ptrField(parent_ptr: Value, field_idx: u32, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const parent_ptr_ty = parent_ptr.typeOf(zcu);
const aggregate_ty = parent_ptr_ty.childType(zcu);
const parent_ptr_info = parent_ptr_ty.ptrInfo(zcu);
assert(parent_ptr_info.flags.size == .One);
// Exiting this `switch` indicates that the `field` pointer representation should be used.
// `field_align` may be `.none` to represent the natural alignment of `field_ty`, but is not necessarily.
const field_ty: Type, const field_align: InternPool.Alignment = switch (aggregate_ty.zigTypeTag(zcu)) {
.Struct => field: {
const field_ty = aggregate_ty.fieldType(field_idx, zcu);
switch (aggregate_ty.containerLayout(zcu)) {
.auto => break :field .{ field_ty, try aggregate_ty.fieldAlignmentSema(field_idx, pt) },
.@"extern" => {
// Well-defined layout, so just offset the pointer appropriately.
const byte_off = aggregate_ty.structFieldOffset(field_idx, zcu);
const field_align = a: {
const parent_align = if (parent_ptr_info.flags.alignment == .none) pa: {
break :pa try aggregate_ty.abiAlignmentSema(pt);
} else parent_ptr_info.flags.alignment;
break :a InternPool.Alignment.fromLog2Units(@min(parent_align.toLog2Units(), @ctz(byte_off)));
};
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_info;
new.child = field_ty.toIntern();
new.flags.alignment = field_align;
break :info new;
});
return parent_ptr.getOffsetPtr(byte_off, result_ty, pt);
},
.@"packed" => switch (aggregate_ty.packedStructFieldPtrInfo(parent_ptr_ty, field_idx, pt)) {
.bit_ptr => |packed_offset| {
const result_ty = try pt.ptrType(info: {
var new = parent_ptr_info;
new.packed_offset = packed_offset;
new.child = field_ty.toIntern();
if (new.flags.alignment == .none) {
new.flags.alignment = try aggregate_ty.abiAlignmentSema(pt);
}
break :info new;
});
return pt.getCoerced(parent_ptr, result_ty);
},
.byte_ptr => |ptr_info| {
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_info;
new.child = field_ty.toIntern();
new.packed_offset = .{
.host_size = 0,
.bit_offset = 0,
};
new.flags.alignment = ptr_info.alignment;
break :info new;
});
return parent_ptr.getOffsetPtr(ptr_info.offset, result_ty, pt);
},
},
}
},
.Union => field: {
const union_obj = zcu.typeToUnion(aggregate_ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(&zcu.intern_pool)[field_idx]);
switch (aggregate_ty.containerLayout(zcu)) {
.auto => break :field .{ field_ty, try aggregate_ty.fieldAlignmentSema(field_idx, pt) },
.@"extern" => {
// Point to the same address.
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_info;
new.child = field_ty.toIntern();
break :info new;
});
return pt.getCoerced(parent_ptr, result_ty);
},
.@"packed" => {
// If the field has an ABI size matching its bit size, then we can continue to use a
// non-bit pointer if the parent pointer is also a non-bit pointer.
if (parent_ptr_info.packed_offset.host_size == 0 and (try field_ty.abiSizeInner(.sema, zcu, pt.tid)).scalar * 8 == try field_ty.bitSizeSema(pt)) {
// We must offset the pointer on big-endian targets, since the bits of packed memory don't align nicely.
const byte_offset = switch (zcu.getTarget().cpu.arch.endian()) {
.little => 0,
.big => (try aggregate_ty.abiSizeInner(.sema, zcu, pt.tid)).scalar - (try field_ty.abiSizeInner(.sema, zcu, pt.tid)).scalar,
};
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_info;
new.child = field_ty.toIntern();
new.flags.alignment = InternPool.Alignment.fromLog2Units(
@ctz(byte_offset | (try parent_ptr_ty.ptrAlignmentSema(pt)).toByteUnits().?),
);
break :info new;
});
return parent_ptr.getOffsetPtr(byte_offset, result_ty, pt);
} else {
// The result must be a bit-pointer if it is not already.
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_info;
new.child = field_ty.toIntern();
if (new.packed_offset.host_size == 0) {
new.packed_offset.host_size = @intCast(((try aggregate_ty.bitSizeSema(pt)) + 7) / 8);
assert(new.packed_offset.bit_offset == 0);
}
break :info new;
});
return pt.getCoerced(parent_ptr, result_ty);
}
},
}
},
.Pointer => field_ty: {
assert(aggregate_ty.isSlice(zcu));
break :field_ty switch (field_idx) {
Value.slice_ptr_index => .{ aggregate_ty.slicePtrFieldType(zcu), Type.usize.abiAlignment(zcu) },
Value.slice_len_index => .{ Type.usize, Type.usize.abiAlignment(zcu) },
else => unreachable,
};
},
else => unreachable,
};
const new_align: InternPool.Alignment = if (parent_ptr_info.flags.alignment != .none) a: {
const ty_align = (try field_ty.abiAlignmentInner(.sema, zcu, pt.tid)).scalar;
const true_field_align = if (field_align == .none) ty_align else field_align;
const new_align = true_field_align.min(parent_ptr_info.flags.alignment);
if (new_align == ty_align) break :a .none;
break :a new_align;
} else field_align;
const result_ty = try pt.ptrTypeSema(info: {
var new = parent_ptr_info;
new.child = field_ty.toIntern();
new.flags.alignment = new_align;
break :info new;
});
if (parent_ptr.isUndef(zcu)) return pt.undefValue(result_ty);
const base_ptr = try parent_ptr.canonicalizeBasePtr(.One, aggregate_ty, pt);
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = result_ty.toIntern(),
.base_addr = .{ .field = .{
.base = base_ptr.toIntern(),
.index = field_idx,
} },
.byte_offset = 0,
} }));
}
/// `orig_parent_ptr` must be either a single-pointer to an array or vector, or a many-pointer or C-pointer or slice.
/// Returns a pointer to the element at the specified index.
/// May perform type resolution.
pub fn ptrElem(orig_parent_ptr: Value, field_idx: u64, pt: Zcu.PerThread) !Value {
const zcu = pt.zcu;
const parent_ptr = switch (orig_parent_ptr.typeOf(zcu).ptrSize(zcu)) {
.One, .Many, .C => orig_parent_ptr,
.Slice => orig_parent_ptr.slicePtr(zcu),
};
const parent_ptr_ty = parent_ptr.typeOf(zcu);
const elem_ty = parent_ptr_ty.childType(zcu);
const result_ty = try parent_ptr_ty.elemPtrType(@intCast(field_idx), pt);
if (parent_ptr.isUndef(zcu)) return pt.undefValue(result_ty);
if (result_ty.ptrInfo(zcu).packed_offset.host_size != 0) {
// Since we have a bit-pointer, the pointer address should be unchanged.
assert(elem_ty.zigTypeTag(zcu) == .Vector);
return pt.getCoerced(parent_ptr, result_ty);
}
const PtrStrat = union(enum) {
offset: u64,
elem_ptr: Type, // many-ptr elem ty
};
const strat: PtrStrat = switch (parent_ptr_ty.ptrSize(zcu)) {
.One => switch (elem_ty.zigTypeTag(zcu)) {
.Vector => .{ .offset = field_idx * @divExact(try elem_ty.childType(zcu).bitSizeSema(pt), 8) },
.Array => strat: {
const arr_elem_ty = elem_ty.childType(zcu);
if (try arr_elem_ty.comptimeOnlySema(pt)) {
break :strat .{ .elem_ptr = arr_elem_ty };
}
break :strat .{ .offset = field_idx * (try arr_elem_ty.abiSizeInner(.sema, zcu, pt.tid)).scalar };
},
else => unreachable,
},
.Many, .C => if (try elem_ty.comptimeOnlySema(pt))
.{ .elem_ptr = elem_ty }
else
.{ .offset = field_idx * (try elem_ty.abiSizeInner(.sema, zcu, pt.tid)).scalar },
.Slice => unreachable,
};
switch (strat) {
.offset => |byte_offset| {
return parent_ptr.getOffsetPtr(byte_offset, result_ty, pt);
},
.elem_ptr => |manyptr_elem_ty| if (field_idx == 0) {
return pt.getCoerced(parent_ptr, result_ty);
} else {
const arr_base_ty, const arr_base_len = manyptr_elem_ty.arrayBase(zcu);
const base_idx = arr_base_len * field_idx;
const parent_info = zcu.intern_pool.indexToKey(parent_ptr.toIntern()).ptr;
switch (parent_info.base_addr) {
.arr_elem => |arr_elem| {
if (Value.fromInterned(arr_elem.base).typeOf(zcu).childType(zcu).toIntern() == arr_base_ty.toIntern()) {
// We already have a pointer to an element of an array of this type.
// Just modify the index.
return Value.fromInterned(try pt.intern(.{ .ptr = ptr: {
var new = parent_info;
new.base_addr.arr_elem.index += base_idx;
new.ty = result_ty.toIntern();
break :ptr new;
} }));
}
},
else => {},
}
const base_ptr = try parent_ptr.canonicalizeBasePtr(.Many, arr_base_ty, pt);
return Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = result_ty.toIntern(),
.base_addr = .{ .arr_elem = .{
.base = base_ptr.toIntern(),
.index = base_idx,
} },
.byte_offset = 0,
} }));
},
}
}
fn canonicalizeBasePtr(base_ptr: Value, want_size: std.builtin.Type.Pointer.Size, want_child: Type, pt: Zcu.PerThread) !Value {
const ptr_ty = base_ptr.typeOf(pt.zcu);
const ptr_info = ptr_ty.ptrInfo(pt.zcu);
if (ptr_info.flags.size == want_size and
ptr_info.child == want_child.toIntern() and
!ptr_info.flags.is_const and
!ptr_info.flags.is_volatile and
!ptr_info.flags.is_allowzero and
ptr_info.sentinel == .none and
ptr_info.flags.alignment == .none)
{
// Already canonical!
return base_ptr;
}
const new_ty = try pt.ptrType(.{
.child = want_child.toIntern(),
.sentinel = .none,
.flags = .{
.size = want_size,
.alignment = .none,
.is_const = false,
.is_volatile = false,
.is_allowzero = false,
.address_space = ptr_info.flags.address_space,
},
});
return pt.getCoerced(base_ptr, new_ty);
}
pub fn getOffsetPtr(ptr_val: Value, byte_off: u64, new_ty: Type, pt: Zcu.PerThread) !Value {
if (ptr_val.isUndef(pt.zcu)) return ptr_val;
var ptr = pt.zcu.intern_pool.indexToKey(ptr_val.toIntern()).ptr;
ptr.ty = new_ty.toIntern();
ptr.byte_offset += byte_off;
return Value.fromInterned(try pt.intern(.{ .ptr = ptr }));
}
pub const PointerDeriveStep = union(enum) {
int: struct {
addr: u64,
ptr_ty: Type,
},
nav_ptr: InternPool.Nav.Index,
uav_ptr: InternPool.Key.Ptr.BaseAddr.Uav,
comptime_alloc_ptr: struct {
val: Value,
ptr_ty: Type,
},
comptime_field_ptr: Value,
eu_payload_ptr: struct {
parent: *PointerDeriveStep,
/// This type will never be cast: it is provided for convenience.
result_ptr_ty: Type,
},
opt_payload_ptr: struct {
parent: *PointerDeriveStep,
/// This type will never be cast: it is provided for convenience.
result_ptr_ty: Type,
},
field_ptr: struct {
parent: *PointerDeriveStep,
field_idx: u32,
/// This type will never be cast: it is provided for convenience.
result_ptr_ty: Type,
},
elem_ptr: struct {
parent: *PointerDeriveStep,
elem_idx: u64,
/// This type will never be cast: it is provided for convenience.
result_ptr_ty: Type,
},
offset_and_cast: struct {
parent: *PointerDeriveStep,
byte_offset: u64,
new_ptr_ty: Type,
},
pub fn ptrType(step: PointerDeriveStep, pt: Zcu.PerThread) !Type {
return switch (step) {
.int => |int| int.ptr_ty,
.nav_ptr => |nav| try pt.navPtrType(nav),
.uav_ptr => |uav| Type.fromInterned(uav.orig_ty),
.comptime_alloc_ptr => |info| info.ptr_ty,
.comptime_field_ptr => |val| try pt.singleConstPtrType(val.typeOf(pt.zcu)),
.offset_and_cast => |oac| oac.new_ptr_ty,
inline .eu_payload_ptr, .opt_payload_ptr, .field_ptr, .elem_ptr => |x| x.result_ptr_ty,
};
}
};
pub fn pointerDerivation(ptr_val: Value, arena: Allocator, pt: Zcu.PerThread) Allocator.Error!PointerDeriveStep {
return ptr_val.pointerDerivationAdvanced(arena, pt, false, {}) catch |err| switch (err) {
error.OutOfMemory => |e| return e,
error.AnalysisFail => unreachable,
};
}
/// Given a pointer value, get the sequence of steps to derive it, ideally by taking
/// only field and element pointers with no casts. This can be used by codegen backends
/// which prefer field/elem accesses when lowering constant pointer values.
/// It is also used by the Value printing logic for pointers.
pub fn pointerDerivationAdvanced(ptr_val: Value, arena: Allocator, pt: Zcu.PerThread, comptime have_sema: bool, sema: if (have_sema) *Sema else void) !PointerDeriveStep {
const zcu = pt.zcu;
const ptr = zcu.intern_pool.indexToKey(ptr_val.toIntern()).ptr;
const base_derive: PointerDeriveStep = switch (ptr.base_addr) {
.int => return .{ .int = .{
.addr = ptr.byte_offset,
.ptr_ty = Type.fromInterned(ptr.ty),
} },
.nav => |nav| .{ .nav_ptr = nav },
.uav => |uav| base: {
// A slight tweak: `orig_ty` here is sometimes not `const`, but it ought to be.
// TODO: fix this in the sites interning anon decls!
const const_ty = try pt.ptrType(info: {
var info = Type.fromInterned(uav.orig_ty).ptrInfo(zcu);
info.flags.is_const = true;
break :info info;
});
break :base .{ .uav_ptr = .{
.val = uav.val,
.orig_ty = const_ty.toIntern(),
} };
},
.comptime_alloc => |idx| base: {
if (!have_sema) unreachable;
const alloc = sema.getComptimeAlloc(idx);
const val = try alloc.val.intern(pt, sema.arena);
const ty = val.typeOf(zcu);
break :base .{ .comptime_alloc_ptr = .{
.val = val,
.ptr_ty = try pt.ptrType(.{
.child = ty.toIntern(),
.flags = .{
.alignment = alloc.alignment,
},
}),
} };
},
.comptime_field => |val| .{ .comptime_field_ptr = Value.fromInterned(val) },
.eu_payload => |eu_ptr| base: {
const base_ptr = Value.fromInterned(eu_ptr);
const base_ptr_ty = base_ptr.typeOf(zcu);
const parent_step = try arena.create(PointerDeriveStep);
parent_step.* = try pointerDerivationAdvanced(Value.fromInterned(eu_ptr), arena, pt, have_sema, sema);
break :base .{ .eu_payload_ptr = .{
.parent = parent_step,
.result_ptr_ty = try pt.adjustPtrTypeChild(base_ptr_ty, base_ptr_ty.childType(zcu).errorUnionPayload(zcu)),
} };
},
.opt_payload => |opt_ptr| base: {
const base_ptr = Value.fromInterned(opt_ptr);
const base_ptr_ty = base_ptr.typeOf(zcu);
const parent_step = try arena.create(PointerDeriveStep);
parent_step.* = try pointerDerivationAdvanced(Value.fromInterned(opt_ptr), arena, pt, have_sema, sema);
break :base .{ .opt_payload_ptr = .{
.parent = parent_step,
.result_ptr_ty = try pt.adjustPtrTypeChild(base_ptr_ty, base_ptr_ty.childType(zcu).optionalChild(zcu)),
} };
},
.field => |field| base: {
const base_ptr = Value.fromInterned(field.base);
const base_ptr_ty = base_ptr.typeOf(zcu);
const agg_ty = base_ptr_ty.childType(zcu);
const field_ty, const field_align = switch (agg_ty.zigTypeTag(zcu)) {
.Struct => .{ agg_ty.fieldType(field.index, zcu), try agg_ty.fieldAlignmentInner(
field.index,
if (have_sema) .sema else .normal,
pt.zcu,
if (have_sema) pt.tid else {},
) },
.Union => .{ agg_ty.unionFieldTypeByIndex(field.index, zcu), try agg_ty.fieldAlignmentInner(
field.index,
if (have_sema) .sema else .normal,
pt.zcu,
if (have_sema) pt.tid else {},
) },
.Pointer => .{ switch (field.index) {
Value.slice_ptr_index => agg_ty.slicePtrFieldType(zcu),
Value.slice_len_index => Type.usize,
else => unreachable,
}, Type.usize.abiAlignment(zcu) },
else => unreachable,
};
const base_align = base_ptr_ty.ptrAlignment(zcu);
const result_align = field_align.minStrict(base_align);
const result_ty = try pt.ptrType(.{
.child = field_ty.toIntern(),
.flags = flags: {
var flags = base_ptr_ty.ptrInfo(zcu).flags;
if (result_align == field_ty.abiAlignment(zcu)) {
flags.alignment = .none;
} else {
flags.alignment = result_align;
}
break :flags flags;
},
});
const parent_step = try arena.create(PointerDeriveStep);
parent_step.* = try pointerDerivationAdvanced(base_ptr, arena, pt, have_sema, sema);
break :base .{ .field_ptr = .{
.parent = parent_step,
.field_idx = @intCast(field.index),
.result_ptr_ty = result_ty,
} };
},
.arr_elem => |arr_elem| base: {
const parent_step = try arena.create(PointerDeriveStep);
parent_step.* = try pointerDerivationAdvanced(Value.fromInterned(arr_elem.base), arena, pt, have_sema, sema);
const parent_ptr_info = (try parent_step.ptrType(pt)).ptrInfo(zcu);
const result_ptr_ty = try pt.ptrType(.{
.child = parent_ptr_info.child,
.flags = flags: {
var flags = parent_ptr_info.flags;
flags.size = .One;
break :flags flags;
},
});
break :base .{ .elem_ptr = .{
.parent = parent_step,
.elem_idx = arr_elem.index,
.result_ptr_ty = result_ptr_ty,
} };
},
};
if (ptr.byte_offset == 0 and ptr.ty == (try base_derive.ptrType(pt)).toIntern()) {
return base_derive;
}
const need_child = Type.fromInterned(ptr.ty).childType(zcu);
if (need_child.comptimeOnly(zcu)) {
// No refinement can happen - this pointer is presumably invalid.
// Just offset it.
const parent = try arena.create(PointerDeriveStep);
parent.* = base_derive;
return .{ .offset_and_cast = .{
.parent = parent,
.byte_offset = ptr.byte_offset,
.new_ptr_ty = Type.fromInterned(ptr.ty),
} };
}
const need_bytes = need_child.abiSize(zcu);
var cur_derive = base_derive;
var cur_offset = ptr.byte_offset;
// Refine through fields and array elements as much as possible.
if (need_bytes > 0) while (true) {
const cur_ty = (try cur_derive.ptrType(pt)).childType(zcu);
if (cur_ty.toIntern() == need_child.toIntern() and cur_offset == 0) {
break;
}
switch (cur_ty.zigTypeTag(zcu)) {
.NoReturn,
.Type,
.ComptimeInt,
.ComptimeFloat,
.Null,
.Undefined,
.EnumLiteral,
.Opaque,
.Fn,
.ErrorUnion,
.Int,
.Float,
.Bool,
.Void,
.Pointer,
.ErrorSet,
.AnyFrame,
.Frame,
.Enum,
.Vector,
.Optional,
.Union,
=> break,
.Array => {
const elem_ty = cur_ty.childType(zcu);
const elem_size = elem_ty.abiSize(zcu);
const start_idx = cur_offset / elem_size;
const end_idx = (cur_offset + need_bytes + elem_size - 1) / elem_size;
if (end_idx == start_idx + 1) {
const parent = try arena.create(PointerDeriveStep);
parent.* = cur_derive;
cur_derive = .{ .elem_ptr = .{
.parent = parent,
.elem_idx = start_idx,
.result_ptr_ty = try pt.adjustPtrTypeChild(try parent.ptrType(pt), elem_ty),
} };
cur_offset -= start_idx * elem_size;
} else {
// Go into the first element if needed, but don't go any deeper.
if (start_idx > 0) {
const parent = try arena.create(PointerDeriveStep);
parent.* = cur_derive;
cur_derive = .{ .elem_ptr = .{
.parent = parent,
.elem_idx = start_idx,
.result_ptr_ty = try pt.adjustPtrTypeChild(try parent.ptrType(pt), elem_ty),
} };
cur_offset -= start_idx * elem_size;
}
break;
}
},
.Struct => switch (cur_ty.containerLayout(zcu)) {
.auto, .@"packed" => break,
.@"extern" => for (0..cur_ty.structFieldCount(zcu)) |field_idx| {
const field_ty = cur_ty.fieldType(field_idx, zcu);
const start_off = cur_ty.structFieldOffset(field_idx, zcu);
const end_off = start_off + field_ty.abiSize(zcu);
if (cur_offset >= start_off and cur_offset + need_bytes <= end_off) {
const old_ptr_ty = try cur_derive.ptrType(pt);
const parent_align = old_ptr_ty.ptrAlignment(zcu);
const field_align = InternPool.Alignment.fromLog2Units(@min(parent_align.toLog2Units(), @ctz(start_off)));
const parent = try arena.create(PointerDeriveStep);
parent.* = cur_derive;
const new_ptr_ty = try pt.ptrType(.{
.child = field_ty.toIntern(),
.flags = flags: {
var flags = old_ptr_ty.ptrInfo(zcu).flags;
if (field_align == field_ty.abiAlignment(zcu)) {
flags.alignment = .none;
} else {
flags.alignment = field_align;
}
break :flags flags;
},
});
cur_derive = .{ .field_ptr = .{
.parent = parent,
.field_idx = @intCast(field_idx),
.result_ptr_ty = new_ptr_ty,
} };
cur_offset -= start_off;
break;
}
} else break, // pointer spans multiple fields
},
}
};
if (cur_offset == 0 and (try cur_derive.ptrType(pt)).toIntern() == ptr.ty) {
return cur_derive;
}
const parent = try arena.create(PointerDeriveStep);
parent.* = cur_derive;
return .{ .offset_and_cast = .{
.parent = parent,
.byte_offset = cur_offset,
.new_ptr_ty = Type.fromInterned(ptr.ty),
} };
}
pub fn resolveLazy(
val: Value,
arena: Allocator,
pt: Zcu.PerThread,
) Zcu.SemaError!Value {
switch (pt.zcu.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.u64, .i64, .big_int => return val,
.lazy_align, .lazy_size => return pt.intValue(
Type.fromInterned(int.ty),
try val.toUnsignedIntSema(pt),
),
},
.slice => |slice| {
const ptr = try Value.fromInterned(slice.ptr).resolveLazy(arena, pt);
const len = try Value.fromInterned(slice.len).resolveLazy(arena, pt);
if (ptr.toIntern() == slice.ptr and len.toIntern() == slice.len) return val;
return Value.fromInterned(try pt.intern(.{ .slice = .{
.ty = slice.ty,
.ptr = ptr.toIntern(),
.len = len.toIntern(),
} }));
},
.ptr => |ptr| {
switch (ptr.base_addr) {
.nav, .comptime_alloc, .uav, .int => return val,
.comptime_field => |field_val| {
const resolved_field_val = (try Value.fromInterned(field_val).resolveLazy(arena, pt)).toIntern();
return if (resolved_field_val == field_val)
val
else
Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = ptr.ty,
.base_addr = .{ .comptime_field = resolved_field_val },
.byte_offset = ptr.byte_offset,
} }));
},
.eu_payload, .opt_payload => |base| {
const resolved_base = (try Value.fromInterned(base).resolveLazy(arena, pt)).toIntern();
return if (resolved_base == base)
val
else
Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = ptr.ty,
.base_addr = switch (ptr.base_addr) {
.eu_payload => .{ .eu_payload = resolved_base },
.opt_payload => .{ .opt_payload = resolved_base },
else => unreachable,
},
.byte_offset = ptr.byte_offset,
} }));
},
.arr_elem, .field => |base_index| {
const resolved_base = (try Value.fromInterned(base_index.base).resolveLazy(arena, pt)).toIntern();
return if (resolved_base == base_index.base)
val
else
Value.fromInterned(try pt.intern(.{ .ptr = .{
.ty = ptr.ty,
.base_addr = switch (ptr.base_addr) {
.arr_elem => .{ .arr_elem = .{
.base = resolved_base,
.index = base_index.index,
} },
.field => .{ .field = .{
.base = resolved_base,
.index = base_index.index,
} },
else => unreachable,
},
.byte_offset = ptr.byte_offset,
} }));
},
}
},
.aggregate => |aggregate| switch (aggregate.storage) {
.bytes => return val,
.elems => |elems| {
var resolved_elems: []InternPool.Index = &.{};
for (elems, 0..) |elem, i| {
const resolved_elem = (try Value.fromInterned(elem).resolveLazy(arena, pt)).toIntern();
if (resolved_elems.len == 0 and resolved_elem != elem) {
resolved_elems = try arena.alloc(InternPool.Index, elems.len);
@memcpy(resolved_elems[0..i], elems[0..i]);
}
if (resolved_elems.len > 0) resolved_elems[i] = resolved_elem;
}
return if (resolved_elems.len == 0) val else Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = aggregate.ty,
.storage = .{ .elems = resolved_elems },
} }));
},
.repeated_elem => |elem| {
const resolved_elem = (try Value.fromInterned(elem).resolveLazy(arena, pt)).toIntern();
return if (resolved_elem == elem) val else Value.fromInterned(try pt.intern(.{ .aggregate = .{
.ty = aggregate.ty,
.storage = .{ .repeated_elem = resolved_elem },
} }));
},
},
.un => |un| {
const resolved_tag = if (un.tag == .none)
.none
else
(try Value.fromInterned(un.tag).resolveLazy(arena, pt)).toIntern();
const resolved_val = (try Value.fromInterned(un.val).resolveLazy(arena, pt)).toIntern();
return if (resolved_tag == un.tag and resolved_val == un.val)
val
else
Value.fromInterned(try pt.intern(.{ .un = .{
.ty = un.ty,
.tag = resolved_tag,
.val = resolved_val,
} }));
},
else => return val,
}
}