zig/src/crash_report.zig
2021-10-26 22:08:51 -07:00

580 lines
21 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const debug = std.debug;
const os = std.os;
const io = std.io;
const print_zir = @import("print_zir.zig");
const Module = @import("Module.zig");
const Sema = @import("Sema.zig");
const Zir = @import("Zir.zig");
const Decl = Module.Decl;
pub const is_enabled = builtin.mode == .Debug;
/// To use these crash report diagnostics, publish these symbols in your main file.
/// You will also need to call initialize() on startup, preferably as the very first operation in your program.
pub const root_decls = struct {
pub const panic = if (is_enabled) compilerPanic else std.builtin.default_panic;
pub const enable_segfault_handler = false;
};
/// Install signal handlers to identify crashes and report diagnostics.
pub fn initialize() void {
if (is_enabled and debug.have_segfault_handling_support) {
attachSegfaultHandler();
}
}
fn En(comptime T: type) type {
return if (is_enabled) T else void;
}
fn en(val: anytype) En(@TypeOf(val)) {
return if (is_enabled) val else {};
}
pub const AnalyzeBody = struct {
parent: if (is_enabled) ?*AnalyzeBody else void,
sema: En(*Sema),
block: En(*Sema.Block),
body: En([]const Zir.Inst.Index),
body_index: En(usize),
pub fn push(self: *@This()) void {
if (!is_enabled) return;
const head = &zir_state;
debug.assert(self.parent == null);
self.parent = head.*;
head.* = self;
}
pub fn pop(self: *@This()) void {
if (!is_enabled) return;
const head = &zir_state;
const old = head.*.?;
debug.assert(old == self);
head.* = old.parent;
}
pub fn setBodyIndex(self: *@This(), index: usize) void {
if (!is_enabled) return;
self.body_index = index;
}
};
threadlocal var zir_state: ?*AnalyzeBody = if (is_enabled) null else @compileError("Cannot use zir_state if crash_report is disabled.");
pub fn prepAnalyzeBody(sema: *Sema, block: *Sema.Block, body: []const Zir.Inst.Index) AnalyzeBody {
if (is_enabled) {
return .{
.parent = null,
.sema = sema,
.block = block,
.body = body,
.body_index = 0,
};
} else {
if (@sizeOf(AnalyzeBody) != 0)
@compileError("AnalyzeBody must have zero size when crash reports are disabled");
return undefined;
}
}
fn dumpStatusReport() !void {
const anal = zir_state orelse return;
// Note: We have the panic mutex here, so we can safely use the global crash heap.
var fba = std.heap.FixedBufferAllocator.init(&crash_heap);
const allocator = &fba.allocator;
const stderr = io.getStdErr().writer();
const block: *Sema.Block = anal.block;
try stderr.writeAll("Analyzing ");
try writeFullyQualifiedDeclWithFile(block.src_decl, stderr);
try stderr.writeAll("\n");
print_zir.renderInstructionContext(
allocator,
anal.body,
anal.body_index,
block.namespace.file_scope,
block.src_decl.src_node,
6, // indent
stderr,
) catch |err| switch (err) {
error.OutOfMemory => try stderr.writeAll(" <out of memory dumping zir>\n"),
else => |e| return e,
};
try stderr.writeAll(" For full context, use the command\n zig ast-check -t ");
try writeFilePath(block.namespace.file_scope, stderr);
try stderr.writeAll("\n\n");
var parent = anal.parent;
while (parent) |curr| {
fba.reset();
try stderr.writeAll(" in ");
try writeFullyQualifiedDeclWithFile(curr.block.src_decl, stderr);
try stderr.writeAll("\n > ");
print_zir.renderSingleInstruction(
allocator,
curr.body[curr.body_index],
curr.block.namespace.file_scope,
curr.block.src_decl.src_node,
6, // indent
stderr,
) catch |err| switch (err) {
error.OutOfMemory => try stderr.writeAll(" <out of memory dumping zir>\n"),
else => |e| return e,
};
try stderr.writeAll("\n");
parent = curr.parent;
}
try stderr.writeAll("\n");
}
var crash_heap: [16 * 4096]u8 = undefined;
fn writeFilePath(file: *Module.File, stream: anytype) !void {
if (file.pkg.root_src_directory.path) |path| {
try stream.writeAll(path);
try stream.writeAll(std.fs.path.sep_str);
}
try stream.writeAll(file.sub_file_path);
}
fn writeFullyQualifiedDeclWithFile(decl: *Decl, stream: anytype) !void {
try writeFilePath(decl.getFileScope(), stream);
try stream.writeAll(": ");
try decl.renderFullyQualifiedDebugName(stream);
}
pub fn compilerPanic(msg: []const u8, error_return_trace: ?*std.builtin.StackTrace) noreturn {
PanicSwitch.preDispatch();
@setCold(true);
const ret_addr = @returnAddress();
const stack_ctx: StackContext = .{ .current = .{ .ret_addr = ret_addr } };
PanicSwitch.dispatch(error_return_trace, stack_ctx, msg);
}
/// Attaches a global SIGSEGV handler
pub fn attachSegfaultHandler() void {
if (!debug.have_segfault_handling_support) {
@compileError("segfault handler not supported for this target");
}
if (builtin.os.tag == .windows) {
_ = os.windows.kernel32.AddVectoredExceptionHandler(0, handleSegfaultWindows);
return;
}
var act = os.Sigaction{
.handler = .{ .sigaction = handleSegfaultLinux },
.mask = os.empty_sigset,
.flags = (os.SA.SIGINFO | os.SA.RESTART | os.SA.RESETHAND),
};
os.sigaction(os.SIG.SEGV, &act, null);
os.sigaction(os.SIG.ILL, &act, null);
os.sigaction(os.SIG.BUS, &act, null);
}
fn handleSegfaultLinux(sig: i32, info: *const os.siginfo_t, ctx_ptr: ?*const c_void) callconv(.C) noreturn {
// TODO: use alarm() here to prevent infinite loops
PanicSwitch.preDispatch();
const addr = switch (builtin.os.tag) {
.linux => @ptrToInt(info.fields.sigfault.addr),
.freebsd => @ptrToInt(info.addr),
.netbsd => @ptrToInt(info.info.reason.fault.addr),
.openbsd => @ptrToInt(info.data.fault.addr),
.solaris => @ptrToInt(info.reason.fault.addr),
else => @compileError("TODO implement handleSegfaultLinux for new linux OS"),
};
var err_buffer: [128]u8 = undefined;
const error_msg = switch (sig) {
os.SIG.SEGV => std.fmt.bufPrint(&err_buffer, "Segmentation fault at address 0x{x}", .{addr}) catch "Segmentation fault",
os.SIG.ILL => std.fmt.bufPrint(&err_buffer, "Illegal instruction at address 0x{x}", .{addr}) catch "Illegal instruction",
os.SIG.BUS => std.fmt.bufPrint(&err_buffer, "Bus error at address 0x{x}", .{addr}) catch "Bus error",
else => std.fmt.bufPrint(&err_buffer, "Unknown error (signal {}) at address 0x{x}", .{ sig, addr }) catch "Unknown error",
};
const stack_ctx: StackContext = switch (builtin.cpu.arch) {
.i386 => ctx: {
const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr));
const ip = @intCast(usize, ctx.mcontext.gregs[os.REG.EIP]);
const bp = @intCast(usize, ctx.mcontext.gregs[os.REG.EBP]);
break :ctx StackContext{ .exception = .{ .bp = bp, .ip = ip } };
},
.x86_64 => ctx: {
const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr));
const ip = switch (builtin.os.tag) {
.linux, .netbsd, .solaris => @intCast(usize, ctx.mcontext.gregs[os.REG.RIP]),
.freebsd => @intCast(usize, ctx.mcontext.rip),
.openbsd => @intCast(usize, ctx.sc_rip),
else => unreachable,
};
const bp = switch (builtin.os.tag) {
.linux, .netbsd, .solaris => @intCast(usize, ctx.mcontext.gregs[os.REG.RBP]),
.openbsd => @intCast(usize, ctx.sc_rbp),
.freebsd => @intCast(usize, ctx.mcontext.rbp),
else => unreachable,
};
break :ctx StackContext{ .exception = .{ .bp = bp, .ip = ip } };
},
.arm => ctx: {
const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr));
const ip = @intCast(usize, ctx.mcontext.arm_pc);
const bp = @intCast(usize, ctx.mcontext.arm_fp);
break :ctx StackContext{ .exception = .{ .bp = bp, .ip = ip } };
},
.aarch64 => ctx: {
const ctx = @ptrCast(*const os.ucontext_t, @alignCast(@alignOf(os.ucontext_t), ctx_ptr));
const ip = @intCast(usize, ctx.mcontext.pc);
// x29 is the ABI-designated frame pointer
const bp = @intCast(usize, ctx.mcontext.regs[29]);
break :ctx StackContext{ .exception = .{ .bp = bp, .ip = ip } };
},
else => .not_supported,
};
PanicSwitch.dispatch(null, stack_ctx, error_msg);
}
const WindowsSegfaultMessage = union(enum) {
literal: []const u8,
segfault: void,
illegal_instruction: void,
};
fn handleSegfaultWindows(info: *os.windows.EXCEPTION_POINTERS) callconv(os.windows.WINAPI) c_long {
switch (info.ExceptionRecord.ExceptionCode) {
os.windows.EXCEPTION_DATATYPE_MISALIGNMENT => handleSegfaultWindowsExtra(info, .{ .literal = "Unaligned Memory Access" }),
os.windows.EXCEPTION_ACCESS_VIOLATION => handleSegfaultWindowsExtra(info, .segfault),
os.windows.EXCEPTION_ILLEGAL_INSTRUCTION => handleSegfaultWindowsExtra(info, .illegal_instruction),
os.windows.EXCEPTION_STACK_OVERFLOW => handleSegfaultWindowsExtra(info, .{ .literal = "Stack Overflow" }),
else => return os.windows.EXCEPTION_CONTINUE_SEARCH,
}
}
fn handleSegfaultWindowsExtra(info: *os.windows.EXCEPTION_POINTERS, comptime msg: WindowsSegfaultMessage) noreturn {
PanicSwitch.preDispatch();
const stack_ctx = if (@hasDecl(os.windows, "CONTEXT")) ctx: {
const regs = info.ContextRecord.getRegs();
break :ctx StackContext{ .exception = .{ .bp = regs.bp, .ip = regs.ip } };
} else ctx: {
const addr = @ptrToInt(info.ExceptionRecord.ExceptionAddress);
break :ctx StackContext{ .current = .{ .ret_addr = addr } };
};
switch (msg) {
.literal => |err| PanicSwitch.dispatch(null, stack_ctx, err),
.segfault => {
const format_item = "Segmentation fault at address 0x{x}";
var buf: [format_item.len + 32]u8 = undefined; // 32 is arbitrary, but sufficiently large
const to_print = std.fmt.bufPrint(&buf, format_item, .{info.ExceptionRecord.ExceptionInformation[1]}) catch unreachable;
PanicSwitch.dispatch(null, stack_ctx, to_print);
},
.illegal_instruction => {
const ip: ?usize = switch (stack_ctx) {
.exception => |ex| ex.ip,
.current => |cur| cur.ret_addr,
.not_supported => null,
};
if (ip) |addr| {
const format_item = "Illegal instruction at address 0x{x}";
var buf: [format_item.len + 32]u8 = undefined; // 32 is arbitrary, but sufficiently large
const to_print = std.fmt.bufPrint(&buf, format_item, .{addr}) catch unreachable;
PanicSwitch.dispatch(null, stack_ctx, to_print);
} else {
PanicSwitch.dispatch(null, stack_ctx, "Illegal Instruction");
}
},
}
}
const StackContext = union(enum) {
current: struct {
ret_addr: ?usize,
},
exception: struct {
bp: usize,
ip: usize,
},
not_supported: void,
pub fn dumpStackTrace(ctx: @This()) void {
switch (ctx) {
.current => |ct| {
debug.dumpCurrentStackTrace(ct.ret_addr);
},
.exception => |ex| {
debug.dumpStackTraceFromBase(ex.bp, ex.ip);
},
.not_supported => {
const stderr = io.getStdErr().writer();
stderr.writeAll("Stack trace not supported on this platform.\n") catch {};
},
}
}
};
const PanicSwitch = struct {
const RecoverStage = enum {
initialize,
report_stack,
release_mutex,
release_ref_count,
abort,
silent_abort,
};
const RecoverVerbosity = enum {
message_and_stack,
message_only,
silent,
};
const PanicState = struct {
recover_stage: RecoverStage = .initialize,
recover_verbosity: RecoverVerbosity = .message_and_stack,
panic_ctx: StackContext = undefined,
panic_trace: ?*const std.builtin.StackTrace = null,
awaiting_dispatch: bool = false,
};
/// Counter for the number of threads currently panicking.
/// Updated atomically before taking the panic_mutex.
/// In recoverable cases, the program will not abort
/// until all panicking threads have dumped their traces.
var panicking: u8 = 0;
// Locked to avoid interleaving panic messages from multiple threads.
var panic_mutex = std.Thread.Mutex{};
/// Tracks the state of the current panic. If the code within the
/// panic triggers a secondary panic, this allows us to recover.
threadlocal var panic_state_raw: PanicState = .{};
/// The segfault handlers above need to do some work before they can dispatch
/// this switch. Calling preDispatch() first makes that work fault tolerant.
pub fn preDispatch() void {
// TODO: We want segfaults to trigger the panic recursively here,
// but if there is a segfault accessing this TLS slot it will cause an
// infinite loop. We should use `alarm()` to prevent the infinite
// loop and maybe also use a non-thread-local global to detect if
// it's happening and print a message.
var panic_state: *volatile PanicState = &panic_state_raw;
if (panic_state.awaiting_dispatch) {
dispatch(null, .{ .current = .{ .ret_addr = null } }, "Panic while preparing callstack");
}
panic_state.awaiting_dispatch = true;
}
/// This is the entry point to a panic-tolerant panic handler.
/// preDispatch() *MUST* be called exactly once before calling this.
/// A threadlocal "recover_stage" is updated throughout the process.
/// If a panic happens during the panic, the recover_stage will be
/// used to select a recover* function to call to resume the panic.
/// The recover_verbosity field is used to handle panics while reporting
/// panics within panics. If the panic handler triggers a panic, it will
/// attempt to log an additional stack trace for the secondary panic. If
/// that panics, it will fall back to just logging the panic message. If
/// it can't even do that witout panicing, it will recover without logging
/// anything about the internal panic. Depending on the state, "recover"
/// here may just mean "call abort".
pub fn dispatch(
trace: ?*const std.builtin.StackTrace,
stack_ctx: StackContext,
msg: []const u8,
) noreturn {
var panic_state: *volatile PanicState = &panic_state_raw;
debug.assert(panic_state.awaiting_dispatch);
panic_state.awaiting_dispatch = false;
nosuspend switch (panic_state.recover_stage) {
.initialize => goTo(initPanic, .{ panic_state, trace, stack_ctx, msg }),
.report_stack => goTo(recoverReportStack, .{ panic_state, trace, stack_ctx, msg }),
.release_mutex => goTo(recoverReleaseMutex, .{ panic_state, trace, stack_ctx, msg }),
.release_ref_count => goTo(recoverReleaseRefCount, .{ panic_state, trace, stack_ctx, msg }),
.abort => goTo(recoverAbort, .{ panic_state, trace, stack_ctx, msg }),
.silent_abort => goTo(abort, .{}),
};
}
noinline fn initPanic(
state: *volatile PanicState,
trace: ?*const std.builtin.StackTrace,
stack: StackContext,
msg: []const u8,
) noreturn {
// use a temporary so there's only one volatile store
const new_state = PanicState{
.recover_stage = .abort,
.panic_ctx = stack,
.panic_trace = trace,
};
state.* = new_state;
_ = @atomicRmw(u8, &panicking, .Add, 1, .SeqCst);
state.recover_stage = .release_ref_count;
_ = panic_mutex.acquire();
state.recover_stage = .release_mutex;
const stderr = io.getStdErr().writer();
if (builtin.single_threaded) {
stderr.print("panic: ", .{}) catch goTo(releaseMutex, .{state});
} else {
const current_thread_id = std.Thread.getCurrentId();
stderr.print("thread {} panic: ", .{current_thread_id}) catch goTo(releaseMutex, .{state});
}
stderr.print("{s}\n", .{msg}) catch goTo(releaseMutex, .{state});
state.recover_stage = .report_stack;
dumpStatusReport() catch |err| {
stderr.print("\nIntercepted error.{} while dumping current state. Continuing...\n", .{err}) catch {};
};
goTo(reportStack, .{state});
}
noinline fn recoverReportStack(
state: *volatile PanicState,
trace: ?*const std.builtin.StackTrace,
stack: StackContext,
msg: []const u8,
) noreturn {
recover(state, trace, stack, msg);
state.recover_stage = .release_mutex;
const stderr = io.getStdErr().writer();
stderr.writeAll("\nOriginal Error:\n") catch {};
goTo(reportStack, .{state});
}
noinline fn reportStack(state: *volatile PanicState) noreturn {
state.recover_stage = .release_mutex;
if (state.panic_trace) |t| {
debug.dumpStackTrace(t.*);
}
state.panic_ctx.dumpStackTrace();
goTo(releaseMutex, .{state});
}
noinline fn recoverReleaseMutex(
state: *volatile PanicState,
trace: ?*const std.builtin.StackTrace,
stack: StackContext,
msg: []const u8,
) noreturn {
recover(state, trace, stack, msg);
goTo(releaseMutex, .{state});
}
noinline fn releaseMutex(state: *volatile PanicState) noreturn {
state.recover_stage = .abort;
panic_mutex.releaseDirect();
goTo(releaseRefCount, .{state});
}
noinline fn recoverReleaseRefCount(
state: *volatile PanicState,
trace: ?*const std.builtin.StackTrace,
stack: StackContext,
msg: []const u8,
) noreturn {
recover(state, trace, stack, msg);
goTo(releaseRefCount, .{state});
}
noinline fn releaseRefCount(state: *volatile PanicState) noreturn {
state.recover_stage = .abort;
if (@atomicRmw(u8, &panicking, .Sub, 1, .SeqCst) != 1) {
// Another thread is panicking, wait for the last one to finish
// and call abort()
// Sleep forever without hammering the CPU
var event: std.Thread.StaticResetEvent = .{};
event.wait();
// This should be unreachable, recurse into recoverAbort.
@panic("event.wait() returned");
}
goTo(abort, .{});
}
noinline fn recoverAbort(
state: *volatile PanicState,
trace: ?*const std.builtin.StackTrace,
stack: StackContext,
msg: []const u8,
) noreturn {
recover(state, trace, stack, msg);
state.recover_stage = .silent_abort;
const stderr = io.getStdErr().writer();
stderr.writeAll("Aborting...\n") catch {};
goTo(abort, .{});
}
noinline fn abort() noreturn {
os.abort();
}
inline fn goTo(comptime func: anytype, args: anytype) noreturn {
// TODO: Tailcall is broken right now, but eventually this should be used
// to avoid blowing up the stack. It's ok for now though, there are no
// cycles in the state machine so the max stack usage is bounded.
//@call(.{.modifier = .always_tail}, func, args);
@call(.{}, func, args);
}
fn recover(
state: *volatile PanicState,
trace: ?*const std.builtin.StackTrace,
stack: StackContext,
msg: []const u8,
) void {
switch (state.recover_verbosity) {
.message_and_stack => {
// lower the verbosity, and restore it at the end if we don't panic.
state.recover_verbosity = .message_only;
const stderr = io.getStdErr().writer();
stderr.writeAll("\nPanicked during a panic: ") catch {};
stderr.writeAll(msg) catch {};
stderr.writeAll("\nInner panic stack:\n") catch {};
if (trace) |t| {
debug.dumpStackTrace(t.*);
}
stack.dumpStackTrace();
state.recover_verbosity = .message_and_stack;
},
.message_only => {
state.recover_verbosity = .silent;
const stderr = io.getStdErr().writer();
stderr.writeAll("\nPanicked while dumping inner panic stack: ") catch {};
stderr.writeAll(msg) catch {};
stderr.writeAll("\n") catch {};
// If we succeed, restore all the way to dumping the stack.
state.recover_verbosity = .message_and_stack;
},
.silent => {},
}
}
};