zig/lib/compiler_rt/sin.zig
Koki Ueha 878b7b80c1 libc: Prevent FCSEL instruction from being used to avoid raising an unintended exception
If you write an if expression in mem.doNotOptimizeAway like
doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);,
FCSEL instruction is used on AArch64.
FCSEL instruction selects one of the two registers according to
the condition and copies its value.
In this example, `x / 0x1p120` and `x + 0x1p120` are expressions
that raise different floating-point exceptions.
However, since both are actually evaluated before the FCSEL
instruction, the exception not intended by the programmer may
also be raised.

To prevent FCSEL instruction from being used here, this commit
splits doNotOptimizeAway in two.
2025-06-15 04:01:43 -04:00

204 lines
6.6 KiB
Zig

//! Ported from musl, which is licensed under the MIT license:
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//!
//! https://git.musl-libc.org/cgit/musl/tree/src/math/sinf.c
//! https://git.musl-libc.org/cgit/musl/tree/src/math/sin.c
const std = @import("std");
const builtin = @import("builtin");
const arch = builtin.cpu.arch;
const math = std.math;
const mem = std.mem;
const expect = std.testing.expect;
const common = @import("common.zig");
const trig = @import("trig.zig");
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
pub const panic = common.panic;
comptime {
@export(&__sinh, .{ .name = "__sinh", .linkage = common.linkage, .visibility = common.visibility });
@export(&sinf, .{ .name = "sinf", .linkage = common.linkage, .visibility = common.visibility });
@export(&sin, .{ .name = "sin", .linkage = common.linkage, .visibility = common.visibility });
@export(&__sinx, .{ .name = "__sinx", .linkage = common.linkage, .visibility = common.visibility });
if (common.want_ppc_abi) {
@export(&sinq, .{ .name = "sinf128", .linkage = common.linkage, .visibility = common.visibility });
}
@export(&sinq, .{ .name = "sinq", .linkage = common.linkage, .visibility = common.visibility });
@export(&sinl, .{ .name = "sinl", .linkage = common.linkage, .visibility = common.visibility });
}
pub fn __sinh(x: f16) callconv(.c) f16 {
// TODO: more efficient implementation
return @floatCast(sinf(x));
}
pub fn sinf(x: f32) callconv(.c) f32 {
// Small multiples of pi/2 rounded to double precision.
const s1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
const s2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
const s3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
const s4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
var ix: u32 = @bitCast(x);
const sign = ix >> 31 != 0;
ix &= 0x7fffffff;
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
if (ix < 0x39800000) { // |x| < 2**-12
// raise inexact if x!=0 and underflow if subnormal
if (common.want_float_exceptions) {
if (ix < 0x00800000) {
mem.doNotOptimizeAway(x / 0x1p120);
} else {
mem.doNotOptimizeAway(x + 0x1p120);
}
}
return x;
}
return trig.__sindf(x);
}
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
if (ix <= 0x4016cbe3) { // |x| ~<= 3pi/4
if (sign) {
return -trig.__cosdf(x + s1pio2);
} else {
return trig.__cosdf(x - s1pio2);
}
}
return trig.__sindf(if (sign) -(x + s2pio2) else -(x - s2pio2));
}
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
if (ix <= 0x40afeddf) { // |x| ~<= 7*pi/4
if (sign) {
return trig.__cosdf(x + s3pio2);
} else {
return -trig.__cosdf(x - s3pio2);
}
}
return trig.__sindf(if (sign) x + s4pio2 else x - s4pio2);
}
// sin(Inf or NaN) is NaN
if (ix >= 0x7f800000) {
return x - x;
}
var y: f64 = undefined;
const n = rem_pio2f(x, &y);
return switch (n & 3) {
0 => trig.__sindf(y),
1 => trig.__cosdf(y),
2 => trig.__sindf(-y),
else => -trig.__cosdf(y),
};
}
pub fn sin(x: f64) callconv(.c) f64 {
var ix = @as(u64, @bitCast(x)) >> 32;
ix &= 0x7fffffff;
// |x| ~< pi/4
if (ix <= 0x3fe921fb) {
if (ix < 0x3e500000) { // |x| < 2**-26
// raise inexact if x != 0 and underflow if subnormal
if (common.want_float_exceptions) {
if (ix < 0x00100000) {
mem.doNotOptimizeAway(x / 0x1p120);
} else {
mem.doNotOptimizeAway(x + 0x1p120);
}
}
return x;
}
return trig.__sin(x, 0.0, 0);
}
// sin(Inf or NaN) is NaN
if (ix >= 0x7ff00000) {
return x - x;
}
var y: [2]f64 = undefined;
const n = rem_pio2(x, &y);
return switch (n & 3) {
0 => trig.__sin(y[0], y[1], 1),
1 => trig.__cos(y[0], y[1]),
2 => -trig.__sin(y[0], y[1], 1),
else => -trig.__cos(y[0], y[1]),
};
}
pub fn __sinx(x: f80) callconv(.c) f80 {
// TODO: more efficient implementation
return @floatCast(sinq(x));
}
pub fn sinq(x: f128) callconv(.c) f128 {
// TODO: more correct implementation
return sin(@floatCast(x));
}
pub fn sinl(x: c_longdouble) callconv(.c) c_longdouble {
switch (@typeInfo(c_longdouble).float.bits) {
16 => return __sinh(x),
32 => return sinf(x),
64 => return sin(x),
80 => return __sinx(x),
128 => return sinq(x),
else => @compileError("unreachable"),
}
}
test "sin32" {
const epsilon = 0.00001;
try expect(math.approxEqAbs(f32, sinf(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, sinf(0.2), 0.198669, epsilon));
try expect(math.approxEqAbs(f32, sinf(0.8923), 0.778517, epsilon));
try expect(math.approxEqAbs(f32, sinf(1.5), 0.997495, epsilon));
try expect(math.approxEqAbs(f32, sinf(-1.5), -0.997495, epsilon));
try expect(math.approxEqAbs(f32, sinf(37.45), -0.246544, epsilon));
try expect(math.approxEqAbs(f32, sinf(89.123), 0.916166, epsilon));
}
test "sin64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, sin(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, sin(0.2), 0.198669, epsilon));
try expect(math.approxEqAbs(f64, sin(0.8923), 0.778517, epsilon));
try expect(math.approxEqAbs(f64, sin(1.5), 0.997495, epsilon));
try expect(math.approxEqAbs(f64, sin(-1.5), -0.997495, epsilon));
try expect(math.approxEqAbs(f64, sin(37.45), -0.246543, epsilon));
try expect(math.approxEqAbs(f64, sin(89.123), 0.916166, epsilon));
}
test "sin32.special" {
try expect(sinf(0.0) == 0.0);
try expect(sinf(-0.0) == -0.0);
try expect(math.isNan(sinf(math.inf(f32))));
try expect(math.isNan(sinf(-math.inf(f32))));
try expect(math.isNan(sinf(math.nan(f32))));
}
test "sin64.special" {
try expect(sin(0.0) == 0.0);
try expect(sin(-0.0) == -0.0);
try expect(math.isNan(sin(math.inf(f64))));
try expect(math.isNan(sin(-math.inf(f64))));
try expect(math.isNan(sin(math.nan(f64))));
}
test "sin32 #9901" {
const float: f32 = @bitCast(@as(u32, 0b11100011111111110000000000000000));
_ = sinf(float);
}
test "sin64 #9901" {
const float: f64 = @bitCast(@as(u64, 0b1111111101000001000000001111110111111111100000000000000000000001));
_ = sin(float);
}