zig/lib/std/compress/lzma/decode.zig
Andrew Kelley 6c48aad991 update some more std lib API to new Reader/Writer
std.compress needs an audit, I see some problems
2025-07-01 16:35:26 -07:00

540 lines
16 KiB
Zig

const std = @import("../../std.zig");
const assert = std.debug.assert;
const math = std.math;
const Allocator = std.mem.Allocator;
pub const lzbuffer = @import("decode/lzbuffer.zig");
const LzCircularBuffer = lzbuffer.LzCircularBuffer;
const Vec2D = @import("vec2d.zig").Vec2D;
pub const RangeDecoder = struct {
range: u32,
code: u32,
pub fn init(br: *std.io.BufferedReader) !RangeDecoder {
const reserved = try br.takeByte();
if (reserved != 0) {
return error.CorruptInput;
}
return .{
.range = 0xFFFF_FFFF,
.code = try br.readInt(u32, .big),
};
}
pub inline fn isFinished(self: RangeDecoder) bool {
return self.code == 0;
}
inline fn normalize(self: *RangeDecoder, br: *std.io.BufferedReader) !void {
if (self.range < 0x0100_0000) {
self.range <<= 8;
self.code = (self.code << 8) ^ @as(u32, try br.takeByte());
}
}
inline fn getBit(self: *RangeDecoder, br: *std.io.BufferedReader) !bool {
self.range >>= 1;
const bit = self.code >= self.range;
if (bit)
self.code -= self.range;
try self.normalize(br);
return bit;
}
pub fn get(self: *RangeDecoder, br: *std.io.BufferedReader, count: usize) !u32 {
var result: u32 = 0;
var i: usize = 0;
while (i < count) : (i += 1)
result = (result << 1) ^ @intFromBool(try self.getBit(br));
return result;
}
pub inline fn decodeBit(self: *RangeDecoder, br: *std.io.BufferedReader, prob: *u16, update: bool) !bool {
const bound = (self.range >> 11) * prob.*;
if (self.code < bound) {
if (update)
prob.* += (0x800 - prob.*) >> 5;
self.range = bound;
try self.normalize(br);
return false;
} else {
if (update)
prob.* -= prob.* >> 5;
self.code -= bound;
self.range -= bound;
try self.normalize(br);
return true;
}
}
fn parseBitTree(
self: *RangeDecoder,
br: *std.io.BufferedReader,
num_bits: u5,
probs: []u16,
update: bool,
) !u32 {
var tmp: u32 = 1;
var i: @TypeOf(num_bits) = 0;
while (i < num_bits) : (i += 1) {
const bit = try self.decodeBit(br, &probs[tmp], update);
tmp = (tmp << 1) ^ @intFromBool(bit);
}
return tmp - (@as(u32, 1) << num_bits);
}
pub fn parseReverseBitTree(
self: *RangeDecoder,
br: *std.io.BufferedReader,
num_bits: u5,
probs: []u16,
offset: usize,
update: bool,
) !u32 {
var result: u32 = 0;
var tmp: usize = 1;
var i: @TypeOf(num_bits) = 0;
while (i < num_bits) : (i += 1) {
const bit = @intFromBool(try self.decodeBit(br, &probs[offset + tmp], update));
tmp = (tmp << 1) ^ bit;
result ^= @as(u32, bit) << i;
}
return result;
}
};
pub fn BitTree(comptime num_bits: usize) type {
return struct {
probs: [1 << num_bits]u16 = @splat(0x400),
const Self = @This();
pub fn parse(
self: *Self,
br: *std.io.BufferedReader,
decoder: *RangeDecoder,
update: bool,
) !u32 {
return decoder.parseBitTree(br, num_bits, &self.probs, update);
}
pub fn parseReverse(
self: *Self,
br: *std.io.BufferedReader,
decoder: *RangeDecoder,
update: bool,
) !u32 {
return decoder.parseReverseBitTree(br, num_bits, &self.probs, 0, update);
}
pub fn reset(self: *Self) void {
@memset(&self.probs, 0x400);
}
};
}
pub const LenDecoder = struct {
choice: u16 = 0x400,
choice2: u16 = 0x400,
low_coder: [16]BitTree(3) = @splat(.{}),
mid_coder: [16]BitTree(3) = @splat(.{}),
high_coder: BitTree(8) = .{},
pub fn decode(
self: *LenDecoder,
br: *std.io.BufferedReader,
decoder: *RangeDecoder,
pos_state: usize,
update: bool,
) !usize {
if (!try decoder.decodeBit(br, &self.choice, update)) {
return @as(usize, try self.low_coder[pos_state].parse(br, decoder, update));
} else if (!try decoder.decodeBit(br, &self.choice2, update)) {
return @as(usize, try self.mid_coder[pos_state].parse(br, decoder, update)) + 8;
} else {
return @as(usize, try self.high_coder.parse(br, decoder, update)) + 16;
}
}
pub fn reset(self: *LenDecoder) void {
self.choice = 0x400;
self.choice2 = 0x400;
for (&self.low_coder) |*t| t.reset();
for (&self.mid_coder) |*t| t.reset();
self.high_coder.reset();
}
};
pub const Options = struct {
unpacked_size: UnpackedSize = .read_from_header,
memlimit: ?usize = null,
allow_incomplete: bool = false,
};
pub const UnpackedSize = union(enum) {
read_from_header,
read_header_but_use_provided: ?u64,
use_provided: ?u64,
};
const ProcessingStatus = enum {
continue_,
finished,
};
pub const Properties = struct {
lc: u4,
lp: u3,
pb: u3,
fn validate(self: Properties) void {
assert(self.lc <= 8);
assert(self.lp <= 4);
assert(self.pb <= 4);
}
};
pub const Params = struct {
properties: Properties,
dict_size: u32,
unpacked_size: ?u64,
pub fn readHeader(reader: anytype, options: Options) !Params {
var props = try reader.readByte();
if (props >= 225) {
return error.CorruptInput;
}
const lc = @as(u4, @intCast(props % 9));
props /= 9;
const lp = @as(u3, @intCast(props % 5));
props /= 5;
const pb = @as(u3, @intCast(props));
const dict_size_provided = try reader.readInt(u32, .little);
const dict_size = @max(0x1000, dict_size_provided);
const unpacked_size = switch (options.unpacked_size) {
.read_from_header => blk: {
const unpacked_size_provided = try reader.readInt(u64, .little);
const marker_mandatory = unpacked_size_provided == 0xFFFF_FFFF_FFFF_FFFF;
break :blk if (marker_mandatory)
null
else
unpacked_size_provided;
},
.read_header_but_use_provided => |x| blk: {
_ = try reader.readInt(u64, .little);
break :blk x;
},
.use_provided => |x| x,
};
return Params{
.properties = Properties{ .lc = lc, .lp = lp, .pb = pb },
.dict_size = dict_size,
.unpacked_size = unpacked_size,
};
}
};
pub const DecoderState = struct {
lzma_props: Properties,
unpacked_size: ?u64,
literal_probs: Vec2D(u16),
pos_slot_decoder: [4]BitTree(6),
align_decoder: BitTree(4),
pos_decoders: [115]u16,
is_match: [192]u16,
is_rep: [12]u16,
is_rep_g0: [12]u16,
is_rep_g1: [12]u16,
is_rep_g2: [12]u16,
is_rep_0long: [192]u16,
state: usize,
rep: [4]usize,
len_decoder: LenDecoder,
rep_len_decoder: LenDecoder,
pub fn init(
allocator: Allocator,
lzma_props: Properties,
unpacked_size: ?u64,
) !DecoderState {
return .{
.lzma_props = lzma_props,
.unpacked_size = unpacked_size,
.literal_probs = try Vec2D(u16).init(allocator, 0x400, .{ @as(usize, 1) << (lzma_props.lc + lzma_props.lp), 0x300 }),
.pos_slot_decoder = @splat(.{}),
.align_decoder = .{},
.pos_decoders = @splat(0x400),
.is_match = @splat(0x400),
.is_rep = @splat(0x400),
.is_rep_g0 = @splat(0x400),
.is_rep_g1 = @splat(0x400),
.is_rep_g2 = @splat(0x400),
.is_rep_0long = @splat(0x400),
.state = 0,
.rep = @splat(0),
.len_decoder = .{},
.rep_len_decoder = .{},
};
}
pub fn deinit(self: *DecoderState, allocator: Allocator) void {
self.literal_probs.deinit(allocator);
self.* = undefined;
}
pub fn resetState(self: *DecoderState, allocator: Allocator, new_props: Properties) !void {
new_props.validate();
if (self.lzma_props.lc + self.lzma_props.lp == new_props.lc + new_props.lp) {
self.literal_probs.fill(0x400);
} else {
self.literal_probs.deinit(allocator);
self.literal_probs = try Vec2D(u16).init(allocator, 0x400, .{ @as(usize, 1) << (new_props.lc + new_props.lp), 0x300 });
}
self.lzma_props = new_props;
for (&self.pos_slot_decoder) |*t| t.reset();
self.align_decoder.reset();
self.pos_decoders = @splat(0x400);
self.is_match = @splat(0x400);
self.is_rep = @splat(0x400);
self.is_rep_g0 = @splat(0x400);
self.is_rep_g1 = @splat(0x400);
self.is_rep_g2 = @splat(0x400);
self.is_rep_0long = @splat(0x400);
self.state = 0;
self.rep = @splat(0);
self.len_decoder.reset();
self.rep_len_decoder.reset();
}
fn processNextInner(
self: *DecoderState,
allocator: Allocator,
reader: anytype,
writer: anytype,
buffer: anytype,
decoder: *RangeDecoder,
update: bool,
) !ProcessingStatus {
const pos_state = buffer.len & ((@as(usize, 1) << self.lzma_props.pb) - 1);
if (!try decoder.decodeBit(
reader,
&self.is_match[(self.state << 4) + pos_state],
update,
)) {
const byte: u8 = try self.decodeLiteral(reader, buffer, decoder, update);
if (update) {
try buffer.appendLiteral(allocator, byte, writer);
self.state = if (self.state < 4)
0
else if (self.state < 10)
self.state - 3
else
self.state - 6;
}
return .continue_;
}
var len: usize = undefined;
if (try decoder.decodeBit(reader, &self.is_rep[self.state], update)) {
if (!try decoder.decodeBit(reader, &self.is_rep_g0[self.state], update)) {
if (!try decoder.decodeBit(
reader,
&self.is_rep_0long[(self.state << 4) + pos_state],
update,
)) {
if (update) {
self.state = if (self.state < 7) 9 else 11;
const dist = self.rep[0] + 1;
try buffer.appendLz(allocator, 1, dist, writer);
}
return .continue_;
}
} else {
const idx: usize = if (!try decoder.decodeBit(reader, &self.is_rep_g1[self.state], update))
1
else if (!try decoder.decodeBit(reader, &self.is_rep_g2[self.state], update))
2
else
3;
if (update) {
const dist = self.rep[idx];
var i = idx;
while (i > 0) : (i -= 1) {
self.rep[i] = self.rep[i - 1];
}
self.rep[0] = dist;
}
}
len = try self.rep_len_decoder.decode(reader, decoder, pos_state, update);
if (update) {
self.state = if (self.state < 7) 8 else 11;
}
} else {
if (update) {
self.rep[3] = self.rep[2];
self.rep[2] = self.rep[1];
self.rep[1] = self.rep[0];
}
len = try self.len_decoder.decode(reader, decoder, pos_state, update);
if (update) {
self.state = if (self.state < 7) 7 else 10;
}
const rep_0 = try self.decodeDistance(reader, decoder, len, update);
if (update) {
self.rep[0] = rep_0;
if (self.rep[0] == 0xFFFF_FFFF) {
if (decoder.isFinished()) {
return .finished;
}
return error.CorruptInput;
}
}
}
if (update) {
len += 2;
const dist = self.rep[0] + 1;
try buffer.appendLz(allocator, len, dist, writer);
}
return .continue_;
}
fn processNext(
self: *DecoderState,
allocator: Allocator,
reader: anytype,
writer: anytype,
buffer: anytype,
decoder: *RangeDecoder,
) !ProcessingStatus {
return self.processNextInner(allocator, reader, writer, buffer, decoder, true);
}
pub fn process(
self: *DecoderState,
allocator: Allocator,
reader: anytype,
writer: anytype,
buffer: anytype,
decoder: *RangeDecoder,
) !ProcessingStatus {
process_next: {
if (self.unpacked_size) |unpacked_size| {
if (buffer.len >= unpacked_size) {
break :process_next;
}
} else if (decoder.isFinished()) {
break :process_next;
}
switch (try self.processNext(allocator, reader, writer, buffer, decoder)) {
.continue_ => return .continue_,
.finished => break :process_next,
}
}
if (self.unpacked_size) |unpacked_size| {
if (buffer.len != unpacked_size) {
return error.CorruptInput;
}
}
return .finished;
}
fn decodeLiteral(
self: *DecoderState,
reader: anytype,
buffer: anytype,
decoder: *RangeDecoder,
update: bool,
) !u8 {
const def_prev_byte = 0;
const prev_byte = @as(usize, buffer.lastOr(def_prev_byte));
var result: usize = 1;
const lit_state = ((buffer.len & ((@as(usize, 1) << self.lzma_props.lp) - 1)) << self.lzma_props.lc) +
(prev_byte >> (8 - self.lzma_props.lc));
const probs = try self.literal_probs.getMut(lit_state);
if (self.state >= 7) {
var match_byte = @as(usize, try buffer.lastN(self.rep[0] + 1));
while (result < 0x100) {
const match_bit = (match_byte >> 7) & 1;
match_byte <<= 1;
const bit = @intFromBool(try decoder.decodeBit(
reader,
&probs[((@as(usize, 1) + match_bit) << 8) + result],
update,
));
result = (result << 1) ^ bit;
if (match_bit != bit) {
break;
}
}
}
while (result < 0x100) {
result = (result << 1) ^ @intFromBool(try decoder.decodeBit(reader, &probs[result], update));
}
return @as(u8, @truncate(result - 0x100));
}
fn decodeDistance(
self: *DecoderState,
reader: anytype,
decoder: *RangeDecoder,
length: usize,
update: bool,
) !usize {
const len_state = if (length > 3) 3 else length;
const pos_slot = @as(usize, try self.pos_slot_decoder[len_state].parse(reader, decoder, update));
if (pos_slot < 4)
return pos_slot;
const num_direct_bits = @as(u5, @intCast((pos_slot >> 1) - 1));
var result = (2 ^ (pos_slot & 1)) << num_direct_bits;
if (pos_slot < 14) {
result += try decoder.parseReverseBitTree(
reader,
num_direct_bits,
&self.pos_decoders,
result - pos_slot,
update,
);
} else {
result += @as(usize, try decoder.get(reader, num_direct_bits - 4)) << 4;
result += try self.align_decoder.parseReverse(reader, decoder, update);
}
return result;
}
};