zig/src/codegen/spirv.zig
David Rubin 80cd53d3bb
sema: clean-up {union,struct}FieldAlignment and friends
My main gripes with this design were that it was incorrectly namespaced, the naming was inconsistent and a bit wrong (`fooAlign` vs `fooAlignment`).

This commit moves all the logic from `PerThread.zig` to use the zcu + tid system that the previous couple commits introduce.
I've organized and merged the functions to be a bit more specific to their own purpose.

- `fieldAlignment` takes a struct or union type, an index, and a Zcu (or the Sema version which takes a Pt), and gives you the alignment of the field at the index.
- `structFieldAlignment` takes the field type itself, and provides the logic to handle special cases, such as externs.

A design goal I had in mind was to avoid using the word 'struct' in the function name, when it worked for things that aren't structs, such as unions.
2024-08-25 15:16:46 -07:00

6617 lines
276 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const assert = std.debug.assert;
const Signedness = std.builtin.Signedness;
const Zcu = @import("../Zcu.zig");
const Decl = Zcu.Decl;
const Type = @import("../Type.zig");
const Value = @import("../Value.zig");
const Air = @import("../Air.zig");
const Liveness = @import("../Liveness.zig");
const InternPool = @import("../InternPool.zig");
const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const StorageClass = spec.StorageClass;
const SpvModule = @import("spirv/Module.zig");
const IdRange = SpvModule.IdRange;
const SpvSection = @import("spirv/Section.zig");
const SpvAssembler = @import("spirv/Assembler.zig");
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
pub const zig_call_abi_ver = 3;
const InternMap = std.AutoHashMapUnmanaged(struct { InternPool.Index, NavGen.Repr }, IdResult);
const PtrTypeMap = std.AutoHashMapUnmanaged(
struct { InternPool.Index, StorageClass, NavGen.Repr },
struct { ty_id: IdRef, fwd_emitted: bool },
);
const ControlFlow = union(enum) {
const Structured = struct {
/// This type indicates the way that a block is terminated. The
/// state of a particular block is used to track how a jump from
/// inside the block must reach the outside.
const Block = union(enum) {
const Incoming = struct {
src_label: IdRef,
/// Instruction that returns an u32 value of the
/// `Air.Inst.Index` that control flow should jump to.
next_block: IdRef,
};
const SelectionMerge = struct {
/// Incoming block from the `then` label.
/// Note that hte incoming block from the `else` label is
/// either given by the next element in the stack.
incoming: Incoming,
/// The label id of the cond_br's merge block.
/// For the top-most element in the stack, this
/// value is undefined.
merge_block: IdRef,
};
/// For a `selection` type block, we cannot use early exits, and we
/// must generate a 'merge ladder' of OpSelection instructions. To that end,
/// we keep a stack of the merges that still must be closed at the end of
/// a block.
///
/// This entire structure basically just resembles a tree like
/// a x
/// \ /
/// b o merge
/// \ /
/// c o merge
/// \ /
/// o merge
/// /
/// o jump to next block
selection: struct {
/// In order to know which merges we still need to do, we need to keep
/// a stack of those.
merge_stack: std.ArrayListUnmanaged(SelectionMerge) = .{},
},
/// For a `loop` type block, we can early-exit the block by
/// jumping to the loop exit node, and we don't need to generate
/// an entire stack of merges.
loop: struct {
/// The next block to jump to can be determined from any number
/// of conditions that jump to the loop exit.
merges: std.ArrayListUnmanaged(Incoming) = .{},
/// The label id of the loop's merge block.
merge_block: IdRef,
},
fn deinit(self: *Structured.Block, a: Allocator) void {
switch (self.*) {
.selection => |*merge| merge.merge_stack.deinit(a),
.loop => |*merge| merge.merges.deinit(a),
}
self.* = undefined;
}
};
/// The stack of (structured) blocks that we are currently in. This determines
/// how exits from the current block must be handled.
block_stack: std.ArrayListUnmanaged(*Structured.Block) = .{},
/// Maps `block` inst indices to the variable that the block's result
/// value must be written to.
block_results: std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef) = .{},
};
const Unstructured = struct {
const Incoming = struct {
src_label: IdRef,
break_value_id: IdRef,
};
const Block = struct {
label: ?IdRef = null,
incoming_blocks: std.ArrayListUnmanaged(Incoming) = .{},
};
/// We need to keep track of result ids for block labels, as well as the 'incoming'
/// blocks for a block.
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *Block) = .{},
};
structured: Structured,
unstructured: Unstructured,
pub fn deinit(self: *ControlFlow, a: Allocator) void {
switch (self.*) {
.structured => |*cf| {
cf.block_stack.deinit(a);
cf.block_results.deinit(a);
},
.unstructured => |*cf| {
cf.blocks.deinit(a);
},
}
self.* = undefined;
}
};
/// This structure holds information that is relevant to the entire compilation,
/// in contrast to `NavGen`, which only holds relevant information about a
/// single decl.
pub const Object = struct {
/// A general-purpose allocator that can be used for any allocation for this Object.
gpa: Allocator,
/// the SPIR-V module that represents the final binary.
spv: SpvModule,
/// The Zig module that this object file is generated for.
/// A map of Zig decl indices to SPIR-V decl indices.
nav_link: std.AutoHashMapUnmanaged(InternPool.Nav.Index, SpvModule.Decl.Index) = .{},
/// A map of Zig InternPool indices for anonymous decls to SPIR-V decl indices.
uav_link: std.AutoHashMapUnmanaged(struct { InternPool.Index, StorageClass }, SpvModule.Decl.Index) = .{},
/// A map that maps AIR intern pool indices to SPIR-V result-ids.
intern_map: InternMap = .{},
/// This map serves a dual purpose:
/// - It keeps track of pointers that are currently being emitted, so that we can tell
/// if they are recursive and need an OpTypeForwardPointer.
/// - It caches pointers by child-type. This is required because sometimes we rely on
/// ID-equality for pointers, and pointers constructed via `ptrType()` aren't interned
/// via the usual `intern_map` mechanism.
ptr_types: PtrTypeMap = .{},
pub fn init(gpa: Allocator) Object {
return .{
.gpa = gpa,
.spv = SpvModule.init(gpa),
};
}
pub fn deinit(self: *Object) void {
self.spv.deinit();
self.nav_link.deinit(self.gpa);
self.uav_link.deinit(self.gpa);
self.intern_map.deinit(self.gpa);
self.ptr_types.deinit(self.gpa);
}
fn genNav(
self: *Object,
pt: Zcu.PerThread,
nav_index: InternPool.Nav.Index,
air: Air,
liveness: Liveness,
) !void {
const zcu = pt.zcu;
const gpa = zcu.gpa;
const structured_cfg = zcu.navFileScope(nav_index).mod.structured_cfg;
var nav_gen = NavGen{
.gpa = gpa,
.object = self,
.pt = pt,
.spv = &self.spv,
.owner_nav = nav_index,
.air = air,
.liveness = liveness,
.intern_map = &self.intern_map,
.ptr_types = &self.ptr_types,
.control_flow = switch (structured_cfg) {
true => .{ .structured = .{} },
false => .{ .unstructured = .{} },
},
.current_block_label = undefined,
.base_line = zcu.navSrcLine(nav_index),
};
defer nav_gen.deinit();
nav_gen.genNav() catch |err| switch (err) {
error.CodegenFail => {
try zcu.failed_codegen.put(gpa, nav_index, nav_gen.error_msg.?);
},
else => |other| {
// There might be an error that happened *after* self.error_msg
// was already allocated, so be sure to free it.
if (nav_gen.error_msg) |error_msg| {
error_msg.deinit(gpa);
}
return other;
},
};
}
pub fn updateFunc(
self: *Object,
pt: Zcu.PerThread,
func_index: InternPool.Index,
air: Air,
liveness: Liveness,
) !void {
const nav = pt.zcu.funcInfo(func_index).owner_nav;
// TODO: Separate types for generating decls and functions?
try self.genNav(pt, nav, air, liveness);
}
pub fn updateNav(
self: *Object,
pt: Zcu.PerThread,
nav: InternPool.Nav.Index,
) !void {
try self.genNav(pt, nav, undefined, undefined);
}
/// Fetch or allocate a result id for nav index. This function also marks the nav as alive.
/// Note: Function does not actually generate the nav, it just allocates an index.
pub fn resolveNav(self: *Object, zcu: *Zcu, nav_index: InternPool.Nav.Index) !SpvModule.Decl.Index {
const ip = &zcu.intern_pool;
const entry = try self.nav_link.getOrPut(self.gpa, nav_index);
if (!entry.found_existing) {
const nav = ip.getNav(nav_index);
// TODO: Extern fn?
const kind: SpvModule.Decl.Kind = if (ip.isFunctionType(nav.typeOf(ip)))
.func
else switch (nav.status.resolved.@"addrspace") {
.generic => .invocation_global,
else => .global,
};
entry.value_ptr.* = try self.spv.allocDecl(kind);
}
return entry.value_ptr.*;
}
};
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
const NavGen = struct {
/// A general-purpose allocator that can be used for any allocations for this NavGen.
gpa: Allocator,
/// The object that this decl is generated into.
object: *Object,
/// The Zig module that we are generating decls for.
pt: Zcu.PerThread,
/// The SPIR-V module that instructions should be emitted into.
/// This is the same as `self.object.spv`, repeated here for brevity.
spv: *SpvModule,
/// The decl we are currently generating code for.
owner_nav: InternPool.Nav.Index,
/// The intermediate code of the declaration we are currently generating. Note: If
/// the declaration is not a function, this value will be undefined!
air: Air,
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
/// Note: If the declaration is not a function, this value will be undefined!
liveness: Liveness,
/// An array of function argument result-ids. Each index corresponds with the
/// function argument of the same index.
args: std.ArrayListUnmanaged(IdRef) = .{},
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32 = 0,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap = .{},
/// A map that maps AIR intern pool indices to SPIR-V result-ids.
/// See `Object.intern_map`.
intern_map: *InternMap,
/// Module's pointer types, see `Object.ptr_types`.
ptr_types: *PtrTypeMap,
/// This field keeps track of the current state wrt structured or unstructured control flow.
control_flow: ControlFlow,
/// The label of the SPIR-V block we are currently generating.
current_block_label: IdRef,
/// The code (prologue and body) for the function we are currently generating code for.
func: SpvModule.Fn = .{},
/// The base offset of the current decl, which is what `dbg_stmt` is relative to.
base_line: u32,
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
/// Memory is owned by `module.gpa`.
error_msg: ?*Zcu.ErrorMsg = null,
/// Possible errors the `genDecl` function may return.
const Error = error{ CodegenFail, OutOfMemory };
/// This structure is used to return information about a type typically used for
/// arithmetic operations. These types may either be integers, floats, or a vector
/// of these. Most scalar operations also work on vectors, so we can easily represent
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
const ArithmeticTypeInfo = struct {
/// A classification of the inner type.
const Class = enum {
/// A boolean.
bool,
/// A regular, **native**, integer.
/// This is only returned when the backend supports this int as a native type (when
/// the relevant capability is enabled).
integer,
/// A regular float. These are all required to be natively supported. Floating points
/// for which the relevant capability is not enabled are not emulated.
float,
/// An integer of a 'strange' size (which' bit size is not the same as its backing
/// type. **Note**: this may **also** include power-of-2 integers for which the
/// relevant capability is not enabled), but still within the limits of the largest
/// natively supported integer type.
strange_integer,
/// An integer with more bits than the largest natively supported integer type.
composite_integer,
};
/// The number of bits in the inner type.
/// This is the actual number of bits of the type, not the size of the backing integer.
bits: u16,
/// The number of bits required to store the type.
/// For `integer` and `float`, this is equal to `bits`.
/// For `strange_integer` and `bool` this is the size of the backing integer.
/// For `composite_integer` this is 0 (TODO)
backing_bits: u16,
/// Null if this type is a scalar, or the length
/// of the vector otherwise.
vector_len: ?u32,
/// Whether the inner type is signed. Only relevant for integers.
signedness: std.builtin.Signedness,
/// A classification of the inner type. These scenarios
/// will all have to be handled slightly different.
class: Class,
};
/// Data can be lowered into in two basic representations: indirect, which is when
/// a type is stored in memory, and direct, which is how a type is stored when its
/// a direct SPIR-V value.
const Repr = enum {
/// A SPIR-V value as it would be used in operations.
direct,
/// A SPIR-V value as it is stored in memory.
indirect,
};
/// Free resources owned by the NavGen.
pub fn deinit(self: *NavGen) void {
self.args.deinit(self.gpa);
self.inst_results.deinit(self.gpa);
self.control_flow.deinit(self.gpa);
self.func.deinit(self.gpa);
}
/// Return the target which we are currently compiling for.
pub fn getTarget(self: *NavGen) std.Target {
return self.pt.zcu.getTarget();
}
pub fn fail(self: *NavGen, comptime format: []const u8, args: anytype) Error {
@setCold(true);
const zcu = self.pt.zcu;
const src_loc = zcu.navSrcLoc(self.owner_nav);
assert(self.error_msg == null);
self.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, format, args);
return error.CodegenFail;
}
pub fn todo(self: *NavGen, comptime format: []const u8, args: anytype) Error {
return self.fail("TODO (SPIR-V): " ++ format, args);
}
/// This imports the "default" extended instruction set for the target
/// For OpenCL, OpenCL.std.100. For Vulkan, GLSL.std.450.
fn importExtendedSet(self: *NavGen) !IdResult {
const target = self.getTarget();
return switch (target.os.tag) {
.opencl => try self.spv.importInstructionSet(.@"OpenCL.std"),
.vulkan => try self.spv.importInstructionSet(.@"GLSL.std.450"),
else => unreachable,
};
}
/// Fetch the result-id for a previously generated instruction or constant.
fn resolve(self: *NavGen, inst: Air.Inst.Ref) !IdRef {
const pt = self.pt;
const zcu = pt.zcu;
if (try self.air.value(inst, pt)) |val| {
const ty = self.typeOf(inst);
if (ty.zigTypeTag(zcu) == .Fn) {
const fn_nav = switch (zcu.intern_pool.indexToKey(val.ip_index)) {
.@"extern" => |@"extern"| @"extern".owner_nav,
.func => |func| func.owner_nav,
else => unreachable,
};
const spv_decl_index = try self.object.resolveNav(zcu, fn_nav);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
return self.spv.declPtr(spv_decl_index).result_id;
}
return try self.constant(ty, val, .direct);
}
const index = inst.toIndex().?;
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
}
fn resolveUav(self: *NavGen, val: InternPool.Index) !IdRef {
// TODO: This cannot be a function at this point, but it should probably be handled anyway.
const zcu = self.pt.zcu;
const ty = Type.fromInterned(zcu.intern_pool.typeOf(val));
const decl_ptr_ty_id = try self.ptrType(ty, .Generic);
const spv_decl_index = blk: {
const entry = try self.object.uav_link.getOrPut(self.object.gpa, .{ val, .Function });
if (entry.found_existing) {
try self.addFunctionDep(entry.value_ptr.*, .Function);
const result_id = self.spv.declPtr(entry.value_ptr.*).result_id;
return try self.castToGeneric(decl_ptr_ty_id, result_id);
}
const spv_decl_index = try self.spv.allocDecl(.invocation_global);
try self.addFunctionDep(spv_decl_index, .Function);
entry.value_ptr.* = spv_decl_index;
break :blk spv_decl_index;
};
// TODO: At some point we will be able to generate this all constant here, but then all of
// constant() will need to be implemented such that it doesn't generate any at-runtime code.
// NOTE: Because this is a global, we really only want to initialize it once. Therefore the
// constant lowering of this value will need to be deferred to an initializer similar to
// other globals.
const result_id = self.spv.declPtr(spv_decl_index).result_id;
{
// Save the current state so that we can temporarily generate into a different function.
// TODO: This should probably be made a little more robust.
const func = self.func;
defer self.func = func;
const block_label = self.current_block_label;
defer self.current_block_label = block_label;
self.func = .{};
defer self.func.deinit(self.gpa);
const initializer_proto_ty_id = try self.functionType(Type.void, &.{});
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveType(Type.void, .direct),
.id_result = initializer_id,
.function_control = .{},
.function_type = initializer_proto_ty_id,
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const val_id = try self.constant(ty, Value.fromInterned(val), .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = result_id,
.object = val_id,
});
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugNameFmt(initializer_id, "initializer of __anon_{d}", .{@intFromEnum(val)});
const fn_decl_ptr_ty_id = try self.ptrType(ty, .Function);
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = fn_decl_ptr_ty_id,
.id_result = result_id,
.set = try self.spv.importInstructionSet(.zig),
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
.id_ref_4 = &.{initializer_id},
});
}
return try self.castToGeneric(decl_ptr_ty_id, result_id);
}
fn addFunctionDep(self: *NavGen, decl_index: SpvModule.Decl.Index, storage_class: StorageClass) !void {
const target = self.getTarget();
if (target.os.tag == .vulkan) {
// Shader entry point dependencies must be variables with Input or Output storage class
switch (storage_class) {
.Input, .Output => {
try self.func.decl_deps.put(self.spv.gpa, decl_index, {});
},
else => {},
}
} else {
try self.func.decl_deps.put(self.spv.gpa, decl_index, {});
}
}
fn castToGeneric(self: *NavGen, type_id: IdRef, ptr_id: IdRef) !IdRef {
const target = self.getTarget();
if (target.os.tag == .vulkan) {
return ptr_id;
} else {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = type_id,
.id_result = result_id,
.pointer = ptr_id,
});
return result_id;
}
}
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
/// block we are currently generating.
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
/// keep track of the previous block.
fn beginSpvBlock(self: *NavGen, label: IdResult) !void {
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label });
self.current_block_label = label;
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
/// that size. In this case, multiple elements of the largest type should be used.
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
/// The result is valid to be used with OpTypeInt.
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *NavGen, bits: u16) ?u16 {
const target = self.getTarget();
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
.{ .bits = 8, .feature = .Int8 },
.{ .bits = 16, .feature = .Int16 },
.{ .bits = 32, .feature = null },
.{ .bits = 64, .feature = .Int64 },
};
for (ints) |int| {
const has_feature = if (int.feature) |feature|
Target.spirv.featureSetHas(target.cpu.features, feature)
else
true;
if (bits <= int.bits and has_feature) {
return int.bits;
}
}
return null;
}
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
/// the Int64 capability is enabled).
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *NavGen) u16 {
const target = self.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
32;
}
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
/// arrays of largestSupportedIntBits().
/// Asserts `ty` is an integer.
fn isCompositeInt(self: *NavGen, ty: Type) bool {
return self.backingIntBits(ty) == null;
}
/// Checks whether the type can be directly translated to SPIR-V vectors
fn isSpvVector(self: *NavGen, ty: Type) bool {
const zcu = self.pt.zcu;
const target = self.getTarget();
if (ty.zigTypeTag(zcu) != .Vector) return false;
// TODO: This check must be expanded for types that can be represented
// as integers (enums / packed structs?) and types that are represented
// by multiple SPIR-V values.
const scalar_ty = ty.scalarType(zcu);
switch (scalar_ty.zigTypeTag(zcu)) {
.Bool,
.Int,
.Float,
=> {},
else => return false,
}
const elem_ty = ty.childType(zcu);
const len = ty.vectorLen(zcu);
const is_scalar = elem_ty.isNumeric(zcu) or elem_ty.toIntern() == .bool_type;
const spirv_len = len > 1 and len <= 4;
const opencl_len = if (target.os.tag == .opencl) (len == 8 or len == 16) else false;
return is_scalar and (spirv_len or opencl_len);
}
fn arithmeticTypeInfo(self: *NavGen, ty: Type) ArithmeticTypeInfo {
const zcu = self.pt.zcu;
const target = self.getTarget();
var scalar_ty = ty.scalarType(zcu);
if (scalar_ty.zigTypeTag(zcu) == .Enum) {
scalar_ty = scalar_ty.intTagType(zcu);
}
const vector_len = if (ty.isVector(zcu)) ty.vectorLen(zcu) else null;
return switch (scalar_ty.zigTypeTag(zcu)) {
.Bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
.backing_bits = self.backingIntBits(1).?,
.vector_len = vector_len,
.signedness = .unsigned, // Technically, but doesn't matter for this class.
.class = .bool,
},
.Float => ArithmeticTypeInfo{
.bits = scalar_ty.floatBits(target),
.backing_bits = scalar_ty.floatBits(target), // TODO: F80?
.vector_len = vector_len,
.signedness = .signed, // Technically, but doesn't matter for this class.
.class = .float,
},
.Int => blk: {
const int_info = scalar_ty.intInfo(zcu);
// TODO: Maybe it's useful to also return this value.
const maybe_backing_bits = self.backingIntBits(int_info.bits);
break :blk ArithmeticTypeInfo{
.bits = int_info.bits,
.backing_bits = maybe_backing_bits orelse 0,
.vector_len = vector_len,
.signedness = int_info.signedness,
.class = if (maybe_backing_bits) |backing_bits|
if (backing_bits == int_info.bits)
ArithmeticTypeInfo.Class.integer
else
ArithmeticTypeInfo.Class.strange_integer
else
.composite_integer,
};
},
.Enum => unreachable,
.Vector => unreachable,
else => unreachable, // Unhandled arithmetic type
};
}
/// Emits a bool constant in a particular representation.
fn constBool(self: *NavGen, value: bool, repr: Repr) !IdRef {
// TODO: Cache?
const section = &self.spv.sections.types_globals_constants;
switch (repr) {
.indirect => {
return try self.constInt(Type.u1, @intFromBool(value), .indirect);
},
.direct => {
const result_ty_id = try self.resolveType(Type.bool, .direct);
const result_id = self.spv.allocId();
const operands = .{
.id_result_type = result_ty_id,
.id_result = result_id,
};
switch (value) {
true => try section.emit(self.spv.gpa, .OpConstantTrue, operands),
false => try section.emit(self.spv.gpa, .OpConstantFalse, operands),
}
return result_id;
},
}
}
/// Emits an integer constant.
/// This function, unlike SpvModule.constInt, takes care to bitcast
/// the value to an unsigned int first for Kernels.
fn constInt(self: *NavGen, ty: Type, value: anytype, repr: Repr) !IdRef {
// TODO: Cache?
const zcu = self.pt.zcu;
const scalar_ty = ty.scalarType(zcu);
const int_info = scalar_ty.intInfo(zcu);
// Use backing bits so that negatives are sign extended
const backing_bits = self.backingIntBits(int_info.bits).?; // Assertion failure means big int
const signedness: Signedness = switch (@typeInfo(@TypeOf(value))) {
.Int => |int| int.signedness,
.ComptimeInt => if (value < 0) .signed else .unsigned,
else => unreachable,
};
const bits: u64 = switch (signedness) {
.signed => @bitCast(@as(i64, @intCast(value))),
.unsigned => @as(u64, @intCast(value)),
};
// Manually truncate the value to the right amount of bits.
const truncated_bits = if (backing_bits == 64)
bits
else
bits & (@as(u64, 1) << @intCast(backing_bits)) - 1;
const result_ty_id = try self.resolveType(scalar_ty, repr);
const result_id = self.spv.allocId();
const section = &self.spv.sections.types_globals_constants;
switch (backing_bits) {
0 => unreachable, // u0 is comptime
1...32 => try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.value = .{ .uint32 = @truncate(truncated_bits) },
}),
33...64 => try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.value = .{ .uint64 = truncated_bits },
}),
else => unreachable, // TODO: Large integer constants
}
if (!ty.isVector(zcu)) {
return result_id;
}
const n = ty.vectorLen(zcu);
const ids = try self.gpa.alloc(IdRef, n);
defer self.gpa.free(ids);
@memset(ids, result_id);
const vec_ty_id = try self.resolveType(ty, repr);
const vec_result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = vec_ty_id,
.id_result = vec_result_id,
.constituents = ids,
});
return vec_result_id;
}
/// Construct a struct at runtime.
/// ty must be a struct type.
/// Constituents should be in `indirect` representation (as the elements of a struct should be).
/// Result is in `direct` representation.
fn constructStruct(self: *NavGen, ty: Type, types: []const Type, constituents: []const IdRef) !IdRef {
assert(types.len == constituents.len);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = try self.resolveType(ty, .direct),
.id_result = result_id,
.constituents = constituents,
});
return result_id;
}
/// Construct a vector at runtime.
/// ty must be an vector type.
fn constructVector(self: *NavGen, ty: Type, constituents: []const IdRef) !IdRef {
const zcu = self.pt.zcu;
assert(ty.vectorLen(zcu) == constituents.len);
// Note: older versions of the Khronos SPRIV-LLVM translator crash on this instruction
// because it cannot construct structs which' operands are not constant.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/1349
// Currently this is the case for Intel OpenCL CPU runtime (2023-WW46), but the
// alternatives dont work properly:
// - using temporaries/pointers doesn't work properly with vectors of bool, causes
// backends that use llvm to crash
// - using OpVectorInsertDynamic doesn't work for non-spirv-vectors of bool.
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = try self.resolveType(ty, .direct),
.id_result = result_id,
.constituents = constituents,
});
return result_id;
}
/// Construct a vector at runtime with all lanes set to the same value.
/// ty must be an vector type.
fn constructVectorSplat(self: *NavGen, ty: Type, constituent: IdRef) !IdRef {
const zcu = self.pt.zcu;
const n = ty.vectorLen(zcu);
const constituents = try self.gpa.alloc(IdRef, n);
defer self.gpa.free(constituents);
@memset(constituents, constituent);
return try self.constructVector(ty, constituents);
}
/// Construct an array at runtime.
/// ty must be an array type.
/// Constituents should be in `indirect` representation (as the elements of an array should be).
/// Result is in `direct` representation.
fn constructArray(self: *NavGen, ty: Type, constituents: []const IdRef) !IdRef {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
.id_result_type = try self.resolveType(ty, .direct),
.id_result = result_id,
.constituents = constituents,
});
return result_id;
}
/// This function generates a load for a constant in direct (ie, non-memory) representation.
/// When the constant is simple, it can be generated directly using OpConstant instructions.
/// When the constant is more complicated however, it needs to be constructed using multiple values. This
/// is done by emitting a sequence of instructions that initialize the value.
//
/// This function should only be called during function code generation.
fn constant(self: *NavGen, ty: Type, val: Value, repr: Repr) !IdRef {
// Note: Using intern_map can only be used with constants that DO NOT generate any runtime code!!
// Ideally that should be all constants in the future, or it should be cleaned up somehow. For
// now, only use the intern_map on case-by-case basis by breaking to :cache.
if (self.intern_map.get(.{ val.toIntern(), repr })) |id| {
return id;
}
const pt = self.pt;
const zcu = pt.zcu;
const target = self.getTarget();
const result_ty_id = try self.resolveType(ty, repr);
const ip = &zcu.intern_pool;
log.debug("lowering constant: ty = {}, val = {}", .{ ty.fmt(pt), val.fmtValue(pt) });
if (val.isUndefDeep(zcu)) {
return self.spv.constUndef(result_ty_id);
}
const section = &self.spv.sections.types_globals_constants;
const cacheable_id = cache: {
switch (ip.indexToKey(val.toIntern())) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.anon_struct_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
=> unreachable, // types, not values
.undef => unreachable, // handled above
.variable,
.@"extern",
.func,
.enum_literal,
.empty_enum_value,
=> unreachable, // non-runtime values
.simple_value => |simple_value| switch (simple_value) {
.undefined,
.void,
.null,
.empty_struct,
.@"unreachable",
.generic_poison,
=> unreachable, // non-runtime values
.false, .true => break :cache try self.constBool(val.toBool(), repr),
},
.int => {
if (ty.isSignedInt(zcu)) {
break :cache try self.constInt(ty, val.toSignedInt(zcu), repr);
} else {
break :cache try self.constInt(ty, val.toUnsignedInt(zcu), repr);
}
},
.float => {
const lit: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) {
16 => .{ .uint32 = @as(u16, @bitCast(val.toFloat(f16, zcu))) },
32 => .{ .float32 = val.toFloat(f32, zcu) },
64 => .{ .float64 = val.toFloat(f64, zcu) },
80, 128 => unreachable, // TODO
else => unreachable,
};
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpConstant, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.value = lit,
});
break :cache result_id;
},
.err => |err| {
const value = try pt.getErrorValue(err.name);
break :cache try self.constInt(ty, value, repr);
},
.error_union => |error_union| {
// TODO: Error unions may be constructed with constant instructions if the payload type
// allows it. For now, just generate it here regardless.
const err_int_ty = try pt.errorIntType();
const err_ty = switch (error_union.val) {
.err_name => ty.errorUnionSet(zcu),
.payload => err_int_ty,
};
const err_val = switch (error_union.val) {
.err_name => |err_name| Value.fromInterned(try pt.intern(.{ .err = .{
.ty = ty.errorUnionSet(zcu).toIntern(),
.name = err_name,
} })),
.payload => try pt.intValue(err_int_ty, 0),
};
const payload_ty = ty.errorUnionPayload(zcu);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// We use the error type directly as the type.
break :cache try self.constant(err_ty, err_val, .indirect);
}
const payload_val = Value.fromInterned(switch (error_union.val) {
.err_name => try pt.intern(.{ .undef = payload_ty.toIntern() }),
.payload => |payload| payload,
});
var constituents: [2]IdRef = undefined;
var types: [2]Type = undefined;
if (eu_layout.error_first) {
constituents[0] = try self.constant(err_ty, err_val, .indirect);
constituents[1] = try self.constant(payload_ty, payload_val, .indirect);
types = .{ err_ty, payload_ty };
} else {
constituents[0] = try self.constant(payload_ty, payload_val, .indirect);
constituents[1] = try self.constant(err_ty, err_val, .indirect);
types = .{ payload_ty, err_ty };
}
return try self.constructStruct(ty, &types, &constituents);
},
.enum_tag => {
const int_val = try val.intFromEnum(ty, pt);
const int_ty = ty.intTagType(zcu);
break :cache try self.constant(int_ty, int_val, repr);
},
.ptr => return self.constantPtr(val),
.slice => |slice| {
const ptr_ty = ty.slicePtrFieldType(zcu);
const ptr_id = try self.constantPtr(Value.fromInterned(slice.ptr));
const len_id = try self.constant(Type.usize, Value.fromInterned(slice.len), .indirect);
return self.constructStruct(
ty,
&.{ ptr_ty, Type.usize },
&.{ ptr_id, len_id },
);
},
.opt => {
const payload_ty = ty.optionalChild(zcu);
const maybe_payload_val = val.optionalValue(zcu);
if (!payload_ty.hasRuntimeBits(zcu)) {
break :cache try self.constBool(maybe_payload_val != null, .indirect);
} else if (ty.optionalReprIsPayload(zcu)) {
// Optional representation is a nullable pointer or slice.
if (maybe_payload_val) |payload_val| {
return try self.constant(payload_ty, payload_val, .indirect);
} else {
break :cache try self.spv.constNull(result_ty_id);
}
}
// Optional representation is a structure.
// { Payload, Bool }
const has_pl_id = try self.constBool(maybe_payload_val != null, .indirect);
const payload_id = if (maybe_payload_val) |payload_val|
try self.constant(payload_ty, payload_val, .indirect)
else
try self.spv.constUndef(try self.resolveType(payload_ty, .indirect));
return try self.constructStruct(
ty,
&.{ payload_ty, Type.bool },
&.{ payload_id, has_pl_id },
);
},
.aggregate => |aggregate| switch (ip.indexToKey(ty.ip_index)) {
inline .array_type, .vector_type => |array_type, tag| {
const elem_ty = Type.fromInterned(array_type.child);
const constituents = try self.gpa.alloc(IdRef, @intCast(ty.arrayLenIncludingSentinel(zcu)));
defer self.gpa.free(constituents);
const child_repr: Repr = switch (tag) {
.array_type => .indirect,
.vector_type => .direct,
else => unreachable,
};
switch (aggregate.storage) {
.bytes => |bytes| {
// TODO: This is really space inefficient, perhaps there is a better
// way to do it?
for (constituents, bytes.toSlice(constituents.len, ip)) |*constituent, byte| {
constituent.* = try self.constInt(elem_ty, byte, child_repr);
}
},
.elems => |elems| {
for (constituents, elems) |*constituent, elem| {
constituent.* = try self.constant(elem_ty, Value.fromInterned(elem), child_repr);
}
},
.repeated_elem => |elem| {
@memset(constituents, try self.constant(elem_ty, Value.fromInterned(elem), child_repr));
},
}
switch (tag) {
.array_type => return self.constructArray(ty, constituents),
.vector_type => return self.constructVector(ty, constituents),
else => unreachable,
}
},
.struct_type => {
const struct_type = zcu.typeToStruct(ty).?;
if (struct_type.layout == .@"packed") {
return self.todo("packed struct constants", .{});
}
var types = std.ArrayList(Type).init(self.gpa);
defer types.deinit();
var constituents = std.ArrayList(IdRef).init(self.gpa);
defer constituents.deinit();
var it = struct_type.iterateRuntimeOrder(ip);
while (it.next()) |field_index| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
// TODO: Padding?
const field_val = try val.fieldValue(pt, field_index);
const field_id = try self.constant(field_ty, field_val, .indirect);
try types.append(field_ty);
try constituents.append(field_id);
}
return try self.constructStruct(ty, types.items, constituents.items);
},
.anon_struct_type => unreachable, // TODO
else => unreachable,
},
.un => |un| {
const active_field = ty.unionTagFieldIndex(Value.fromInterned(un.tag), zcu).?;
const union_obj = zcu.typeToUnion(ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[active_field]);
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.constant(field_ty, Value.fromInterned(un.val), .direct)
else
null;
return try self.unionInit(ty, active_field, payload);
},
.memoized_call => unreachable,
}
};
try self.intern_map.putNoClobber(self.gpa, .{ val.toIntern(), repr }, cacheable_id);
return cacheable_id;
}
fn constantPtr(self: *NavGen, ptr_val: Value) Error!IdRef {
// TODO: Caching??
const pt = self.pt;
if (ptr_val.isUndef(pt.zcu)) {
const result_ty = ptr_val.typeOf(pt.zcu);
const result_ty_id = try self.resolveType(result_ty, .direct);
return self.spv.constUndef(result_ty_id);
}
var arena = std.heap.ArenaAllocator.init(self.gpa);
defer arena.deinit();
const derivation = try ptr_val.pointerDerivation(arena.allocator(), pt);
return self.derivePtr(derivation);
}
fn derivePtr(self: *NavGen, derivation: Value.PointerDeriveStep) Error!IdRef {
const pt = self.pt;
const zcu = pt.zcu;
switch (derivation) {
.comptime_alloc_ptr, .comptime_field_ptr => unreachable,
.int => |int| {
const result_ty_id = try self.resolveType(int.ptr_ty, .direct);
// TODO: This can probably be an OpSpecConstantOp Bitcast, but
// that is not implemented by Mesa yet. Therefore, just generate it
// as a runtime operation.
const result_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = result_ty_id,
.id_result = result_ptr_id,
.integer_value = try self.constant(Type.usize, try pt.intValue(Type.usize, int.addr), .direct),
});
return result_ptr_id;
},
.nav_ptr => |nav| {
const result_ptr_ty = try pt.navPtrType(nav);
return self.constantNavRef(result_ptr_ty, nav);
},
.uav_ptr => |uav| {
const result_ptr_ty = Type.fromInterned(uav.orig_ty);
return self.constantUavRef(result_ptr_ty, uav);
},
.eu_payload_ptr => @panic("TODO"),
.opt_payload_ptr => @panic("TODO"),
.field_ptr => |field| {
const parent_ptr_id = try self.derivePtr(field.parent.*);
const parent_ptr_ty = try field.parent.ptrType(pt);
return self.structFieldPtr(field.result_ptr_ty, parent_ptr_ty, parent_ptr_id, field.field_idx);
},
.elem_ptr => |elem| {
const parent_ptr_id = try self.derivePtr(elem.parent.*);
const parent_ptr_ty = try elem.parent.ptrType(pt);
const index_id = try self.constInt(Type.usize, elem.elem_idx, .direct);
return self.ptrElemPtr(parent_ptr_ty, parent_ptr_id, index_id);
},
.offset_and_cast => |oac| {
const parent_ptr_id = try self.derivePtr(oac.parent.*);
const parent_ptr_ty = try oac.parent.ptrType(pt);
disallow: {
if (oac.byte_offset != 0) break :disallow;
// Allow changing the pointer type child only to restructure arrays.
// e.g. [3][2]T to T is fine, as is [2]T -> [2][1]T.
const src_base_ty = parent_ptr_ty.arrayBase(zcu)[0];
const dest_base_ty = oac.new_ptr_ty.arrayBase(zcu)[0];
if (self.getTarget().os.tag == .vulkan and src_base_ty.toIntern() != dest_base_ty.toIntern()) break :disallow;
const result_ty_id = try self.resolveType(oac.new_ptr_ty, .direct);
const result_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = result_ty_id,
.id_result = result_ptr_id,
.operand = parent_ptr_id,
});
return result_ptr_id;
}
return self.fail("Cannot perform pointer cast: '{}' to '{}'", .{
parent_ptr_ty.fmt(pt),
oac.new_ptr_ty.fmt(pt),
});
},
}
}
fn constantUavRef(
self: *NavGen,
ty: Type,
uav: InternPool.Key.Ptr.BaseAddr.Uav,
) !IdRef {
// TODO: Merge this function with constantDeclRef.
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_id = try self.resolveType(ty, .direct);
const uav_ty = Type.fromInterned(ip.typeOf(uav.val));
switch (ip.indexToKey(uav.val)) {
.func => unreachable, // TODO
.@"extern" => assert(!ip.isFunctionType(uav_ty.toIntern())),
else => {},
}
// const is_fn_body = decl_ty.zigTypeTag(zcu) == .Fn;
if (!uav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
// Pointer to nothing - return undefined
return self.spv.constUndef(ty_id);
}
// Uav refs are always generic.
assert(ty.ptrAddressSpace(zcu) == .generic);
const decl_ptr_ty_id = try self.ptrType(uav_ty, .Generic);
const ptr_id = try self.resolveUav(uav.val);
if (decl_ptr_ty_id != ty_id) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = ty_id,
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
fn constantNavRef(self: *NavGen, ty: Type, nav_index: InternPool.Nav.Index) !IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_id = try self.resolveType(ty, .direct);
const nav = ip.getNav(nav_index);
const nav_val = zcu.navValue(nav_index);
const nav_ty = nav_val.typeOf(zcu);
switch (ip.indexToKey(nav_val.toIntern())) {
.func => {
// TODO: Properly lower function pointers. For now we are going to hack around it and
// just generate an empty pointer. Function pointers are represented by a pointer to usize.
return try self.spv.constUndef(ty_id);
},
.@"extern" => assert(!ip.isFunctionType(nav_ty.toIntern())), // TODO
else => {},
}
if (!nav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
// Pointer to nothing - return undefined.
return self.spv.constUndef(ty_id);
}
const spv_decl_index = try self.object.resolveNav(zcu, nav_index);
const spv_decl = self.spv.declPtr(spv_decl_index);
const decl_id = switch (spv_decl.kind) {
.func => unreachable, // TODO: Is this possible?
.global, .invocation_global => spv_decl.result_id,
};
const final_storage_class = self.spvStorageClass(nav.status.resolved.@"addrspace");
try self.addFunctionDep(spv_decl_index, final_storage_class);
const decl_ptr_ty_id = try self.ptrType(nav_ty, final_storage_class);
const ptr_id = switch (final_storage_class) {
.Generic => try self.castToGeneric(decl_ptr_ty_id, decl_id),
else => decl_id,
};
if (decl_ptr_ty_id != ty_id) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = ty_id,
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
// Turn a Zig type's name into a cache reference.
fn resolveTypeName(self: *NavGen, ty: Type) ![]const u8 {
var name = std.ArrayList(u8).init(self.gpa);
defer name.deinit();
try ty.print(name.writer(), self.pt);
return try name.toOwnedSlice();
}
/// Create an integer type suitable for storing at least 'bits' bits.
/// The integer type that is returned by this function is the type that is used to perform
/// actual operations (as well as store) a Zig type of a particular number of bits. To create
/// a type with an exact size, use SpvModule.intType.
fn intType(self: *NavGen, signedness: std.builtin.Signedness, bits: u16) !IdRef {
const backing_bits = self.backingIntBits(bits) orelse {
// TODO: Integers too big for any native type are represented as "composite integers":
// An array of largestSupportedIntBits.
return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits });
};
// Kernel only supports unsigned ints.
if (self.getTarget().os.tag == .vulkan) {
return self.spv.intType(signedness, backing_bits);
}
return self.spv.intType(.unsigned, backing_bits);
}
fn arrayType(self: *NavGen, len: u32, child_ty: IdRef) !IdRef {
// TODO: Cache??
const len_id = try self.constInt(Type.u32, len, .direct);
const result_id = self.spv.allocId();
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypeArray, .{
.id_result = result_id,
.element_type = child_ty,
.length = len_id,
});
return result_id;
}
fn ptrType(self: *NavGen, child_ty: Type, storage_class: StorageClass) !IdRef {
return try self.ptrType2(child_ty, storage_class, .indirect);
}
fn ptrType2(self: *NavGen, child_ty: Type, storage_class: StorageClass, child_repr: Repr) !IdRef {
const key = .{ child_ty.toIntern(), storage_class, child_repr };
const entry = try self.ptr_types.getOrPut(self.gpa, key);
if (entry.found_existing) {
const fwd_id = entry.value_ptr.ty_id;
if (!entry.value_ptr.fwd_emitted) {
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypeForwardPointer, .{
.pointer_type = fwd_id,
.storage_class = storage_class,
});
entry.value_ptr.fwd_emitted = true;
}
return fwd_id;
}
const result_id = self.spv.allocId();
entry.value_ptr.* = .{
.ty_id = result_id,
.fwd_emitted = false,
};
const child_ty_id = try self.resolveType(child_ty, child_repr);
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
.id_result = result_id,
.storage_class = storage_class,
.type = child_ty_id,
});
return result_id;
}
fn functionType(self: *NavGen, return_ty: Type, param_types: []const Type) !IdRef {
// TODO: Cache??
const param_ids = try self.gpa.alloc(IdRef, param_types.len);
defer self.gpa.free(param_ids);
for (param_types, param_ids) |param_ty, *param_id| {
param_id.* = try self.resolveType(param_ty, .direct);
}
const ty_id = self.spv.allocId();
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypeFunction, .{
.id_result = ty_id,
.return_type = try self.resolveFnReturnType(return_ty),
.id_ref_2 = param_ids,
});
return ty_id;
}
fn zigScalarOrVectorTypeLike(self: *NavGen, new_ty: Type, base_ty: Type) !Type {
const pt = self.pt;
const new_scalar_ty = new_ty.scalarType(pt.zcu);
if (!base_ty.isVector(pt.zcu)) {
return new_scalar_ty;
}
return try pt.vectorType(.{
.len = base_ty.vectorLen(pt.zcu),
.child = new_scalar_ty.toIntern(),
});
}
/// Generate a union type. Union types are always generated with the
/// most aligned field active. If the tag alignment is greater
/// than that of the payload, a regular union (non-packed, with both tag and
/// payload), will be generated as follows:
/// struct {
/// tag: TagType,
/// payload: MostAlignedFieldType,
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
/// padding: [padding_size]u8,
/// }
/// If the payload alignment is greater than that of the tag:
/// struct {
/// payload: MostAlignedFieldType,
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
/// tag: TagType,
/// padding: [padding_size]u8,
/// }
/// If any of the fields' size is 0, it will be omitted.
fn resolveUnionType(self: *NavGen, ty: Type) !IdRef {
const zcu = self.pt.zcu;
const ip = &zcu.intern_pool;
const union_obj = zcu.typeToUnion(ty).?;
if (union_obj.flagsUnordered(ip).layout == .@"packed") {
return self.todo("packed union types", .{});
}
const layout = self.unionLayout(ty);
if (!layout.has_payload) {
// No payload, so represent this as just the tag type.
return try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
}
var member_types: [4]IdRef = undefined;
var member_names: [4][]const u8 = undefined;
const u8_ty_id = try self.resolveType(Type.u8, .direct); // TODO: What if Int8Type is not enabled?
if (layout.tag_size != 0) {
const tag_ty_id = try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
member_types[layout.tag_index] = tag_ty_id;
member_names[layout.tag_index] = "(tag)";
}
if (layout.payload_size != 0) {
const payload_ty_id = try self.resolveType(layout.payload_ty, .indirect);
member_types[layout.payload_index] = payload_ty_id;
member_names[layout.payload_index] = "(payload)";
}
if (layout.payload_padding_size != 0) {
const payload_padding_ty_id = try self.arrayType(@intCast(layout.payload_padding_size), u8_ty_id);
member_types[layout.payload_padding_index] = payload_padding_ty_id;
member_names[layout.payload_padding_index] = "(payload padding)";
}
if (layout.padding_size != 0) {
const padding_ty_id = try self.arrayType(@intCast(layout.padding_size), u8_ty_id);
member_types[layout.padding_index] = padding_ty_id;
member_names[layout.padding_index] = "(padding)";
}
const result_id = try self.spv.structType(member_types[0..layout.total_fields], member_names[0..layout.total_fields]);
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
try self.spv.debugName(result_id, type_name);
return result_id;
}
fn resolveFnReturnType(self: *NavGen, ret_ty: Type) !IdRef {
const zcu = self.pt.zcu;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// If the return type is an error set or an error union, then we make this
// anyerror return type instead, so that it can be coerced into a function
// pointer type which has anyerror as the return type.
if (ret_ty.isError(zcu)) {
return self.resolveType(Type.anyerror, .direct);
} else {
return self.resolveType(Type.void, .direct);
}
}
return try self.resolveType(ret_ty, .direct);
}
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
fn resolveType(self: *NavGen, ty: Type, repr: Repr) Error!IdRef {
if (self.intern_map.get(.{ ty.toIntern(), repr })) |id| {
return id;
}
const id = try self.resolveTypeInner(ty, repr);
try self.intern_map.put(self.gpa, .{ ty.toIntern(), repr }, id);
return id;
}
fn resolveTypeInner(self: *NavGen, ty: Type, repr: Repr) Error!IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
log.debug("resolveType: ty = {}", .{ty.fmt(pt)});
const target = self.getTarget();
const section = &self.spv.sections.types_globals_constants;
switch (ty.zigTypeTag(zcu)) {
.NoReturn => {
assert(repr == .direct);
return try self.spv.voidType();
},
.Void => switch (repr) {
.direct => {
return try self.spv.voidType();
},
// Pointers to void
.indirect => {
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = "void",
});
return result_id;
},
},
.Bool => switch (repr) {
.direct => return try self.spv.boolType(),
.indirect => return try self.resolveType(Type.u1, .indirect),
},
.Int => {
const int_info = ty.intInfo(zcu);
if (int_info.bits == 0) {
// Some times, the backend will be asked to generate a pointer to i0. OpTypeInt
// with 0 bits is invalid, so return an opaque type in this case.
assert(repr == .indirect);
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = "u0",
});
return result_id;
}
return try self.intType(int_info.signedness, int_info.bits);
},
.Enum => {
const tag_ty = ty.intTagType(zcu);
return try self.resolveType(tag_ty, repr);
},
.Float => {
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
// so if the float is not supported, just return an error.
const bits = ty.floatBits(target);
const supported = switch (bits) {
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
32 => true,
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
else => false,
};
if (!supported) {
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
return try self.spv.floatType(bits);
},
.Array => {
const elem_ty = ty.childType(zcu);
const elem_ty_id = try self.resolveType(elem_ty, .indirect);
const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(zcu)) orelse {
return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(zcu)});
};
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached when the backend is asked to generate a pointer to
// an array of some zero-bit type. This should always be an indirect path.
assert(repr == .indirect);
// We cannot use the child type here, so just use an opaque type.
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = "zero-sized array",
});
return result_id;
} else if (total_len == 0) {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached for example when there is a slicing of a pointer
// that produces a zero-length array. In all cases where this type can be generated,
// this should be an indirect path.
assert(repr == .indirect);
// In this case, we have an array of a non-zero sized type. In this case,
// generate an array of 1 element instead, so that ptr_elem_ptr instructions
// can be lowered to ptrAccessChain instead of manually performing the math.
return try self.arrayType(1, elem_ty_id);
} else {
return try self.arrayType(total_len, elem_ty_id);
}
},
.Fn => switch (repr) {
.direct => {
const fn_info = zcu.typeToFunc(ty).?;
comptime assert(zig_call_abi_ver == 3);
switch (fn_info.cc) {
.Unspecified, .Kernel, .Fragment, .Vertex, .C => {},
else => unreachable, // TODO
}
// TODO: Put this somewhere in Sema.zig
if (fn_info.is_var_args)
return self.fail("VarArgs functions are unsupported for SPIR-V", .{});
// Note: Logic is different from functionType().
const param_ty_ids = try self.gpa.alloc(IdRef, fn_info.param_types.len);
defer self.gpa.free(param_ty_ids);
var param_index: usize = 0;
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = Type.fromInterned(param_ty_index);
if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
param_ty_ids[param_index] = try self.resolveType(param_ty, .direct);
param_index += 1;
}
const return_ty_id = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeFunction, .{
.id_result = result_id,
.return_type = return_ty_id,
.id_ref_2 = param_ty_ids[0..param_index],
});
return result_id;
},
.indirect => {
// TODO: Represent function pointers properly.
// For now, just use an usize type.
return try self.resolveType(Type.usize, .indirect);
},
},
.Pointer => {
const ptr_info = ty.ptrInfo(zcu);
const storage_class = self.spvStorageClass(ptr_info.flags.address_space);
const ptr_ty_id = try self.ptrType(Type.fromInterned(ptr_info.child), storage_class);
if (ptr_info.flags.size != .Slice) {
return ptr_ty_id;
}
const size_ty_id = try self.resolveType(Type.usize, .direct);
return self.spv.structType(
&.{ ptr_ty_id, size_ty_id },
&.{ "ptr", "len" },
);
},
.Vector => {
const elem_ty = ty.childType(zcu);
const elem_ty_id = try self.resolveType(elem_ty, repr);
const len = ty.vectorLen(zcu);
if (self.isSpvVector(ty)) {
return try self.spv.vectorType(len, elem_ty_id);
} else {
return try self.arrayType(len, elem_ty_id);
}
},
.Struct => {
const struct_type = switch (ip.indexToKey(ty.toIntern())) {
.anon_struct_type => |tuple| {
const member_types = try self.gpa.alloc(IdRef, tuple.values.len);
defer self.gpa.free(member_types);
var member_index: usize = 0;
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| {
if (field_val != .none or !Type.fromInterned(field_ty).hasRuntimeBits(zcu)) continue;
member_types[member_index] = try self.resolveType(Type.fromInterned(field_ty), .indirect);
member_index += 1;
}
const result_id = try self.spv.structType(member_types[0..member_index], null);
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
try self.spv.debugName(result_id, type_name);
return result_id;
},
.struct_type => ip.loadStructType(ty.toIntern()),
else => unreachable,
};
if (struct_type.layout == .@"packed") {
return try self.resolveType(Type.fromInterned(struct_type.backingIntTypeUnordered(ip)), .direct);
}
var member_types = std.ArrayList(IdRef).init(self.gpa);
defer member_types.deinit();
var member_names = std.ArrayList([]const u8).init(self.gpa);
defer member_names.deinit();
var it = struct_type.iterateRuntimeOrder(ip);
while (it.next()) |field_index| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
const field_name = struct_type.fieldName(ip, field_index).unwrap() orelse
try ip.getOrPutStringFmt(zcu.gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
try member_types.append(try self.resolveType(field_ty, .indirect));
try member_names.append(field_name.toSlice(ip));
}
const result_id = try self.spv.structType(member_types.items, member_names.items);
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
try self.spv.debugName(result_id, type_name);
return result_id;
},
.Optional => {
const payload_ty = ty.optionalChild(zcu);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// Just use a bool.
// Note: Always generate the bool with indirect format, to save on some sanity
// Perform the conversion to a direct bool when the field is extracted.
return try self.resolveType(Type.bool, .indirect);
}
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
if (ty.optionalReprIsPayload(zcu)) {
// Optional is actually a pointer or a slice.
return payload_ty_id;
}
const bool_ty_id = try self.resolveType(Type.bool, .indirect);
return try self.spv.structType(
&.{ payload_ty_id, bool_ty_id },
&.{ "payload", "valid" },
);
},
.Union => return try self.resolveUnionType(ty),
.ErrorSet => return try self.resolveType(Type.u16, repr),
.ErrorUnion => {
const payload_ty = ty.errorUnionPayload(zcu);
const error_ty_id = try self.resolveType(Type.anyerror, .indirect);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return error_ty_id;
}
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
var member_types: [2]IdRef = undefined;
var member_names: [2][]const u8 = undefined;
if (eu_layout.error_first) {
// Put the error first
member_types = .{ error_ty_id, payload_ty_id };
member_names = .{ "error", "payload" };
// TODO: ABI padding?
} else {
// Put the payload first.
member_types = .{ payload_ty_id, error_ty_id };
member_names = .{ "payload", "error" };
// TODO: ABI padding?
}
return try self.spv.structType(&member_types, &member_names);
},
.Opaque => {
const type_name = try self.resolveTypeName(ty);
defer self.gpa.free(type_name);
const result_id = self.spv.allocId();
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = type_name,
});
return result_id;
},
.Null,
.Undefined,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Type,
=> unreachable, // Must be comptime.
.Frame, .AnyFrame => unreachable, // TODO
}
}
fn spvStorageClass(self: *NavGen, as: std.builtin.AddressSpace) StorageClass {
const target = self.getTarget();
return switch (as) {
.generic => switch (target.os.tag) {
.vulkan => .Private,
else => .Generic,
},
.shared => .Workgroup,
.local => .Private,
.global => .CrossWorkgroup,
.constant => .UniformConstant,
.input => .Input,
.output => .Output,
.uniform => .Uniform,
.gs,
.fs,
.ss,
.param,
.flash,
.flash1,
.flash2,
.flash3,
.flash4,
.flash5,
=> unreachable,
};
}
const ErrorUnionLayout = struct {
payload_has_bits: bool,
error_first: bool,
fn errorFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 0 else 1;
}
fn payloadFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 1 else 0;
}
};
fn errorUnionLayout(self: *NavGen, payload_ty: Type) ErrorUnionLayout {
const pt = self.pt;
const zcu = pt.zcu;
const error_align = Type.anyerror.abiAlignment(zcu);
const payload_align = payload_ty.abiAlignment(zcu);
const error_first = error_align.compare(.gt, payload_align);
return .{
.payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(zcu),
.error_first = error_first,
};
}
const UnionLayout = struct {
/// If false, this union is represented
/// by only an integer of the tag type.
has_payload: bool,
tag_size: u32,
tag_index: u32,
/// Note: This is the size of the payload type itself, NOT the size of the ENTIRE payload.
/// Use `has_payload` instead!!
payload_ty: Type,
payload_size: u32,
payload_index: u32,
payload_padding_size: u32,
payload_padding_index: u32,
padding_size: u32,
padding_index: u32,
total_fields: u32,
};
fn unionLayout(self: *NavGen, ty: Type) UnionLayout {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const layout = ty.unionGetLayout(zcu);
const union_obj = zcu.typeToUnion(ty).?;
var union_layout = UnionLayout{
.has_payload = layout.payload_size != 0,
.tag_size = @intCast(layout.tag_size),
.tag_index = undefined,
.payload_ty = undefined,
.payload_size = undefined,
.payload_index = undefined,
.payload_padding_size = undefined,
.payload_padding_index = undefined,
.padding_size = @intCast(layout.padding),
.padding_index = undefined,
.total_fields = undefined,
};
if (union_layout.has_payload) {
const most_aligned_field = layout.most_aligned_field;
const most_aligned_field_ty = Type.fromInterned(union_obj.field_types.get(ip)[most_aligned_field]);
union_layout.payload_ty = most_aligned_field_ty;
union_layout.payload_size = @intCast(most_aligned_field_ty.abiSize(zcu));
} else {
union_layout.payload_size = 0;
}
union_layout.payload_padding_size = @intCast(layout.payload_size - union_layout.payload_size);
const tag_first = layout.tag_align.compare(.gte, layout.payload_align);
var field_index: u32 = 0;
if (union_layout.tag_size != 0 and tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.payload_size != 0) {
union_layout.payload_index = field_index;
field_index += 1;
}
if (union_layout.payload_padding_size != 0) {
union_layout.payload_padding_index = field_index;
field_index += 1;
}
if (union_layout.tag_size != 0 and !tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.padding_size != 0) {
union_layout.padding_index = field_index;
field_index += 1;
}
union_layout.total_fields = field_index;
return union_layout;
}
/// This structure represents a "temporary" value: Something we are currently
/// operating on. It typically lives no longer than the function that
/// implements a particular AIR operation. These are used to easier
/// implement vectorizable operations (see Vectorization and the build*
/// functions), and typically are only used for vectors of primitive types.
const Temporary = struct {
/// The type of the temporary. This is here mainly
/// for easier bookkeeping. Because we will never really
/// store Temporaries, they only cause extra stack space,
/// therefore no real storage is wasted.
ty: Type,
/// The value that this temporary holds. This is not necessarily
/// a value that is actually usable, or a single value: It is virtual
/// until materialize() is called, at which point is turned into
/// the usual SPIR-V representation of `self.ty`.
value: Temporary.Value,
const Value = union(enum) {
singleton: IdResult,
exploded_vector: IdRange,
};
fn init(ty: Type, singleton: IdResult) Temporary {
return .{ .ty = ty, .value = .{ .singleton = singleton } };
}
fn materialize(self: Temporary, ng: *NavGen) !IdResult {
const zcu = ng.pt.zcu;
switch (self.value) {
.singleton => |id| return id,
.exploded_vector => |range| {
assert(self.ty.isVector(zcu));
assert(self.ty.vectorLen(zcu) == range.len);
const consituents = try ng.gpa.alloc(IdRef, range.len);
defer ng.gpa.free(consituents);
for (consituents, 0..range.len) |*id, i| {
id.* = range.at(i);
}
return ng.constructVector(self.ty, consituents);
},
}
}
fn vectorization(self: Temporary, ng: *NavGen) Vectorization {
return Vectorization.fromType(self.ty, ng);
}
fn pun(self: Temporary, new_ty: Type) Temporary {
return .{
.ty = new_ty,
.value = self.value,
};
}
/// 'Explode' a temporary into separate elements. This turns a vector
/// into a bag of elements.
fn explode(self: Temporary, ng: *NavGen) !IdRange {
const zcu = ng.pt.zcu;
// If the value is a scalar, then this is a no-op.
if (!self.ty.isVector(zcu)) {
return switch (self.value) {
.singleton => |id| .{ .base = @intFromEnum(id), .len = 1 },
.exploded_vector => |range| range,
};
}
const ty_id = try ng.resolveType(self.ty.scalarType(zcu), .direct);
const n = self.ty.vectorLen(zcu);
const results = ng.spv.allocIds(n);
const id = switch (self.value) {
.singleton => |id| id,
.exploded_vector => |range| return range,
};
for (0..n) |i| {
const indexes = [_]u32{@intCast(i)};
try ng.func.body.emit(ng.spv.gpa, .OpCompositeExtract, .{
.id_result_type = ty_id,
.id_result = results.at(i),
.composite = id,
.indexes = &indexes,
});
}
return results;
}
};
/// Initialize a `Temporary` from an AIR value.
fn temporary(self: *NavGen, inst: Air.Inst.Ref) !Temporary {
return .{
.ty = self.typeOf(inst),
.value = .{ .singleton = try self.resolve(inst) },
};
}
/// This union describes how a particular operation should be vectorized.
/// That depends on the operation and number of components of the inputs.
const Vectorization = union(enum) {
/// This is an operation between scalars.
scalar,
/// This is an operation between SPIR-V vectors.
/// Value is number of components.
spv_vectorized: u32,
/// This operation is unrolled into separate operations.
/// Inputs may still be SPIR-V vectors, for example,
/// when the operation can't be vectorized in SPIR-V.
/// Value is number of components.
unrolled: u32,
/// Derive a vectorization from a particular type. This usually
/// only checks the size, but the source-of-truth is implemented
/// by `isSpvVector()`.
fn fromType(ty: Type, ng: *NavGen) Vectorization {
const zcu = ng.pt.zcu;
if (!ty.isVector(zcu)) {
return .scalar;
} else if (ng.isSpvVector(ty)) {
return .{ .spv_vectorized = ty.vectorLen(zcu) };
} else {
return .{ .unrolled = ty.vectorLen(zcu) };
}
}
/// Given two vectorization methods, compute a "unification": a fallback
/// that works for both, according to the following rules:
/// - Scalars may broadcast
/// - SPIR-V vectorized operations may unroll
/// - Prefer scalar > SPIR-V vectorized > unrolled
fn unify(a: Vectorization, b: Vectorization) Vectorization {
if (a == .scalar and b == .scalar) {
return .scalar;
} else if (a == .spv_vectorized and b == .spv_vectorized) {
assert(a.components() == b.components());
return .{ .spv_vectorized = a.components() };
} else if (a == .unrolled or b == .unrolled) {
if (a == .unrolled and b == .unrolled) {
assert(a.components() == b.components());
return .{ .unrolled = a.components() };
} else if (a == .unrolled) {
return .{ .unrolled = a.components() };
} else if (b == .unrolled) {
return .{ .unrolled = b.components() };
} else {
unreachable;
}
} else {
if (a == .spv_vectorized) {
return .{ .spv_vectorized = a.components() };
} else if (b == .spv_vectorized) {
return .{ .spv_vectorized = b.components() };
} else {
unreachable;
}
}
}
/// Force this vectorization to be unrolled, if its
/// an operation involving vectors.
fn unroll(self: Vectorization) Vectorization {
return switch (self) {
.scalar, .unrolled => self,
.spv_vectorized => |n| .{ .unrolled = n },
};
}
/// Query the number of components that inputs of this operation have.
/// Note: for broadcasting scalars, this returns the number of elements
/// that the broadcasted vector would have.
fn components(self: Vectorization) u32 {
return switch (self) {
.scalar => 1,
.spv_vectorized => |n| n,
.unrolled => |n| n,
};
}
/// Query the number of operations involving this vectorization.
/// This is basically the number of components, except that SPIR-V vectorized
/// operations only need a single SPIR-V instruction.
fn operations(self: Vectorization) u32 {
return switch (self) {
.scalar, .spv_vectorized => 1,
.unrolled => |n| n,
};
}
/// Turns `ty` into the result-type of an individual vector operation.
/// `ty` may be a scalar or vector, it doesn't matter.
fn operationType(self: Vectorization, ng: *NavGen, ty: Type) !Type {
const pt = ng.pt;
const scalar_ty = ty.scalarType(pt.zcu);
return switch (self) {
.scalar, .unrolled => scalar_ty,
.spv_vectorized => |n| try pt.vectorType(.{
.len = n,
.child = scalar_ty.toIntern(),
}),
};
}
/// Turns `ty` into the result-type of the entire operation.
/// `ty` may be a scalar or vector, it doesn't matter.
fn resultType(self: Vectorization, ng: *NavGen, ty: Type) !Type {
const pt = ng.pt;
const scalar_ty = ty.scalarType(pt.zcu);
return switch (self) {
.scalar => scalar_ty,
.unrolled, .spv_vectorized => |n| try pt.vectorType(.{
.len = n,
.child = scalar_ty.toIntern(),
}),
};
}
/// Before a temporary can be used, some setup may need to be one. This function implements
/// this setup, and returns a new type that holds the relevant information on how to access
/// elements of the input.
fn prepare(self: Vectorization, ng: *NavGen, tmp: Temporary) !PreparedOperand {
const pt = ng.pt;
const is_vector = tmp.ty.isVector(pt.zcu);
const is_spv_vector = ng.isSpvVector(tmp.ty);
const value: PreparedOperand.Value = switch (tmp.value) {
.singleton => |id| switch (self) {
.scalar => blk: {
assert(!is_vector);
break :blk .{ .scalar = id };
},
.spv_vectorized => blk: {
if (is_vector) {
assert(is_spv_vector);
break :blk .{ .spv_vectorwise = id };
}
// Broadcast scalar into vector.
const vector_ty = try pt.vectorType(.{
.len = self.components(),
.child = tmp.ty.toIntern(),
});
const vector = try ng.constructVectorSplat(vector_ty, id);
return .{
.ty = vector_ty,
.value = .{ .spv_vectorwise = vector },
};
},
.unrolled => blk: {
if (is_vector) {
break :blk .{ .vector_exploded = try tmp.explode(ng) };
} else {
break :blk .{ .scalar_broadcast = id };
}
},
},
.exploded_vector => |range| switch (self) {
.scalar => unreachable,
.spv_vectorized => |n| blk: {
// We can vectorize this operation, but we have an exploded vector. This can happen
// when a vectorizable operation succeeds a non-vectorizable operation. In this case,
// pack up the IDs into a SPIR-V vector. This path should not be able to be hit with
// a type that cannot do that.
assert(is_spv_vector);
assert(range.len == n);
const vec = try tmp.materialize(ng);
break :blk .{ .spv_vectorwise = vec };
},
.unrolled => |n| blk: {
assert(range.len == n);
break :blk .{ .vector_exploded = range };
},
},
};
return .{
.ty = tmp.ty,
.value = value,
};
}
/// Finalize the results of an operation back into a temporary. `results` is
/// a list of result-ids of the operation.
fn finalize(self: Vectorization, ty: Type, results: IdRange) Temporary {
assert(self.operations() == results.len);
const value: Temporary.Value = switch (self) {
.scalar, .spv_vectorized => blk: {
break :blk .{ .singleton = results.at(0) };
},
.unrolled => blk: {
break :blk .{ .exploded_vector = results };
},
};
return .{ .ty = ty, .value = value };
}
/// This struct represents an operand that has gone through some setup, and is
/// ready to be used as part of an operation.
const PreparedOperand = struct {
ty: Type,
value: PreparedOperand.Value,
/// The types of value that a prepared operand can hold internally. Depends
/// on the operation and input value.
const Value = union(enum) {
/// A single scalar value that is used by a scalar operation.
scalar: IdResult,
/// A single scalar that is broadcasted in an unrolled operation.
scalar_broadcast: IdResult,
/// A SPIR-V vector that is used in SPIR-V vectorize operation.
spv_vectorwise: IdResult,
/// A vector represented by a consecutive list of IDs that is used in an unrolled operation.
vector_exploded: IdRange,
};
/// Query the value at a particular index of the operation. Note that
/// the index is *not* the component/lane, but the index of the *operation*. When
/// this operation is vectorized, the return value of this function is a SPIR-V vector.
/// See also `Vectorization.operations()`.
fn at(self: PreparedOperand, i: usize) IdResult {
switch (self.value) {
.scalar => |id| {
assert(i == 0);
return id;
},
.scalar_broadcast => |id| {
return id;
},
.spv_vectorwise => |id| {
assert(i == 0);
return id;
},
.vector_exploded => |range| {
return range.at(i);
},
}
}
};
};
/// A utility function to compute the vectorization style of
/// a list of values. These values may be any of the following:
/// - A `Vectorization` instance
/// - A Type, in which case the vectorization is computed via `Vectorization.fromType`.
/// - A Temporary, in which case the vectorization is computed via `Temporary.vectorization`.
fn vectorization(self: *NavGen, args: anytype) Vectorization {
var v: Vectorization = undefined;
assert(args.len >= 1);
inline for (args, 0..) |arg, i| {
const iv: Vectorization = switch (@TypeOf(arg)) {
Vectorization => arg,
Type => Vectorization.fromType(arg, self),
Temporary => arg.vectorization(self),
else => @compileError("invalid type"),
};
if (i == 0) {
v = iv;
} else {
v = v.unify(iv);
}
}
return v;
}
/// This function builds an OpSConvert of OpUConvert depending on the
/// signedness of the types.
fn buildIntConvert(self: *NavGen, dst_ty: Type, src: Temporary) !Temporary {
const zcu = self.pt.zcu;
const dst_ty_id = try self.resolveType(dst_ty.scalarType(zcu), .direct);
const src_ty_id = try self.resolveType(src.ty.scalarType(zcu), .direct);
const v = self.vectorization(.{ dst_ty, src });
const result_ty = try v.resultType(self, dst_ty);
// We can directly compare integers, because those type-IDs are cached.
if (dst_ty_id == src_ty_id) {
// Nothing to do, type-pun to the right value.
// Note, Caller guarantees that the types fit (or caller will normalize after),
// so we don't have to normalize here.
// Note, dst_ty may be a scalar type even if we expect a vector, so we have to
// convert to the right type here.
return src.pun(result_ty);
}
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, dst_ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const opcode: Opcode = if (dst_ty.isSignedInt(zcu)) .OpSConvert else .OpUConvert;
const op_src = try v.prepare(self, src);
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 3);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_src.at(i));
}
return v.finalize(result_ty, results);
}
fn buildFma(self: *NavGen, a: Temporary, b: Temporary, c: Temporary) !Temporary {
const target = self.getTarget();
const v = self.vectorization(.{ a, b, c });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, a.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, a.ty);
const op_a = try v.prepare(self, a);
const op_b = try v.prepare(self, b);
const op_c = try v.prepare(self, c);
const set = try self.importExtendedSet();
// TODO: Put these numbers in some definition
const instruction: u32 = switch (target.os.tag) {
.opencl => 26, // fma
// NOTE: Vulkan's FMA instruction does *NOT* produce the right values!
// its precision guarantees do NOT match zigs and it does NOT match OpenCLs!
// it needs to be emulated!
.vulkan => unreachable, // TODO: See above
else => unreachable,
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.set = set,
.instruction = .{ .inst = instruction },
.id_ref_4 = &.{ op_a.at(i), op_b.at(i), op_c.at(i) },
});
}
return v.finalize(result_ty, results);
}
fn buildSelect(self: *NavGen, condition: Temporary, lhs: Temporary, rhs: Temporary) !Temporary {
const zcu = self.pt.zcu;
const v = self.vectorization(.{ condition, lhs, rhs });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, lhs.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, lhs.ty);
assert(condition.ty.scalarType(zcu).zigTypeTag(zcu) == .Bool);
const cond = try v.prepare(self, condition);
const object_1 = try v.prepare(self, lhs);
const object_2 = try v.prepare(self, rhs);
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.condition = cond.at(i),
.object_1 = object_1.at(i),
.object_2 = object_2.at(i),
});
}
return v.finalize(result_ty, results);
}
const CmpPredicate = enum {
l_eq,
l_ne,
i_ne,
i_eq,
s_lt,
s_gt,
s_le,
s_ge,
u_lt,
u_gt,
u_le,
u_ge,
f_oeq,
f_une,
f_olt,
f_ole,
f_ogt,
f_oge,
};
fn buildCmp(self: *NavGen, pred: CmpPredicate, lhs: Temporary, rhs: Temporary) !Temporary {
const v = self.vectorization(.{ lhs, rhs });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, Type.bool);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, Type.bool);
const op_lhs = try v.prepare(self, lhs);
const op_rhs = try v.prepare(self, rhs);
const opcode: Opcode = switch (pred) {
.l_eq => .OpLogicalEqual,
.l_ne => .OpLogicalNotEqual,
.i_eq => .OpIEqual,
.i_ne => .OpINotEqual,
.s_lt => .OpSLessThan,
.s_gt => .OpSGreaterThan,
.s_le => .OpSLessThanEqual,
.s_ge => .OpSGreaterThanEqual,
.u_lt => .OpULessThan,
.u_gt => .OpUGreaterThan,
.u_le => .OpULessThanEqual,
.u_ge => .OpUGreaterThanEqual,
.f_oeq => .OpFOrdEqual,
.f_une => .OpFUnordNotEqual,
.f_olt => .OpFOrdLessThan,
.f_ole => .OpFOrdLessThanEqual,
.f_ogt => .OpFOrdGreaterThan,
.f_oge => .OpFOrdGreaterThanEqual,
};
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_lhs.at(i));
self.func.body.writeOperand(IdResult, op_rhs.at(i));
}
return v.finalize(result_ty, results);
}
const UnaryOp = enum {
l_not,
bit_not,
i_neg,
f_neg,
i_abs,
f_abs,
clz,
ctz,
floor,
ceil,
trunc,
round,
sqrt,
sin,
cos,
tan,
exp,
exp2,
log,
log2,
log10,
};
fn buildUnary(self: *NavGen, op: UnaryOp, operand: Temporary) !Temporary {
const target = self.getTarget();
const v = blk: {
const v = self.vectorization(.{operand});
break :blk switch (op) {
// TODO: These instructions don't seem to be working
// properly for LLVM-based backends on OpenCL for 8- and
// 16-component vectors.
.i_abs => if (target.os.tag == .opencl and v.components() >= 8) v.unroll() else v,
else => v,
};
};
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, operand.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, operand.ty);
const op_operand = try v.prepare(self, operand);
if (switch (op) {
.l_not => .OpLogicalNot,
.bit_not => .OpNot,
.i_neg => .OpSNegate,
.f_neg => .OpFNegate,
else => @as(?Opcode, null),
}) |opcode| {
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 3);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_operand.at(i));
}
} else {
const set = try self.importExtendedSet();
const extinst: u32 = switch (target.os.tag) {
.opencl => switch (op) {
.i_abs => 141, // s_abs
.f_abs => 23, // fabs
.clz => 151, // clz
.ctz => 152, // ctz
.floor => 25, // floor
.ceil => 12, // ceil
.trunc => 66, // trunc
.round => 55, // round
.sqrt => 61, // sqrt
.sin => 57, // sin
.cos => 14, // cos
.tan => 62, // tan
.exp => 19, // exp
.exp2 => 20, // exp2
.log => 37, // log
.log2 => 38, // log2
.log10 => 39, // log10
else => unreachable,
},
// Note: We'll need to check these for floating point accuracy
// Vulkan does not put tight requirements on these, for correction
// we might want to emulate them at some point.
.vulkan => switch (op) {
.i_abs => 5, // SAbs
.f_abs => 4, // FAbs
.clz => unreachable, // TODO
.ctz => unreachable, // TODO
.floor => 8, // Floor
.ceil => 9, // Ceil
.trunc => 3, // Trunc
.round => 1, // Round
.sqrt,
.sin,
.cos,
.tan,
.exp,
.exp2,
.log,
.log2,
.log10,
=> unreachable, // TODO
else => unreachable,
},
else => unreachable,
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.set = set,
.instruction = .{ .inst = extinst },
.id_ref_4 = &.{op_operand.at(i)},
});
}
}
return v.finalize(result_ty, results);
}
const BinaryOp = enum {
i_add,
f_add,
i_sub,
f_sub,
i_mul,
f_mul,
s_div,
u_div,
f_div,
s_rem,
f_rem,
s_mod,
u_mod,
f_mod,
srl,
sra,
sll,
bit_and,
bit_or,
bit_xor,
f_max,
s_max,
u_max,
f_min,
s_min,
u_min,
l_and,
l_or,
};
fn buildBinary(self: *NavGen, op: BinaryOp, lhs: Temporary, rhs: Temporary) !Temporary {
const target = self.getTarget();
const v = self.vectorization(.{ lhs, rhs });
const ops = v.operations();
const results = self.spv.allocIds(ops);
const op_result_ty = try v.operationType(self, lhs.ty);
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const result_ty = try v.resultType(self, lhs.ty);
const op_lhs = try v.prepare(self, lhs);
const op_rhs = try v.prepare(self, rhs);
if (switch (op) {
.i_add => .OpIAdd,
.f_add => .OpFAdd,
.i_sub => .OpISub,
.f_sub => .OpFSub,
.i_mul => .OpIMul,
.f_mul => .OpFMul,
.s_div => .OpSDiv,
.u_div => .OpUDiv,
.f_div => .OpFDiv,
.s_rem => .OpSRem,
.f_rem => .OpFRem,
.s_mod => .OpSMod,
.u_mod => .OpUMod,
.f_mod => .OpFMod,
.srl => .OpShiftRightLogical,
.sra => .OpShiftRightArithmetic,
.sll => .OpShiftLeftLogical,
.bit_and => .OpBitwiseAnd,
.bit_or => .OpBitwiseOr,
.bit_xor => .OpBitwiseXor,
.l_and => .OpLogicalAnd,
.l_or => .OpLogicalOr,
else => @as(?Opcode, null),
}) |opcode| {
for (0..ops) |i| {
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, results.at(i));
self.func.body.writeOperand(IdResult, op_lhs.at(i));
self.func.body.writeOperand(IdResult, op_rhs.at(i));
}
} else {
const set = try self.importExtendedSet();
// TODO: Put these numbers in some definition
const extinst: u32 = switch (target.os.tag) {
.opencl => switch (op) {
.f_max => 27, // fmax
.s_max => 156, // s_max
.u_max => 157, // u_max
.f_min => 28, // fmin
.s_min => 158, // s_min
.u_min => 159, // u_min
else => unreachable,
},
.vulkan => switch (op) {
.f_max => 40, // FMax
.s_max => 42, // SMax
.u_max => 41, // UMax
.f_min => 37, // FMin
.s_min => 39, // SMin
.u_min => 38, // UMin
else => unreachable,
},
else => unreachable,
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = op_result_ty_id,
.id_result = results.at(i),
.set = set,
.instruction = .{ .inst = extinst },
.id_ref_4 = &.{ op_lhs.at(i), op_rhs.at(i) },
});
}
}
return v.finalize(result_ty, results);
}
/// This function builds an extended multiplication, either OpSMulExtended or OpUMulExtended on Vulkan,
/// or OpIMul and s_mul_hi or u_mul_hi on OpenCL.
fn buildWideMul(
self: *NavGen,
op: enum {
s_mul_extended,
u_mul_extended,
},
lhs: Temporary,
rhs: Temporary,
) !struct { Temporary, Temporary } {
const pt = self.pt;
const zcu = pt.zcu;
const target = self.getTarget();
const ip = &zcu.intern_pool;
const v = lhs.vectorization(self).unify(rhs.vectorization(self));
const ops = v.operations();
const arith_op_ty = try v.operationType(self, lhs.ty);
const arith_op_ty_id = try self.resolveType(arith_op_ty, .direct);
const lhs_op = try v.prepare(self, lhs);
const rhs_op = try v.prepare(self, rhs);
const value_results = self.spv.allocIds(ops);
const overflow_results = self.spv.allocIds(ops);
switch (target.os.tag) {
.opencl => {
// Currently, SPIRV-LLVM-Translator based backends cannot deal with OpSMulExtended and
// OpUMulExtended. For these we will use the OpenCL s_mul_hi to compute the high-order bits
// instead.
const set = try self.importExtendedSet();
const overflow_inst: u32 = switch (op) {
.s_mul_extended => 160, // s_mul_hi
.u_mul_extended => 203, // u_mul_hi
};
for (0..ops) |i| {
try self.func.body.emit(self.spv.gpa, .OpIMul, .{
.id_result_type = arith_op_ty_id,
.id_result = value_results.at(i),
.operand_1 = lhs_op.at(i),
.operand_2 = rhs_op.at(i),
});
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = arith_op_ty_id,
.id_result = overflow_results.at(i),
.set = set,
.instruction = .{ .inst = overflow_inst },
.id_ref_4 = &.{ lhs_op.at(i), rhs_op.at(i) },
});
}
},
.vulkan => {
const op_result_ty = blk: {
// Operations return a struct{T, T}
// where T is maybe vectorized.
const types = [2]InternPool.Index{ arith_op_ty.toIntern(), arith_op_ty.toIntern() };
const values = [2]InternPool.Index{ .none, .none };
const index = try ip.getAnonStructType(zcu.gpa, pt.tid, .{
.types = &types,
.values = &values,
.names = &.{},
});
break :blk Type.fromInterned(index);
};
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
const opcode: Opcode = switch (op) {
.s_mul_extended => .OpSMulExtended,
.u_mul_extended => .OpUMulExtended,
};
for (0..ops) |i| {
const op_result = self.spv.allocId();
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
self.func.body.writeOperand(IdResult, op_result);
self.func.body.writeOperand(IdResult, lhs_op.at(i));
self.func.body.writeOperand(IdResult, rhs_op.at(i));
// The above operation returns a struct. We might want to expand
// Temporary to deal with the fact that these are structs eventually,
// but for now, take the struct apart and return two separate vectors.
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = arith_op_ty_id,
.id_result = value_results.at(i),
.composite = op_result,
.indexes = &.{0},
});
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = arith_op_ty_id,
.id_result = overflow_results.at(i),
.composite = op_result,
.indexes = &.{1},
});
}
},
else => unreachable,
}
const result_ty = try v.resultType(self, lhs.ty);
return .{
v.finalize(result_ty, value_results),
v.finalize(result_ty, overflow_results),
};
}
/// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure.
/// In order to be able to run tests, we "temporarily" lower test kernels into separate entry-
/// points. The test executor will then be able to invoke these to run the tests.
/// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`.
/// (anyerror!void has the same layout as anyerror).
/// Each test declaration generates a function like.
/// %anyerror = OpTypeInt 0 16
/// %p_invocation_globals_struct_ty = ...
/// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror
/// %K = OpTypeFunction %void %p_invocation_globals_struct_ty %p_anyerror
///
/// %test = OpFunction %void %K
/// %p_invocation_globals = OpFunctionParameter p_invocation_globals_struct_ty
/// %p_err = OpFunctionParameter %p_anyerror
/// %lbl = OpLabel
/// %result = OpFunctionCall %anyerror %func %p_invocation_globals
/// OpStore %p_err %result
/// OpFunctionEnd
/// TODO is to also write out the error as a function call parameter, and to somehow fetch
/// the name of an error in the text executor.
fn generateTestEntryPoint(self: *NavGen, name: []const u8, spv_test_decl_index: SpvModule.Decl.Index) !void {
const anyerror_ty_id = try self.resolveType(Type.anyerror, .direct);
const ptr_anyerror_ty = try self.pt.ptrType(.{
.child = Type.anyerror.toIntern(),
.flags = .{ .address_space = .global },
});
const ptr_anyerror_ty_id = try self.resolveType(ptr_anyerror_ty, .direct);
const kernel_proto_ty_id = try self.functionType(Type.void, &.{ptr_anyerror_ty});
const test_id = self.spv.declPtr(spv_test_decl_index).result_id;
const spv_decl_index = try self.spv.allocDecl(.func);
const kernel_id = self.spv.declPtr(spv_decl_index).result_id;
const error_id = self.spv.allocId();
const p_error_id = self.spv.allocId();
const section = &self.spv.sections.functions;
try section.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveType(Type.void, .direct),
.id_result = kernel_id,
.function_control = .{},
.function_type = kernel_proto_ty_id,
});
try section.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = ptr_anyerror_ty_id,
.id_result = p_error_id,
});
try section.emit(self.spv.gpa, .OpLabel, .{
.id_result = self.spv.allocId(),
});
try section.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = anyerror_ty_id,
.id_result = error_id,
.function = test_id,
});
// Note: Convert to direct not required.
try section.emit(self.spv.gpa, .OpStore, .{
.pointer = p_error_id,
.object = error_id,
});
try section.emit(self.spv.gpa, .OpReturn, {});
try section.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.declareDeclDeps(spv_decl_index, &.{spv_test_decl_index});
// Just generate a quick other name because the intel runtime crashes when the entry-
// point name is the same as a different OpName.
const test_name = try std.fmt.allocPrint(self.gpa, "test {s}", .{name});
defer self.gpa.free(test_name);
try self.spv.declareEntryPoint(spv_decl_index, test_name, .Kernel);
}
fn genNav(self: *NavGen) !void {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const spv_decl_index = try self.object.resolveNav(zcu, self.owner_nav);
const result_id = self.spv.declPtr(spv_decl_index).result_id;
const nav = ip.getNav(self.owner_nav);
const val = zcu.navValue(self.owner_nav);
const ty = val.typeOf(zcu);
switch (self.spv.declPtr(spv_decl_index).kind) {
.func => {
const fn_info = zcu.typeToFunc(ty).?;
const return_ty_id = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
const prototype_ty_id = try self.resolveType(ty, .direct);
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = return_ty_id,
.id_result = result_id,
.function_control = switch (fn_info.cc) {
.Inline => .{ .Inline = true },
else => .{},
},
.function_type = prototype_ty_id,
});
comptime assert(zig_call_abi_ver == 3);
try self.args.ensureUnusedCapacity(self.gpa, fn_info.param_types.len);
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = Type.fromInterned(param_ty_index);
if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
const param_type_id = try self.resolveType(param_ty, .direct);
const arg_result_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = param_type_id,
.id_result = arg_result_id,
});
self.args.appendAssumeCapacity(arg_result_id);
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocId();
// The root block of a function declaration should appear before OpVariable instructions,
// so it is generated into the function's prologue.
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const main_body = self.air.getMainBody();
switch (self.control_flow) {
.structured => {
_ = try self.genStructuredBody(.selection, main_body);
// We always expect paths to here to end, but we still need the block
// to act as a dummy merge block.
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
},
.unstructured => {
try self.genBody(main_body);
},
}
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
// Append the actual code into the functions section.
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugName(result_id, nav.fqn.toSlice(ip));
// Temporarily generate a test kernel declaration if this is a test function.
if (self.pt.zcu.test_functions.contains(self.owner_nav)) {
try self.generateTestEntryPoint(nav.fqn.toSlice(ip), spv_decl_index);
}
},
.global => {
const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
.func => unreachable,
.variable => |variable| Value.fromInterned(variable.init),
.@"extern" => null,
else => val,
};
assert(maybe_init_val == null); // TODO
const final_storage_class = self.spvStorageClass(nav.status.resolved.@"addrspace");
assert(final_storage_class != .Generic); // These should be instance globals
const ptr_ty_id = try self.ptrType(ty, final_storage_class);
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = ptr_ty_id,
.id_result = result_id,
.storage_class = final_storage_class,
});
try self.spv.debugName(result_id, nav.fqn.toSlice(ip));
try self.spv.declareDeclDeps(spv_decl_index, &.{});
},
.invocation_global => {
const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
.func => unreachable,
.variable => |variable| Value.fromInterned(variable.init),
.@"extern" => null,
else => val,
};
try self.spv.declareDeclDeps(spv_decl_index, &.{});
const ptr_ty_id = try self.ptrType(ty, .Function);
if (maybe_init_val) |init_val| {
// TODO: Combine with resolveAnonDecl?
const initializer_proto_ty_id = try self.functionType(Type.void, &.{});
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = try self.resolveType(Type.void, .direct),
.id_result = initializer_id,
.function_control = .{},
.function_type = initializer_proto_ty_id,
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label = root_block_id;
const val_id = try self.constant(ty, init_val, .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = result_id,
.object = val_id,
});
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugNameFmt(initializer_id, "initializer of {}", .{nav.fqn.fmt(ip)});
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = ptr_ty_id,
.id_result = result_id,
.set = try self.spv.importInstructionSet(.zig),
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
.id_ref_4 = &.{initializer_id},
});
} else {
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = ptr_ty_id,
.id_result = result_id,
.set = try self.spv.importInstructionSet(.zig),
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
.id_ref_4 = &.{},
});
}
},
}
}
fn intFromBool(self: *NavGen, value: Temporary) !Temporary {
return try self.intFromBool2(value, Type.u1);
}
fn intFromBool2(self: *NavGen, value: Temporary, result_ty: Type) !Temporary {
const zero_id = try self.constInt(result_ty, 0, .direct);
const one_id = try self.constInt(result_ty, 1, .direct);
return try self.buildSelect(
value,
Temporary.init(result_ty, one_id),
Temporary.init(result_ty, zero_id),
);
}
/// Convert representation from indirect (in memory) to direct (in 'register')
/// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct).
fn convertToDirect(self: *NavGen, ty: Type, operand_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
.Bool => {
const false_id = try self.constBool(false, .indirect);
// The operation below requires inputs in direct representation, but the operand
// is actually in indirect representation.
// Cheekily swap out the type to the direct equivalent of the indirect type here, they have the
// same representation when converted to SPIR-V.
const operand_ty = try self.zigScalarOrVectorTypeLike(Type.u1, ty);
// Note: We can guarantee that these are the same ID due to the SPIR-V Module's `vector_types` cache!
assert(try self.resolveType(operand_ty, .direct) == try self.resolveType(ty, .indirect));
const result = try self.buildCmp(
.i_ne,
Temporary.init(operand_ty, operand_id),
Temporary.init(Type.u1, false_id),
);
return try result.materialize(self);
},
else => return operand_id,
}
}
/// Convert representation from direct (in 'register) to direct (in memory)
/// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect).
fn convertToIndirect(self: *NavGen, ty: Type, operand_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
.Bool => {
const result = try self.intFromBool(Temporary.init(ty, operand_id));
return try result.materialize(self);
},
else => return operand_id,
}
}
fn extractField(self: *NavGen, result_ty: Type, object: IdRef, field: u32) !IdRef {
const result_ty_id = try self.resolveType(result_ty, .indirect);
const result_id = self.spv.allocId();
const indexes = [_]u32{field};
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.composite = object,
.indexes = &indexes,
});
// Convert bools; direct structs have their field types as indirect values.
return try self.convertToDirect(result_ty, result_id);
}
fn extractVectorComponent(self: *NavGen, result_ty: Type, vector_id: IdRef, field: u32) !IdRef {
// Whether this is an OpTypeVector or OpTypeArray, we need to emit the same instruction regardless.
const result_ty_id = try self.resolveType(result_ty, .direct);
const result_id = self.spv.allocId();
const indexes = [_]u32{field};
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.composite = vector_id,
.indexes = &indexes,
});
// Vector components are already stored in direct representation.
return result_id;
}
const MemoryOptions = struct {
is_volatile: bool = false,
};
fn load(self: *NavGen, value_ty: Type, ptr_id: IdRef, options: MemoryOptions) !IdRef {
const indirect_value_ty_id = try self.resolveType(value_ty, .indirect);
const result_id = self.spv.allocId();
const access = spec.MemoryAccess.Extended{
.Volatile = options.is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = indirect_value_ty_id,
.id_result = result_id,
.pointer = ptr_id,
.memory_access = access,
});
return try self.convertToDirect(value_ty, result_id);
}
fn store(self: *NavGen, value_ty: Type, ptr_id: IdRef, value_id: IdRef, options: MemoryOptions) !void {
const indirect_value_id = try self.convertToIndirect(value_ty, value_id);
const access = spec.MemoryAccess.Extended{
.Volatile = options.is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = indirect_value_id,
.memory_access = access,
});
}
fn genBody(self: *NavGen, body: []const Air.Inst.Index) Error!void {
for (body) |inst| {
try self.genInst(inst);
}
}
fn genInst(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const ip = &zcu.intern_pool;
if (self.liveness.isUnused(inst) and !self.air.mustLower(inst, ip))
return;
const air_tags = self.air.instructions.items(.tag);
const maybe_result_id: ?IdRef = switch (air_tags[@intFromEnum(inst)]) {
// zig fmt: off
.add, .add_wrap, .add_optimized => try self.airArithOp(inst, .f_add, .i_add, .i_add),
.sub, .sub_wrap, .sub_optimized => try self.airArithOp(inst, .f_sub, .i_sub, .i_sub),
.mul, .mul_wrap, .mul_optimized => try self.airArithOp(inst, .f_mul, .i_mul, .i_mul),
.sqrt => try self.airUnOpSimple(inst, .sqrt),
.sin => try self.airUnOpSimple(inst, .sin),
.cos => try self.airUnOpSimple(inst, .cos),
.tan => try self.airUnOpSimple(inst, .tan),
.exp => try self.airUnOpSimple(inst, .exp),
.exp2 => try self.airUnOpSimple(inst, .exp2),
.log => try self.airUnOpSimple(inst, .log),
.log2 => try self.airUnOpSimple(inst, .log2),
.log10 => try self.airUnOpSimple(inst, .log10),
.abs => try self.airAbs(inst),
.floor => try self.airUnOpSimple(inst, .floor),
.ceil => try self.airUnOpSimple(inst, .ceil),
.round => try self.airUnOpSimple(inst, .round),
.trunc_float => try self.airUnOpSimple(inst, .trunc),
.neg, .neg_optimized => try self.airUnOpSimple(inst, .f_neg),
.div_float, .div_float_optimized => try self.airArithOp(inst, .f_div, .s_div, .u_div),
.div_floor, .div_floor_optimized => try self.airDivFloor(inst),
.div_trunc, .div_trunc_optimized => try self.airDivTrunc(inst),
.rem, .rem_optimized => try self.airArithOp(inst, .f_rem, .s_rem, .u_mod),
.mod, .mod_optimized => try self.airArithOp(inst, .f_mod, .s_mod, .u_mod),
.add_with_overflow => try self.airAddSubOverflow(inst, .i_add, .u_lt, .s_lt),
.sub_with_overflow => try self.airAddSubOverflow(inst, .i_sub, .u_gt, .s_gt),
.mul_with_overflow => try self.airMulOverflow(inst),
.shl_with_overflow => try self.airShlOverflow(inst),
.mul_add => try self.airMulAdd(inst),
.ctz => try self.airClzCtz(inst, .ctz),
.clz => try self.airClzCtz(inst, .clz),
.select => try self.airSelect(inst),
.splat => try self.airSplat(inst),
.reduce, .reduce_optimized => try self.airReduce(inst),
.shuffle => try self.airShuffle(inst),
.ptr_add => try self.airPtrAdd(inst),
.ptr_sub => try self.airPtrSub(inst),
.bit_and => try self.airBinOpSimple(inst, .bit_and),
.bit_or => try self.airBinOpSimple(inst, .bit_or),
.xor => try self.airBinOpSimple(inst, .bit_xor),
.bool_and => try self.airBinOpSimple(inst, .l_and),
.bool_or => try self.airBinOpSimple(inst, .l_or),
.shl, .shl_exact => try self.airShift(inst, .sll, .sll),
.shr, .shr_exact => try self.airShift(inst, .srl, .sra),
.min => try self.airMinMax(inst, .min),
.max => try self.airMinMax(inst, .max),
.bitcast => try self.airBitCast(inst),
.intcast, .trunc => try self.airIntCast(inst),
.int_from_ptr => try self.airIntFromPtr(inst),
.float_from_int => try self.airFloatFromInt(inst),
.int_from_float => try self.airIntFromFloat(inst),
.int_from_bool => try self.airIntFromBool(inst),
.fpext, .fptrunc => try self.airFloatCast(inst),
.not => try self.airNot(inst),
.array_to_slice => try self.airArrayToSlice(inst),
.slice => try self.airSlice(inst),
.aggregate_init => try self.airAggregateInit(inst),
.memcpy => return self.airMemcpy(inst),
.slice_ptr => try self.airSliceField(inst, 0),
.slice_len => try self.airSliceField(inst, 1),
.slice_elem_ptr => try self.airSliceElemPtr(inst),
.slice_elem_val => try self.airSliceElemVal(inst),
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
.ptr_elem_val => try self.airPtrElemVal(inst),
.array_elem_val => try self.airArrayElemVal(inst),
.vector_store_elem => return self.airVectorStoreElem(inst),
.set_union_tag => return self.airSetUnionTag(inst),
.get_union_tag => try self.airGetUnionTag(inst),
.union_init => try self.airUnionInit(inst),
.struct_field_val => try self.airStructFieldVal(inst),
.field_parent_ptr => try self.airFieldParentPtr(inst),
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
.cmp_eq => try self.airCmp(inst, .eq),
.cmp_neq => try self.airCmp(inst, .neq),
.cmp_gt => try self.airCmp(inst, .gt),
.cmp_gte => try self.airCmp(inst, .gte),
.cmp_lt => try self.airCmp(inst, .lt),
.cmp_lte => try self.airCmp(inst, .lte),
.cmp_vector => try self.airVectorCmp(inst),
.arg => self.airArg(),
.alloc => try self.airAlloc(inst),
// TODO: We probably need to have a special implementation of this for the C abi.
.ret_ptr => try self.airAlloc(inst),
.block => try self.airBlock(inst),
.load => try self.airLoad(inst),
.store, .store_safe => return self.airStore(inst),
.br => return self.airBr(inst),
.breakpoint => return,
.cond_br => return self.airCondBr(inst),
.loop => return self.airLoop(inst),
.ret => return self.airRet(inst),
.ret_safe => return self.airRet(inst), // TODO
.ret_load => return self.airRetLoad(inst),
.@"try" => try self.airTry(inst),
.switch_br => return self.airSwitchBr(inst),
.unreach, .trap => return self.airUnreach(),
.dbg_stmt => return self.airDbgStmt(inst),
.dbg_inline_block => try self.airDbgInlineBlock(inst),
.dbg_var_ptr, .dbg_var_val => return self.airDbgVar(inst),
.unwrap_errunion_err => try self.airErrUnionErr(inst),
.unwrap_errunion_payload => try self.airErrUnionPayload(inst),
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
.wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
.is_null => try self.airIsNull(inst, false, .is_null),
.is_non_null => try self.airIsNull(inst, false, .is_non_null),
.is_null_ptr => try self.airIsNull(inst, true, .is_null),
.is_non_null_ptr => try self.airIsNull(inst, true, .is_non_null),
.is_err => try self.airIsErr(inst, .is_err),
.is_non_err => try self.airIsErr(inst, .is_non_err),
.optional_payload => try self.airUnwrapOptional(inst),
.optional_payload_ptr => try self.airUnwrapOptionalPtr(inst),
.wrap_optional => try self.airWrapOptional(inst),
.assembly => try self.airAssembly(inst),
.call => try self.airCall(inst, .auto),
.call_always_tail => try self.airCall(inst, .always_tail),
.call_never_tail => try self.airCall(inst, .never_tail),
.call_never_inline => try self.airCall(inst, .never_inline),
.work_item_id => try self.airWorkItemId(inst),
.work_group_size => try self.airWorkGroupSize(inst),
.work_group_id => try self.airWorkGroupId(inst),
// zig fmt: on
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
};
const result_id = maybe_result_id orelse return;
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
}
fn airBinOpSimple(self: *NavGen, inst: Air.Inst.Index, op: BinaryOp) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const result = try self.buildBinary(op, lhs, rhs);
return try result.materialize(self);
}
fn airShift(self: *NavGen, inst: Air.Inst.Index, unsigned: BinaryOp, signed: BinaryOp) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const base = try self.temporary(bin_op.lhs);
const shift = try self.temporary(bin_op.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(result_ty);
switch (info.class) {
.composite_integer => return self.todo("shift ops for composite integers", .{}),
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
// so just manually upcast it if required.
// Note: The sign may differ here between the shift and the base type, in case
// of an arithmetic right shift. SPIR-V still expects the same type,
// so in that case we have to cast convert to signed.
const casted_shift = try self.buildIntConvert(base.ty.scalarType(zcu), shift);
const shifted = switch (info.signedness) {
.unsigned => try self.buildBinary(unsigned, base, casted_shift),
.signed => try self.buildBinary(signed, base, casted_shift),
};
const result = try self.normalize(shifted, info);
return try result.materialize(self);
}
const MinMax = enum { min, max };
fn airMinMax(self: *NavGen, inst: Air.Inst.Index, op: MinMax) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const result = try self.minMax(lhs, rhs, op);
return try result.materialize(self);
}
fn minMax(self: *NavGen, lhs: Temporary, rhs: Temporary, op: MinMax) !Temporary {
const info = self.arithmeticTypeInfo(lhs.ty);
const binop: BinaryOp = switch (info.class) {
.float => switch (op) {
.min => .f_min,
.max => .f_max,
},
.integer, .strange_integer => switch (info.signedness) {
.signed => switch (op) {
.min => .s_min,
.max => .s_max,
},
.unsigned => switch (op) {
.min => .u_min,
.max => .u_max,
},
},
.composite_integer => unreachable, // TODO
.bool => unreachable,
};
return try self.buildBinary(binop, lhs, rhs);
}
/// This function normalizes values to a canonical representation
/// after some arithmetic operation. This mostly consists of wrapping
/// behavior for strange integers:
/// - Unsigned integers are bitwise masked with a mask that only passes
/// the valid bits through.
/// - Signed integers are also sign extended if they are negative.
/// All other values are returned unmodified (this makes strange integer
/// wrapping easier to use in generic operations).
fn normalize(self: *NavGen, value: Temporary, info: ArithmeticTypeInfo) !Temporary {
const zcu = self.pt.zcu;
const ty = value.ty;
switch (info.class) {
.integer, .bool, .float => return value,
.composite_integer => unreachable, // TODO
.strange_integer => switch (info.signedness) {
.unsigned => {
const mask_value = if (info.bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @as(u6, @intCast(info.bits))) - 1;
const mask_id = try self.constInt(ty.scalarType(zcu), mask_value, .direct);
return try self.buildBinary(.bit_and, value, Temporary.init(ty.scalarType(zcu), mask_id));
},
.signed => {
// Shift left and right so that we can copy the sight bit that way.
const shift_amt_id = try self.constInt(ty.scalarType(zcu), info.backing_bits - info.bits, .direct);
const shift_amt = Temporary.init(ty.scalarType(zcu), shift_amt_id);
const left = try self.buildBinary(.sll, value, shift_amt);
return try self.buildBinary(.sra, left, shift_amt);
},
},
}
}
fn airDivFloor(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => {
switch (info.signedness) {
.unsigned => {
const result = try self.buildBinary(.u_div, lhs, rhs);
return try result.materialize(self);
},
.signed => {},
}
// For signed integers:
// (a / b) - (a % b != 0 && a < 0 != b < 0);
// There shouldn't be any overflow issues.
const div = try self.buildBinary(.s_div, lhs, rhs);
const rem = try self.buildBinary(.s_rem, lhs, rhs);
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0, .direct));
const rem_is_not_zero = try self.buildCmp(.i_ne, rem, zero);
const result_negative = try self.buildCmp(
.l_ne,
try self.buildCmp(.s_lt, lhs, zero),
try self.buildCmp(.s_lt, rhs, zero),
);
const rem_is_not_zero_and_result_is_negative = try self.buildBinary(
.l_and,
rem_is_not_zero,
result_negative,
);
const result = try self.buildBinary(
.i_sub,
div,
try self.intFromBool2(rem_is_not_zero_and_result_is_negative, div.ty),
);
return try result.materialize(self);
},
.float => {
const div = try self.buildBinary(.f_div, lhs, rhs);
const result = try self.buildUnary(.floor, div);
return try result.materialize(self);
},
.bool => unreachable,
}
}
fn airDivTrunc(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => switch (info.signedness) {
.unsigned => {
const result = try self.buildBinary(.u_div, lhs, rhs);
return try result.materialize(self);
},
.signed => {
const result = try self.buildBinary(.s_div, lhs, rhs);
return try result.materialize(self);
},
},
.float => {
const div = try self.buildBinary(.f_div, lhs, rhs);
const result = try self.buildUnary(.trunc, div);
return try result.materialize(self);
},
.bool => unreachable,
}
}
fn airUnOpSimple(self: *NavGen, inst: Air.Inst.Index, op: UnaryOp) !?IdRef {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.temporary(un_op);
const result = try self.buildUnary(op, operand);
return try result.materialize(self);
}
fn airArithOp(
self: *NavGen,
inst: Air.Inst.Index,
comptime fop: BinaryOp,
comptime sop: BinaryOp,
comptime uop: BinaryOp,
) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const info = self.arithmeticTypeInfo(lhs.ty);
const result = switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => switch (info.signedness) {
.signed => try self.buildBinary(sop, lhs, rhs),
.unsigned => try self.buildBinary(uop, lhs, rhs),
},
.float => try self.buildBinary(fop, lhs, rhs),
.bool => unreachable,
};
return try result.materialize(self);
}
fn airAbs(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try self.temporary(ty_op.operand);
// Note: operand_ty may be signed, while ty is always unsigned!
const result_ty = self.typeOfIndex(inst);
const result = try self.abs(result_ty, operand);
return try result.materialize(self);
}
fn abs(self: *NavGen, result_ty: Type, value: Temporary) !Temporary {
const target = self.getTarget();
const operand_info = self.arithmeticTypeInfo(value.ty);
switch (operand_info.class) {
.float => return try self.buildUnary(.f_abs, value),
.integer, .strange_integer => {
const abs_value = try self.buildUnary(.i_abs, value);
// TODO: We may need to bitcast the result to a uint
// depending on the result type. Do that when
// bitCast is implemented for vectors.
// This is only relevant for Vulkan
assert(target.os.tag != .vulkan); // TODO
return try self.normalize(abs_value, self.arithmeticTypeInfo(result_ty));
},
.composite_integer => unreachable, // TODO
.bool => unreachable,
}
}
fn airAddSubOverflow(
self: *NavGen,
inst: Air.Inst.Index,
comptime add: BinaryOp,
comptime ucmp: CmpPredicate,
comptime scmp: CmpPredicate,
) !?IdRef {
// Note: OpIAddCarry and OpISubBorrow are not really useful here: For unsigned numbers,
// there is in both cases only one extra operation required. For signed operations,
// the overflow bit is set then going from 0x80.. to 0x00.., but this doesn't actually
// normally set a carry bit. So the SPIR-V overflow operations are not particularly
// useful here.
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try self.temporary(extra.lhs);
const rhs = try self.temporary(extra.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.strange_integer, .integer => {},
.float, .bool => unreachable,
}
const sum = try self.buildBinary(add, lhs, rhs);
const result = try self.normalize(sum, info);
const overflowed = switch (info.signedness) {
// Overflow happened if the result is smaller than either of the operands. It doesn't matter which.
// For subtraction the conditions need to be swapped.
.unsigned => try self.buildCmp(ucmp, result, lhs),
// For addition, overflow happened if:
// - rhs is negative and value > lhs
// - rhs is positive and value < lhs
// This can be shortened to:
// (rhs < 0 and value > lhs) or (rhs >= 0 and value <= lhs)
// = (rhs < 0) == (value > lhs)
// = (rhs < 0) == (lhs < value)
// Note that signed overflow is also wrapping in spir-v.
// For subtraction, overflow happened if:
// - rhs is negative and value < lhs
// - rhs is positive and value > lhs
// This can be shortened to:
// (rhs < 0 and value < lhs) or (rhs >= 0 and value >= lhs)
// = (rhs < 0) == (value < lhs)
// = (rhs < 0) == (lhs > value)
.signed => blk: {
const zero = Temporary.init(rhs.ty, try self.constInt(rhs.ty, 0, .direct));
const rhs_lt_zero = try self.buildCmp(.s_lt, rhs, zero);
const result_gt_lhs = try self.buildCmp(scmp, lhs, result);
break :blk try self.buildCmp(.l_eq, rhs_lt_zero, result_gt_lhs);
},
};
const ov = try self.intFromBool(overflowed);
return try self.constructStruct(
result_ty,
&.{ result.ty, ov.ty },
&.{ try result.materialize(self), try ov.materialize(self) },
);
}
fn airMulOverflow(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const target = self.getTarget();
const pt = self.pt;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try self.temporary(extra.lhs);
const rhs = try self.temporary(extra.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(lhs.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.strange_integer, .integer => {},
.float, .bool => unreachable,
}
// There are 3 cases which we have to deal with:
// - If info.bits < 32 / 2, we will upcast to 32 and check the higher bits
// - If info.bits > 32 / 2, we have to use extended multiplication
// - Additionally, if info.bits != 32, we'll have to check the high bits
// of the result too.
const largest_int_bits: u16 = if (Target.spirv.featureSetHas(target.cpu.features, .Int64)) 64 else 32;
// If non-null, the number of bits that the multiplication should be performed in. If
// null, we have to use wide multiplication.
const maybe_op_ty_bits: ?u16 = switch (info.bits) {
0 => unreachable,
1...16 => 32,
17...32 => if (largest_int_bits > 32) 64 else null, // Upcast if we can.
33...64 => null, // Always use wide multiplication.
else => unreachable, // TODO: Composite integers
};
const result, const overflowed = switch (info.signedness) {
.unsigned => blk: {
if (maybe_op_ty_bits) |op_ty_bits| {
const op_ty = try pt.intType(.unsigned, op_ty_bits);
const casted_lhs = try self.buildIntConvert(op_ty, lhs);
const casted_rhs = try self.buildIntConvert(op_ty, rhs);
const full_result = try self.buildBinary(.i_mul, casted_lhs, casted_rhs);
const low_bits = try self.buildIntConvert(lhs.ty, full_result);
const result = try self.normalize(low_bits, info);
// Shift the result bits away to get the overflow bits.
const shift = Temporary.init(full_result.ty, try self.constInt(full_result.ty, info.bits, .direct));
const overflow = try self.buildBinary(.srl, full_result, shift);
// Directly check if its zero in the op_ty without converting first.
const zero = Temporary.init(full_result.ty, try self.constInt(full_result.ty, 0, .direct));
const overflowed = try self.buildCmp(.i_ne, zero, overflow);
break :blk .{ result, overflowed };
}
const low_bits, const high_bits = try self.buildWideMul(.u_mul_extended, lhs, rhs);
// Truncate the result, if required.
const result = try self.normalize(low_bits, info);
// Overflow happened if the high-bits of the result are non-zero OR if the
// high bits of the low word of the result (those outside the range of the
// int) are nonzero.
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0, .direct));
const high_overflowed = try self.buildCmp(.i_ne, zero, high_bits);
// If no overflow bits in low_bits, no extra work needs to be done.
if (info.backing_bits == info.bits) {
break :blk .{ result, high_overflowed };
}
// Shift the result bits away to get the overflow bits.
const shift = Temporary.init(lhs.ty, try self.constInt(lhs.ty, info.bits, .direct));
const low_overflow = try self.buildBinary(.srl, low_bits, shift);
const low_overflowed = try self.buildCmp(.i_ne, zero, low_overflow);
const overflowed = try self.buildBinary(.l_or, low_overflowed, high_overflowed);
break :blk .{ result, overflowed };
},
.signed => blk: {
// - lhs >= 0, rhxs >= 0: expect positive; overflow should be 0
// - lhs == 0 : expect positive; overflow should be 0
// - rhs == 0: expect positive; overflow should be 0
// - lhs > 0, rhs < 0: expect negative; overflow should be -1
// - lhs < 0, rhs > 0: expect negative; overflow should be -1
// - lhs <= 0, rhs <= 0: expect positive; overflow should be 0
// ------
// overflow should be -1 when
// (lhs > 0 && rhs < 0) || (lhs < 0 && rhs > 0)
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0, .direct));
const lhs_negative = try self.buildCmp(.s_lt, lhs, zero);
const rhs_negative = try self.buildCmp(.s_lt, rhs, zero);
const lhs_positive = try self.buildCmp(.s_gt, lhs, zero);
const rhs_positive = try self.buildCmp(.s_gt, rhs, zero);
// Set to `true` if we expect -1.
const expected_overflow_bit = try self.buildBinary(
.l_or,
try self.buildBinary(.l_and, lhs_positive, rhs_negative),
try self.buildBinary(.l_and, lhs_negative, rhs_positive),
);
if (maybe_op_ty_bits) |op_ty_bits| {
const op_ty = try pt.intType(.signed, op_ty_bits);
// Assume normalized; sign bit is set. We want a sign extend.
const casted_lhs = try self.buildIntConvert(op_ty, lhs);
const casted_rhs = try self.buildIntConvert(op_ty, rhs);
const full_result = try self.buildBinary(.i_mul, casted_lhs, casted_rhs);
// Truncate to the result type.
const low_bits = try self.buildIntConvert(lhs.ty, full_result);
const result = try self.normalize(low_bits, info);
// Now, we need to check the overflow bits AND the sign
// bit for the expected overflow bits.
// To do that, shift out everything bit the sign bit and
// then check what remains.
const shift = Temporary.init(full_result.ty, try self.constInt(full_result.ty, info.bits - 1, .direct));
// Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
// for negative cases.
const overflow = try self.buildBinary(.sra, full_result, shift);
const long_all_set = Temporary.init(full_result.ty, try self.constInt(full_result.ty, -1, .direct));
const long_zero = Temporary.init(full_result.ty, try self.constInt(full_result.ty, 0, .direct));
const mask = try self.buildSelect(expected_overflow_bit, long_all_set, long_zero);
const overflowed = try self.buildCmp(.i_ne, mask, overflow);
break :blk .{ result, overflowed };
}
const low_bits, const high_bits = try self.buildWideMul(.s_mul_extended, lhs, rhs);
// Truncate result if required.
const result = try self.normalize(low_bits, info);
const all_set = Temporary.init(lhs.ty, try self.constInt(lhs.ty, -1, .direct));
const mask = try self.buildSelect(expected_overflow_bit, all_set, zero);
// Like with unsigned, overflow happened if high_bits are not the ones we expect,
// and we also need to check some ones from the low bits.
const high_overflowed = try self.buildCmp(.i_ne, mask, high_bits);
// If no overflow bits in low_bits, no extra work needs to be done.
// Careful, we still have to check the sign bit, so this branch
// only goes for i33 and such.
if (info.backing_bits == info.bits + 1) {
break :blk .{ result, high_overflowed };
}
// Shift the result bits away to get the overflow bits.
const shift = Temporary.init(lhs.ty, try self.constInt(lhs.ty, info.bits - 1, .direct));
// Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
// for negative cases.
const low_overflow = try self.buildBinary(.sra, low_bits, shift);
const low_overflowed = try self.buildCmp(.i_ne, mask, low_overflow);
const overflowed = try self.buildBinary(.l_or, low_overflowed, high_overflowed);
break :blk .{ result, overflowed };
},
};
const ov = try self.intFromBool(overflowed);
return try self.constructStruct(
result_ty,
&.{ result.ty, ov.ty },
&.{ try result.materialize(self), try ov.materialize(self) },
);
}
fn airShlOverflow(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const base = try self.temporary(extra.lhs);
const shift = try self.temporary(extra.rhs);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(base.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
// so just manually upcast it if required.
const casted_shift = try self.buildIntConvert(base.ty.scalarType(zcu), shift);
const left = try self.buildBinary(.sll, base, casted_shift);
const result = try self.normalize(left, info);
const right = switch (info.signedness) {
.unsigned => try self.buildBinary(.srl, result, casted_shift),
.signed => try self.buildBinary(.sra, result, casted_shift),
};
const overflowed = try self.buildCmp(.i_ne, base, right);
const ov = try self.intFromBool(overflowed);
return try self.constructStruct(
result_ty,
&.{ result.ty, ov.ty },
&.{ try result.materialize(self), try ov.materialize(self) },
);
}
fn airMulAdd(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
const a = try self.temporary(extra.lhs);
const b = try self.temporary(extra.rhs);
const c = try self.temporary(pl_op.operand);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(result_ty);
assert(info.class == .float); // .mul_add is only emitted for floats
const result = try self.buildFma(a, b, c);
return try result.materialize(self);
}
fn airClzCtz(self: *NavGen, inst: Air.Inst.Index, op: UnaryOp) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const zcu = self.pt.zcu;
const target = self.getTarget();
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try self.temporary(ty_op.operand);
const scalar_result_ty = self.typeOfIndex(inst).scalarType(zcu);
const info = self.arithmeticTypeInfo(operand.ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
switch (target.os.tag) {
.vulkan => unreachable, // TODO
else => {},
}
const count = try self.buildUnary(op, operand);
// Result of OpenCL ctz/clz returns operand.ty, and we want result_ty.
// result_ty is always large enough to hold the result, so we might have to down
// cast it.
const result = try self.buildIntConvert(scalar_result_ty, count);
return try result.materialize(self);
}
fn airSelect(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
const pred = try self.temporary(pl_op.operand);
const a = try self.temporary(extra.lhs);
const b = try self.temporary(extra.rhs);
const result = try self.buildSelect(pred, a, b);
return try result.materialize(self);
}
fn airSplat(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.constructVectorSplat(result_ty, operand_id);
}
fn airReduce(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const reduce = self.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
const operand = try self.resolve(reduce.operand);
const operand_ty = self.typeOf(reduce.operand);
const scalar_ty = operand_ty.scalarType(zcu);
const scalar_ty_id = try self.resolveType(scalar_ty, .direct);
const info = self.arithmeticTypeInfo(operand_ty);
const len = operand_ty.vectorLen(zcu);
const first = try self.extractVectorComponent(scalar_ty, operand, 0);
switch (reduce.operation) {
.Min, .Max => |op| {
var result = Temporary.init(scalar_ty, first);
const cmp_op: MinMax = switch (op) {
.Max => .max,
.Min => .min,
else => unreachable,
};
for (1..len) |i| {
const lhs = result;
const rhs_id = try self.extractVectorComponent(scalar_ty, operand, @intCast(i));
const rhs = Temporary.init(scalar_ty, rhs_id);
result = try self.minMax(lhs, rhs, cmp_op);
}
return try result.materialize(self);
},
else => {},
}
var result_id = first;
const opcode: Opcode = switch (info.class) {
.bool => switch (reduce.operation) {
.And => .OpLogicalAnd,
.Or => .OpLogicalOr,
.Xor => .OpLogicalNotEqual,
else => unreachable,
},
.strange_integer, .integer => switch (reduce.operation) {
.And => .OpBitwiseAnd,
.Or => .OpBitwiseOr,
.Xor => .OpBitwiseXor,
.Add => .OpIAdd,
.Mul => .OpIMul,
else => unreachable,
},
.float => switch (reduce.operation) {
.Add => .OpFAdd,
.Mul => .OpFMul,
else => unreachable,
},
.composite_integer => unreachable, // TODO
};
for (1..len) |i| {
const lhs = result_id;
const rhs = try self.extractVectorComponent(scalar_ty, operand, @intCast(i));
result_id = self.spv.allocId();
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, scalar_ty_id);
self.func.body.writeOperand(spec.IdResult, result_id);
self.func.body.writeOperand(spec.IdResultType, lhs);
self.func.body.writeOperand(spec.IdResultType, rhs);
}
return result_id;
}
fn airShuffle(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
const a = try self.resolve(extra.a);
const b = try self.resolve(extra.b);
const mask = Value.fromInterned(extra.mask);
// Note: number of components in the result, a, and b may differ.
const result_ty = self.typeOfIndex(inst);
const a_ty = self.typeOf(extra.a);
const b_ty = self.typeOf(extra.b);
const scalar_ty = result_ty.scalarType(zcu);
const scalar_ty_id = try self.resolveType(scalar_ty, .direct);
// If all of the types are SPIR-V vectors, we can use OpVectorShuffle.
if (self.isSpvVector(result_ty) and self.isSpvVector(a_ty) and self.isSpvVector(b_ty)) {
// The SPIR-V shuffle instruction is similar to the Air instruction, except that the elements are
// numbered consecutively instead of using negatives.
const components = try self.gpa.alloc(Word, result_ty.vectorLen(zcu));
defer self.gpa.free(components);
const a_len = a_ty.vectorLen(zcu);
for (components, 0..) |*component, i| {
const elem = try mask.elemValue(pt, i);
if (elem.isUndef(zcu)) {
// This is explicitly valid for OpVectorShuffle, it indicates undefined.
component.* = 0xFFFF_FFFF;
continue;
}
const index = elem.toSignedInt(zcu);
if (index >= 0) {
component.* = @intCast(index);
} else {
component.* = @intCast(~index + a_len);
}
}
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpVectorShuffle, .{
.id_result_type = try self.resolveType(result_ty, .direct),
.id_result = result_id,
.vector_1 = a,
.vector_2 = b,
.components = components,
});
return result_id;
}
// Fall back to manually extracting and inserting components.
const components = try self.gpa.alloc(IdRef, result_ty.vectorLen(zcu));
defer self.gpa.free(components);
for (components, 0..) |*id, i| {
const elem = try mask.elemValue(pt, i);
if (elem.isUndef(zcu)) {
id.* = try self.spv.constUndef(scalar_ty_id);
continue;
}
const index = elem.toSignedInt(zcu);
if (index >= 0) {
id.* = try self.extractVectorComponent(scalar_ty, a, @intCast(index));
} else {
id.* = try self.extractVectorComponent(scalar_ty, b, @intCast(~index));
}
}
return try self.constructVector(result_ty, components);
}
fn indicesToIds(self: *NavGen, indices: []const u32) ![]IdRef {
const ids = try self.gpa.alloc(IdRef, indices.len);
errdefer self.gpa.free(ids);
for (indices, ids) |index, *id| {
id.* = try self.constInt(Type.u32, index, .direct);
}
return ids;
}
fn accessChainId(
self: *NavGen,
result_ty_id: IdRef,
base: IdRef,
indices: []const IdRef,
) !IdRef {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.base = base,
.indexes = indices,
});
return result_id;
}
/// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective
/// difference lies in whether the resulting type of the first dereference will be the
/// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain
/// is the latter and PtrAccessChain is the former.
fn accessChain(
self: *NavGen,
result_ty_id: IdRef,
base: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
return try self.accessChainId(result_ty_id, base, ids);
}
fn ptrAccessChain(
self: *NavGen,
result_ty_id: IdRef,
base: IdRef,
element: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.base = base,
.element = element,
.indexes = ids,
});
return result_id;
}
fn ptrAdd(self: *NavGen, result_ty: Type, ptr_ty: Type, ptr_id: IdRef, offset_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
const result_ty_id = try self.resolveType(result_ty, .direct);
switch (ptr_ty.ptrSize(zcu)) {
.One => {
// Pointer to array
// TODO: Is this correct?
return try self.accessChainId(result_ty_id, ptr_id, &.{offset_id});
},
.C, .Many => {
return try self.ptrAccessChain(result_ty_id, ptr_id, offset_id, &.{});
},
.Slice => {
// TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does.
const slice_ptr_id = try self.extractField(result_ty, ptr_id, 0);
return try self.ptrAccessChain(result_ty_id, slice_ptr_id, offset_id, &.{});
},
}
}
fn airPtrAdd(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id);
}
fn airPtrSub(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const offset_ty = self.typeOf(bin_op.rhs);
const offset_ty_id = try self.resolveType(offset_ty, .direct);
const result_ty = self.typeOfIndex(inst);
const negative_offset_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSNegate, .{
.id_result_type = offset_ty_id,
.id_result = negative_offset_id,
.operand = offset_id,
});
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id);
}
fn cmp(
self: *NavGen,
op: std.math.CompareOperator,
lhs: Temporary,
rhs: Temporary,
) !Temporary {
const pt = self.pt;
const zcu = pt.zcu;
const scalar_ty = lhs.ty.scalarType(zcu);
const is_vector = lhs.ty.isVector(zcu);
switch (scalar_ty.zigTypeTag(zcu)) {
.Int, .Bool, .Float => {},
.Enum => {
assert(!is_vector);
const ty = lhs.ty.intTagType(zcu);
return try self.cmp(op, lhs.pun(ty), rhs.pun(ty));
},
.ErrorSet => {
assert(!is_vector);
return try self.cmp(op, lhs.pun(Type.u16), rhs.pun(Type.u16));
},
.Pointer => {
assert(!is_vector);
// Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are
// currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using
// OpConvertPtrToU...
const usize_ty_id = try self.resolveType(Type.usize, .direct);
const lhs_int_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = lhs_int_id,
.pointer = try lhs.materialize(self),
});
const rhs_int_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = rhs_int_id,
.pointer = try rhs.materialize(self),
});
const lhs_int = Temporary.init(Type.usize, lhs_int_id);
const rhs_int = Temporary.init(Type.usize, rhs_int_id);
return try self.cmp(op, lhs_int, rhs_int);
},
.Optional => {
assert(!is_vector);
const ty = lhs.ty;
const payload_ty = ty.optionalChild(zcu);
if (ty.optionalReprIsPayload(zcu)) {
assert(payload_ty.hasRuntimeBitsIgnoreComptime(zcu));
assert(!payload_ty.isSlice(zcu));
return try self.cmp(op, lhs.pun(payload_ty), rhs.pun(payload_ty));
}
const lhs_id = try lhs.materialize(self);
const rhs_id = try rhs.materialize(self);
const lhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.extractField(Type.bool, lhs_id, 1)
else
try self.convertToDirect(Type.bool, lhs_id);
const rhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.extractField(Type.bool, rhs_id, 1)
else
try self.convertToDirect(Type.bool, rhs_id);
const lhs_valid = Temporary.init(Type.bool, lhs_valid_id);
const rhs_valid = Temporary.init(Type.bool, rhs_valid_id);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return try self.cmp(op, lhs_valid, rhs_valid);
}
// a = lhs_valid
// b = rhs_valid
// c = lhs_pl == rhs_pl
//
// For op == .eq we have:
// a == b && a -> c
// = a == b && (!a || c)
//
// For op == .neq we have
// a == b && a -> c
// = !(a == b && a -> c)
// = a != b || !(a -> c
// = a != b || !(!a || c)
// = a != b || a && !c
const lhs_pl_id = try self.extractField(payload_ty, lhs_id, 0);
const rhs_pl_id = try self.extractField(payload_ty, rhs_id, 0);
const lhs_pl = Temporary.init(payload_ty, lhs_pl_id);
const rhs_pl = Temporary.init(payload_ty, rhs_pl_id);
return switch (op) {
.eq => try self.buildBinary(
.l_and,
try self.cmp(.eq, lhs_valid, rhs_valid),
try self.buildBinary(
.l_or,
try self.buildUnary(.l_not, lhs_valid),
try self.cmp(.eq, lhs_pl, rhs_pl),
),
),
.neq => try self.buildBinary(
.l_or,
try self.cmp(.neq, lhs_valid, rhs_valid),
try self.buildBinary(
.l_and,
lhs_valid,
try self.cmp(.neq, lhs_pl, rhs_pl),
),
),
else => unreachable,
};
},
else => unreachable,
}
const info = self.arithmeticTypeInfo(scalar_ty);
const pred: CmpPredicate = switch (info.class) {
.composite_integer => unreachable, // TODO
.float => switch (op) {
.eq => .f_oeq,
.neq => .f_une,
.lt => .f_olt,
.lte => .f_ole,
.gt => .f_ogt,
.gte => .f_oge,
},
.bool => switch (op) {
.eq => .l_eq,
.neq => .l_ne,
else => unreachable,
},
.integer, .strange_integer => switch (info.signedness) {
.signed => switch (op) {
.eq => .i_eq,
.neq => .i_ne,
.lt => .s_lt,
.lte => .s_le,
.gt => .s_gt,
.gte => .s_ge,
},
.unsigned => switch (op) {
.eq => .i_eq,
.neq => .i_ne,
.lt => .u_lt,
.lte => .u_le,
.gt => .u_gt,
.gte => .u_ge,
},
},
};
return try self.buildCmp(pred, lhs, rhs);
}
fn airCmp(
self: *NavGen,
inst: Air.Inst.Index,
comptime op: std.math.CompareOperator,
) !?IdRef {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const lhs = try self.temporary(bin_op.lhs);
const rhs = try self.temporary(bin_op.rhs);
const result = try self.cmp(op, lhs, rhs);
return try result.materialize(self);
}
fn airVectorCmp(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const vec_cmp = self.air.extraData(Air.VectorCmp, ty_pl.payload).data;
const lhs = try self.temporary(vec_cmp.lhs);
const rhs = try self.temporary(vec_cmp.rhs);
const op = vec_cmp.compareOperator();
const result = try self.cmp(op, lhs, rhs);
return try result.materialize(self);
}
/// Bitcast one type to another. Note: both types, input, output are expected in **direct** representation.
fn bitCast(
self: *NavGen,
dst_ty: Type,
src_ty: Type,
src_id: IdRef,
) !IdRef {
const zcu = self.pt.zcu;
const src_ty_id = try self.resolveType(src_ty, .direct);
const dst_ty_id = try self.resolveType(dst_ty, .direct);
const result_id = blk: {
if (src_ty_id == dst_ty_id) {
break :blk src_id;
}
// TODO: Some more cases are missing here
// See fn bitCast in llvm.zig
if (src_ty.zigTypeTag(zcu) == .Int and dst_ty.isPtrAtRuntime(zcu)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = dst_ty_id,
.id_result = result_id,
.integer_value = src_id,
});
break :blk result_id;
}
// We can only use OpBitcast for specific conversions: between numerical types, and
// between pointers. If the resolved spir-v types fall into this category then emit OpBitcast,
// otherwise use a temporary and perform a pointer cast.
const can_bitcast = (src_ty.isNumeric(zcu) and dst_ty.isNumeric(zcu)) or (src_ty.isPtrAtRuntime(zcu) and dst_ty.isPtrAtRuntime(zcu));
if (can_bitcast) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = dst_ty_id,
.id_result = result_id,
.operand = src_id,
});
break :blk result_id;
}
const dst_ptr_ty_id = try self.ptrType(dst_ty, .Function);
const tmp_id = try self.alloc(src_ty, .{ .storage_class = .Function });
try self.store(src_ty, tmp_id, src_id, .{});
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = dst_ptr_ty_id,
.id_result = casted_ptr_id,
.operand = tmp_id,
});
break :blk try self.load(dst_ty, casted_ptr_id, .{});
};
// Because strange integers use sign-extended representation, we may need to normalize
// the result here.
// TODO: This detail could cause stuff like @as(*const i1, @ptrCast(&@as(u1, 1))) to break
// should we change the representation of strange integers?
if (dst_ty.zigTypeTag(zcu) == .Int) {
const info = self.arithmeticTypeInfo(dst_ty);
const result = try self.normalize(Temporary.init(dst_ty, result_id), info);
return try result.materialize(self);
}
return result_id;
}
fn airBitCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const operand_ty = self.typeOf(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.bitCast(result_ty, operand_ty, operand_id);
}
fn airIntCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const src = try self.temporary(ty_op.operand);
const dst_ty = self.typeOfIndex(inst);
const src_info = self.arithmeticTypeInfo(src.ty);
const dst_info = self.arithmeticTypeInfo(dst_ty);
if (src_info.backing_bits == dst_info.backing_bits) {
return try src.materialize(self);
}
const converted = try self.buildIntConvert(dst_ty, src);
// Make sure to normalize the result if shrinking.
// Because strange ints are sign extended in their backing
// type, we don't need to normalize when growing the type. The
// representation is already the same.
const result = if (dst_info.bits < src_info.bits)
try self.normalize(converted, dst_info)
else
converted;
return try result.materialize(self);
}
fn intFromPtr(self: *NavGen, operand_id: IdRef) !IdRef {
const result_type_id = try self.resolveType(Type.usize, .direct);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = result_type_id,
.id_result = result_id,
.pointer = operand_id,
});
return result_id;
}
fn airIntFromPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
return try self.intFromPtr(operand_id);
}
fn airFloatFromInt(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_ty = self.typeOf(ty_op.operand);
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.floatFromInt(result_ty, operand_ty, operand_id);
}
fn floatFromInt(self: *NavGen, result_ty: Type, operand_ty: Type, operand_id: IdRef) !IdRef {
const operand_info = self.arithmeticTypeInfo(operand_ty);
const result_id = self.spv.allocId();
const result_ty_id = try self.resolveType(result_ty, .direct);
switch (operand_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertSToF, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.signed_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertUToF, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.unsigned_value = operand_id,
}),
}
return result_id;
}
fn airIntFromFloat(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.intFromFloat(result_ty, operand_id);
}
fn intFromFloat(self: *NavGen, result_ty: Type, operand_id: IdRef) !IdRef {
const result_info = self.arithmeticTypeInfo(result_ty);
const result_ty_id = try self.resolveType(result_ty, .direct);
const result_id = self.spv.allocId();
switch (result_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertFToS, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertFToU, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
}
return result_id;
}
fn airIntFromBool(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand = try self.temporary(un_op);
const result = try self.intFromBool(operand);
return try result.materialize(self);
}
fn airFloatCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const dest_ty = self.typeOfIndex(inst);
const dest_ty_id = try self.resolveType(dest_ty, .direct);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpFConvert, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
});
return result_id;
}
fn airNot(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand = try self.temporary(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
const info = self.arithmeticTypeInfo(result_ty);
const result = switch (info.class) {
.bool => try self.buildUnary(.l_not, operand),
.float => unreachable,
.composite_integer => unreachable, // TODO
.strange_integer, .integer => blk: {
const complement = try self.buildUnary(.bit_not, operand);
break :blk try self.normalize(complement, info);
},
};
return try result.materialize(self);
}
fn airArrayToSlice(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const array_ptr_ty = self.typeOf(ty_op.operand);
const array_ty = array_ptr_ty.childType(zcu);
const slice_ty = self.typeOfIndex(inst);
const elem_ptr_ty = slice_ty.slicePtrFieldType(zcu);
const elem_ptr_ty_id = try self.resolveType(elem_ptr_ty, .direct);
const array_ptr_id = try self.resolve(ty_op.operand);
const len_id = try self.constInt(Type.usize, array_ty.arrayLen(zcu), .direct);
const elem_ptr_id = if (!array_ty.hasRuntimeBitsIgnoreComptime(zcu))
// Note: The pointer is something like *opaque{}, so we need to bitcast it to the element type.
try self.bitCast(elem_ptr_ty, array_ptr_ty, array_ptr_id)
else
// Convert the pointer-to-array to a pointer to the first element.
try self.accessChain(elem_ptr_ty_id, array_ptr_id, &.{0});
return try self.constructStruct(
slice_ty,
&.{ elem_ptr_ty, Type.usize },
&.{ elem_ptr_id, len_id },
);
}
fn airSlice(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const len_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const slice_ty = self.typeOfIndex(inst);
// Note: Types should not need to be converted to direct, these types
// dont need to be converted.
return try self.constructStruct(
slice_ty,
&.{ ptr_ty, Type.usize },
&.{ ptr_id, len_id },
);
}
fn airAggregateInit(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const result_ty = self.typeOfIndex(inst);
const len: usize = @intCast(result_ty.arrayLen(zcu));
const elements: []const Air.Inst.Ref = @ptrCast(self.air.extra[ty_pl.payload..][0..len]);
switch (result_ty.zigTypeTag(zcu)) {
.Struct => {
if (zcu.typeToPackedStruct(result_ty)) |struct_type| {
_ = struct_type;
unreachable; // TODO
}
const types = try self.gpa.alloc(Type, elements.len);
defer self.gpa.free(types);
const constituents = try self.gpa.alloc(IdRef, elements.len);
defer self.gpa.free(constituents);
var index: usize = 0;
switch (ip.indexToKey(result_ty.toIntern())) {
.anon_struct_type => |tuple| {
for (tuple.types.get(ip), elements, 0..) |field_ty, element, i| {
if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
assert(Type.fromInterned(field_ty).hasRuntimeBits(zcu));
const id = try self.resolve(element);
types[index] = Type.fromInterned(field_ty);
constituents[index] = try self.convertToIndirect(Type.fromInterned(field_ty), id);
index += 1;
}
},
.struct_type => {
const struct_type = ip.loadStructType(result_ty.toIntern());
var it = struct_type.iterateRuntimeOrder(ip);
for (elements, 0..) |element, i| {
const field_index = it.next().?;
if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
assert(field_ty.hasRuntimeBitsIgnoreComptime(zcu));
const id = try self.resolve(element);
types[index] = field_ty;
constituents[index] = try self.convertToIndirect(field_ty, id);
index += 1;
}
},
else => unreachable,
}
return try self.constructStruct(
result_ty,
types[0..index],
constituents[0..index],
);
},
.Vector => {
const n_elems = result_ty.vectorLen(zcu);
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
defer self.gpa.free(elem_ids);
for (elements, 0..) |element, i| {
elem_ids[i] = try self.resolve(element);
}
return try self.constructVector(result_ty, elem_ids);
},
.Array => {
const array_info = result_ty.arrayInfo(zcu);
const n_elems: usize = @intCast(result_ty.arrayLenIncludingSentinel(zcu));
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
defer self.gpa.free(elem_ids);
for (elements, 0..) |element, i| {
const id = try self.resolve(element);
elem_ids[i] = try self.convertToIndirect(array_info.elem_type, id);
}
if (array_info.sentinel) |sentinel_val| {
elem_ids[n_elems - 1] = try self.constant(array_info.elem_type, sentinel_val, .indirect);
}
return try self.constructArray(result_ty, elem_ids);
},
else => unreachable,
}
}
fn sliceOrArrayLen(self: *NavGen, operand_id: IdRef, ty: Type) !IdRef {
const pt = self.pt;
const zcu = pt.zcu;
switch (ty.ptrSize(zcu)) {
.Slice => return self.extractField(Type.usize, operand_id, 1),
.One => {
const array_ty = ty.childType(zcu);
const elem_ty = array_ty.childType(zcu);
const abi_size = elem_ty.abiSize(zcu);
const size = array_ty.arrayLenIncludingSentinel(zcu) * abi_size;
return try self.constInt(Type.usize, size, .direct);
},
.Many, .C => unreachable,
}
}
fn sliceOrArrayPtr(self: *NavGen, operand_id: IdRef, ty: Type) !IdRef {
const zcu = self.pt.zcu;
if (ty.isSlice(zcu)) {
const ptr_ty = ty.slicePtrFieldType(zcu);
return self.extractField(ptr_ty, operand_id, 0);
}
return operand_id;
}
fn airMemcpy(self: *NavGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const dest_slice = try self.resolve(bin_op.lhs);
const src_slice = try self.resolve(bin_op.rhs);
const dest_ty = self.typeOf(bin_op.lhs);
const src_ty = self.typeOf(bin_op.rhs);
const dest_ptr = try self.sliceOrArrayPtr(dest_slice, dest_ty);
const src_ptr = try self.sliceOrArrayPtr(src_slice, src_ty);
const len = try self.sliceOrArrayLen(dest_slice, dest_ty);
try self.func.body.emit(self.spv.gpa, .OpCopyMemorySized, .{
.target = dest_ptr,
.source = src_ptr,
.size = len,
});
}
fn airSliceField(self: *NavGen, inst: Air.Inst.Index, field: u32) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const field_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
return try self.extractField(field_ty, operand_id, field);
}
fn airSliceElemPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOfIndex(inst);
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
return try self.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
}
fn airSliceElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = slice_ty.slicePtrFieldType(zcu);
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
const elem_ptr = try self.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
return try self.load(slice_ty.childType(zcu), elem_ptr, .{ .is_volatile = slice_ty.isVolatilePtr(zcu) });
}
fn ptrElemPtr(self: *NavGen, ptr_ty: Type, ptr_id: IdRef, index_id: IdRef) !IdRef {
const zcu = self.pt.zcu;
// Construct new pointer type for the resulting pointer
const elem_ty = ptr_ty.elemType2(zcu); // use elemType() so that we get T for *[N]T.
const elem_ptr_ty_id = try self.ptrType(elem_ty, self.spvStorageClass(ptr_ty.ptrAddressSpace(zcu)));
if (ptr_ty.isSinglePointer(zcu)) {
// Pointer-to-array. In this case, the resulting pointer is not of the same type
// as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain.
return try self.accessChainId(elem_ptr_ty_id, ptr_id, &.{index_id});
} else {
// Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain
return try self.ptrAccessChain(elem_ptr_ty_id, ptr_id, index_id, &.{});
}
}
fn airPtrElemPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const src_ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = src_ptr_ty.childType(zcu);
const ptr_id = try self.resolve(bin_op.lhs);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const dst_ptr_ty = self.typeOfIndex(inst);
return try self.bitCast(dst_ptr_ty, src_ptr_ty, ptr_id);
}
const index_id = try self.resolve(bin_op.rhs);
return try self.ptrElemPtr(src_ptr_ty, ptr_id, index_id);
}
fn airArrayElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const array_ty = self.typeOf(bin_op.lhs);
const elem_ty = array_ty.childType(zcu);
const array_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
if (self.isSpvVector(array_ty)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpVectorExtractDynamic, .{
.id_result_type = try self.resolveType(elem_ty, .direct),
.id_result = result_id,
.vector = array_id,
.index = index_id,
});
return result_id;
}
// SPIR-V doesn't have an array indexing function for some damn reason.
// For now, just generate a temporary and use that.
// TODO: This backend probably also should use isByRef from llvm...
const is_vector = array_ty.isVector(zcu);
const elem_repr: Repr = if (is_vector) .direct else .indirect;
const ptr_array_ty_id = try self.ptrType2(array_ty, .Function, .direct);
const ptr_elem_ty_id = try self.ptrType2(elem_ty, .Function, elem_repr);
const tmp_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = ptr_array_ty_id,
.id_result = tmp_id,
.storage_class = .Function,
});
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = tmp_id,
.object = array_id,
});
const elem_ptr_id = try self.accessChainId(ptr_elem_ty_id, tmp_id, &.{index_id});
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = try self.resolveType(elem_ty, elem_repr),
.id_result = result_id,
.pointer = elem_ptr_id,
});
if (is_vector) {
// Result is already in direct representation
return result_id;
}
// This is an array type; the elements are stored in indirect representation.
// We have to convert the type to direct.
return try self.convertToDirect(elem_ty, result_id);
}
fn airPtrElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = self.typeOfIndex(inst);
const ptr_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const elem_ptr_id = try self.ptrElemPtr(ptr_ty, ptr_id, index_id);
return try self.load(elem_ty, elem_ptr_id, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
}
fn airVectorStoreElem(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const data = self.air.instructions.items(.data)[@intFromEnum(inst)].vector_store_elem;
const extra = self.air.extraData(Air.Bin, data.payload).data;
const vector_ptr_ty = self.typeOf(data.vector_ptr);
const vector_ty = vector_ptr_ty.childType(zcu);
const scalar_ty = vector_ty.scalarType(zcu);
const storage_class = self.spvStorageClass(vector_ptr_ty.ptrAddressSpace(zcu));
const scalar_ptr_ty_id = try self.ptrType(scalar_ty, storage_class);
const vector_ptr = try self.resolve(data.vector_ptr);
const index = try self.resolve(extra.lhs);
const operand = try self.resolve(extra.rhs);
const elem_ptr_id = try self.accessChainId(scalar_ptr_ty_id, vector_ptr, &.{index});
try self.store(scalar_ty, elem_ptr_id, operand, .{
.is_volatile = vector_ptr_ty.isVolatilePtr(zcu),
});
}
fn airSetUnionTag(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const un_ptr_ty = self.typeOf(bin_op.lhs);
const un_ty = un_ptr_ty.childType(zcu);
const layout = self.unionLayout(un_ty);
if (layout.tag_size == 0) return;
const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
const tag_ptr_ty_id = try self.ptrType(tag_ty, self.spvStorageClass(un_ptr_ty.ptrAddressSpace(zcu)));
const union_ptr_id = try self.resolve(bin_op.lhs);
const new_tag_id = try self.resolve(bin_op.rhs);
if (!layout.has_payload) {
try self.store(tag_ty, union_ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
} else {
const ptr_id = try self.accessChain(tag_ptr_ty_id, union_ptr_id, &.{layout.tag_index});
try self.store(tag_ty, ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
}
}
fn airGetUnionTag(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const un_ty = self.typeOf(ty_op.operand);
const zcu = self.pt.zcu;
const layout = self.unionLayout(un_ty);
if (layout.tag_size == 0) return null;
const union_handle = try self.resolve(ty_op.operand);
if (!layout.has_payload) return union_handle;
const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
return try self.extractField(tag_ty, union_handle, layout.tag_index);
}
fn unionInit(
self: *NavGen,
ty: Type,
active_field: u32,
payload: ?IdRef,
) !IdRef {
// To initialize a union, generate a temporary variable with the
// union type, then get the field pointer and pointer-cast it to the
// right type to store it. Finally load the entire union.
// Note: The result here is not cached, because it generates runtime code.
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const union_ty = zcu.typeToUnion(ty).?;
const tag_ty = Type.fromInterned(union_ty.enum_tag_ty);
if (union_ty.flagsUnordered(ip).layout == .@"packed") {
unreachable; // TODO
}
const layout = self.unionLayout(ty);
const tag_int = if (layout.tag_size != 0) blk: {
const tag_val = try pt.enumValueFieldIndex(tag_ty, active_field);
const tag_int_val = try tag_val.intFromEnum(tag_ty, pt);
break :blk tag_int_val.toUnsignedInt(zcu);
} else 0;
if (!layout.has_payload) {
return try self.constInt(tag_ty, tag_int, .direct);
}
const tmp_id = try self.alloc(ty, .{ .storage_class = .Function });
if (layout.tag_size != 0) {
const tag_ptr_ty_id = try self.ptrType(tag_ty, .Function);
const ptr_id = try self.accessChain(tag_ptr_ty_id, tmp_id, &.{@as(u32, @intCast(layout.tag_index))});
const tag_id = try self.constInt(tag_ty, tag_int, .direct);
try self.store(tag_ty, ptr_id, tag_id, .{});
}
const payload_ty = Type.fromInterned(union_ty.field_types.get(ip)[active_field]);
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, .Function);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
const active_pl_ptr_ty_id = try self.ptrType(payload_ty, .Function);
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = active_pl_ptr_ty_id,
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
try self.store(payload_ty, active_pl_ptr_id, payload.?, .{});
} else {
assert(payload == null);
}
// Just leave the padding fields uninitialized...
// TODO: Or should we initialize them with undef explicitly?
return try self.load(ty, tmp_id, .{});
}
fn airUnionInit(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ip = &zcu.intern_pool;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data;
const ty = self.typeOfIndex(inst);
const union_obj = zcu.typeToUnion(ty).?;
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[extra.field_index]);
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.resolve(extra.init)
else
null;
return try self.unionInit(ty, extra.field_index, payload);
}
fn airStructFieldVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
const object_ty = self.typeOf(struct_field.struct_operand);
const object_id = try self.resolve(struct_field.struct_operand);
const field_index = struct_field.field_index;
const field_ty = object_ty.fieldType(field_index, zcu);
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
switch (object_ty.zigTypeTag(zcu)) {
.Struct => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => return try self.extractField(field_ty, object_id, field_index),
},
.Union => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => {
// Store, ptr-elem-ptr, pointer-cast, load
const layout = self.unionLayout(object_ty);
assert(layout.has_payload);
const tmp_id = try self.alloc(object_ty, .{ .storage_class = .Function });
try self.store(object_ty, tmp_id, object_id, .{});
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, .Function);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
const active_pl_ptr_ty_id = try self.ptrType(field_ty, .Function);
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = active_pl_ptr_ty_id,
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
return try self.load(field_ty, active_pl_ptr_id, .{});
},
},
else => unreachable,
}
}
fn airFieldParentPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
const parent_ty = ty_pl.ty.toType().childType(zcu);
const result_ty_id = try self.resolveType(ty_pl.ty.toType(), .indirect);
const field_ptr = try self.resolve(extra.field_ptr);
const field_ptr_int = try self.intFromPtr(field_ptr);
const field_offset = parent_ty.structFieldOffset(extra.field_index, zcu);
const base_ptr_int = base_ptr_int: {
if (field_offset == 0) break :base_ptr_int field_ptr_int;
const field_offset_id = try self.constInt(Type.usize, field_offset, .direct);
const field_ptr_tmp = Temporary.init(Type.usize, field_ptr_int);
const field_offset_tmp = Temporary.init(Type.usize, field_offset_id);
const result = try self.buildBinary(.i_sub, field_ptr_tmp, field_offset_tmp);
break :base_ptr_int try result.materialize(self);
};
const base_ptr = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = result_ty_id,
.id_result = base_ptr,
.integer_value = base_ptr_int,
});
return base_ptr;
}
fn structFieldPtr(
self: *NavGen,
result_ptr_ty: Type,
object_ptr_ty: Type,
object_ptr: IdRef,
field_index: u32,
) !IdRef {
const result_ty_id = try self.resolveType(result_ptr_ty, .direct);
const zcu = self.pt.zcu;
const object_ty = object_ptr_ty.childType(zcu);
switch (object_ty.zigTypeTag(zcu)) {
.Pointer => {
assert(object_ty.isSlice(zcu));
return self.accessChain(result_ty_id, object_ptr, &.{field_index});
},
.Struct => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => {
return try self.accessChain(result_ty_id, object_ptr, &.{field_index});
},
},
.Union => switch (object_ty.containerLayout(zcu)) {
.@"packed" => unreachable, // TODO
else => {
const layout = self.unionLayout(object_ty);
if (!layout.has_payload) {
// Asked to get a pointer to a zero-sized field. Just lower this
// to undefined, there is no reason to make it be a valid pointer.
return try self.spv.constUndef(result_ty_id);
}
const storage_class = self.spvStorageClass(object_ptr_ty.ptrAddressSpace(zcu));
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, storage_class);
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, object_ptr, &.{layout.payload_index});
const active_pl_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = result_ty_id,
.id_result = active_pl_ptr_id,
.operand = pl_ptr_id,
});
return active_pl_ptr_id;
},
},
else => unreachable,
}
}
fn airStructFieldPtrIndex(self: *NavGen, inst: Air.Inst.Index, field_index: u32) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const struct_ptr = try self.resolve(ty_op.operand);
const struct_ptr_ty = self.typeOf(ty_op.operand);
const result_ptr_ty = self.typeOfIndex(inst);
return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
}
const AllocOptions = struct {
initializer: ?IdRef = null,
/// The final storage class of the pointer. This may be either `.Generic` or `.Function`.
/// In either case, the local is allocated in the `.Function` storage class, and optionally
/// cast back to `.Generic`.
storage_class: StorageClass = .Generic,
};
// Allocate a function-local variable, with possible initializer.
// This function returns a pointer to a variable of type `ty`,
// which is in the Generic address space. The variable is actually
// placed in the Function address space.
fn alloc(
self: *NavGen,
ty: Type,
options: AllocOptions,
) !IdRef {
const ptr_fn_ty_id = try self.ptrType(ty, .Function);
// SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to
// directly generate them into func.prologue instead of the body.
const var_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = ptr_fn_ty_id,
.id_result = var_id,
.storage_class = .Function,
.initializer = options.initializer,
});
const target = self.getTarget();
if (target.os.tag == .vulkan) {
return var_id;
}
switch (options.storage_class) {
.Generic => {
const ptr_gn_ty_id = try self.ptrType(ty, .Generic);
// Convert to a generic pointer
return self.castToGeneric(ptr_gn_ty_id, var_id);
},
.Function => return var_id,
else => unreachable,
}
}
fn airAlloc(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ptr_ty = self.typeOfIndex(inst);
assert(ptr_ty.ptrAddressSpace(zcu) == .generic);
const child_ty = ptr_ty.childType(zcu);
return try self.alloc(child_ty, .{});
}
fn airArg(self: *NavGen) IdRef {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
/// Given a slice of incoming block connections, returns the block-id of the next
/// block to jump to. This function emits instructions, so it should be emitted
/// inside the merge block of the block.
/// This function should only be called with structured control flow generation.
fn structuredNextBlock(self: *NavGen, incoming: []const ControlFlow.Structured.Block.Incoming) !IdRef {
assert(self.control_flow == .structured);
const result_id = self.spv.allocId();
const block_id_ty_id = try self.resolveType(Type.u32, .direct);
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, @intCast(2 + incoming.len * 2)); // result type + result + variable/parent...
self.func.body.writeOperand(spec.IdResultType, block_id_ty_id);
self.func.body.writeOperand(spec.IdRef, result_id);
for (incoming) |incoming_block| {
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming_block.next_block, incoming_block.src_label });
}
return result_id;
}
/// Jumps to the block with the target block-id. This function must only be called when
/// terminating a body, there should be no instructions after it.
/// This function should only be called with structured control flow generation.
fn structuredBreak(self: *NavGen, target_block: IdRef) !void {
assert(self.control_flow == .structured);
const sblock = self.control_flow.structured.block_stack.getLast();
const merge_block = switch (sblock.*) {
.selection => |*merge| blk: {
const merge_label = self.spv.allocId();
try merge.merge_stack.append(self.gpa, .{
.incoming = .{
.src_label = self.current_block_label,
.next_block = target_block,
},
.merge_block = merge_label,
});
break :blk merge_label;
},
// Loop blocks do not end in a break. Not through a direct break,
// and also not through another instruction like cond_br or unreachable (these
// situations are replaced by `cond_br` in sema, or there is a `block` instruction
// placed around them).
.loop => unreachable,
};
try self.func.body.emitBranch(self.spv.gpa, merge_block);
}
/// Generate a body in a way that exits the body using only structured constructs.
/// Returns the block-id of the next block to jump to. After this function, a jump
/// should still be emitted to the block that should follow this structured body.
/// This function should only be called with structured control flow generation.
fn genStructuredBody(
self: *NavGen,
/// This parameter defines the method that this structured body is exited with.
block_merge_type: union(enum) {
/// Using selection; early exits from this body are surrounded with
/// if() statements.
selection,
/// Using loops; loops can be early exited by jumping to the merge block at
/// any time.
loop: struct {
merge_label: IdRef,
continue_label: IdRef,
},
},
body: []const Air.Inst.Index,
) !IdRef {
assert(self.control_flow == .structured);
var sblock: ControlFlow.Structured.Block = switch (block_merge_type) {
.loop => |merge| .{ .loop = .{
.merge_block = merge.merge_label,
} },
.selection => .{ .selection = .{} },
};
defer sblock.deinit(self.gpa);
{
try self.control_flow.structured.block_stack.append(self.gpa, &sblock);
defer _ = self.control_flow.structured.block_stack.pop();
try self.genBody(body);
}
switch (sblock) {
.selection => |merge| {
// Now generate the merge block for all merges that
// still need to be performed.
const merge_stack = merge.merge_stack.items;
// If no merges on the stack, this block didn't generate any jumps (all paths
// ended with a return or an unreachable). In that case, we don't need to do
// any merging.
if (merge_stack.len == 0) {
// We still need to return a value of a next block to jump to.
// For example, if we have code like
// if (x) {
// if (y) return else return;
// } else {}
// then we still need the outer to have an OpSelectionMerge and consequently
// a phi node. In that case we can just return bogus, since we know that its
// path will never be taken.
// Make sure that we are still in a block when exiting the function.
// TODO: Can we get rid of that?
try self.beginSpvBlock(self.spv.allocId());
const block_id_ty_id = try self.resolveType(Type.u32, .direct);
return try self.spv.constUndef(block_id_ty_id);
}
// The top-most merge actually only has a single source, the
// final jump of the block, or the merge block of a sub-block, cond_br,
// or loop. Therefore we just need to generate a block with a jump to the
// next merge block.
try self.beginSpvBlock(merge_stack[merge_stack.len - 1].merge_block);
// Now generate a merge ladder for the remaining merges in the stack.
var incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = merge_stack[merge_stack.len - 1].incoming.next_block,
};
var i = merge_stack.len - 1;
while (i > 0) {
i -= 1;
const step = merge_stack[i];
try self.func.body.emitBranch(self.spv.gpa, step.merge_block);
try self.beginSpvBlock(step.merge_block);
const next_block = try self.structuredNextBlock(&.{ incoming, step.incoming });
incoming = .{
.src_label = step.merge_block,
.next_block = next_block,
};
}
return incoming.next_block;
},
.loop => |merge| {
// Close the loop by jumping to the continue label
try self.func.body.emitBranch(self.spv.gpa, block_merge_type.loop.continue_label);
// For blocks we must simple merge all the incoming blocks to get the next block.
try self.beginSpvBlock(merge.merge_block);
return try self.structuredNextBlock(merge.merges.items);
},
}
}
fn airBlock(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.Block, inst_datas[@intFromEnum(inst)].ty_pl.payload);
return self.lowerBlock(inst, @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]));
}
fn lowerBlock(self: *NavGen, inst: Air.Inst.Index, body: []const Air.Inst.Index) !?IdRef {
// In AIR, a block doesn't really define an entry point like a block, but
// more like a scope that breaks can jump out of and "return" a value from.
// This cannot be directly modelled in SPIR-V, so in a block instruction,
// we're going to split up the current block by first generating the code
// of the block, then a label, and then generate the rest of the current
// ir.Block in a different SPIR-V block.
const pt = self.pt;
const zcu = pt.zcu;
const ty = self.typeOfIndex(inst);
const have_block_result = ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu);
const cf = switch (self.control_flow) {
.structured => |*cf| cf,
.unstructured => |*cf| {
var block = ControlFlow.Unstructured.Block{};
defer block.incoming_blocks.deinit(self.gpa);
// 4 chosen as arbitrary initial capacity.
try block.incoming_blocks.ensureUnusedCapacity(self.gpa, 4);
try cf.blocks.putNoClobber(self.gpa, inst, &block);
defer assert(cf.blocks.remove(inst));
try self.genBody(body);
// Only begin a new block if there were actually any breaks towards it.
if (block.label) |label| {
try self.beginSpvBlock(label);
}
if (!have_block_result)
return null;
assert(block.label != null);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveType(ty, .direct);
try self.func.body.emitRaw(
self.spv.gpa,
.OpPhi,
// result type + result + variable/parent...
2 + @as(u16, @intCast(block.incoming_blocks.items.len * 2)),
);
self.func.body.writeOperand(spec.IdResultType, result_type_id);
self.func.body.writeOperand(spec.IdRef, result_id);
for (block.incoming_blocks.items) |incoming| {
self.func.body.writeOperand(
spec.PairIdRefIdRef,
.{ incoming.break_value_id, incoming.src_label },
);
}
return result_id;
},
};
const maybe_block_result_var_id = if (have_block_result) blk: {
const block_result_var_id = try self.alloc(ty, .{ .storage_class = .Function });
try cf.block_results.putNoClobber(self.gpa, inst, block_result_var_id);
break :blk block_result_var_id;
} else null;
defer if (have_block_result) assert(cf.block_results.remove(inst));
const next_block = try self.genStructuredBody(.selection, body);
// When encountering a block instruction, we are always at least in the function's scope,
// so there always has to be another entry.
assert(cf.block_stack.items.len > 0);
// Check if the target of the branch was this current block.
const this_block = try self.constInt(Type.u32, @intFromEnum(inst), .direct);
const jump_to_this_block_id = self.spv.allocId();
const bool_ty_id = try self.resolveType(Type.bool, .direct);
try self.func.body.emit(self.spv.gpa, .OpIEqual, .{
.id_result_type = bool_ty_id,
.id_result = jump_to_this_block_id,
.operand_1 = next_block,
.operand_2 = this_block,
});
const sblock = cf.block_stack.getLast();
if (ty.isNoReturn(zcu)) {
// If this block is noreturn, this instruction is the last of a block,
// and we must simply jump to the block's merge unconditionally.
try self.structuredBreak(next_block);
} else {
switch (sblock.*) {
.selection => |*merge| {
// To jump out of a selection block, push a new entry onto its merge stack and
// generate a conditional branch to there and to the instructions following this block.
const merge_label = self.spv.allocId();
const then_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label,
.selection_control = .{},
});
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = jump_to_this_block_id,
.true_label = then_label,
.false_label = merge_label,
});
try merge.merge_stack.append(self.gpa, .{
.incoming = .{
.src_label = self.current_block_label,
.next_block = next_block,
},
.merge_block = merge_label,
});
try self.beginSpvBlock(then_label);
},
.loop => |*merge| {
// To jump out of a loop block, generate a conditional that exits the block
// to the loop merge if the target ID is not the one of this block.
const continue_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = jump_to_this_block_id,
.true_label = continue_label,
.false_label = merge.merge_block,
});
try merge.merges.append(self.gpa, .{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.beginSpvBlock(continue_label);
},
}
}
if (maybe_block_result_var_id) |block_result_var_id| {
return try self.load(ty, block_result_var_id, .{});
}
return null;
}
fn airBr(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const br = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
const operand_ty = self.typeOf(br.operand);
switch (self.control_flow) {
.structured => |*cf| {
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
const operand_id = try self.resolve(br.operand);
const block_result_var_id = cf.block_results.get(br.block_inst).?;
try self.store(operand_ty, block_result_var_id, operand_id, .{});
}
const next_block = try self.constInt(Type.u32, @intFromEnum(br.block_inst), .direct);
try self.structuredBreak(next_block);
},
.unstructured => |cf| {
const block = cf.blocks.get(br.block_inst).?;
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
const operand_id = try self.resolve(br.operand);
// current_block_label should not be undefined here, lest there
// is a br or br_void in the function's body.
try block.incoming_blocks.append(self.gpa, .{
.src_label = self.current_block_label,
.break_value_id = operand_id,
});
}
if (block.label == null) {
block.label = self.spv.allocId();
}
try self.func.body.emitBranch(self.spv.gpa, block.label.?);
},
}
}
fn airCondBr(self: *NavGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end..][0..cond_br.data.then_body_len]);
const else_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]);
const condition_id = try self.resolve(pl_op.operand);
const then_label = self.spv.allocId();
const else_label = self.spv.allocId();
switch (self.control_flow) {
.structured => {
const merge_label = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label,
.selection_control = .{},
});
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label,
.false_label = else_label,
});
try self.beginSpvBlock(then_label);
const then_next = try self.genStructuredBody(.selection, then_body);
const then_incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = then_next,
};
try self.func.body.emitBranch(self.spv.gpa, merge_label);
try self.beginSpvBlock(else_label);
const else_next = try self.genStructuredBody(.selection, else_body);
const else_incoming = ControlFlow.Structured.Block.Incoming{
.src_label = self.current_block_label,
.next_block = else_next,
};
try self.func.body.emitBranch(self.spv.gpa, merge_label);
try self.beginSpvBlock(merge_label);
const next_block = try self.structuredNextBlock(&.{ then_incoming, else_incoming });
try self.structuredBreak(next_block);
},
.unstructured => {
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label,
.false_label = else_label,
});
try self.beginSpvBlock(then_label);
try self.genBody(then_body);
try self.beginSpvBlock(else_label);
try self.genBody(else_body);
},
}
}
fn airLoop(self: *NavGen, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[loop.end..][0..loop.data.body_len]);
const body_label = self.spv.allocId();
switch (self.control_flow) {
.structured => {
const header_label = self.spv.allocId();
const merge_label = self.spv.allocId();
const continue_label = self.spv.allocId();
// The back-edge must point to the loop header, so generate a separate block for the
// loop header so that we don't accidentally include some instructions from there
// in the loop.
try self.func.body.emitBranch(self.spv.gpa, header_label);
try self.beginSpvBlock(header_label);
// Emit loop header and jump to loop body
try self.func.body.emit(self.spv.gpa, .OpLoopMerge, .{
.merge_block = merge_label,
.continue_target = continue_label,
.loop_control = .{},
});
try self.func.body.emitBranch(self.spv.gpa, body_label);
try self.beginSpvBlock(body_label);
const next_block = try self.genStructuredBody(.{ .loop = .{
.merge_label = merge_label,
.continue_label = continue_label,
} }, body);
try self.structuredBreak(next_block);
try self.beginSpvBlock(continue_label);
try self.func.body.emitBranch(self.spv.gpa, header_label);
},
.unstructured => {
try self.func.body.emitBranch(self.spv.gpa, body_label);
try self.beginSpvBlock(body_label);
try self.genBody(body);
try self.func.body.emitBranch(self.spv.gpa, body_label);
},
}
}
fn airLoad(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const ptr_ty = self.typeOf(ty_op.operand);
const elem_ty = self.typeOfIndex(inst);
const operand = try self.resolve(ty_op.operand);
if (!ptr_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
return try self.load(elem_ty, operand, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
}
fn airStore(self: *NavGen, inst: Air.Inst.Index) !void {
const zcu = self.pt.zcu;
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = ptr_ty.childType(zcu);
const ptr = try self.resolve(bin_op.lhs);
const value = try self.resolve(bin_op.rhs);
try self.store(elem_ty, ptr, value, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
}
fn airRet(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const operand = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ret_ty = self.typeOf(operand);
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const fn_info = zcu.typeToFunc(zcu.navValue(self.owner_nav).typeOf(zcu)).?;
if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const no_err_id = try self.constInt(Type.anyerror, 0, .direct);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const operand_id = try self.resolve(operand);
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
}
fn airRetLoad(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const ptr_ty = self.typeOf(un_op);
const ret_ty = ptr_ty.childType(zcu);
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const fn_info = zcu.typeToFunc(zcu.navValue(self.owner_nav).typeOf(zcu)).?;
if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const no_err_id = try self.constInt(Type.anyerror, 0, .direct);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const ptr = try self.resolve(un_op);
const value = try self.load(ret_ty, ptr, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{
.value = value,
});
}
fn airTry(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const err_union_id = try self.resolve(pl_op.operand);
const extra = self.air.extraData(Air.Try, pl_op.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
const err_union_ty = self.typeOf(pl_op.operand);
const payload_ty = self.typeOfIndex(inst);
const bool_ty_id = try self.resolveType(Type.bool, .direct);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
const err_id = if (eu_layout.payload_has_bits)
try self.extractField(Type.anyerror, err_union_id, eu_layout.errorFieldIndex())
else
err_union_id;
const zero_id = try self.constInt(Type.anyerror, 0, .direct);
const is_err_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
.id_result_type = bool_ty_id,
.id_result = is_err_id,
.operand_1 = err_id,
.operand_2 = zero_id,
});
// When there is an error, we must evaluate `body`. Otherwise we must continue
// with the current body.
// Just generate a new block here, then generate a new block inline for the remainder of the body.
const err_block = self.spv.allocId();
const ok_block = self.spv.allocId();
switch (self.control_flow) {
.structured => {
// According to AIR documentation, this block is guaranteed
// to not break and end in a return instruction. Thus,
// for structured control flow, we can just naively use
// the ok block as the merge block here.
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = ok_block,
.selection_control = .{},
});
},
.unstructured => {},
}
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = is_err_id,
.true_label = err_block,
.false_label = ok_block,
});
try self.beginSpvBlock(err_block);
try self.genBody(body);
try self.beginSpvBlock(ok_block);
}
if (!eu_layout.payload_has_bits) {
return null;
}
// Now just extract the payload, if required.
return try self.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex());
}
fn airErrUnionErr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const err_union_ty = self.typeOf(ty_op.operand);
const err_ty_id = try self.resolveType(Type.anyerror, .direct);
if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
// No error possible, so just return undefined.
return try self.spv.constUndef(err_ty_id);
}
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// If no payload, error union is represented by error set.
return operand_id;
}
return try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
}
fn airErrUnionPayload(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return null; // No error possible.
}
return try self.extractField(payload_ty, operand_id, eu_layout.payloadFieldIndex());
}
fn airWrapErrUnionErr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const operand_id = try self.resolve(ty_op.operand);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return operand_id;
}
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = operand_id;
members[eu_layout.payloadFieldIndex()] = try self.spv.constUndef(payload_ty_id);
var types: [2]Type = undefined;
types[eu_layout.errorFieldIndex()] = Type.anyerror;
types[eu_layout.payloadFieldIndex()] = payload_ty;
return try self.constructStruct(err_union_ty, &types, &members);
}
fn airWrapErrUnionPayload(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOf(ty_op.operand);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return try self.constInt(Type.anyerror, 0, .direct);
}
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = try self.constInt(Type.anyerror, 0, .direct);
members[eu_layout.payloadFieldIndex()] = try self.convertToIndirect(payload_ty, operand_id);
var types: [2]Type = undefined;
types[eu_layout.errorFieldIndex()] = Type.anyerror;
types[eu_layout.payloadFieldIndex()] = payload_ty;
return try self.constructStruct(err_union_ty, &types, &members);
}
fn airIsNull(self: *NavGen, inst: Air.Inst.Index, is_pointer: bool, pred: enum { is_null, is_non_null }) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
const operand_ty = self.typeOf(un_op);
const optional_ty = if (is_pointer) operand_ty.childType(zcu) else operand_ty;
const payload_ty = optional_ty.optionalChild(zcu);
const bool_ty_id = try self.resolveType(Type.bool, .direct);
if (optional_ty.optionalReprIsPayload(zcu)) {
// Pointer payload represents nullability: pointer or slice.
const loaded_id = if (is_pointer)
try self.load(optional_ty, operand_id, .{})
else
operand_id;
const ptr_ty = if (payload_ty.isSlice(zcu))
payload_ty.slicePtrFieldType(zcu)
else
payload_ty;
const ptr_id = if (payload_ty.isSlice(zcu))
try self.extractField(ptr_ty, loaded_id, 0)
else
loaded_id;
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
const null_id = try self.spv.constNull(ptr_ty_id);
const null_tmp = Temporary.init(ptr_ty, null_id);
const ptr = Temporary.init(ptr_ty, ptr_id);
const op: std.math.CompareOperator = switch (pred) {
.is_null => .eq,
.is_non_null => .neq,
};
const result = try self.cmp(op, ptr, null_tmp);
return try result.materialize(self);
}
const is_non_null_id = blk: {
if (is_pointer) {
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
const storage_class = self.spvStorageClass(operand_ty.ptrAddressSpace(zcu));
const bool_ptr_ty_id = try self.ptrType(Type.bool, storage_class);
const tag_ptr_id = try self.accessChain(bool_ptr_ty_id, operand_id, &.{1});
break :blk try self.load(Type.bool, tag_ptr_id, .{});
}
break :blk try self.load(Type.bool, operand_id, .{});
}
break :blk if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
try self.extractField(Type.bool, operand_id, 1)
else
// Optional representation is bool indicating whether the optional is set
// Optionals with no payload are represented as an (indirect) bool, so convert
// it back to the direct bool here.
try self.convertToDirect(Type.bool, operand_id);
};
return switch (pred) {
.is_null => blk: {
// Invert condition
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
.id_result_type = bool_ty_id,
.id_result = result_id,
.operand = is_non_null_id,
});
break :blk result_id;
},
.is_non_null => is_non_null_id,
};
}
fn airIsErr(self: *NavGen, inst: Air.Inst.Index, pred: enum { is_err, is_non_err }) !?IdRef {
const zcu = self.pt.zcu;
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
const operand_id = try self.resolve(un_op);
const err_union_ty = self.typeOf(un_op);
if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
return try self.constBool(pred == .is_non_err, .direct);
}
const payload_ty = err_union_ty.errorUnionPayload(zcu);
const eu_layout = self.errorUnionLayout(payload_ty);
const bool_ty_id = try self.resolveType(Type.bool, .direct);
const error_id = if (!eu_layout.payload_has_bits)
operand_id
else
try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
const result_id = self.spv.allocId();
const operands = .{
.id_result_type = bool_ty_id,
.id_result = result_id,
.operand_1 = error_id,
.operand_2 = try self.constInt(Type.anyerror, 0, .direct),
};
switch (pred) {
.is_err => try self.func.body.emit(self.spv.gpa, .OpINotEqual, operands),
.is_non_err => try self.func.body.emit(self.spv.gpa, .OpIEqual, operands),
}
return result_id;
}
fn airUnwrapOptional(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOf(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
if (optional_ty.optionalReprIsPayload(zcu)) {
return operand_id;
}
return try self.extractField(payload_ty, operand_id, 0);
}
fn airUnwrapOptionalPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const operand_ty = self.typeOf(ty_op.operand);
const optional_ty = operand_ty.childType(zcu);
const payload_ty = optional_ty.optionalChild(zcu);
const result_ty = self.typeOfIndex(inst);
const result_ty_id = try self.resolveType(result_ty, .direct);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
// There is no payload, but we still need to return a valid pointer.
// We can just return anything here, so just return a pointer to the operand.
return try self.bitCast(result_ty, operand_ty, operand_id);
}
if (optional_ty.optionalReprIsPayload(zcu)) {
// They are the same value.
return try self.bitCast(result_ty, operand_ty, operand_id);
}
return try self.accessChain(result_ty_id, operand_id, &.{0});
}
fn airWrapOptional(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const pt = self.pt;
const zcu = pt.zcu;
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const payload_ty = self.typeOf(ty_op.operand);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
return try self.constBool(true, .indirect);
}
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOfIndex(inst);
if (optional_ty.optionalReprIsPayload(zcu)) {
return operand_id;
}
const payload_id = try self.convertToIndirect(payload_ty, operand_id);
const members = [_]IdRef{ payload_id, try self.constBool(true, .indirect) };
const types = [_]Type{ payload_ty, Type.bool };
return try self.constructStruct(optional_ty, &types, &members);
}
fn airSwitchBr(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const target = self.getTarget();
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond_ty = self.typeOf(pl_op.operand);
const cond = try self.resolve(pl_op.operand);
var cond_indirect = try self.convertToIndirect(cond_ty, cond);
const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload);
const cond_words: u32 = switch (cond_ty.zigTypeTag(zcu)) {
.Bool, .ErrorSet => 1,
.Int => blk: {
const bits = cond_ty.intInfo(zcu).bits;
const backing_bits = self.backingIntBits(bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) 1 else 2;
},
.Enum => blk: {
const int_ty = cond_ty.intTagType(zcu);
const int_info = int_ty.intInfo(zcu);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) 1 else 2;
},
.Pointer => blk: {
cond_indirect = try self.intFromPtr(cond_indirect);
break :blk target.ptrBitWidth() / 32;
},
// TODO: Figure out which types apply here, and work around them as we can only do integers.
else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(zcu))}),
};
const num_cases = switch_br.data.cases_len;
// Compute the total number of arms that we need.
// Zig switches are grouped by condition, so we need to loop through all of them
const num_conditions = blk: {
var extra_index: usize = switch_br.end;
var num_conditions: u32 = 0;
for (0..num_cases) |_| {
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const case_body = self.air.extra[case.end + case.data.items_len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len;
num_conditions += case.data.items_len;
}
break :blk num_conditions;
};
// First, pre-allocate the labels for the cases.
const case_labels = self.spv.allocIds(num_cases);
// We always need the default case - if zig has none, we will generate unreachable there.
const default = self.spv.allocId();
const merge_label = switch (self.control_flow) {
.structured => self.spv.allocId(),
.unstructured => null,
};
if (self.control_flow == .structured) {
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
.merge_block = merge_label.?,
.selection_control = .{},
});
}
// Emit the instruction before generating the blocks.
try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
self.func.body.writeOperand(IdRef, cond_indirect);
self.func.body.writeOperand(IdRef, default);
// Emit each of the cases
{
var extra_index: usize = switch_br.end;
for (0..num_cases) |case_i| {
// SPIR-V needs a literal here, which' width depends on the case condition.
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const items: []const Air.Inst.Ref = @ptrCast(self.air.extra[case.end..][0..case.data.items_len]);
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len;
const label = case_labels.at(case_i);
for (items) |item| {
const value = (try self.air.value(item, pt)) orelse unreachable;
const int_val: u64 = switch (cond_ty.zigTypeTag(zcu)) {
.Bool, .Int => if (cond_ty.isSignedInt(zcu)) @bitCast(value.toSignedInt(zcu)) else value.toUnsignedInt(zcu),
.Enum => blk: {
// TODO: figure out of cond_ty is correct (something with enum literals)
break :blk (try value.intFromEnum(cond_ty, pt)).toUnsignedInt(zcu); // TODO: composite integer constants
},
.ErrorSet => value.getErrorInt(zcu),
.Pointer => value.toUnsignedInt(zcu),
else => unreachable,
};
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
1 => .{ .uint32 = @intCast(int_val) },
2 => .{ .uint64 = int_val },
else => unreachable,
};
self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
self.func.body.writeOperand(IdRef, label);
}
}
}
var incoming_structured_blocks = std.ArrayListUnmanaged(ControlFlow.Structured.Block.Incoming){};
defer incoming_structured_blocks.deinit(self.gpa);
if (self.control_flow == .structured) {
try incoming_structured_blocks.ensureUnusedCapacity(self.gpa, num_cases + 1);
}
// Now, finally, we can start emitting each of the cases.
var extra_index: usize = switch_br.end;
for (0..num_cases) |case_i| {
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const items: []const Air.Inst.Ref = @ptrCast(self.air.extra[case.end..][0..case.data.items_len]);
const case_body: []const Air.Inst.Index = @ptrCast(self.air.extra[case.end + items.len ..][0..case.data.body_len]);
extra_index = case.end + case.data.items_len + case_body.len;
const label = case_labels.at(case_i);
try self.beginSpvBlock(label);
switch (self.control_flow) {
.structured => {
const next_block = try self.genStructuredBody(.selection, case_body);
incoming_structured_blocks.appendAssumeCapacity(.{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
},
.unstructured => {
try self.genBody(case_body);
},
}
}
const else_body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra_index..][0..switch_br.data.else_body_len]);
try self.beginSpvBlock(default);
if (else_body.len != 0) {
switch (self.control_flow) {
.structured => {
const next_block = try self.genStructuredBody(.selection, else_body);
incoming_structured_blocks.appendAssumeCapacity(.{
.src_label = self.current_block_label,
.next_block = next_block,
});
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
},
.unstructured => {
try self.genBody(else_body);
},
}
} else {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
if (self.control_flow == .structured) {
try self.beginSpvBlock(merge_label.?);
const next_block = try self.structuredNextBlock(incoming_structured_blocks.items);
try self.structuredBreak(next_block);
}
}
fn airUnreach(self: *NavGen) !void {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
fn airDbgStmt(self: *NavGen, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
const dbg_stmt = self.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
const path = zcu.navFileScope(self.owner_nav).sub_file_path;
try self.func.body.emit(self.spv.gpa, .OpLine, .{
.file = try self.spv.resolveString(path),
.line = self.base_line + dbg_stmt.line + 1,
.column = dbg_stmt.column + 1,
});
}
fn airDbgInlineBlock(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.DbgInlineBlock, inst_datas[@intFromEnum(inst)].ty_pl.payload);
const old_base_line = self.base_line;
defer self.base_line = old_base_line;
self.base_line = zcu.navSrcLine(zcu.funcInfo(extra.data.func).owner_nav);
return self.lowerBlock(inst, @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]));
}
fn airDbgVar(self: *NavGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const target_id = try self.resolve(pl_op.operand);
const name: Air.NullTerminatedString = @enumFromInt(pl_op.payload);
try self.spv.debugName(target_id, name.toSlice(self.air));
}
fn airAssembly(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
const zcu = self.pt.zcu;
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
const is_volatile = @as(u1, @truncate(extra.data.flags >> 31)) != 0;
const clobbers_len: u31 = @truncate(extra.data.flags);
if (!is_volatile and self.liveness.isUnused(inst)) return null;
var extra_i: usize = extra.end;
const outputs: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra_i..][0..extra.data.outputs_len]);
extra_i += outputs.len;
const inputs: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra_i..][0..extra.data.inputs_len]);
extra_i += inputs.len;
if (outputs.len > 1) {
return self.todo("implement inline asm with more than 1 output", .{});
}
var output_extra_i = extra_i;
for (outputs) |output| {
if (output != .none) {
return self.todo("implement inline asm with non-returned output", .{});
}
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record output and use it somewhere.
}
var input_extra_i = extra_i;
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record input and use it somewhere.
_ = input;
}
{
var clobber_i: u32 = 0;
while (clobber_i < clobbers_len) : (clobber_i += 1) {
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
extra_i += clobber.len / 4 + 1;
// TODO: Record clobber and use it somewhere.
}
}
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
var as = SpvAssembler{
.gpa = self.gpa,
.src = asm_source,
.spv = self.spv,
.func = &self.func,
};
defer as.deinit();
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[input_extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
input_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const value = try self.resolve(input);
try as.value_map.put(as.gpa, name, .{ .value = value });
}
as.assemble() catch |err| switch (err) {
error.AssembleFail => {
// TODO: For now the compiler only supports a single error message per decl,
// so to translate the possible multiple errors from the assembler, emit
// them as notes here.
// TODO: Translate proper error locations.
assert(as.errors.items.len != 0);
assert(self.error_msg == null);
const src_loc = zcu.navSrcLoc(self.owner_nav);
self.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
const notes = try zcu.gpa.alloc(Zcu.ErrorMsg, as.errors.items.len);
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
{
errdefer zcu.gpa.free(notes);
var i: usize = 0;
errdefer for (notes[0..i]) |*note| {
note.deinit(zcu.gpa);
};
while (i < as.errors.items.len) : (i += 1) {
notes[i] = try Zcu.ErrorMsg.init(zcu.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
}
}
self.error_msg.?.notes = notes;
return error.CodegenFail;
},
else => |others| return others,
};
for (outputs) |output| {
_ = output;
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const result = as.value_map.get(name) orelse return {
return self.fail("invalid asm output '{s}'", .{name});
};
switch (result) {
.just_declared, .unresolved_forward_reference => unreachable,
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
.value => |ref| return ref,
}
// TODO: Multiple results
// TODO: Check that the output type from assembly is the same as the type actually expected by Zig.
}
return null;
}
fn airCall(self: *NavGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?IdRef {
_ = modifier;
const pt = self.pt;
const zcu = pt.zcu;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = self.air.extraData(Air.Call, pl_op.payload);
const args: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra.end..][0..extra.data.args_len]);
const callee_ty = self.typeOf(pl_op.operand);
const zig_fn_ty = switch (callee_ty.zigTypeTag(zcu)) {
.Fn => callee_ty,
.Pointer => return self.fail("cannot call function pointers", .{}),
else => unreachable,
};
const fn_info = zcu.typeToFunc(zig_fn_ty).?;
const return_type = fn_info.return_type;
const result_type_id = try self.resolveFnReturnType(Type.fromInterned(return_type));
const result_id = self.spv.allocId();
const callee_id = try self.resolve(pl_op.operand);
comptime assert(zig_call_abi_ver == 3);
const params = try self.gpa.alloc(spec.IdRef, args.len);
defer self.gpa.free(params);
var n_params: usize = 0;
for (args) |arg| {
// Note: resolve() might emit instructions, so we need to call it
// before starting to emit OpFunctionCall instructions. Hence the
// temporary params buffer.
const arg_ty = self.typeOf(arg);
if (!arg_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
const arg_id = try self.resolve(arg);
params[n_params] = arg_id;
n_params += 1;
}
try self.func.body.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = result_type_id,
.id_result = result_id,
.function = callee_id,
.id_ref_3 = params[0..n_params],
});
if (return_type == .noreturn_type) {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
if (self.liveness.isUnused(inst) or !Type.fromInterned(return_type).hasRuntimeBitsIgnoreComptime(zcu)) {
return null;
}
return result_id;
}
fn builtin3D(self: *NavGen, result_ty: Type, builtin: spec.BuiltIn, dimension: u32, out_of_range_value: anytype) !IdRef {
if (dimension >= 3) {
return try self.constInt(result_ty, out_of_range_value, .direct);
}
const vec_ty = try self.pt.vectorType(.{
.len = 3,
.child = result_ty.toIntern(),
});
const ptr_ty_id = try self.ptrType(vec_ty, .Input);
const spv_decl_index = try self.spv.builtin(ptr_ty_id, builtin);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
const ptr = self.spv.declPtr(spv_decl_index).result_id;
const vec = try self.load(vec_ty, ptr, .{});
return try self.extractVectorComponent(result_ty, vec, dimension);
}
fn airWorkItemId(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const dimension = pl_op.payload;
// TODO: Should we make these builtins return usize?
const result_id = try self.builtin3D(Type.u64, .LocalInvocationId, dimension, 0);
const tmp = Temporary.init(Type.u64, result_id);
const result = try self.buildIntConvert(Type.u32, tmp);
return try result.materialize(self);
}
fn airWorkGroupSize(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const dimension = pl_op.payload;
// TODO: Should we make these builtins return usize?
const result_id = try self.builtin3D(Type.u64, .WorkgroupSize, dimension, 0);
const tmp = Temporary.init(Type.u64, result_id);
const result = try self.buildIntConvert(Type.u32, tmp);
return try result.materialize(self);
}
fn airWorkGroupId(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const dimension = pl_op.payload;
// TODO: Should we make these builtins return usize?
const result_id = try self.builtin3D(Type.u64, .WorkgroupId, dimension, 0);
const tmp = Temporary.init(Type.u64, result_id);
const result = try self.buildIntConvert(Type.u32, tmp);
return try result.materialize(self);
}
fn typeOf(self: *NavGen, inst: Air.Inst.Ref) Type {
const zcu = self.pt.zcu;
return self.air.typeOf(inst, &zcu.intern_pool);
}
fn typeOfIndex(self: *NavGen, inst: Air.Inst.Index) Type {
const zcu = self.pt.zcu;
return self.air.typeOfIndex(inst, &zcu.intern_pool);
}
};