mirror of
https://github.com/ziglang/zig.git
synced 2025-12-25 15:43:06 +00:00
This actually used to be how it worked in stage1, and there was this issue to change it: #2649 So this commit is a reversal to that idea. One motivation for that issue was avoiding emitting the panic handler in compilations that do not have any calls to panic. This commit only resolves the panic handler in the event of a safety check function being emitted, so it does not have that flaw. The other reason given in that issue was for optimizations that elide safety checks. It's yet to be determined whether that was a good idea or not; this can get re-explored when we start adding optimization passes to AIR. This commit adds these AIR instructions, which are only emitted if `backendSupportsFeature(.safety_checked_arithmetic)` is true: * add_safe * sub_safe * mul_safe It removes these nonsensical AIR instructions: * addwrap_optimized * subwrap_optimized * mulwrap_optimized The safety-checked arithmetic functions push the burden of invoking the panic handler into the backend. This makes for a messier compiler implementation, but it reduces the amount of AIR instructions emitted by Sema, which reduces time spent in the secondary bottleneck of the compiler. It also generates more compact LLVM IR, reducing time spent in the primary bottleneck of the compiler. Finally, it eliminates 1 stack allocation per safety-check which was being used to store the resulting tuple. These allocations were going to be annoying when combined with suspension points.
3358 lines
142 KiB
Zig
3358 lines
142 KiB
Zig
const std = @import("std");
|
|
const Allocator = std.mem.Allocator;
|
|
const Target = std.Target;
|
|
const log = std.log.scoped(.codegen);
|
|
const assert = std.debug.assert;
|
|
|
|
const Module = @import("../Module.zig");
|
|
const Decl = Module.Decl;
|
|
const Type = @import("../type.zig").Type;
|
|
const Value = @import("../value.zig").Value;
|
|
const LazySrcLoc = Module.LazySrcLoc;
|
|
const Air = @import("../Air.zig");
|
|
const Zir = @import("../Zir.zig");
|
|
const Liveness = @import("../Liveness.zig");
|
|
|
|
const spec = @import("spirv/spec.zig");
|
|
const Opcode = spec.Opcode;
|
|
const Word = spec.Word;
|
|
const IdRef = spec.IdRef;
|
|
const IdResult = spec.IdResult;
|
|
const IdResultType = spec.IdResultType;
|
|
const StorageClass = spec.StorageClass;
|
|
|
|
const SpvModule = @import("spirv/Module.zig");
|
|
const CacheRef = SpvModule.CacheRef;
|
|
const CacheString = SpvModule.CacheString;
|
|
|
|
const SpvSection = @import("spirv/Section.zig");
|
|
const SpvAssembler = @import("spirv/Assembler.zig");
|
|
|
|
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
|
|
|
|
const IncomingBlock = struct {
|
|
src_label_id: IdRef,
|
|
break_value_id: IdRef,
|
|
};
|
|
|
|
const BlockMap = std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
|
|
label_id: IdRef,
|
|
incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
|
|
});
|
|
|
|
/// Maps Zig decl indices to linking SPIR-V linking information.
|
|
pub const DeclLinkMap = std.AutoHashMap(Module.Decl.Index, SpvModule.Decl.Index);
|
|
|
|
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
|
|
pub const DeclGen = struct {
|
|
/// A general-purpose allocator that can be used for any allocations for this DeclGen.
|
|
gpa: Allocator,
|
|
|
|
/// The Zig module that we are generating decls for.
|
|
module: *Module,
|
|
|
|
/// The SPIR-V module that instructions should be emitted into.
|
|
spv: *SpvModule,
|
|
|
|
/// The decl we are currently generating code for.
|
|
decl_index: Decl.Index,
|
|
|
|
/// The intermediate code of the declaration we are currently generating. Note: If
|
|
/// the declaration is not a function, this value will be undefined!
|
|
air: Air,
|
|
|
|
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
|
|
/// Note: If the declaration is not a function, this value will be undefined!
|
|
liveness: Liveness,
|
|
|
|
/// Maps Zig Decl indices to SPIR-V globals.
|
|
decl_link: *DeclLinkMap,
|
|
|
|
/// An array of function argument result-ids. Each index corresponds with the
|
|
/// function argument of the same index.
|
|
args: std.ArrayListUnmanaged(IdRef) = .{},
|
|
|
|
/// A counter to keep track of how many `arg` instructions we've seen yet.
|
|
next_arg_index: u32,
|
|
|
|
/// A map keeping track of which instruction generated which result-id.
|
|
inst_results: InstMap = .{},
|
|
|
|
/// We need to keep track of result ids for block labels, as well as the 'incoming'
|
|
/// blocks for a block.
|
|
blocks: BlockMap = .{},
|
|
|
|
/// The label of the SPIR-V block we are currently generating.
|
|
current_block_label_id: IdRef,
|
|
|
|
/// The code (prologue and body) for the function we are currently generating code for.
|
|
func: SpvModule.Fn = .{},
|
|
|
|
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
|
|
/// Memory is owned by `module.gpa`.
|
|
error_msg: ?*Module.ErrorMsg,
|
|
|
|
/// Possible errors the `genDecl` function may return.
|
|
const Error = error{ CodegenFail, OutOfMemory };
|
|
|
|
/// This structure is used to return information about a type typically used for
|
|
/// arithmetic operations. These types may either be integers, floats, or a vector
|
|
/// of these. Most scalar operations also work on vectors, so we can easily represent
|
|
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
|
|
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
|
|
const ArithmeticTypeInfo = struct {
|
|
/// A classification of the inner type.
|
|
const Class = enum {
|
|
/// A boolean.
|
|
bool,
|
|
|
|
/// A regular, **native**, integer.
|
|
/// This is only returned when the backend supports this int as a native type (when
|
|
/// the relevant capability is enabled).
|
|
integer,
|
|
|
|
/// A regular float. These are all required to be natively supported. Floating points
|
|
/// for which the relevant capability is not enabled are not emulated.
|
|
float,
|
|
|
|
/// An integer of a 'strange' size (which' bit size is not the same as its backing
|
|
/// type. **Note**: this may **also** include power-of-2 integers for which the
|
|
/// relevant capability is not enabled), but still within the limits of the largest
|
|
/// natively supported integer type.
|
|
strange_integer,
|
|
|
|
/// An integer with more bits than the largest natively supported integer type.
|
|
composite_integer,
|
|
};
|
|
|
|
/// The number of bits in the inner type.
|
|
/// This is the actual number of bits of the type, not the size of the backing integer.
|
|
bits: u16,
|
|
|
|
/// Whether the type is a vector.
|
|
is_vector: bool,
|
|
|
|
/// Whether the inner type is signed. Only relevant for integers.
|
|
signedness: std.builtin.Signedness,
|
|
|
|
/// A classification of the inner type. These scenarios
|
|
/// will all have to be handled slightly different.
|
|
class: Class,
|
|
};
|
|
|
|
/// Data can be lowered into in two basic representations: indirect, which is when
|
|
/// a type is stored in memory, and direct, which is how a type is stored when its
|
|
/// a direct SPIR-V value.
|
|
const Repr = enum {
|
|
/// A SPIR-V value as it would be used in operations.
|
|
direct,
|
|
/// A SPIR-V value as it is stored in memory.
|
|
indirect,
|
|
};
|
|
|
|
/// Initialize the common resources of a DeclGen. Some fields are left uninitialized,
|
|
/// only set when `gen` is called.
|
|
pub fn init(
|
|
allocator: Allocator,
|
|
module: *Module,
|
|
spv: *SpvModule,
|
|
decl_link: *DeclLinkMap,
|
|
) DeclGen {
|
|
return .{
|
|
.gpa = allocator,
|
|
.module = module,
|
|
.spv = spv,
|
|
.decl_index = undefined,
|
|
.air = undefined,
|
|
.liveness = undefined,
|
|
.decl_link = decl_link,
|
|
.next_arg_index = undefined,
|
|
.current_block_label_id = undefined,
|
|
.error_msg = undefined,
|
|
};
|
|
}
|
|
|
|
/// Generate the code for `decl`. If a reportable error occurred during code generation,
|
|
/// a message is returned by this function. Callee owns the memory. If this function
|
|
/// returns such a reportable error, it is valid to be called again for a different decl.
|
|
pub fn gen(self: *DeclGen, decl_index: Decl.Index, air: Air, liveness: Liveness) !?*Module.ErrorMsg {
|
|
// Reset internal resources, we don't want to re-allocate these.
|
|
self.decl_index = decl_index;
|
|
self.air = air;
|
|
self.liveness = liveness;
|
|
self.args.items.len = 0;
|
|
self.next_arg_index = 0;
|
|
self.inst_results.clearRetainingCapacity();
|
|
self.blocks.clearRetainingCapacity();
|
|
self.current_block_label_id = undefined;
|
|
self.func.reset();
|
|
self.error_msg = null;
|
|
|
|
self.genDecl() catch |err| switch (err) {
|
|
error.CodegenFail => return self.error_msg,
|
|
else => |others| {
|
|
// There might be an error that happened *after* self.error_msg
|
|
// was already allocated, so be sure to free it.
|
|
if (self.error_msg) |error_msg| {
|
|
error_msg.deinit(self.module.gpa);
|
|
}
|
|
return others;
|
|
},
|
|
};
|
|
|
|
return null;
|
|
}
|
|
|
|
/// Free resources owned by the DeclGen.
|
|
pub fn deinit(self: *DeclGen) void {
|
|
self.args.deinit(self.gpa);
|
|
self.inst_results.deinit(self.gpa);
|
|
self.blocks.deinit(self.gpa);
|
|
self.func.deinit(self.gpa);
|
|
}
|
|
|
|
/// Return the target which we are currently compiling for.
|
|
pub fn getTarget(self: *DeclGen) std.Target {
|
|
return self.module.getTarget();
|
|
}
|
|
|
|
pub fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
|
|
@setCold(true);
|
|
const mod = self.module;
|
|
const src = LazySrcLoc.nodeOffset(0);
|
|
const src_loc = src.toSrcLoc(self.module.declPtr(self.decl_index), mod);
|
|
assert(self.error_msg == null);
|
|
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
|
|
return error.CodegenFail;
|
|
}
|
|
|
|
pub fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
|
|
return self.fail("TODO (SPIR-V): " ++ format, args);
|
|
}
|
|
|
|
/// Fetch the result-id for a previously generated instruction or constant.
|
|
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef {
|
|
const mod = self.module;
|
|
if (try self.air.value(inst, mod)) |val| {
|
|
const ty = self.typeOf(inst);
|
|
if (ty.zigTypeTag(mod) == .Fn) {
|
|
const fn_decl_index = switch (mod.intern_pool.indexToKey(val.ip_index)) {
|
|
.extern_func => |extern_func| extern_func.decl,
|
|
.func => |func| mod.funcPtr(func.index).owner_decl,
|
|
else => unreachable,
|
|
};
|
|
const spv_decl_index = try self.resolveDecl(fn_decl_index);
|
|
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
|
|
return self.spv.declPtr(spv_decl_index).result_id;
|
|
}
|
|
|
|
return try self.constant(ty, val, .direct);
|
|
}
|
|
const index = Air.refToIndex(inst).?;
|
|
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
|
|
}
|
|
|
|
/// Fetch or allocate a result id for decl index. This function also marks the decl as alive.
|
|
/// Note: Function does not actually generate the decl.
|
|
fn resolveDecl(self: *DeclGen, decl_index: Module.Decl.Index) !SpvModule.Decl.Index {
|
|
const decl = self.module.declPtr(decl_index);
|
|
try self.module.markDeclAlive(decl);
|
|
|
|
const entry = try self.decl_link.getOrPut(decl_index);
|
|
if (!entry.found_existing) {
|
|
// TODO: Extern fn?
|
|
const kind: SpvModule.DeclKind = if (decl.val.getFunctionIndex(self.module) != .none)
|
|
.func
|
|
else
|
|
.global;
|
|
|
|
entry.value_ptr.* = try self.spv.allocDecl(kind);
|
|
}
|
|
|
|
return entry.value_ptr.*;
|
|
}
|
|
|
|
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
|
|
/// block we are currently generating.
|
|
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
|
|
/// keep track of the previous block.
|
|
fn beginSpvBlock(self: *DeclGen, label_id: IdResult) !void {
|
|
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label_id });
|
|
self.current_block_label_id = label_id;
|
|
}
|
|
|
|
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
|
|
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
|
|
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
|
|
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
|
|
/// that size. In this case, multiple elements of the largest type should be used.
|
|
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
|
|
/// The result is valid to be used with OpTypeInt.
|
|
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
|
|
/// TODO: Should the result of this function be cached?
|
|
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
|
|
const target = self.getTarget();
|
|
|
|
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
|
|
assert(bits != 0);
|
|
|
|
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
|
|
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
|
|
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
|
|
.{ .bits = 8, .feature = .Int8 },
|
|
.{ .bits = 16, .feature = .Int16 },
|
|
.{ .bits = 32, .feature = null },
|
|
.{ .bits = 64, .feature = .Int64 },
|
|
};
|
|
|
|
for (ints) |int| {
|
|
const has_feature = if (int.feature) |feature|
|
|
Target.spirv.featureSetHas(target.cpu.features, feature)
|
|
else
|
|
true;
|
|
|
|
if (bits <= int.bits and has_feature) {
|
|
return int.bits;
|
|
}
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
|
|
/// the Int64 capability is enabled).
|
|
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
|
|
/// is no way of knowing whether those are actually supported.
|
|
/// TODO: Maybe this should be cached?
|
|
fn largestSupportedIntBits(self: *DeclGen) u16 {
|
|
const target = self.getTarget();
|
|
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
|
|
64
|
|
else
|
|
32;
|
|
}
|
|
|
|
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
|
|
/// arrays of largestSupportedIntBits().
|
|
/// Asserts `ty` is an integer.
|
|
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
|
|
return self.backingIntBits(ty) == null;
|
|
}
|
|
|
|
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
|
|
const mod = self.module;
|
|
const target = self.getTarget();
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Bool => ArithmeticTypeInfo{
|
|
.bits = 1, // Doesn't matter for this class.
|
|
.is_vector = false,
|
|
.signedness = .unsigned, // Technically, but doesn't matter for this class.
|
|
.class = .bool,
|
|
},
|
|
.Float => ArithmeticTypeInfo{
|
|
.bits = ty.floatBits(target),
|
|
.is_vector = false,
|
|
.signedness = .signed, // Technically, but doesn't matter for this class.
|
|
.class = .float,
|
|
},
|
|
.Int => blk: {
|
|
const int_info = ty.intInfo(mod);
|
|
// TODO: Maybe it's useful to also return this value.
|
|
const maybe_backing_bits = self.backingIntBits(int_info.bits);
|
|
break :blk ArithmeticTypeInfo{
|
|
.bits = int_info.bits,
|
|
.is_vector = false,
|
|
.signedness = int_info.signedness,
|
|
.class = if (maybe_backing_bits) |backing_bits|
|
|
if (backing_bits == int_info.bits)
|
|
ArithmeticTypeInfo.Class.integer
|
|
else
|
|
ArithmeticTypeInfo.Class.strange_integer
|
|
else
|
|
.composite_integer,
|
|
};
|
|
},
|
|
// As of yet, there is no vector support in the self-hosted compiler.
|
|
.Vector => self.todo("implement arithmeticTypeInfo for Vector", .{}),
|
|
// TODO: For which types is this the case?
|
|
// else => self.todo("implement arithmeticTypeInfo for {}", .{ty.fmt(self.module)}),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Emits a bool constant in a particular representation.
|
|
fn constBool(self: *DeclGen, value: bool, repr: Repr) !IdRef {
|
|
switch (repr) {
|
|
.indirect => {
|
|
const int_ty_ref = try self.intType(.unsigned, 1);
|
|
return self.spv.constInt(int_ty_ref, @intFromBool(value));
|
|
},
|
|
.direct => {
|
|
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
|
|
return self.spv.constBool(bool_ty_ref, value);
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Construct a struct at runtime.
|
|
/// result_ty_ref must be a struct type.
|
|
fn constructStruct(self: *DeclGen, result_ty_ref: CacheRef, constituents: []const IdRef) !IdRef {
|
|
// The Khronos LLVM-SPIRV translator crashes because it cannot construct structs which'
|
|
// operands are not constant.
|
|
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/1349
|
|
// For now, just initialize the struct by setting the fields manually...
|
|
// TODO: Make this OpCompositeConstruct when we can
|
|
const ptr_composite_id = try self.alloc(result_ty_ref, null);
|
|
// Note: using 32-bit ints here because usize crashes the translator as well
|
|
const index_ty_ref = try self.intType(.unsigned, 32);
|
|
|
|
const spv_composite_ty = self.spv.cache.lookup(result_ty_ref).struct_type;
|
|
const member_types = spv_composite_ty.member_types;
|
|
|
|
for (constituents, member_types, 0..) |constitent_id, member_ty_ref, index| {
|
|
const index_id = try self.spv.constInt(index_ty_ref, index);
|
|
const ptr_member_ty_ref = try self.spv.ptrType(member_ty_ref, .Generic);
|
|
const ptr_id = try self.accessChain(ptr_member_ty_ref, ptr_composite_id, &.{index_id});
|
|
try self.func.body.emit(self.spv.gpa, .OpStore, .{
|
|
.pointer = ptr_id,
|
|
.object = constitent_id,
|
|
});
|
|
}
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.pointer = ptr_composite_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
const IndirectConstantLowering = struct {
|
|
const undef = 0xAA;
|
|
|
|
dg: *DeclGen,
|
|
/// Cached reference of the u32 type.
|
|
u32_ty_ref: CacheRef,
|
|
/// The members of the resulting structure type
|
|
members: std.ArrayList(CacheRef),
|
|
/// The initializers of each of the members.
|
|
initializers: std.ArrayList(IdRef),
|
|
/// The current size of the structure. Includes
|
|
/// the bytes in partial_word.
|
|
size: u32 = 0,
|
|
/// The partially filled last constant.
|
|
/// If full, its flushed.
|
|
partial_word: std.BoundedArray(u8, @sizeOf(Word)) = .{},
|
|
/// The declaration dependencies of the constant we are lowering.
|
|
decl_deps: std.AutoArrayHashMap(SpvModule.Decl.Index, void),
|
|
|
|
/// Utility function to get the section that instructions should be lowered to.
|
|
fn section(self: *@This()) *SpvSection {
|
|
return &self.dg.spv.globals.section;
|
|
}
|
|
|
|
/// Flush the partial_word to the members. If the partial_word is not
|
|
/// filled, this adds padding bytes (which are undefined).
|
|
fn flush(self: *@This()) !void {
|
|
if (self.partial_word.len == 0) {
|
|
// No need to add it there.
|
|
return;
|
|
}
|
|
|
|
for (self.partial_word.unusedCapacitySlice()) |*unused| {
|
|
// TODO: Perhaps we should generate OpUndef for these bytes?
|
|
unused.* = undef;
|
|
}
|
|
|
|
const word = @as(Word, @bitCast(self.partial_word.buffer));
|
|
const result_id = try self.dg.spv.constInt(self.u32_ty_ref, word);
|
|
try self.members.append(self.u32_ty_ref);
|
|
try self.initializers.append(result_id);
|
|
|
|
self.partial_word.len = 0;
|
|
self.size = std.mem.alignForward(u32, self.size, @sizeOf(Word));
|
|
}
|
|
|
|
/// Fill the buffer with undefined values until the size is aligned to `align`.
|
|
fn fillToAlign(self: *@This(), alignment: u32) !void {
|
|
const target_size = std.mem.alignForward(u32, self.size, alignment);
|
|
try self.addUndef(target_size - self.size);
|
|
}
|
|
|
|
fn addUndef(self: *@This(), amt: u64) !void {
|
|
for (0..@as(usize, @intCast(amt))) |_| {
|
|
try self.addByte(undef);
|
|
}
|
|
}
|
|
|
|
/// Add a single byte of data to the constant.
|
|
fn addByte(self: *@This(), data: u8) !void {
|
|
self.partial_word.append(data) catch {
|
|
try self.flush();
|
|
self.partial_word.append(data) catch unreachable;
|
|
};
|
|
self.size += 1;
|
|
}
|
|
|
|
/// Add many bytes of data to the constnat.
|
|
fn addBytes(self: *@This(), data: []const u8) !void {
|
|
// TODO: Improve performance by adding in bulk, or something?
|
|
for (data) |byte| {
|
|
try self.addByte(byte);
|
|
}
|
|
}
|
|
|
|
fn addPtr(self: *@This(), ptr_ty_ref: CacheRef, ptr_id: IdRef) !void {
|
|
// TODO: Double check pointer sizes here.
|
|
// shared pointers might be u32...
|
|
const target = self.dg.getTarget();
|
|
const width = @divExact(target.ptrBitWidth(), 8);
|
|
if (self.size % width != 0) {
|
|
return self.dg.todo("misaligned pointer constants", .{});
|
|
}
|
|
try self.members.append(ptr_ty_ref);
|
|
try self.initializers.append(ptr_id);
|
|
self.size += width;
|
|
}
|
|
|
|
fn addNullPtr(self: *@This(), ptr_ty_ref: CacheRef) !void {
|
|
const result_id = try self.dg.spv.constNull(ptr_ty_ref);
|
|
try self.addPtr(ptr_ty_ref, result_id);
|
|
}
|
|
|
|
fn addConstInt(self: *@This(), comptime T: type, value: T) !void {
|
|
if (@bitSizeOf(T) % 8 != 0) {
|
|
@compileError("todo: non byte aligned int constants");
|
|
}
|
|
|
|
// TODO: Swap endianness if the compiler is big endian.
|
|
try self.addBytes(std.mem.asBytes(&value));
|
|
}
|
|
|
|
fn addConstBool(self: *@This(), value: bool) !void {
|
|
try self.addByte(@intFromBool(value)); // TODO: Keep in sync with something?
|
|
}
|
|
|
|
fn addInt(self: *@This(), ty: Type, val: Value) !void {
|
|
const mod = self.dg.module;
|
|
const int_info = ty.intInfo(mod);
|
|
const int_bits = switch (int_info.signedness) {
|
|
.signed => @as(u64, @bitCast(val.toSignedInt(mod))),
|
|
.unsigned => val.toUnsignedInt(mod),
|
|
};
|
|
|
|
// TODO: Swap endianess if the compiler is big endian.
|
|
const len = ty.abiSize(mod);
|
|
try self.addBytes(std.mem.asBytes(&int_bits)[0..@as(usize, @intCast(len))]);
|
|
}
|
|
|
|
fn addFloat(self: *@This(), ty: Type, val: Value) !void {
|
|
const mod = self.dg.module;
|
|
const target = self.dg.getTarget();
|
|
const len = ty.abiSize(mod);
|
|
|
|
// TODO: Swap endianess if the compiler is big endian.
|
|
switch (ty.floatBits(target)) {
|
|
16 => {
|
|
const float_bits = val.toFloat(f16, mod);
|
|
try self.addBytes(std.mem.asBytes(&float_bits)[0..@as(usize, @intCast(len))]);
|
|
},
|
|
32 => {
|
|
const float_bits = val.toFloat(f32, mod);
|
|
try self.addBytes(std.mem.asBytes(&float_bits)[0..@as(usize, @intCast(len))]);
|
|
},
|
|
64 => {
|
|
const float_bits = val.toFloat(f64, mod);
|
|
try self.addBytes(std.mem.asBytes(&float_bits)[0..@as(usize, @intCast(len))]);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
fn addDeclRef(self: *@This(), ty: Type, decl_index: Decl.Index) !void {
|
|
const dg = self.dg;
|
|
const mod = dg.module;
|
|
|
|
const ty_ref = try self.dg.resolveType(ty, .indirect);
|
|
const ty_id = dg.typeId(ty_ref);
|
|
|
|
const decl = dg.module.declPtr(decl_index);
|
|
const spv_decl_index = try dg.resolveDecl(decl_index);
|
|
|
|
switch (mod.intern_pool.indexToKey(decl.val.ip_index)) {
|
|
.func => {
|
|
// TODO: Properly lower function pointers. For now we are going to hack around it and
|
|
// just generate an empty pointer. Function pointers are represented by usize for now,
|
|
// though.
|
|
try self.addInt(Type.usize, Value.zero_usize);
|
|
// TODO: Add dependency
|
|
return;
|
|
},
|
|
.extern_func => unreachable, // TODO
|
|
else => {
|
|
const result_id = dg.spv.allocId();
|
|
|
|
try self.decl_deps.put(spv_decl_index, {});
|
|
|
|
const decl_id = dg.spv.declPtr(spv_decl_index).result_id;
|
|
// TODO: Do we need a storage class cast here?
|
|
// TODO: We can probably eliminate these casts
|
|
try dg.spv.globals.section.emitSpecConstantOp(dg.spv.gpa, .OpBitcast, .{
|
|
.id_result_type = ty_id,
|
|
.id_result = result_id,
|
|
.operand = decl_id,
|
|
});
|
|
|
|
try self.addPtr(ty_ref, result_id);
|
|
},
|
|
}
|
|
}
|
|
|
|
fn lower(self: *@This(), ty: Type, arg_val: Value) !void {
|
|
const dg = self.dg;
|
|
const mod = dg.module;
|
|
|
|
var val = arg_val;
|
|
switch (mod.intern_pool.indexToKey(val.toIntern())) {
|
|
.runtime_value => |rt| val = rt.val.toValue(),
|
|
else => {},
|
|
}
|
|
|
|
if (val.isUndefDeep(mod)) {
|
|
const size = ty.abiSize(mod);
|
|
return try self.addUndef(size);
|
|
}
|
|
|
|
switch (mod.intern_pool.indexToKey(val.toIntern())) {
|
|
.int_type,
|
|
.ptr_type,
|
|
.array_type,
|
|
.vector_type,
|
|
.opt_type,
|
|
.anyframe_type,
|
|
.error_union_type,
|
|
.simple_type,
|
|
.struct_type,
|
|
.anon_struct_type,
|
|
.union_type,
|
|
.opaque_type,
|
|
.enum_type,
|
|
.func_type,
|
|
.error_set_type,
|
|
.inferred_error_set_type,
|
|
=> unreachable, // types, not values
|
|
|
|
.undef, .runtime_value => unreachable, // handled above
|
|
.simple_value => |simple_value| switch (simple_value) {
|
|
.undefined,
|
|
.void,
|
|
.null,
|
|
.empty_struct,
|
|
.@"unreachable",
|
|
.generic_poison,
|
|
=> unreachable, // non-runtime values
|
|
.false, .true => try self.addConstBool(val.toBool()),
|
|
},
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.enum_literal,
|
|
.empty_enum_value,
|
|
=> unreachable, // non-runtime values
|
|
.int => try self.addInt(ty, val),
|
|
.err => |err| {
|
|
const int = try mod.getErrorValue(err.name);
|
|
try self.addConstInt(u16, @as(u16, @intCast(int)));
|
|
},
|
|
.error_union => |error_union| {
|
|
const payload_ty = ty.errorUnionPayload(mod);
|
|
const is_pl = val.errorUnionIsPayload(mod);
|
|
const error_val = if (!is_pl) val else try mod.intValue(Type.anyerror, 0);
|
|
|
|
const eu_layout = dg.errorUnionLayout(payload_ty);
|
|
if (!eu_layout.payload_has_bits) {
|
|
return try self.lower(Type.anyerror, error_val);
|
|
}
|
|
|
|
const payload_size = payload_ty.abiSize(mod);
|
|
const error_size = Type.anyerror.abiAlignment(mod);
|
|
const ty_size = ty.abiSize(mod);
|
|
const padding = ty_size - payload_size - error_size;
|
|
|
|
const payload_val = switch (error_union.val) {
|
|
.err_name => try mod.intern(.{ .undef = payload_ty.ip_index }),
|
|
.payload => |payload| payload,
|
|
}.toValue();
|
|
|
|
if (eu_layout.error_first) {
|
|
try self.lower(Type.anyerror, error_val);
|
|
try self.lower(payload_ty, payload_val);
|
|
} else {
|
|
try self.lower(payload_ty, payload_val);
|
|
try self.lower(Type.anyerror, error_val);
|
|
}
|
|
|
|
try self.addUndef(padding);
|
|
},
|
|
.enum_tag => {
|
|
const int_val = try val.intFromEnum(ty, mod);
|
|
|
|
const int_ty = ty.intTagType(mod);
|
|
|
|
try self.lower(int_ty, int_val);
|
|
},
|
|
.float => try self.addFloat(ty, val),
|
|
.ptr => |ptr| {
|
|
switch (ptr.addr) {
|
|
.decl => |decl| try self.addDeclRef(ty, decl),
|
|
.mut_decl => |mut_decl| try self.addDeclRef(ty, mut_decl.decl),
|
|
else => |tag| return dg.todo("pointer value of type {s}", .{@tagName(tag)}),
|
|
}
|
|
if (ptr.len != .none) {
|
|
try self.addInt(Type.usize, ptr.len.toValue());
|
|
}
|
|
},
|
|
.opt => {
|
|
const payload_ty = ty.optionalChild(mod);
|
|
const payload_val = val.optionalValue(mod);
|
|
const abi_size = ty.abiSize(mod);
|
|
|
|
if (!payload_ty.hasRuntimeBits(mod)) {
|
|
try self.addConstBool(payload_val != null);
|
|
return;
|
|
} else if (ty.optionalReprIsPayload(mod)) {
|
|
// Optional representation is a nullable pointer or slice.
|
|
if (payload_val) |pl_val| {
|
|
try self.lower(payload_ty, pl_val);
|
|
} else {
|
|
const ptr_ty_ref = try dg.resolveType(ty, .indirect);
|
|
try self.addNullPtr(ptr_ty_ref);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Optional representation is a structure.
|
|
// { Payload, Bool }
|
|
|
|
// Subtract 1 for @sizeOf(bool).
|
|
// TODO: Make this not hardcoded.
|
|
const payload_size = payload_ty.abiSize(mod);
|
|
const padding = abi_size - payload_size - 1;
|
|
|
|
if (payload_val) |pl_val| {
|
|
try self.lower(payload_ty, pl_val);
|
|
} else {
|
|
try self.addUndef(payload_size);
|
|
}
|
|
try self.addConstBool(payload_val != null);
|
|
try self.addUndef(padding);
|
|
},
|
|
.aggregate => |aggregate| switch (mod.intern_pool.indexToKey(ty.ip_index)) {
|
|
.array_type => |array_type| {
|
|
const elem_ty = array_type.child.toType();
|
|
switch (aggregate.storage) {
|
|
.bytes => |bytes| try self.addBytes(bytes),
|
|
.elems, .repeated_elem => {
|
|
for (0..@as(usize, @intCast(array_type.len))) |i| {
|
|
try self.lower(elem_ty, switch (aggregate.storage) {
|
|
.bytes => unreachable,
|
|
.elems => |elem_vals| elem_vals[@as(usize, @intCast(i))].toValue(),
|
|
.repeated_elem => |elem_val| elem_val.toValue(),
|
|
});
|
|
}
|
|
},
|
|
}
|
|
if (array_type.sentinel != .none) {
|
|
try self.lower(elem_ty, array_type.sentinel.toValue());
|
|
}
|
|
},
|
|
.vector_type => return dg.todo("indirect constant of type {}", .{ty.fmt(mod)}),
|
|
.struct_type => {
|
|
const struct_ty = mod.typeToStruct(ty).?;
|
|
if (struct_ty.layout == .Packed) {
|
|
return dg.todo("packed struct constants", .{});
|
|
}
|
|
|
|
const struct_begin = self.size;
|
|
for (struct_ty.fields.values(), 0..) |field, i| {
|
|
if (field.is_comptime or !field.ty.hasRuntimeBits(mod)) continue;
|
|
|
|
const field_val = switch (aggregate.storage) {
|
|
.bytes => |bytes| try mod.intern_pool.get(mod.gpa, .{ .int = .{
|
|
.ty = field.ty.toIntern(),
|
|
.storage = .{ .u64 = bytes[i] },
|
|
} }),
|
|
.elems => |elems| elems[i],
|
|
.repeated_elem => |elem| elem,
|
|
};
|
|
try self.lower(field.ty, field_val.toValue());
|
|
|
|
// Add padding if required.
|
|
// TODO: Add to type generation as well?
|
|
const unpadded_field_end = self.size - struct_begin;
|
|
const padded_field_end = ty.structFieldOffset(i + 1, mod);
|
|
const padding = padded_field_end - unpadded_field_end;
|
|
try self.addUndef(padding);
|
|
}
|
|
},
|
|
.anon_struct_type => unreachable, // TODO
|
|
else => unreachable,
|
|
},
|
|
.un => |un| {
|
|
const layout = ty.unionGetLayout(mod);
|
|
|
|
if (layout.payload_size == 0) {
|
|
return try self.lower(ty.unionTagTypeSafety(mod).?, un.tag.toValue());
|
|
}
|
|
|
|
const union_ty = mod.typeToUnion(ty).?;
|
|
if (union_ty.layout == .Packed) {
|
|
return dg.todo("packed union constants", .{});
|
|
}
|
|
|
|
const active_field = ty.unionTagFieldIndex(un.tag.toValue(), dg.module).?;
|
|
const active_field_ty = union_ty.fields.values()[active_field].ty;
|
|
|
|
const has_tag = layout.tag_size != 0;
|
|
const tag_first = layout.tag_align >= layout.payload_align;
|
|
|
|
if (has_tag and tag_first) {
|
|
try self.lower(ty.unionTagTypeSafety(mod).?, un.tag.toValue());
|
|
}
|
|
|
|
const active_field_size = if (active_field_ty.hasRuntimeBitsIgnoreComptime(mod)) blk: {
|
|
try self.lower(active_field_ty, un.val.toValue());
|
|
break :blk active_field_ty.abiSize(mod);
|
|
} else 0;
|
|
|
|
const payload_padding_len = layout.payload_size - active_field_size;
|
|
try self.addUndef(payload_padding_len);
|
|
|
|
if (has_tag and !tag_first) {
|
|
try self.lower(ty.unionTagTypeSafety(mod).?, un.tag.toValue());
|
|
}
|
|
|
|
try self.addUndef(layout.padding);
|
|
},
|
|
.memoized_call => unreachable,
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Returns a pointer to `val`. The value is placed directly
|
|
/// into the storage class `storage_class`, and this is also where the resulting
|
|
/// pointer points to. Note: result is not necessarily an OpVariable instruction!
|
|
fn lowerIndirectConstant(
|
|
self: *DeclGen,
|
|
spv_decl_index: SpvModule.Decl.Index,
|
|
ty: Type,
|
|
val: Value,
|
|
storage_class: StorageClass,
|
|
cast_to_generic: bool,
|
|
alignment: u32,
|
|
) Error!void {
|
|
// To simplify constant generation, we're going to generate constants as a word-array, and
|
|
// pointer cast the result to the right type.
|
|
// This means that the final constant will be generated as follows:
|
|
// %T = OpTypeStruct %members...
|
|
// %P = OpTypePointer %T
|
|
// %U = OpTypePointer %ty
|
|
// %1 = OpConstantComposite %T %initializers...
|
|
// %2 = OpVariable %P %1
|
|
// %result_id = OpSpecConstantOp OpBitcast %U %2
|
|
//
|
|
// The members consist of two options:
|
|
// - Literal values: ints, strings, etc. These are generated as u32 words.
|
|
// - Relocations, such as pointers: These are generated by embedding the pointer into the
|
|
// to-be-generated structure. There are two options here, depending on the alignment of the
|
|
// pointer value itself (not the alignment of the pointee).
|
|
// - Natively or over-aligned values. These can just be generated directly.
|
|
// - Underaligned pointers. These need to be packed into the word array by using a mixture of
|
|
// OpSpecConstantOp instructions such as OpConvertPtrToU, OpBitcast, OpShift, etc.
|
|
|
|
// TODO: Implement alignment here.
|
|
// This is hoing to require some hacks because there is no real way to
|
|
// set an OpVariable's alignment.
|
|
_ = alignment;
|
|
|
|
assert(storage_class != .Generic and storage_class != .Function);
|
|
|
|
const var_id = self.spv.allocId();
|
|
log.debug("lowerIndirectConstant: id = {}, index = {}, ty = {}, val = {}", .{ var_id.id, @intFromEnum(spv_decl_index), ty.fmt(self.module), val.fmtDebug() });
|
|
|
|
const section = &self.spv.globals.section;
|
|
|
|
const ty_ref = try self.resolveType(ty, .indirect);
|
|
const ptr_ty_ref = try self.spv.ptrType(ty_ref, storage_class);
|
|
|
|
// const target = self.getTarget();
|
|
|
|
// TODO: Fix the resulting global linking for these paths.
|
|
// if (val.isUndef(mod)) {
|
|
// // Special case: the entire value is undefined. In this case, we can just
|
|
// // generate an OpVariable with no initializer.
|
|
// return try section.emit(self.spv.gpa, .OpVariable, .{
|
|
// .id_result_type = self.typeId(ptr_ty_ref),
|
|
// .id_result = result_id,
|
|
// .storage_class = storage_class,
|
|
// });
|
|
// } else if (ty.abiSize(mod) == 0) {
|
|
// // Special case: if the type has no size, then return an undefined pointer.
|
|
// return try section.emit(self.spv.gpa, .OpUndef, .{
|
|
// .id_result_type = self.typeId(ptr_ty_ref),
|
|
// .id_result = result_id,
|
|
// });
|
|
// }
|
|
|
|
// TODO: Capture the above stuff in here as well...
|
|
const begin_inst = self.spv.beginGlobal();
|
|
|
|
const u32_ty_ref = try self.intType(.unsigned, 32);
|
|
var icl = IndirectConstantLowering{
|
|
.dg = self,
|
|
.u32_ty_ref = u32_ty_ref,
|
|
.members = std.ArrayList(CacheRef).init(self.gpa),
|
|
.initializers = std.ArrayList(IdRef).init(self.gpa),
|
|
.decl_deps = std.AutoArrayHashMap(SpvModule.Decl.Index, void).init(self.gpa),
|
|
};
|
|
|
|
defer icl.members.deinit();
|
|
defer icl.initializers.deinit();
|
|
defer icl.decl_deps.deinit();
|
|
|
|
try icl.lower(ty, val);
|
|
try icl.flush();
|
|
|
|
const constant_struct_ty_ref = try self.spv.resolve(.{ .struct_type = .{
|
|
.member_types = icl.members.items,
|
|
} });
|
|
const ptr_constant_struct_ty_ref = try self.spv.ptrType(constant_struct_ty_ref, storage_class);
|
|
|
|
const constant_struct_id = self.spv.allocId();
|
|
try section.emit(self.spv.gpa, .OpSpecConstantComposite, .{
|
|
.id_result_type = self.typeId(constant_struct_ty_ref),
|
|
.id_result = constant_struct_id,
|
|
.constituents = icl.initializers.items,
|
|
});
|
|
|
|
self.spv.globalPtr(spv_decl_index).?.result_id = var_id;
|
|
try section.emit(self.spv.gpa, .OpVariable, .{
|
|
.id_result_type = self.typeId(ptr_constant_struct_ty_ref),
|
|
.id_result = var_id,
|
|
.storage_class = storage_class,
|
|
.initializer = constant_struct_id,
|
|
});
|
|
// TODO: Set alignment of OpVariable.
|
|
// TODO: We may be able to eliminate these casts.
|
|
|
|
const const_ptr_id = try self.makePointerConstant(section, ptr_constant_struct_ty_ref, var_id);
|
|
const result_id = self.spv.declPtr(spv_decl_index).result_id;
|
|
|
|
const bitcast_result_id = if (cast_to_generic)
|
|
self.spv.allocId()
|
|
else
|
|
result_id;
|
|
|
|
try section.emitSpecConstantOp(self.spv.gpa, .OpBitcast, .{
|
|
.id_result_type = self.typeId(ptr_ty_ref),
|
|
.id_result = bitcast_result_id,
|
|
.operand = const_ptr_id,
|
|
});
|
|
|
|
if (cast_to_generic) {
|
|
const generic_ptr_ty_ref = try self.spv.ptrType(ty_ref, .Generic);
|
|
try section.emitSpecConstantOp(self.spv.gpa, .OpPtrCastToGeneric, .{
|
|
.id_result_type = self.typeId(generic_ptr_ty_ref),
|
|
.id_result = result_id,
|
|
.pointer = bitcast_result_id,
|
|
});
|
|
}
|
|
|
|
try self.spv.declareDeclDeps(spv_decl_index, icl.decl_deps.keys());
|
|
self.spv.endGlobal(spv_decl_index, begin_inst);
|
|
}
|
|
|
|
/// This function generates a load for a constant in direct (ie, non-memory) representation.
|
|
/// When the constant is simple, it can be generated directly using OpConstant instructions. When
|
|
/// the constant is more complicated however, it needs to be lowered to an indirect constant, which
|
|
/// is then loaded using OpLoad. Such values are loaded into the UniformConstant storage class by default.
|
|
/// This function should only be called during function code generation.
|
|
fn constant(self: *DeclGen, ty: Type, val: Value, repr: Repr) !IdRef {
|
|
const mod = self.module;
|
|
const target = self.getTarget();
|
|
const result_ty_ref = try self.resolveType(ty, repr);
|
|
|
|
log.debug("constant: ty = {}, val = {}", .{ ty.fmt(self.module), val.fmtValue(ty, self.module) });
|
|
|
|
if (val.isUndef(mod)) {
|
|
return self.spv.constUndef(result_ty_ref);
|
|
}
|
|
|
|
switch (ty.zigTypeTag(mod)) {
|
|
.Int => {
|
|
if (ty.isSignedInt(mod)) {
|
|
return try self.spv.constInt(result_ty_ref, val.toSignedInt(mod));
|
|
} else {
|
|
return try self.spv.constInt(result_ty_ref, val.toUnsignedInt(mod));
|
|
}
|
|
},
|
|
.Bool => switch (repr) {
|
|
.direct => return try self.spv.constBool(result_ty_ref, val.toBool()),
|
|
.indirect => return try self.spv.constInt(result_ty_ref, @intFromBool(val.toBool())),
|
|
},
|
|
.Float => return switch (ty.floatBits(target)) {
|
|
16 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float16 = val.toFloat(f16, mod) } } }),
|
|
32 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float32 = val.toFloat(f32, mod) } } }),
|
|
64 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float64 = val.toFloat(f64, mod) } } }),
|
|
80, 128 => unreachable, // TODO
|
|
else => unreachable,
|
|
},
|
|
.ErrorSet => @panic("TODO"),
|
|
.ErrorUnion => @panic("TODO"),
|
|
// TODO: We can handle most pointers here (decl refs etc), because now they emit an extra
|
|
// OpVariable that is not really required.
|
|
else => {
|
|
// The value cannot be generated directly, so generate it as an indirect constant,
|
|
// and then perform an OpLoad.
|
|
const result_id = self.spv.allocId();
|
|
const alignment = ty.abiAlignment(mod);
|
|
const spv_decl_index = try self.spv.allocDecl(.global);
|
|
|
|
try self.lowerIndirectConstant(
|
|
spv_decl_index,
|
|
ty,
|
|
val,
|
|
.UniformConstant,
|
|
false,
|
|
alignment,
|
|
);
|
|
log.debug("indirect constant: index = {}", .{@intFromEnum(spv_decl_index)});
|
|
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.pointer = self.spv.declPtr(spv_decl_index).result_id,
|
|
});
|
|
// TODO: Convert bools? This logic should hook into `load`. It should be a dead
|
|
// path though considering .Bool is handled above.
|
|
return result_id;
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Turn a Zig type into a SPIR-V Type, and return its type result-id.
|
|
fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType {
|
|
const type_ref = try self.resolveType(ty, .direct);
|
|
return self.spv.resultId(type_ref);
|
|
}
|
|
|
|
fn typeId(self: *DeclGen, ty_ref: CacheRef) IdRef {
|
|
return self.spv.resultId(ty_ref);
|
|
}
|
|
|
|
/// Create an integer type suitable for storing at least 'bits' bits.
|
|
/// The integer type that is returned by this function is the type that is used to perform
|
|
/// actual operations (as well as store) a Zig type of a particular number of bits. To create
|
|
/// a type with an exact size, use SpvModule.intType.
|
|
fn intType(self: *DeclGen, signedness: std.builtin.Signedness, bits: u16) !CacheRef {
|
|
const backing_bits = self.backingIntBits(bits) orelse {
|
|
// TODO: Integers too big for any native type are represented as "composite integers":
|
|
// An array of largestSupportedIntBits.
|
|
return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits });
|
|
};
|
|
return self.spv.intType(signedness, backing_bits);
|
|
}
|
|
|
|
/// Create an integer type that represents 'usize'.
|
|
fn sizeType(self: *DeclGen) !CacheRef {
|
|
return try self.intType(.unsigned, self.getTarget().ptrBitWidth());
|
|
}
|
|
|
|
/// Generate a union type, optionally with a known field. If the tag alignment is greater
|
|
/// than that of the payload, a regular union (non-packed, with both tag and payload), will
|
|
/// be generated as follows:
|
|
/// If the active field is known:
|
|
/// struct {
|
|
/// tag: TagType,
|
|
/// payload: ActivePayloadType,
|
|
/// payload_padding: [payload_size - @sizeOf(ActivePayloadType)]u8,
|
|
/// padding: [padding_size]u8,
|
|
/// }
|
|
/// If the payload alignment is greater than that of the tag:
|
|
/// struct {
|
|
/// payload: ActivePayloadType,
|
|
/// payload_padding: [payload_size - @sizeOf(ActivePayloadType)]u8,
|
|
/// tag: TagType,
|
|
/// padding: [padding_size]u8,
|
|
/// }
|
|
/// If the active payload is unknown, it will default back to the most aligned field. This is
|
|
/// to make sure that the overal struct has the correct alignment in spir-v.
|
|
/// If any of the fields' size is 0, it will be omitted.
|
|
/// NOTE: When the active field is set to something other than the most aligned field, the
|
|
/// resulting struct will be *underaligned*.
|
|
fn resolveUnionType(self: *DeclGen, ty: Type, maybe_active_field: ?usize) !CacheRef {
|
|
const mod = self.module;
|
|
const layout = ty.unionGetLayout(mod);
|
|
const union_ty = mod.typeToUnion(ty).?;
|
|
|
|
if (union_ty.layout == .Packed) {
|
|
return self.todo("packed union types", .{});
|
|
}
|
|
|
|
if (layout.payload_size == 0) {
|
|
// No payload, so represent this as just the tag type.
|
|
return try self.resolveType(union_ty.tag_ty, .indirect);
|
|
}
|
|
|
|
var member_types = std.BoundedArray(CacheRef, 4){};
|
|
var member_names = std.BoundedArray(CacheString, 4){};
|
|
|
|
const has_tag = layout.tag_size != 0;
|
|
const tag_first = layout.tag_align >= layout.payload_align;
|
|
const u8_ty_ref = try self.intType(.unsigned, 8); // TODO: What if Int8Type is not enabled?
|
|
|
|
if (has_tag and tag_first) {
|
|
const tag_ty_ref = try self.resolveType(union_ty.tag_ty, .indirect);
|
|
member_types.appendAssumeCapacity(tag_ty_ref);
|
|
member_names.appendAssumeCapacity(try self.spv.resolveString("tag"));
|
|
}
|
|
|
|
const active_field = maybe_active_field orelse layout.most_aligned_field;
|
|
const active_field_ty = union_ty.fields.values()[active_field].ty;
|
|
|
|
const active_field_size = if (active_field_ty.hasRuntimeBitsIgnoreComptime(mod)) blk: {
|
|
const active_payload_ty_ref = try self.resolveType(active_field_ty, .indirect);
|
|
member_types.appendAssumeCapacity(active_payload_ty_ref);
|
|
member_names.appendAssumeCapacity(try self.spv.resolveString("payload"));
|
|
break :blk active_field_ty.abiSize(mod);
|
|
} else 0;
|
|
|
|
const payload_padding_len = layout.payload_size - active_field_size;
|
|
if (payload_padding_len != 0) {
|
|
const payload_padding_ty_ref = try self.spv.arrayType(@as(u32, @intCast(payload_padding_len)), u8_ty_ref);
|
|
member_types.appendAssumeCapacity(payload_padding_ty_ref);
|
|
member_names.appendAssumeCapacity(try self.spv.resolveString("payload_padding"));
|
|
}
|
|
|
|
if (has_tag and !tag_first) {
|
|
const tag_ty_ref = try self.resolveType(union_ty.tag_ty, .indirect);
|
|
member_types.appendAssumeCapacity(tag_ty_ref);
|
|
member_names.appendAssumeCapacity(try self.spv.resolveString("tag"));
|
|
}
|
|
|
|
if (layout.padding != 0) {
|
|
const padding_ty_ref = try self.spv.arrayType(layout.padding, u8_ty_ref);
|
|
member_types.appendAssumeCapacity(padding_ty_ref);
|
|
member_names.appendAssumeCapacity(try self.spv.resolveString("padding"));
|
|
}
|
|
|
|
return try self.spv.resolve(.{ .struct_type = .{
|
|
.member_types = member_types.slice(),
|
|
.member_names = member_names.slice(),
|
|
} });
|
|
}
|
|
|
|
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
|
|
fn resolveType(self: *DeclGen, ty: Type, repr: Repr) Error!CacheRef {
|
|
const mod = self.module;
|
|
log.debug("resolveType: ty = {}", .{ty.fmt(self.module)});
|
|
const target = self.getTarget();
|
|
switch (ty.zigTypeTag(mod)) {
|
|
.Void, .NoReturn => return try self.spv.resolve(.void_type),
|
|
.Bool => switch (repr) {
|
|
.direct => return try self.spv.resolve(.bool_type),
|
|
.indirect => return try self.intType(.unsigned, 1),
|
|
},
|
|
.Int => {
|
|
const int_info = ty.intInfo(mod);
|
|
return try self.intType(int_info.signedness, int_info.bits);
|
|
},
|
|
.Enum => {
|
|
const tag_ty = ty.intTagType(mod);
|
|
return self.resolveType(tag_ty, repr);
|
|
},
|
|
.Float => {
|
|
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
|
|
// so if the float is not supported, just return an error.
|
|
const bits = ty.floatBits(target);
|
|
const supported = switch (bits) {
|
|
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
|
|
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
|
|
32 => true,
|
|
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
|
|
else => false,
|
|
};
|
|
|
|
if (!supported) {
|
|
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
|
|
}
|
|
|
|
return try self.spv.resolve(.{ .float_type = .{ .bits = bits } });
|
|
},
|
|
.Array => {
|
|
const elem_ty = ty.childType(mod);
|
|
const elem_ty_ref = try self.resolveType(elem_ty, .direct);
|
|
const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(mod)) orelse {
|
|
return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(mod)});
|
|
};
|
|
return self.spv.arrayType(total_len, elem_ty_ref);
|
|
},
|
|
.Fn => switch (repr) {
|
|
.direct => {
|
|
const fn_info = mod.typeToFunc(ty).?;
|
|
// TODO: Put this somewhere in Sema.zig
|
|
if (fn_info.is_var_args)
|
|
return self.fail("VarArgs functions are unsupported for SPIR-V", .{});
|
|
|
|
const param_ty_refs = try self.gpa.alloc(CacheRef, fn_info.param_types.len);
|
|
defer self.gpa.free(param_ty_refs);
|
|
for (param_ty_refs, 0..) |*param_type, i| {
|
|
param_type.* = try self.resolveType(fn_info.param_types[i].toType(), .direct);
|
|
}
|
|
const return_ty_ref = try self.resolveType(fn_info.return_type.toType(), .direct);
|
|
|
|
return try self.spv.resolve(.{ .function_type = .{
|
|
.return_type = return_ty_ref,
|
|
.parameters = param_ty_refs,
|
|
} });
|
|
},
|
|
.indirect => {
|
|
// TODO: Represent function pointers properly.
|
|
// For now, just use an usize type.
|
|
return try self.sizeType();
|
|
},
|
|
},
|
|
.Pointer => {
|
|
const ptr_info = ty.ptrInfo(mod);
|
|
|
|
const storage_class = spvStorageClass(ptr_info.flags.address_space);
|
|
const child_ty_ref = try self.resolveType(ptr_info.child.toType(), .indirect);
|
|
const ptr_ty_ref = try self.spv.resolve(.{ .ptr_type = .{
|
|
.storage_class = storage_class,
|
|
.child_type = child_ty_ref,
|
|
} });
|
|
if (ptr_info.flags.size != .Slice) {
|
|
return ptr_ty_ref;
|
|
}
|
|
|
|
const size_ty_ref = try self.sizeType();
|
|
return self.spv.resolve(.{ .struct_type = .{
|
|
.member_types = &.{ ptr_ty_ref, size_ty_ref },
|
|
.member_names = &.{
|
|
try self.spv.resolveString("ptr"),
|
|
try self.spv.resolveString("len"),
|
|
},
|
|
} });
|
|
},
|
|
.Vector => {
|
|
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
|
|
// which work on them), so simply use those.
|
|
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
|
|
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
|
|
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
|
|
// is adequate at all for this.
|
|
|
|
// TODO: Properly verify sizes and child type.
|
|
|
|
return try self.spv.resolve(.{ .vector_type = .{
|
|
.component_type = try self.resolveType(ty.childType(mod), repr),
|
|
.component_count = @as(u32, @intCast(ty.vectorLen(mod))),
|
|
} });
|
|
},
|
|
.Struct => {
|
|
const struct_ty = mod.typeToStruct(ty).?;
|
|
const fields = struct_ty.fields.values();
|
|
|
|
if (ty.isSimpleTupleOrAnonStruct(mod)) {
|
|
const member_types = try self.gpa.alloc(CacheRef, fields.len);
|
|
defer self.gpa.free(member_types);
|
|
|
|
var member_index: usize = 0;
|
|
for (fields) |field| {
|
|
if (field.ty.ip_index != .unreachable_value or !field.ty.hasRuntimeBits(mod)) continue;
|
|
|
|
member_types[member_index] = try self.resolveType(field.ty, .indirect);
|
|
member_index += 1;
|
|
}
|
|
|
|
return try self.spv.resolve(.{ .struct_type = .{
|
|
.member_types = member_types[0..member_index],
|
|
} });
|
|
}
|
|
|
|
if (struct_ty.layout == .Packed) {
|
|
return try self.resolveType(struct_ty.backing_int_ty, .direct);
|
|
}
|
|
|
|
const member_types = try self.gpa.alloc(CacheRef, fields.len);
|
|
defer self.gpa.free(member_types);
|
|
|
|
const member_names = try self.gpa.alloc(CacheString, fields.len);
|
|
defer self.gpa.free(member_names);
|
|
|
|
var member_index: usize = 0;
|
|
for (fields, 0..) |field, i| {
|
|
if (field.is_comptime or !field.ty.hasRuntimeBits(mod)) continue;
|
|
|
|
member_types[member_index] = try self.resolveType(field.ty, .indirect);
|
|
member_names[member_index] = try self.spv.resolveString(mod.intern_pool.stringToSlice(struct_ty.fields.keys()[i]));
|
|
member_index += 1;
|
|
}
|
|
|
|
const name = mod.intern_pool.stringToSlice(try struct_ty.getFullyQualifiedName(self.module));
|
|
|
|
return try self.spv.resolve(.{ .struct_type = .{
|
|
.name = try self.spv.resolveString(name),
|
|
.member_types = member_types[0..member_index],
|
|
.member_names = member_names[0..member_index],
|
|
} });
|
|
},
|
|
.Optional => {
|
|
const payload_ty = ty.optionalChild(mod);
|
|
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
|
|
// Just use a bool.
|
|
// Note: Always generate the bool with indirect format, to save on some sanity
|
|
// Perform the conversion to a direct bool when the field is extracted.
|
|
return try self.resolveType(Type.bool, .indirect);
|
|
}
|
|
|
|
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
|
|
if (ty.optionalReprIsPayload(mod)) {
|
|
// Optional is actually a pointer or a slice.
|
|
return payload_ty_ref;
|
|
}
|
|
|
|
const bool_ty_ref = try self.resolveType(Type.bool, .indirect);
|
|
|
|
return try self.spv.resolve(.{ .struct_type = .{
|
|
.member_types = &.{ payload_ty_ref, bool_ty_ref },
|
|
.member_names = &.{
|
|
try self.spv.resolveString("payload"),
|
|
try self.spv.resolveString("valid"),
|
|
},
|
|
} });
|
|
},
|
|
.Union => return try self.resolveUnionType(ty, null),
|
|
.ErrorSet => return try self.intType(.unsigned, 16),
|
|
.ErrorUnion => {
|
|
const payload_ty = ty.errorUnionPayload(mod);
|
|
const error_ty_ref = try self.resolveType(Type.anyerror, .indirect);
|
|
|
|
const eu_layout = self.errorUnionLayout(payload_ty);
|
|
if (!eu_layout.payload_has_bits) {
|
|
return error_ty_ref;
|
|
}
|
|
|
|
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
|
|
|
|
var member_types: [2]CacheRef = undefined;
|
|
var member_names: [2]CacheString = undefined;
|
|
if (eu_layout.error_first) {
|
|
// Put the error first
|
|
member_types = .{ error_ty_ref, payload_ty_ref };
|
|
member_names = .{
|
|
try self.spv.resolveString("error"),
|
|
try self.spv.resolveString("payload"),
|
|
};
|
|
// TODO: ABI padding?
|
|
} else {
|
|
// Put the payload first.
|
|
member_types = .{ payload_ty_ref, error_ty_ref };
|
|
member_names = .{
|
|
try self.spv.resolveString("payload"),
|
|
try self.spv.resolveString("error"),
|
|
};
|
|
// TODO: ABI padding?
|
|
}
|
|
|
|
return try self.spv.resolve(.{ .struct_type = .{
|
|
.member_types = &member_types,
|
|
.member_names = &member_names,
|
|
} });
|
|
},
|
|
|
|
.Null,
|
|
.Undefined,
|
|
.EnumLiteral,
|
|
.ComptimeFloat,
|
|
.ComptimeInt,
|
|
.Type,
|
|
=> unreachable, // Must be comptime.
|
|
|
|
else => |tag| return self.todo("Implement zig type '{}'", .{tag}),
|
|
}
|
|
}
|
|
|
|
fn spvStorageClass(as: std.builtin.AddressSpace) StorageClass {
|
|
return switch (as) {
|
|
.generic => .Generic,
|
|
.shared => .Workgroup,
|
|
.local => .Private,
|
|
.global => .CrossWorkgroup,
|
|
.constant => .UniformConstant,
|
|
.gs,
|
|
.fs,
|
|
.ss,
|
|
.param,
|
|
.flash,
|
|
.flash1,
|
|
.flash2,
|
|
.flash3,
|
|
.flash4,
|
|
.flash5,
|
|
=> unreachable,
|
|
};
|
|
}
|
|
|
|
const ErrorUnionLayout = struct {
|
|
payload_has_bits: bool,
|
|
error_first: bool,
|
|
|
|
fn errorFieldIndex(self: @This()) u32 {
|
|
assert(self.payload_has_bits);
|
|
return if (self.error_first) 0 else 1;
|
|
}
|
|
|
|
fn payloadFieldIndex(self: @This()) u32 {
|
|
assert(self.payload_has_bits);
|
|
return if (self.error_first) 1 else 0;
|
|
}
|
|
};
|
|
|
|
fn errorUnionLayout(self: *DeclGen, payload_ty: Type) ErrorUnionLayout {
|
|
const mod = self.module;
|
|
|
|
const error_align = Type.anyerror.abiAlignment(mod);
|
|
const payload_align = payload_ty.abiAlignment(mod);
|
|
|
|
const error_first = error_align > payload_align;
|
|
return .{
|
|
.payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(mod),
|
|
.error_first = error_first,
|
|
};
|
|
}
|
|
|
|
/// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure.
|
|
/// In order to be able to run tests, we "temporarily" lower test kernels into separate entry-
|
|
/// points. The test executor will then be able to invoke these to run the tests.
|
|
/// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`.
|
|
/// (anyerror!void has the same layout as anyerror).
|
|
/// Each test declaration generates a function like.
|
|
/// %anyerror = OpTypeInt 0 16
|
|
/// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror
|
|
/// %K = OpTypeFunction %void %p_anyerror
|
|
///
|
|
/// %test = OpFunction %void %K
|
|
/// %p_err = OpFunctionParameter %p_anyerror
|
|
/// %lbl = OpLabel
|
|
/// %result = OpFunctionCall %anyerror %func
|
|
/// OpStore %p_err %result
|
|
/// OpFunctionEnd
|
|
/// TODO is to also write out the error as a function call parameter, and to somehow fetch
|
|
/// the name of an error in the text executor.
|
|
fn generateTestEntryPoint(self: *DeclGen, name: []const u8, spv_test_decl_index: SpvModule.Decl.Index) !void {
|
|
const anyerror_ty_ref = try self.resolveType(Type.anyerror, .direct);
|
|
const ptr_anyerror_ty_ref = try self.spv.ptrType(anyerror_ty_ref, .CrossWorkgroup);
|
|
const void_ty_ref = try self.resolveType(Type.void, .direct);
|
|
|
|
const kernel_proto_ty_ref = try self.spv.resolve(.{ .function_type = .{
|
|
.return_type = void_ty_ref,
|
|
.parameters = &.{ptr_anyerror_ty_ref},
|
|
} });
|
|
|
|
const test_id = self.spv.declPtr(spv_test_decl_index).result_id;
|
|
|
|
const spv_decl_index = try self.spv.allocDecl(.func);
|
|
const kernel_id = self.spv.declPtr(spv_decl_index).result_id;
|
|
|
|
const error_id = self.spv.allocId();
|
|
const p_error_id = self.spv.allocId();
|
|
|
|
const section = &self.spv.sections.functions;
|
|
try section.emit(self.spv.gpa, .OpFunction, .{
|
|
.id_result_type = self.typeId(void_ty_ref),
|
|
.id_result = kernel_id,
|
|
.function_control = .{},
|
|
.function_type = self.typeId(kernel_proto_ty_ref),
|
|
});
|
|
try section.emit(self.spv.gpa, .OpFunctionParameter, .{
|
|
.id_result_type = self.typeId(ptr_anyerror_ty_ref),
|
|
.id_result = p_error_id,
|
|
});
|
|
try section.emit(self.spv.gpa, .OpLabel, .{
|
|
.id_result = self.spv.allocId(),
|
|
});
|
|
try section.emit(self.spv.gpa, .OpFunctionCall, .{
|
|
.id_result_type = self.typeId(anyerror_ty_ref),
|
|
.id_result = error_id,
|
|
.function = test_id,
|
|
});
|
|
try section.emit(self.spv.gpa, .OpStore, .{
|
|
.pointer = p_error_id,
|
|
.object = error_id,
|
|
});
|
|
try section.emit(self.spv.gpa, .OpReturn, {});
|
|
try section.emit(self.spv.gpa, .OpFunctionEnd, {});
|
|
|
|
try self.spv.declareDeclDeps(spv_decl_index, &.{spv_test_decl_index});
|
|
|
|
// Just generate a quick other name because the intel runtime crashes when the entry-
|
|
// point name is the same as a different OpName.
|
|
const test_name = try std.fmt.allocPrint(self.gpa, "test {s}", .{name});
|
|
defer self.gpa.free(test_name);
|
|
try self.spv.declareEntryPoint(spv_decl_index, test_name);
|
|
}
|
|
|
|
fn genDecl(self: *DeclGen) !void {
|
|
const mod = self.module;
|
|
const decl = mod.declPtr(self.decl_index);
|
|
const spv_decl_index = try self.resolveDecl(self.decl_index);
|
|
|
|
const decl_id = self.spv.declPtr(spv_decl_index).result_id;
|
|
|
|
if (decl.val.getFunction(mod)) |_| {
|
|
assert(decl.ty.zigTypeTag(mod) == .Fn);
|
|
const prototype_id = try self.resolveTypeId(decl.ty);
|
|
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
|
|
.id_result_type = try self.resolveTypeId(decl.ty.fnReturnType(mod)),
|
|
.id_result = decl_id,
|
|
.function_control = .{}, // TODO: We can set inline here if the type requires it.
|
|
.function_type = prototype_id,
|
|
});
|
|
|
|
const fn_info = mod.typeToFunc(decl.ty).?;
|
|
|
|
try self.args.ensureUnusedCapacity(self.gpa, fn_info.param_types.len);
|
|
for (fn_info.param_types) |param_type| {
|
|
const param_type_id = try self.resolveTypeId(param_type.toType());
|
|
const arg_result_id = self.spv.allocId();
|
|
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
|
|
.id_result_type = param_type_id,
|
|
.id_result = arg_result_id,
|
|
});
|
|
self.args.appendAssumeCapacity(arg_result_id);
|
|
}
|
|
|
|
// TODO: This could probably be done in a better way...
|
|
const root_block_id = self.spv.allocId();
|
|
|
|
// The root block of a function declaration should appear before OpVariable instructions,
|
|
// so it is generated into the function's prologue.
|
|
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
|
|
.id_result = root_block_id,
|
|
});
|
|
self.current_block_label_id = root_block_id;
|
|
|
|
const main_body = self.air.getMainBody();
|
|
try self.genBody(main_body);
|
|
|
|
// Append the actual code into the functions section.
|
|
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
|
|
try self.spv.addFunction(spv_decl_index, self.func);
|
|
|
|
const fqn = mod.intern_pool.stringToSlice(try decl.getFullyQualifiedName(self.module));
|
|
|
|
try self.spv.sections.debug_names.emit(self.gpa, .OpName, .{
|
|
.target = decl_id,
|
|
.name = fqn,
|
|
});
|
|
|
|
// Temporarily generate a test kernel declaration if this is a test function.
|
|
if (self.module.test_functions.contains(self.decl_index)) {
|
|
try self.generateTestEntryPoint(fqn, spv_decl_index);
|
|
}
|
|
} else {
|
|
const init_val = if (decl.val.getVariable(mod)) |payload|
|
|
payload.init.toValue()
|
|
else
|
|
decl.val;
|
|
|
|
if (init_val.ip_index == .unreachable_value) {
|
|
return self.todo("importing extern variables", .{});
|
|
}
|
|
|
|
// TODO: integrate with variable().
|
|
|
|
const final_storage_class = spvStorageClass(decl.@"addrspace");
|
|
const actual_storage_class = switch (final_storage_class) {
|
|
.Generic => .CrossWorkgroup,
|
|
else => final_storage_class,
|
|
};
|
|
|
|
try self.lowerIndirectConstant(
|
|
spv_decl_index,
|
|
decl.ty,
|
|
init_val,
|
|
actual_storage_class,
|
|
final_storage_class == .Generic,
|
|
@as(u32, @intCast(decl.alignment.toByteUnits(0))),
|
|
);
|
|
}
|
|
}
|
|
|
|
fn intFromBool(self: *DeclGen, result_ty_ref: CacheRef, condition_id: IdRef) !IdRef {
|
|
const zero_id = try self.spv.constInt(result_ty_ref, 0);
|
|
const one_id = try self.spv.constInt(result_ty_ref, 1);
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.condition = condition_id,
|
|
.object_1 = one_id,
|
|
.object_2 = zero_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
/// Convert representation from indirect (in memory) to direct (in 'register')
|
|
/// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct).
|
|
fn convertToDirect(self: *DeclGen, ty: Type, operand_id: IdRef) !IdRef {
|
|
const mod = self.module;
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Bool => blk: {
|
|
const direct_bool_ty_ref = try self.resolveType(ty, .direct);
|
|
const indirect_bool_ty_ref = try self.resolveType(ty, .indirect);
|
|
const zero_id = try self.spv.constInt(indirect_bool_ty_ref, 0);
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
|
|
.id_result_type = self.typeId(direct_bool_ty_ref),
|
|
.id_result = result_id,
|
|
.operand_1 = operand_id,
|
|
.operand_2 = zero_id,
|
|
});
|
|
break :blk result_id;
|
|
},
|
|
else => operand_id,
|
|
};
|
|
}
|
|
|
|
/// Convert representation from direct (in 'register) to direct (in memory)
|
|
/// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect).
|
|
fn convertToIndirect(self: *DeclGen, ty: Type, operand_id: IdRef) !IdRef {
|
|
const mod = self.module;
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Bool => blk: {
|
|
const indirect_bool_ty_ref = try self.resolveType(ty, .indirect);
|
|
break :blk self.intFromBool(indirect_bool_ty_ref, operand_id);
|
|
},
|
|
else => operand_id,
|
|
};
|
|
}
|
|
|
|
fn extractField(self: *DeclGen, result_ty: Type, object: IdRef, field: u32) !IdRef {
|
|
const result_ty_ref = try self.resolveType(result_ty, .indirect);
|
|
const result_id = self.spv.allocId();
|
|
const indexes = [_]u32{field};
|
|
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.composite = object,
|
|
.indexes = &indexes,
|
|
});
|
|
// Convert bools; direct structs have their field types as indirect values.
|
|
return try self.convertToDirect(result_ty, result_id);
|
|
}
|
|
|
|
fn load(self: *DeclGen, ptr_ty: Type, ptr_id: IdRef) !IdRef {
|
|
const mod = self.module;
|
|
const value_ty = ptr_ty.childType(mod);
|
|
const indirect_value_ty_ref = try self.resolveType(value_ty, .indirect);
|
|
const result_id = self.spv.allocId();
|
|
const access = spec.MemoryAccess.Extended{
|
|
.Volatile = ptr_ty.isVolatilePtr(mod),
|
|
};
|
|
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
|
|
.id_result_type = self.typeId(indirect_value_ty_ref),
|
|
.id_result = result_id,
|
|
.pointer = ptr_id,
|
|
.memory_access = access,
|
|
});
|
|
return try self.convertToDirect(value_ty, result_id);
|
|
}
|
|
|
|
fn store(self: *DeclGen, ptr_ty: Type, ptr_id: IdRef, value_id: IdRef) !void {
|
|
const mod = self.module;
|
|
const value_ty = ptr_ty.childType(mod);
|
|
const indirect_value_id = try self.convertToIndirect(value_ty, value_id);
|
|
const access = spec.MemoryAccess.Extended{
|
|
.Volatile = ptr_ty.isVolatilePtr(mod),
|
|
};
|
|
try self.func.body.emit(self.spv.gpa, .OpStore, .{
|
|
.pointer = ptr_id,
|
|
.object = indirect_value_id,
|
|
.memory_access = access,
|
|
});
|
|
}
|
|
|
|
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
|
|
for (body) |inst| {
|
|
try self.genInst(inst);
|
|
}
|
|
}
|
|
|
|
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const mod = self.module;
|
|
const ip = &mod.intern_pool;
|
|
// TODO: remove now-redundant isUnused calls from AIR handler functions
|
|
if (self.liveness.isUnused(inst) and !self.air.mustLower(inst, ip))
|
|
return;
|
|
|
|
const air_tags = self.air.instructions.items(.tag);
|
|
const maybe_result_id: ?IdRef = switch (air_tags[inst]) {
|
|
// zig fmt: off
|
|
.add, .add_wrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd, true),
|
|
.sub, .sub_wrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub, true),
|
|
.mul, .mul_wrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul, true),
|
|
|
|
.div_float,
|
|
.div_float_optimized,
|
|
// TODO: Check that this is the right operation.
|
|
.div_trunc,
|
|
.div_trunc_optimized,
|
|
=> try self.airArithOp(inst, .OpFDiv, .OpSDiv, .OpUDiv, false),
|
|
// TODO: Check if this is the right operation
|
|
// TODO: Make airArithOp for rem not emit a mask for the LHS.
|
|
.rem,
|
|
.rem_optimized,
|
|
=> try self.airArithOp(inst, .OpFRem, .OpSRem, .OpSRem, false),
|
|
|
|
.add_with_overflow => try self.airOverflowArithOp(inst),
|
|
|
|
.shuffle => try self.airShuffle(inst),
|
|
|
|
.ptr_add => try self.airPtrAdd(inst),
|
|
.ptr_sub => try self.airPtrSub(inst),
|
|
|
|
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
|
|
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
|
|
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
|
|
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
|
|
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
|
|
|
|
.shl => try self.airShift(inst, .OpShiftLeftLogical),
|
|
|
|
.bitcast => try self.airBitCast(inst),
|
|
.intcast, .trunc => try self.airIntCast(inst),
|
|
.int_from_ptr => try self.airIntFromPtr(inst),
|
|
.float_from_int => try self.airFloatFromInt(inst),
|
|
.int_from_float => try self.airIntFromFloat(inst),
|
|
.not => try self.airNot(inst),
|
|
|
|
.slice_ptr => try self.airSliceField(inst, 0),
|
|
.slice_len => try self.airSliceField(inst, 1),
|
|
.slice_elem_ptr => try self.airSliceElemPtr(inst),
|
|
.slice_elem_val => try self.airSliceElemVal(inst),
|
|
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
|
|
.ptr_elem_val => try self.airPtrElemVal(inst),
|
|
|
|
.get_union_tag => try self.airGetUnionTag(inst),
|
|
.struct_field_val => try self.airStructFieldVal(inst),
|
|
|
|
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
|
|
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
|
|
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
|
|
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
|
|
|
|
.cmp_eq => try self.airCmp(inst, .eq),
|
|
.cmp_neq => try self.airCmp(inst, .neq),
|
|
.cmp_gt => try self.airCmp(inst, .gt),
|
|
.cmp_gte => try self.airCmp(inst, .gte),
|
|
.cmp_lt => try self.airCmp(inst, .lt),
|
|
.cmp_lte => try self.airCmp(inst, .lte),
|
|
|
|
.arg => self.airArg(),
|
|
.alloc => try self.airAlloc(inst),
|
|
// TODO: We probably need to have a special implementation of this for the C abi.
|
|
.ret_ptr => try self.airAlloc(inst),
|
|
.block => try self.airBlock(inst),
|
|
|
|
.load => try self.airLoad(inst),
|
|
.store, .store_safe => return self.airStore(inst),
|
|
|
|
.br => return self.airBr(inst),
|
|
.breakpoint => return,
|
|
.cond_br => return self.airCondBr(inst),
|
|
.dbg_stmt => return self.airDbgStmt(inst),
|
|
.loop => return self.airLoop(inst),
|
|
.ret => return self.airRet(inst),
|
|
.ret_load => return self.airRetLoad(inst),
|
|
.@"try" => try self.airTry(inst),
|
|
.switch_br => return self.airSwitchBr(inst),
|
|
.unreach, .trap => return self.airUnreach(),
|
|
|
|
.unwrap_errunion_err => try self.airErrUnionErr(inst),
|
|
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
|
|
|
|
.is_null => try self.airIsNull(inst, .is_null),
|
|
.is_non_null => try self.airIsNull(inst, .is_non_null),
|
|
|
|
.optional_payload => try self.airUnwrapOptional(inst),
|
|
.wrap_optional => try self.airWrapOptional(inst),
|
|
|
|
.assembly => try self.airAssembly(inst),
|
|
|
|
.call => try self.airCall(inst, .auto),
|
|
.call_always_tail => try self.airCall(inst, .always_tail),
|
|
.call_never_tail => try self.airCall(inst, .never_tail),
|
|
.call_never_inline => try self.airCall(inst, .never_inline),
|
|
|
|
.dbg_inline_begin => return,
|
|
.dbg_inline_end => return,
|
|
.dbg_var_ptr => return,
|
|
.dbg_var_val => return,
|
|
.dbg_block_begin => return,
|
|
.dbg_block_end => return,
|
|
// zig fmt: on
|
|
|
|
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
|
|
};
|
|
|
|
const result_id = maybe_result_id orelse return;
|
|
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
|
|
}
|
|
|
|
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(self.typeOfIndex(inst));
|
|
try self.func.body.emit(self.spv.gpa, opcode, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.operand_1 = lhs_id,
|
|
.operand_2 = rhs_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airShift(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_type_id = try self.resolveTypeId(self.typeOfIndex(inst));
|
|
|
|
// the shift and the base must be the same type in SPIR-V, but in Zig the shift is a smaller int.
|
|
const shift_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = shift_id,
|
|
.unsigned_value = rhs_id,
|
|
});
|
|
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, opcode, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.base = lhs_id,
|
|
.shift = shift_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn maskStrangeInt(self: *DeclGen, ty_ref: CacheRef, value_id: IdRef, bits: u16) !IdRef {
|
|
const mask_value = if (bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @as(u6, @intCast(bits))) - 1;
|
|
const result_id = self.spv.allocId();
|
|
const mask_id = try self.spv.constInt(ty_ref, mask_value);
|
|
try self.func.body.emit(self.spv.gpa, .OpBitwiseAnd, .{
|
|
.id_result_type = self.typeId(ty_ref),
|
|
.id_result = result_id,
|
|
.operand_1 = value_id,
|
|
.operand_2 = mask_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airArithOp(
|
|
self: *DeclGen,
|
|
inst: Air.Inst.Index,
|
|
comptime fop: Opcode,
|
|
comptime sop: Opcode,
|
|
comptime uop: Opcode,
|
|
/// true if this operation holds under modular arithmetic.
|
|
comptime modular: bool,
|
|
) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
|
|
// the result to be the same as the LHS and RHS, which matches SPIR-V.
|
|
const ty = self.typeOfIndex(inst);
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
var lhs_id = try self.resolve(bin_op.lhs);
|
|
var rhs_id = try self.resolve(bin_op.rhs);
|
|
|
|
const result_ty_ref = try self.resolveType(ty, .direct);
|
|
|
|
assert(self.typeOf(bin_op.lhs).eql(ty, self.module));
|
|
assert(self.typeOf(bin_op.rhs).eql(ty, self.module));
|
|
|
|
// Binary operations are generally applicable to both scalar and vector operations
|
|
// in SPIR-V, but int and float versions of operations require different opcodes.
|
|
const info = try self.arithmeticTypeInfo(ty);
|
|
|
|
const opcode_index: usize = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.todo("binary operations for composite integers", .{});
|
|
},
|
|
.strange_integer => blk: {
|
|
if (!modular) {
|
|
lhs_id = try self.maskStrangeInt(result_ty_ref, lhs_id, info.bits);
|
|
rhs_id = try self.maskStrangeInt(result_ty_ref, rhs_id, info.bits);
|
|
}
|
|
break :blk switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
};
|
|
},
|
|
.integer => switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
},
|
|
.float => 0,
|
|
.bool => unreachable,
|
|
};
|
|
|
|
const result_id = self.spv.allocId();
|
|
const operands = .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.operand_1 = lhs_id,
|
|
.operand_2 = rhs_id,
|
|
};
|
|
|
|
switch (opcode_index) {
|
|
0 => try self.func.body.emit(self.spv.gpa, fop, operands),
|
|
1 => try self.func.body.emit(self.spv.gpa, sop, operands),
|
|
2 => try self.func.body.emit(self.spv.gpa, uop, operands),
|
|
else => unreachable,
|
|
}
|
|
// TODO: Trap on overflow? Probably going to be annoying.
|
|
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airOverflowArithOp(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const lhs = try self.resolve(extra.lhs);
|
|
const rhs = try self.resolve(extra.rhs);
|
|
|
|
const operand_ty = self.typeOf(extra.lhs);
|
|
const result_ty = self.typeOfIndex(inst);
|
|
|
|
const info = try self.arithmeticTypeInfo(operand_ty);
|
|
switch (info.class) {
|
|
.composite_integer => return self.todo("overflow ops for composite integers", .{}),
|
|
.strange_integer => return self.todo("overflow ops for strange integers", .{}),
|
|
.integer => {},
|
|
.float, .bool => unreachable,
|
|
}
|
|
|
|
// The operand type must be the same as the result type in SPIR-V, which
|
|
// is the same as in Zig.
|
|
const operand_ty_ref = try self.resolveType(operand_ty, .direct);
|
|
const operand_ty_id = self.typeId(operand_ty_ref);
|
|
|
|
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
|
|
|
|
const ov_ty = result_ty.structFieldType(1, self.module);
|
|
// Note: result is stored in a struct, so indirect representation.
|
|
const ov_ty_ref = try self.resolveType(ov_ty, .indirect);
|
|
|
|
// TODO: Operations other than addition.
|
|
const value_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpIAdd, .{
|
|
.id_result_type = operand_ty_id,
|
|
.id_result = value_id,
|
|
.operand_1 = lhs,
|
|
.operand_2 = rhs,
|
|
});
|
|
|
|
const overflowed_id = switch (info.signedness) {
|
|
.unsigned => blk: {
|
|
// Overflow happened if the result is smaller than either of the operands. It doesn't matter which.
|
|
const overflowed_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpULessThan, .{
|
|
.id_result_type = self.typeId(bool_ty_ref),
|
|
.id_result = overflowed_id,
|
|
.operand_1 = value_id,
|
|
.operand_2 = lhs,
|
|
});
|
|
break :blk overflowed_id;
|
|
},
|
|
.signed => blk: {
|
|
// Overflow happened if:
|
|
// - rhs is negative and value > lhs
|
|
// - rhs is positive and value < lhs
|
|
// This can be shortened to:
|
|
// (rhs < 0 && value > lhs) || (rhs >= 0 && value <= lhs)
|
|
// = (rhs < 0) == (value > lhs)
|
|
// Note that signed overflow is also wrapping in spir-v.
|
|
|
|
const rhs_lt_zero_id = self.spv.allocId();
|
|
const zero_id = try self.spv.constInt(operand_ty_ref, 0);
|
|
try self.func.body.emit(self.spv.gpa, .OpSLessThan, .{
|
|
.id_result_type = self.typeId(bool_ty_ref),
|
|
.id_result = rhs_lt_zero_id,
|
|
.operand_1 = rhs,
|
|
.operand_2 = zero_id,
|
|
});
|
|
|
|
const value_gt_lhs_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpSGreaterThan, .{
|
|
.id_result_type = self.typeId(bool_ty_ref),
|
|
.id_result = value_gt_lhs_id,
|
|
.operand_1 = value_id,
|
|
.operand_2 = lhs,
|
|
});
|
|
|
|
const overflowed_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpLogicalEqual, .{
|
|
.id_result_type = self.typeId(bool_ty_ref),
|
|
.id_result = overflowed_id,
|
|
.operand_1 = rhs_lt_zero_id,
|
|
.operand_2 = value_gt_lhs_id,
|
|
});
|
|
break :blk overflowed_id;
|
|
},
|
|
};
|
|
|
|
// Construct the struct that Zig wants as result.
|
|
// The value should already be the correct type.
|
|
const ov_id = try self.intFromBool(ov_ty_ref, overflowed_id);
|
|
const result_ty_ref = try self.resolveType(result_ty, .direct);
|
|
return try self.constructStruct(result_ty_ref, &.{
|
|
value_id,
|
|
ov_id,
|
|
});
|
|
}
|
|
|
|
fn airShuffle(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const mod = self.module;
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty = self.typeOfIndex(inst);
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
|
|
const a = try self.resolve(extra.a);
|
|
const b = try self.resolve(extra.b);
|
|
const mask = extra.mask.toValue();
|
|
const mask_len = extra.mask_len;
|
|
const a_len = self.typeOf(extra.a).vectorLen(mod);
|
|
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(ty);
|
|
// Similar to LLVM, SPIR-V uses indices larger than the length of the first vector
|
|
// to index into the second vector.
|
|
try self.func.body.emitRaw(self.spv.gpa, .OpVectorShuffle, 4 + mask_len);
|
|
self.func.body.writeOperand(spec.IdResultType, result_type_id);
|
|
self.func.body.writeOperand(spec.IdResult, result_id);
|
|
self.func.body.writeOperand(spec.IdRef, a);
|
|
self.func.body.writeOperand(spec.IdRef, b);
|
|
|
|
var i: usize = 0;
|
|
while (i < mask_len) : (i += 1) {
|
|
const elem = try mask.elemValue(mod, i);
|
|
if (elem.isUndef(mod)) {
|
|
self.func.body.writeOperand(spec.LiteralInteger, 0xFFFF_FFFF);
|
|
} else {
|
|
const int = elem.toSignedInt(mod);
|
|
const unsigned = if (int >= 0) @as(u32, @intCast(int)) else @as(u32, @intCast(~int + a_len));
|
|
self.func.body.writeOperand(spec.LiteralInteger, unsigned);
|
|
}
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
/// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective
|
|
/// difference lies in whether the resulting type of the first dereference will be the
|
|
/// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain
|
|
/// is the latter and PtrAccessChain is the former.
|
|
fn accessChain(
|
|
self: *DeclGen,
|
|
result_ty_ref: CacheRef,
|
|
base: IdRef,
|
|
indexes: []const IdRef,
|
|
) !IdRef {
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.base = base,
|
|
.indexes = indexes,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn ptrAccessChain(
|
|
self: *DeclGen,
|
|
result_ty_ref: CacheRef,
|
|
base: IdRef,
|
|
element: IdRef,
|
|
indexes: []const IdRef,
|
|
) !IdRef {
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.base = base,
|
|
.element = element,
|
|
.indexes = indexes,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn ptrAdd(self: *DeclGen, result_ty: Type, ptr_ty: Type, ptr_id: IdRef, offset_id: IdRef) !IdRef {
|
|
const mod = self.module;
|
|
const result_ty_ref = try self.resolveType(result_ty, .direct);
|
|
|
|
switch (ptr_ty.ptrSize(mod)) {
|
|
.One => {
|
|
// Pointer to array
|
|
// TODO: Is this correct?
|
|
return try self.accessChain(result_ty_ref, ptr_id, &.{offset_id});
|
|
},
|
|
.C, .Many => {
|
|
return try self.ptrAccessChain(result_ty_ref, ptr_id, offset_id, &.{});
|
|
},
|
|
.Slice => {
|
|
// TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does.
|
|
const slice_ptr_id = try self.extractField(result_ty, ptr_id, 0);
|
|
return try self.ptrAccessChain(result_ty_ref, slice_ptr_id, offset_id, &.{});
|
|
},
|
|
}
|
|
}
|
|
|
|
fn airPtrAdd(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const ptr_id = try self.resolve(bin_op.lhs);
|
|
const offset_id = try self.resolve(bin_op.rhs);
|
|
const ptr_ty = self.typeOf(bin_op.lhs);
|
|
const result_ty = self.typeOfIndex(inst);
|
|
|
|
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id);
|
|
}
|
|
|
|
fn airPtrSub(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const ptr_id = try self.resolve(bin_op.lhs);
|
|
const ptr_ty = self.typeOf(bin_op.lhs);
|
|
const offset_id = try self.resolve(bin_op.rhs);
|
|
const offset_ty = self.typeOf(bin_op.rhs);
|
|
const offset_ty_ref = try self.resolveType(offset_ty, .direct);
|
|
const result_ty = self.typeOfIndex(inst);
|
|
|
|
const negative_offset_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpSNegate, .{
|
|
.id_result_type = self.typeId(offset_ty_ref),
|
|
.id_result = negative_offset_id,
|
|
.operand = offset_id,
|
|
});
|
|
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id);
|
|
}
|
|
|
|
fn cmp(
|
|
self: *DeclGen,
|
|
comptime op: std.math.CompareOperator,
|
|
bool_ty_id: IdRef,
|
|
ty: Type,
|
|
lhs_id: IdRef,
|
|
rhs_id: IdRef,
|
|
) !IdRef {
|
|
const mod = self.module;
|
|
var cmp_lhs_id = lhs_id;
|
|
var cmp_rhs_id = rhs_id;
|
|
const opcode: Opcode = opcode: {
|
|
const op_ty = switch (ty.zigTypeTag(mod)) {
|
|
.Int, .Bool, .Float => ty,
|
|
.Enum => ty.intTagType(mod),
|
|
.ErrorSet => Type.u16,
|
|
.Pointer => blk: {
|
|
// Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are
|
|
// currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using
|
|
// OpConvertPtrToU...
|
|
cmp_lhs_id = self.spv.allocId();
|
|
cmp_rhs_id = self.spv.allocId();
|
|
|
|
const usize_ty_id = self.typeId(try self.sizeType());
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
|
|
.id_result_type = usize_ty_id,
|
|
.id_result = cmp_lhs_id,
|
|
.pointer = lhs_id,
|
|
});
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
|
|
.id_result_type = usize_ty_id,
|
|
.id_result = cmp_rhs_id,
|
|
.pointer = rhs_id,
|
|
});
|
|
|
|
break :blk Type.usize;
|
|
},
|
|
.Optional => unreachable, // TODO
|
|
else => unreachable,
|
|
};
|
|
|
|
const info = try self.arithmeticTypeInfo(op_ty);
|
|
const signedness = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.todo("binary operations for composite integers", .{});
|
|
},
|
|
.float => break :opcode switch (op) {
|
|
.eq => .OpFOrdEqual,
|
|
.neq => .OpFOrdNotEqual,
|
|
.lt => .OpFOrdLessThan,
|
|
.lte => .OpFOrdLessThanEqual,
|
|
.gt => .OpFOrdGreaterThan,
|
|
.gte => .OpFOrdGreaterThanEqual,
|
|
},
|
|
.bool => break :opcode switch (op) {
|
|
.eq => .OpIEqual,
|
|
.neq => .OpINotEqual,
|
|
else => unreachable,
|
|
},
|
|
.strange_integer => sign: {
|
|
const op_ty_ref = try self.resolveType(op_ty, .direct);
|
|
// Mask operands before performing comparison.
|
|
cmp_lhs_id = try self.maskStrangeInt(op_ty_ref, cmp_lhs_id, info.bits);
|
|
cmp_rhs_id = try self.maskStrangeInt(op_ty_ref, cmp_rhs_id, info.bits);
|
|
break :sign info.signedness;
|
|
},
|
|
.integer => info.signedness,
|
|
};
|
|
|
|
break :opcode switch (signedness) {
|
|
.unsigned => switch (op) {
|
|
.eq => .OpIEqual,
|
|
.neq => .OpINotEqual,
|
|
.lt => .OpULessThan,
|
|
.lte => .OpULessThanEqual,
|
|
.gt => .OpUGreaterThan,
|
|
.gte => .OpUGreaterThanEqual,
|
|
},
|
|
.signed => switch (op) {
|
|
.eq => .OpIEqual,
|
|
.neq => .OpINotEqual,
|
|
.lt => .OpSLessThan,
|
|
.lte => .OpSLessThanEqual,
|
|
.gt => .OpSGreaterThan,
|
|
.gte => .OpSGreaterThanEqual,
|
|
},
|
|
};
|
|
};
|
|
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
|
|
self.func.body.writeOperand(spec.IdResultType, bool_ty_id);
|
|
self.func.body.writeOperand(spec.IdResult, result_id);
|
|
self.func.body.writeOperand(spec.IdResultType, cmp_lhs_id);
|
|
self.func.body.writeOperand(spec.IdResultType, cmp_rhs_id);
|
|
return result_id;
|
|
}
|
|
|
|
fn airCmp(
|
|
self: *DeclGen,
|
|
inst: Air.Inst.Index,
|
|
comptime op: std.math.CompareOperator,
|
|
) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const bool_ty_id = try self.resolveTypeId(Type.bool);
|
|
const ty = self.typeOf(bin_op.lhs);
|
|
assert(ty.eql(self.typeOf(bin_op.rhs), self.module));
|
|
|
|
return try self.cmp(op, bool_ty_id, ty, lhs_id, rhs_id);
|
|
}
|
|
|
|
fn bitCast(
|
|
self: *DeclGen,
|
|
dst_ty: Type,
|
|
src_ty: Type,
|
|
src_id: IdRef,
|
|
) !IdRef {
|
|
const mod = self.module;
|
|
const dst_ty_ref = try self.resolveType(dst_ty, .direct);
|
|
const result_id = self.spv.allocId();
|
|
|
|
// TODO: Some more cases are missing here
|
|
// See fn bitCast in llvm.zig
|
|
|
|
if (src_ty.zigTypeTag(mod) == .Int and dst_ty.isPtrAtRuntime(mod)) {
|
|
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
|
|
.id_result_type = self.typeId(dst_ty_ref),
|
|
.id_result = result_id,
|
|
.integer_value = src_id,
|
|
});
|
|
} else {
|
|
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
|
.id_result_type = self.typeId(dst_ty_ref),
|
|
.id_result = result_id,
|
|
.operand = src_id,
|
|
});
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
fn airBitCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const operand_ty = self.typeOf(ty_op.operand);
|
|
const result_ty = self.typeOfIndex(inst);
|
|
return try self.bitCast(result_ty, operand_ty, operand_id);
|
|
}
|
|
|
|
fn airIntCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const dest_ty = self.typeOfIndex(inst);
|
|
const dest_ty_id = try self.resolveTypeId(dest_ty);
|
|
|
|
const mod = self.module;
|
|
const dest_info = dest_ty.intInfo(mod);
|
|
|
|
// TODO: Masking?
|
|
|
|
const result_id = self.spv.allocId();
|
|
switch (dest_info.signedness) {
|
|
.signed => try self.func.body.emit(self.spv.gpa, .OpSConvert, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.signed_value = operand_id,
|
|
}),
|
|
.unsigned => try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.unsigned_value = operand_id,
|
|
}),
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
fn airIntFromPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand_id = try self.resolve(un_op);
|
|
const result_type_id = try self.resolveTypeId(Type.usize);
|
|
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.pointer = operand_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airFloatFromInt(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_ty = self.typeOf(ty_op.operand);
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const operand_info = try self.arithmeticTypeInfo(operand_ty);
|
|
const dest_ty = self.typeOfIndex(inst);
|
|
const dest_ty_id = try self.resolveTypeId(dest_ty);
|
|
|
|
const result_id = self.spv.allocId();
|
|
switch (operand_info.signedness) {
|
|
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertSToF, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.signed_value = operand_id,
|
|
}),
|
|
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertUToF, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.unsigned_value = operand_id,
|
|
}),
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
fn airIntFromFloat(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const dest_ty = self.typeOfIndex(inst);
|
|
const dest_info = try self.arithmeticTypeInfo(dest_ty);
|
|
const dest_ty_id = try self.resolveTypeId(dest_ty);
|
|
|
|
const result_id = self.spv.allocId();
|
|
switch (dest_info.signedness) {
|
|
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertFToS, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.float_value = operand_id,
|
|
}),
|
|
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertFToU, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.float_value = operand_id,
|
|
}),
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(Type.bool);
|
|
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.operand = operand_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airSliceField(self: *DeclGen, inst: Air.Inst.Index, field: u32) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const field_ty = self.typeOfIndex(inst);
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
return try self.extractField(field_ty, operand_id, field);
|
|
}
|
|
|
|
fn airSliceElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const mod = self.module;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const slice_ty = self.typeOf(bin_op.lhs);
|
|
if (!slice_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
|
|
|
|
const slice_id = try self.resolve(bin_op.lhs);
|
|
const index_id = try self.resolve(bin_op.rhs);
|
|
|
|
const ptr_ty = self.typeOfIndex(inst);
|
|
const ptr_ty_ref = try self.resolveType(ptr_ty, .direct);
|
|
|
|
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
|
|
return try self.ptrAccessChain(ptr_ty_ref, slice_ptr, index_id, &.{});
|
|
}
|
|
|
|
fn airSliceElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const mod = self.module;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const slice_ty = self.typeOf(bin_op.lhs);
|
|
if (!slice_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
|
|
|
|
const slice_id = try self.resolve(bin_op.lhs);
|
|
const index_id = try self.resolve(bin_op.rhs);
|
|
|
|
const ptr_ty = slice_ty.slicePtrFieldType(mod);
|
|
const ptr_ty_ref = try self.resolveType(ptr_ty, .direct);
|
|
|
|
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
|
|
const elem_ptr = try self.ptrAccessChain(ptr_ty_ref, slice_ptr, index_id, &.{});
|
|
return try self.load(slice_ty, elem_ptr);
|
|
}
|
|
|
|
fn ptrElemPtr(self: *DeclGen, ptr_ty: Type, ptr_id: IdRef, index_id: IdRef) !IdRef {
|
|
const mod = self.module;
|
|
// Construct new pointer type for the resulting pointer
|
|
const elem_ty = ptr_ty.elemType2(mod); // use elemType() so that we get T for *[N]T.
|
|
const elem_ty_ref = try self.resolveType(elem_ty, .direct);
|
|
const elem_ptr_ty_ref = try self.spv.ptrType(elem_ty_ref, spvStorageClass(ptr_ty.ptrAddressSpace(mod)));
|
|
if (ptr_ty.isSinglePointer(mod)) {
|
|
// Pointer-to-array. In this case, the resulting pointer is not of the same type
|
|
// as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain.
|
|
return try self.accessChain(elem_ptr_ty_ref, ptr_id, &.{index_id});
|
|
} else {
|
|
// Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain
|
|
return try self.ptrAccessChain(elem_ptr_ty_ref, ptr_id, index_id, &.{});
|
|
}
|
|
}
|
|
|
|
fn airPtrElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const mod = self.module;
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const ptr_ty = self.typeOf(bin_op.lhs);
|
|
const elem_ty = ptr_ty.childType(mod);
|
|
// TODO: Make this return a null ptr or something
|
|
if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) return null;
|
|
|
|
const ptr_id = try self.resolve(bin_op.lhs);
|
|
const index_id = try self.resolve(bin_op.rhs);
|
|
return try self.ptrElemPtr(ptr_ty, ptr_id, index_id);
|
|
}
|
|
|
|
fn airPtrElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const mod = self.module;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const ptr_ty = self.typeOf(bin_op.lhs);
|
|
const ptr_id = try self.resolve(bin_op.lhs);
|
|
const index_id = try self.resolve(bin_op.rhs);
|
|
|
|
const elem_ptr_id = try self.ptrElemPtr(ptr_ty, ptr_id, index_id);
|
|
|
|
// If we have a pointer-to-array, construct an element pointer to use with load()
|
|
// If we pass ptr_ty directly, it will attempt to load the entire array rather than
|
|
// just an element.
|
|
var elem_ptr_info = ptr_ty.ptrInfo(mod);
|
|
elem_ptr_info.flags.size = .One;
|
|
const elem_ptr_ty = elem_ptr_info.child.toType();
|
|
|
|
return try self.load(elem_ptr_ty, elem_ptr_id);
|
|
}
|
|
|
|
fn airGetUnionTag(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const un_ty = self.typeOf(ty_op.operand);
|
|
|
|
const mod = self.module;
|
|
const layout = un_ty.unionGetLayout(mod);
|
|
if (layout.tag_size == 0) return null;
|
|
|
|
const union_handle = try self.resolve(ty_op.operand);
|
|
if (layout.payload_size == 0) return union_handle;
|
|
|
|
const tag_ty = un_ty.unionTagTypeSafety(mod).?;
|
|
const tag_index = @intFromBool(layout.tag_align < layout.payload_align);
|
|
return try self.extractField(tag_ty, union_handle, tag_index);
|
|
}
|
|
|
|
fn airStructFieldVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const mod = self.module;
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
|
|
|
|
const struct_ty = self.typeOf(struct_field.struct_operand);
|
|
const object_id = try self.resolve(struct_field.struct_operand);
|
|
const field_index = struct_field.field_index;
|
|
const field_ty = struct_ty.structFieldType(field_index, mod);
|
|
|
|
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) return null;
|
|
|
|
assert(struct_ty.zigTypeTag(mod) == .Struct); // Cannot do unions yet.
|
|
|
|
return try self.extractField(field_ty, object_id, field_index);
|
|
}
|
|
|
|
fn structFieldPtr(
|
|
self: *DeclGen,
|
|
result_ptr_ty: Type,
|
|
object_ptr_ty: Type,
|
|
object_ptr: IdRef,
|
|
field_index: u32,
|
|
) !?IdRef {
|
|
const mod = self.module;
|
|
const object_ty = object_ptr_ty.childType(mod);
|
|
switch (object_ty.zigTypeTag(mod)) {
|
|
.Struct => switch (object_ty.containerLayout(mod)) {
|
|
.Packed => unreachable, // TODO
|
|
else => {
|
|
const field_index_ty_ref = try self.intType(.unsigned, 32);
|
|
const field_index_id = try self.spv.constInt(field_index_ty_ref, field_index);
|
|
const result_ty_ref = try self.resolveType(result_ptr_ty, .direct);
|
|
return try self.accessChain(result_ty_ref, object_ptr, &.{field_index_id});
|
|
},
|
|
},
|
|
else => unreachable, // TODO
|
|
}
|
|
}
|
|
|
|
fn airStructFieldPtrIndex(self: *DeclGen, inst: Air.Inst.Index, field_index: u32) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const struct_ptr = try self.resolve(ty_op.operand);
|
|
const struct_ptr_ty = self.typeOf(ty_op.operand);
|
|
const result_ptr_ty = self.typeOfIndex(inst);
|
|
return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
|
|
}
|
|
|
|
/// We cannot use an OpVariable directly in an OpSpecConstantOp, but we can
|
|
/// after we insert a dummy AccessChain...
|
|
/// TODO: Get rid of this
|
|
fn makePointerConstant(
|
|
self: *DeclGen,
|
|
section: *SpvSection,
|
|
ptr_ty_ref: CacheRef,
|
|
ptr_id: IdRef,
|
|
) !IdRef {
|
|
const result_id = self.spv.allocId();
|
|
try section.emitSpecConstantOp(self.spv.gpa, .OpInBoundsAccessChain, .{
|
|
.id_result_type = self.typeId(ptr_ty_ref),
|
|
.id_result = result_id,
|
|
.base = ptr_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
// Allocate a function-local variable, with possible initializer.
|
|
// This function returns a pointer to a variable of type `ty_ref`,
|
|
// which is in the Generic address space. The variable is actually
|
|
// placed in the Function address space.
|
|
fn alloc(
|
|
self: *DeclGen,
|
|
ty_ref: CacheRef,
|
|
initializer: ?IdRef,
|
|
) !IdRef {
|
|
const fn_ptr_ty_ref = try self.spv.ptrType(ty_ref, .Function);
|
|
const general_ptr_ty_ref = try self.spv.ptrType(ty_ref, .Generic);
|
|
|
|
// SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to
|
|
// directly generate them into func.prologue instead of the body.
|
|
const var_id = self.spv.allocId();
|
|
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
|
|
.id_result_type = self.typeId(fn_ptr_ty_ref),
|
|
.id_result = var_id,
|
|
.storage_class = .Function,
|
|
.initializer = initializer,
|
|
});
|
|
|
|
// Convert to a generic pointer
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
|
|
.id_result_type = self.typeId(general_ptr_ty_ref),
|
|
.id_result = result_id,
|
|
.pointer = var_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const mod = self.module;
|
|
const ptr_ty = self.typeOfIndex(inst);
|
|
assert(ptr_ty.ptrAddressSpace(mod) == .generic);
|
|
const child_ty = ptr_ty.childType(mod);
|
|
const child_ty_ref = try self.resolveType(child_ty, .indirect);
|
|
return try self.alloc(child_ty_ref, null);
|
|
}
|
|
|
|
fn airArg(self: *DeclGen) IdRef {
|
|
defer self.next_arg_index += 1;
|
|
return self.args.items[self.next_arg_index];
|
|
}
|
|
|
|
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
// In AIR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
|
|
// "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
|
|
// the current block by first generating the code of the block, then a label, and then generate the rest of the current
|
|
// ir.Block in a different SPIR-V block.
|
|
|
|
const mod = self.module;
|
|
const label_id = self.spv.allocId();
|
|
|
|
// 4 chosen as arbitrary initial capacity.
|
|
var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.gpa, 4);
|
|
|
|
try self.blocks.putNoClobber(self.gpa, inst, .{
|
|
.label_id = label_id,
|
|
.incoming_blocks = &incoming_blocks,
|
|
});
|
|
defer {
|
|
assert(self.blocks.remove(inst));
|
|
incoming_blocks.deinit(self.gpa);
|
|
}
|
|
|
|
const ty = self.typeOfIndex(inst);
|
|
const inst_datas = self.air.instructions.items(.data);
|
|
const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
|
|
try self.genBody(body);
|
|
try self.beginSpvBlock(label_id);
|
|
|
|
// If this block didn't produce a value, simply return here.
|
|
if (!ty.hasRuntimeBitsIgnoreComptime(mod))
|
|
return null;
|
|
|
|
// Combine the result from the blocks using the Phi instruction.
|
|
const result_id = self.spv.allocId();
|
|
|
|
// TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
|
|
// are not allowed to be created from a phi node, and throw an error for those.
|
|
const result_type_id = try self.resolveTypeId(ty);
|
|
|
|
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, 2 + @as(u16, @intCast(incoming_blocks.items.len * 2))); // result type + result + variable/parent...
|
|
self.func.body.writeOperand(spec.IdResultType, result_type_id);
|
|
self.func.body.writeOperand(spec.IdRef, result_id);
|
|
|
|
for (incoming_blocks.items) |incoming| {
|
|
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label_id });
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const br = self.air.instructions.items(.data)[inst].br;
|
|
const block = self.blocks.get(br.block_inst).?;
|
|
const operand_ty = self.typeOf(br.operand);
|
|
|
|
const mod = self.module;
|
|
if (operand_ty.hasRuntimeBits(mod)) {
|
|
const operand_id = try self.resolve(br.operand);
|
|
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
|
|
try block.incoming_blocks.append(self.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id });
|
|
}
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = block.label_id });
|
|
}
|
|
|
|
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
|
|
const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
|
|
const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
|
|
const condition_id = try self.resolve(pl_op.operand);
|
|
|
|
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
|
|
const then_label_id = self.spv.allocId();
|
|
const else_label_id = self.spv.allocId();
|
|
|
|
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
|
|
// but i don't know if those will always resolve to the same block.
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
|
.condition = condition_id,
|
|
.true_label = then_label_id,
|
|
.false_label = else_label_id,
|
|
});
|
|
|
|
try self.beginSpvBlock(then_label_id);
|
|
try self.genBody(then_body);
|
|
try self.beginSpvBlock(else_label_id);
|
|
try self.genBody(else_body);
|
|
}
|
|
|
|
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
|
|
const src_fname_id = try self.spv.resolveSourceFileName(
|
|
self.module,
|
|
self.module.declPtr(self.decl_index),
|
|
);
|
|
try self.func.body.emit(self.spv.gpa, .OpLine, .{
|
|
.file = src_fname_id,
|
|
.line = dbg_stmt.line,
|
|
.column = dbg_stmt.column,
|
|
});
|
|
}
|
|
|
|
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const mod = self.module;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const ptr_ty = self.typeOf(ty_op.operand);
|
|
const operand = try self.resolve(ty_op.operand);
|
|
if (!ptr_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
|
|
|
|
return try self.load(ptr_ty, operand);
|
|
}
|
|
|
|
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const mod = self.module;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const ptr_ty = self.typeOf(bin_op.lhs);
|
|
const ptr = try self.resolve(bin_op.lhs);
|
|
const value = try self.resolve(bin_op.rhs);
|
|
const ptr_ty_ref = try self.resolveType(ptr_ty, .direct);
|
|
|
|
const val_is_undef = if (try self.air.value(bin_op.rhs, mod)) |val| val.isUndefDeep(mod) else false;
|
|
if (val_is_undef) {
|
|
const undef = try self.spv.constUndef(ptr_ty_ref);
|
|
try self.store(ptr_ty, ptr, undef);
|
|
} else {
|
|
try self.store(ptr_ty, ptr, value);
|
|
}
|
|
}
|
|
|
|
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const loop = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[loop.end..][0..loop.data.body_len];
|
|
const loop_label_id = self.spv.allocId();
|
|
|
|
// Jump to the loop entry point
|
|
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id });
|
|
|
|
// TODO: Look into OpLoopMerge.
|
|
try self.beginSpvBlock(loop_label_id);
|
|
try self.genBody(body);
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id });
|
|
}
|
|
|
|
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const operand = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand_ty = self.typeOf(operand);
|
|
const mod = self.module;
|
|
if (operand_ty.hasRuntimeBits(mod)) {
|
|
const operand_id = try self.resolve(operand);
|
|
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
|
|
} else {
|
|
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
|
}
|
|
}
|
|
|
|
fn airRetLoad(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const mod = self.module;
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const ptr_ty = self.typeOf(un_op);
|
|
const ret_ty = ptr_ty.childType(mod);
|
|
|
|
if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
|
|
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
|
return;
|
|
}
|
|
|
|
const ptr = try self.resolve(un_op);
|
|
const value = try self.load(ptr_ty, ptr);
|
|
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{
|
|
.value = value,
|
|
});
|
|
}
|
|
|
|
fn airTry(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const mod = self.module;
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const err_union_id = try self.resolve(pl_op.operand);
|
|
const extra = self.air.extraData(Air.Try, pl_op.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
|
|
const err_union_ty = self.typeOf(pl_op.operand);
|
|
const payload_ty = self.typeOfIndex(inst);
|
|
|
|
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
|
|
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
|
|
|
|
const eu_layout = self.errorUnionLayout(payload_ty);
|
|
|
|
if (!err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
|
|
const err_id = if (eu_layout.payload_has_bits)
|
|
try self.extractField(Type.anyerror, err_union_id, eu_layout.errorFieldIndex())
|
|
else
|
|
err_union_id;
|
|
|
|
const zero_id = try self.spv.constInt(err_ty_ref, 0);
|
|
const is_err_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
|
|
.id_result_type = self.typeId(bool_ty_ref),
|
|
.id_result = is_err_id,
|
|
.operand_1 = err_id,
|
|
.operand_2 = zero_id,
|
|
});
|
|
|
|
// When there is an error, we must evaluate `body`. Otherwise we must continue
|
|
// with the current body.
|
|
// Just generate a new block here, then generate a new block inline for the remainder of the body.
|
|
|
|
const err_block = self.spv.allocId();
|
|
const ok_block = self.spv.allocId();
|
|
|
|
// TODO: Merge block
|
|
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
|
.condition = is_err_id,
|
|
.true_label = err_block,
|
|
.false_label = ok_block,
|
|
});
|
|
|
|
try self.beginSpvBlock(err_block);
|
|
try self.genBody(body);
|
|
|
|
try self.beginSpvBlock(ok_block);
|
|
// Now just extract the payload, if required.
|
|
}
|
|
if (self.liveness.isUnused(inst)) {
|
|
return null;
|
|
}
|
|
if (!eu_layout.payload_has_bits) {
|
|
return null;
|
|
}
|
|
|
|
return try self.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex());
|
|
}
|
|
|
|
fn airErrUnionErr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const mod = self.module;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const err_union_ty = self.typeOf(ty_op.operand);
|
|
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
|
|
|
|
if (err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
|
|
// No error possible, so just return undefined.
|
|
return try self.spv.constUndef(err_ty_ref);
|
|
}
|
|
|
|
const payload_ty = err_union_ty.errorUnionPayload(mod);
|
|
const eu_layout = self.errorUnionLayout(payload_ty);
|
|
|
|
if (!eu_layout.payload_has_bits) {
|
|
// If no payload, error union is represented by error set.
|
|
return operand_id;
|
|
}
|
|
|
|
return try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
|
|
}
|
|
|
|
fn airWrapErrUnionErr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const mod = self.module;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const err_union_ty = self.typeOfIndex(inst);
|
|
const payload_ty = err_union_ty.errorUnionPayload(mod);
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const eu_layout = self.errorUnionLayout(payload_ty);
|
|
|
|
if (!eu_layout.payload_has_bits) {
|
|
return operand_id;
|
|
}
|
|
|
|
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
|
|
var members = std.BoundedArray(IdRef, 2){};
|
|
const payload_id = try self.spv.constUndef(payload_ty_ref);
|
|
if (eu_layout.error_first) {
|
|
members.appendAssumeCapacity(operand_id);
|
|
members.appendAssumeCapacity(payload_id);
|
|
// TODO: ABI padding?
|
|
} else {
|
|
members.appendAssumeCapacity(payload_id);
|
|
members.appendAssumeCapacity(operand_id);
|
|
// TODO: ABI padding?
|
|
}
|
|
|
|
const err_union_ty_ref = try self.resolveType(err_union_ty, .direct);
|
|
return try self.constructStruct(err_union_ty_ref, members.slice());
|
|
}
|
|
|
|
fn airIsNull(self: *DeclGen, inst: Air.Inst.Index, pred: enum { is_null, is_non_null }) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const mod = self.module;
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand_id = try self.resolve(un_op);
|
|
const optional_ty = self.typeOf(un_op);
|
|
|
|
const payload_ty = optional_ty.optionalChild(mod);
|
|
|
|
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
|
|
|
|
if (optional_ty.optionalReprIsPayload(mod)) {
|
|
// Pointer payload represents nullability: pointer or slice.
|
|
|
|
const ptr_ty = if (payload_ty.isSlice(mod))
|
|
payload_ty.slicePtrFieldType(mod)
|
|
else
|
|
payload_ty;
|
|
|
|
const ptr_id = if (payload_ty.isSlice(mod))
|
|
try self.extractField(Type.bool, operand_id, 0)
|
|
else
|
|
operand_id;
|
|
|
|
const payload_ty_ref = try self.resolveType(ptr_ty, .direct);
|
|
const null_id = try self.spv.constNull(payload_ty_ref);
|
|
const result_id = self.spv.allocId();
|
|
const operands = .{
|
|
.id_result_type = self.typeId(bool_ty_ref),
|
|
.id_result = result_id,
|
|
.operand_1 = ptr_id,
|
|
.operand_2 = null_id,
|
|
};
|
|
switch (pred) {
|
|
.is_null => try self.func.body.emit(self.spv.gpa, .OpPtrEqual, operands),
|
|
.is_non_null => try self.func.body.emit(self.spv.gpa, .OpPtrNotEqual, operands),
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
const is_non_null_id = if (optional_ty.hasRuntimeBitsIgnoreComptime(mod))
|
|
try self.extractField(Type.bool, operand_id, 1)
|
|
else
|
|
// Optional representation is bool indicating whether the optional is set
|
|
operand_id;
|
|
|
|
return switch (pred) {
|
|
.is_null => blk: {
|
|
// Invert condition
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
|
|
.id_result_type = self.typeId(bool_ty_ref),
|
|
.id_result = result_id,
|
|
.operand = is_non_null_id,
|
|
});
|
|
break :blk result_id;
|
|
},
|
|
.is_non_null => is_non_null_id,
|
|
};
|
|
}
|
|
|
|
fn airUnwrapOptional(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const mod = self.module;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const optional_ty = self.typeOf(ty_op.operand);
|
|
const payload_ty = self.typeOfIndex(inst);
|
|
|
|
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) return null;
|
|
|
|
if (optional_ty.optionalReprIsPayload(mod)) {
|
|
return operand_id;
|
|
}
|
|
|
|
return try self.extractField(payload_ty, operand_id, 0);
|
|
}
|
|
|
|
fn airWrapOptional(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const mod = self.module;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const payload_ty = self.typeOf(ty_op.operand);
|
|
|
|
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
|
|
return try self.constBool(true, .direct);
|
|
}
|
|
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const optional_ty = self.typeOfIndex(inst);
|
|
if (optional_ty.optionalReprIsPayload(mod)) {
|
|
return operand_id;
|
|
}
|
|
|
|
const optional_ty_ref = try self.resolveType(optional_ty, .direct);
|
|
const members = [_]IdRef{ operand_id, try self.constBool(true, .indirect) };
|
|
return try self.constructStruct(optional_ty_ref, &members);
|
|
}
|
|
|
|
fn airSwitchBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const mod = self.module;
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const cond = try self.resolve(pl_op.operand);
|
|
const cond_ty = self.typeOf(pl_op.operand);
|
|
const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload);
|
|
|
|
const cond_words: u32 = switch (cond_ty.zigTypeTag(mod)) {
|
|
.Int => blk: {
|
|
const bits = cond_ty.intInfo(mod).bits;
|
|
const backing_bits = self.backingIntBits(bits) orelse {
|
|
return self.todo("implement composite int switch", .{});
|
|
};
|
|
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
|
|
},
|
|
.Enum => blk: {
|
|
const int_ty = cond_ty.intTagType(mod);
|
|
const int_info = int_ty.intInfo(mod);
|
|
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
|
return self.todo("implement composite int switch", .{});
|
|
};
|
|
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
|
|
},
|
|
else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(mod))}), // TODO: Figure out which types apply here, and work around them as we can only do integers.
|
|
};
|
|
|
|
const num_cases = switch_br.data.cases_len;
|
|
|
|
// Compute the total number of arms that we need.
|
|
// Zig switches are grouped by condition, so we need to loop through all of them
|
|
const num_conditions = blk: {
|
|
var extra_index: usize = switch_br.end;
|
|
var case_i: u32 = 0;
|
|
var num_conditions: u32 = 0;
|
|
while (case_i < num_cases) : (case_i += 1) {
|
|
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
|
|
const case_body = self.air.extra[case.end + case.data.items_len ..][0..case.data.body_len];
|
|
extra_index = case.end + case.data.items_len + case_body.len;
|
|
num_conditions += case.data.items_len;
|
|
}
|
|
break :blk num_conditions;
|
|
};
|
|
|
|
// First, pre-allocate the labels for the cases.
|
|
const first_case_label = self.spv.allocIds(num_cases);
|
|
// We always need the default case - if zig has none, we will generate unreachable there.
|
|
const default = self.spv.allocId();
|
|
|
|
// Emit the instruction before generating the blocks.
|
|
try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
|
|
self.func.body.writeOperand(IdRef, cond);
|
|
self.func.body.writeOperand(IdRef, default);
|
|
|
|
// Emit each of the cases
|
|
{
|
|
var extra_index: usize = switch_br.end;
|
|
var case_i: u32 = 0;
|
|
while (case_i < num_cases) : (case_i += 1) {
|
|
// SPIR-V needs a literal here, which' width depends on the case condition.
|
|
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
|
|
const items = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[case.end..][0..case.data.items_len]));
|
|
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
|
|
extra_index = case.end + case.data.items_len + case_body.len;
|
|
|
|
const label = IdRef{ .id = first_case_label.id + case_i };
|
|
|
|
for (items) |item| {
|
|
const value = (try self.air.value(item, mod)) orelse {
|
|
return self.todo("switch on runtime value???", .{});
|
|
};
|
|
const int_val = switch (cond_ty.zigTypeTag(mod)) {
|
|
.Int => if (cond_ty.isSignedInt(mod)) @as(u64, @bitCast(value.toSignedInt(mod))) else value.toUnsignedInt(mod),
|
|
.Enum => blk: {
|
|
// TODO: figure out of cond_ty is correct (something with enum literals)
|
|
break :blk (try value.intFromEnum(cond_ty, mod)).toUnsignedInt(mod); // TODO: composite integer constants
|
|
},
|
|
else => unreachable,
|
|
};
|
|
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
|
|
1 => .{ .uint32 = @as(u32, @intCast(int_val)) },
|
|
2 => .{ .uint64 = int_val },
|
|
else => unreachable,
|
|
};
|
|
self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
|
|
self.func.body.writeOperand(IdRef, label);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now, finally, we can start emitting each of the cases.
|
|
var extra_index: usize = switch_br.end;
|
|
var case_i: u32 = 0;
|
|
while (case_i < num_cases) : (case_i += 1) {
|
|
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
|
|
const items = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[case.end..][0..case.data.items_len]));
|
|
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
|
|
extra_index = case.end + case.data.items_len + case_body.len;
|
|
|
|
const label = IdResult{ .id = first_case_label.id + case_i };
|
|
|
|
try self.beginSpvBlock(label);
|
|
try self.genBody(case_body);
|
|
}
|
|
|
|
const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len];
|
|
try self.beginSpvBlock(default);
|
|
if (else_body.len != 0) {
|
|
try self.genBody(else_body);
|
|
} else {
|
|
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
|
}
|
|
}
|
|
|
|
fn airUnreach(self: *DeclGen) !void {
|
|
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
|
}
|
|
|
|
fn airAssembly(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const mod = self.module;
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
|
|
|
|
const is_volatile = @as(u1, @truncate(extra.data.flags >> 31)) != 0;
|
|
const clobbers_len = @as(u31, @truncate(extra.data.flags));
|
|
|
|
if (!is_volatile and self.liveness.isUnused(inst)) return null;
|
|
|
|
var extra_i: usize = extra.end;
|
|
const outputs = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra_i..][0..extra.data.outputs_len]));
|
|
extra_i += outputs.len;
|
|
const inputs = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra_i..][0..extra.data.inputs_len]));
|
|
extra_i += inputs.len;
|
|
|
|
if (outputs.len > 1) {
|
|
return self.todo("implement inline asm with more than 1 output", .{});
|
|
}
|
|
|
|
var output_extra_i = extra_i;
|
|
for (outputs) |output| {
|
|
if (output != .none) {
|
|
return self.todo("implement inline asm with non-returned output", .{});
|
|
}
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
|
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
// TODO: Record output and use it somewhere.
|
|
}
|
|
|
|
var input_extra_i = extra_i;
|
|
for (inputs) |input| {
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
|
const constraint = std.mem.sliceTo(extra_bytes, 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
// This equation accounts for the fact that even if we have exactly 4 bytes
|
|
// for the string, we still use the next u32 for the null terminator.
|
|
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
// TODO: Record input and use it somewhere.
|
|
_ = input;
|
|
}
|
|
|
|
{
|
|
var clobber_i: u32 = 0;
|
|
while (clobber_i < clobbers_len) : (clobber_i += 1) {
|
|
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
|
extra_i += clobber.len / 4 + 1;
|
|
// TODO: Record clobber and use it somewhere.
|
|
}
|
|
}
|
|
|
|
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
|
|
|
|
var as = SpvAssembler{
|
|
.gpa = self.gpa,
|
|
.src = asm_source,
|
|
.spv = self.spv,
|
|
.func = &self.func,
|
|
};
|
|
defer as.deinit();
|
|
|
|
for (inputs) |input| {
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[input_extra_i..]);
|
|
const constraint = std.mem.sliceTo(extra_bytes, 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
// This equation accounts for the fact that even if we have exactly 4 bytes
|
|
// for the string, we still use the next u32 for the null terminator.
|
|
input_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
|
|
const value = try self.resolve(input);
|
|
try as.value_map.put(as.gpa, name, .{ .value = value });
|
|
}
|
|
|
|
as.assemble() catch |err| switch (err) {
|
|
error.AssembleFail => {
|
|
// TODO: For now the compiler only supports a single error message per decl,
|
|
// so to translate the possible multiple errors from the assembler, emit
|
|
// them as notes here.
|
|
// TODO: Translate proper error locations.
|
|
assert(as.errors.items.len != 0);
|
|
assert(self.error_msg == null);
|
|
const loc = LazySrcLoc.nodeOffset(0);
|
|
const src_loc = loc.toSrcLoc(self.module.declPtr(self.decl_index), mod);
|
|
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
|
|
const notes = try self.module.gpa.alloc(Module.ErrorMsg, as.errors.items.len);
|
|
|
|
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
|
|
{
|
|
errdefer self.module.gpa.free(notes);
|
|
var i: usize = 0;
|
|
errdefer for (notes[0..i]) |*note| {
|
|
note.deinit(self.module.gpa);
|
|
};
|
|
|
|
while (i < as.errors.items.len) : (i += 1) {
|
|
notes[i] = try Module.ErrorMsg.init(self.module.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
|
|
}
|
|
}
|
|
self.error_msg.?.notes = notes;
|
|
return error.CodegenFail;
|
|
},
|
|
else => |others| return others,
|
|
};
|
|
|
|
for (outputs) |output| {
|
|
_ = output;
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
|
|
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
|
|
const result = as.value_map.get(name) orelse return {
|
|
return self.fail("invalid asm output '{s}'", .{name});
|
|
};
|
|
|
|
switch (result) {
|
|
.just_declared, .unresolved_forward_reference => unreachable,
|
|
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
|
|
.value => |ref| return ref,
|
|
}
|
|
|
|
// TODO: Multiple results
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
fn airCall(self: *DeclGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?IdRef {
|
|
_ = modifier;
|
|
|
|
const mod = self.module;
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const extra = self.air.extraData(Air.Call, pl_op.payload);
|
|
const args = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra.end..][0..extra.data.args_len]));
|
|
const callee_ty = self.typeOf(pl_op.operand);
|
|
const zig_fn_ty = switch (callee_ty.zigTypeTag(mod)) {
|
|
.Fn => callee_ty,
|
|
.Pointer => return self.fail("cannot call function pointers", .{}),
|
|
else => unreachable,
|
|
};
|
|
const fn_info = mod.typeToFunc(zig_fn_ty).?;
|
|
const return_type = fn_info.return_type;
|
|
|
|
const result_type_id = try self.resolveTypeId(return_type.toType());
|
|
const result_id = self.spv.allocId();
|
|
const callee_id = try self.resolve(pl_op.operand);
|
|
|
|
const params = try self.gpa.alloc(spec.IdRef, args.len);
|
|
defer self.gpa.free(params);
|
|
|
|
var n_params: usize = 0;
|
|
for (args) |arg| {
|
|
// Note: resolve() might emit instructions, so we need to call it
|
|
// before starting to emit OpFunctionCall instructions. Hence the
|
|
// temporary params buffer.
|
|
const arg_id = try self.resolve(arg);
|
|
const arg_ty = self.typeOf(arg);
|
|
if (!arg_ty.hasRuntimeBitsIgnoreComptime(mod)) continue;
|
|
|
|
params[n_params] = arg_id;
|
|
n_params += 1;
|
|
}
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpFunctionCall, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.function = callee_id,
|
|
.id_ref_3 = params[0..n_params],
|
|
});
|
|
|
|
if (return_type == .noreturn_type) {
|
|
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
|
}
|
|
|
|
if (self.liveness.isUnused(inst) or !return_type.toType().hasRuntimeBitsIgnoreComptime(mod)) {
|
|
return null;
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn typeOf(self: *DeclGen, inst: Air.Inst.Ref) Type {
|
|
const mod = self.module;
|
|
return self.air.typeOf(inst, &mod.intern_pool);
|
|
}
|
|
|
|
fn typeOfIndex(self: *DeclGen, inst: Air.Inst.Index) Type {
|
|
const mod = self.module;
|
|
return self.air.typeOfIndex(inst, &mod.intern_pool);
|
|
}
|
|
};
|