zig/lib/std/bounded_array.zig
Isaac Freund 23b7d28896 std: restrict mem.span() and mem.len() to sentinel terminated pointers
These functions are currently footgunny when working with pointers to
arrays and slices. They just return the stated length of the array/slice
without iterating and looking for the first sentinel, even if the
array/slice is a sentinel terminated type.

From looking at the quite small list of places in the standard
library/compiler that this change breaks existing code, the new code
looks to be more readable in all cases.

The usage of std.mem.span/len was totally unneeded in most of the cases
affected by this breaking change.

We could remove these functions entirely in favor of other existing
functions in std.mem such as std.mem.sliceTo(), but that would be a
somewhat nasty breaking change as std.mem.span() is very widely used for
converting sentinel terminated pointers to slices. It is however not at
all widely used for anything else.

Therefore I think it is better to break these few non-standard and
potentially incorrect usages of these functions now and at some later
time, if deemed worthwhile, finally remove these functions.

If we wait for at least a full release cycle so that everyone adapts to
this change first, updating for the removal could be a simple find and
replace without needing to worry about the semantics.
2023-01-29 15:07:06 -05:00

368 lines
13 KiB
Zig

const std = @import("std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const testing = std.testing;
/// A structure with an array and a length, that can be used as a slice.
///
/// Useful to pass around small arrays whose exact size is only known at
/// runtime, but whose maximum size is known at comptime, without requiring
/// an `Allocator`.
///
/// ```zig
/// var actual_size = 32;
/// var a = try BoundedArray(u8, 64).init(actual_size);
/// var slice = a.slice(); // a slice of the 64-byte array
/// var a_clone = a; // creates a copy - the structure doesn't use any internal pointers
/// ```
pub fn BoundedArray(comptime T: type, comptime buffer_capacity: usize) type {
return struct {
const Self = @This();
buffer: [buffer_capacity]T = undefined,
len: usize = 0,
/// Set the actual length of the slice.
/// Returns error.Overflow if it exceeds the length of the backing array.
pub fn init(len: usize) error{Overflow}!Self {
if (len > buffer_capacity) return error.Overflow;
return Self{ .len = len };
}
/// View the internal array as a slice whose size was previously set.
pub fn slice(self: anytype) switch (@TypeOf(&self.buffer)) {
*[buffer_capacity]T => []T,
*const [buffer_capacity]T => []const T,
else => unreachable,
} {
return self.buffer[0..self.len];
}
/// View the internal array as a constant slice whose size was previously set.
pub fn constSlice(self: *const Self) []const T {
return self.slice();
}
/// Adjust the slice's length to `len`.
/// Does not initialize added items if any.
pub fn resize(self: *Self, len: usize) error{Overflow}!void {
if (len > buffer_capacity) return error.Overflow;
self.len = len;
}
/// Copy the content of an existing slice.
pub fn fromSlice(m: []const T) error{Overflow}!Self {
var list = try init(m.len);
std.mem.copy(T, list.slice(), m);
return list;
}
/// Return the element at index `i` of the slice.
pub fn get(self: Self, i: usize) T {
return self.constSlice()[i];
}
/// Set the value of the element at index `i` of the slice.
pub fn set(self: *Self, i: usize, item: T) void {
self.slice()[i] = item;
}
/// Return the maximum length of a slice.
pub fn capacity(self: Self) usize {
return self.buffer.len;
}
/// Check that the slice can hold at least `additional_count` items.
pub fn ensureUnusedCapacity(self: Self, additional_count: usize) error{Overflow}!void {
if (self.len + additional_count > buffer_capacity) {
return error.Overflow;
}
}
/// Increase length by 1, returning a pointer to the new item.
pub fn addOne(self: *Self) error{Overflow}!*T {
try self.ensureUnusedCapacity(1);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is space for the new item.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.len < buffer_capacity);
self.len += 1;
return &self.slice()[self.len - 1];
}
/// Resize the slice, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the uninitialized elements.
pub fn addManyAsArray(self: *Self, comptime n: usize) error{Overflow}!*[n]T {
const prev_len = self.len;
try self.resize(self.len + n);
return self.slice()[prev_len..][0..n];
}
/// Remove and return the last element from the slice.
/// Asserts the slice has at least one item.
pub fn pop(self: *Self) T {
const item = self.get(self.len - 1);
self.len -= 1;
return item;
}
/// Remove and return the last element from the slice, or
/// return `null` if the slice is empty.
pub fn popOrNull(self: *Self) ?T {
return if (self.len == 0) null else self.pop();
}
/// Return a slice of only the extra capacity after items.
/// This can be useful for writing directly into it.
/// Note that such an operation must be followed up with a
/// call to `resize()`
pub fn unusedCapacitySlice(self: *Self) []T {
return self.buffer[self.len..];
}
/// Insert `item` at index `i` by moving `slice[n .. slice.len]` to make room.
/// This operation is O(N).
pub fn insert(
self: *Self,
i: usize,
item: T,
) error{Overflow}!void {
if (i > self.len) {
return error.Overflow;
}
_ = try self.addOne();
var s = self.slice();
mem.copyBackwards(T, s[i + 1 .. s.len], s[i .. s.len - 1]);
self.buffer[i] = item;
}
/// Insert slice `items` at index `i` by moving `slice[i .. slice.len]` to make room.
/// This operation is O(N).
pub fn insertSlice(self: *Self, i: usize, items: []const T) error{Overflow}!void {
try self.ensureUnusedCapacity(items.len);
self.len += items.len;
mem.copyBackwards(T, self.slice()[i + items.len .. self.len], self.constSlice()[i .. self.len - items.len]);
mem.copy(T, self.slice()[i .. i + items.len], items);
}
/// Replace range of elements `slice[start..start+len]` with `new_items`.
/// Grows slice if `len < new_items.len`.
/// Shrinks slice if `len > new_items.len`.
pub fn replaceRange(
self: *Self,
start: usize,
len: usize,
new_items: []const T,
) error{Overflow}!void {
const after_range = start + len;
var range = self.slice()[start..after_range];
if (range.len == new_items.len) {
mem.copy(T, range, new_items);
} else if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
mem.copy(T, range, first);
try self.insertSlice(after_range, rest);
} else {
mem.copy(T, range, new_items);
const after_subrange = start + new_items.len;
for (self.constSlice()[after_range..]) |item, i| {
self.slice()[after_subrange..][i] = item;
}
self.len -= len - new_items.len;
}
}
/// Extend the slice by 1 element.
pub fn append(self: *Self, item: T) error{Overflow}!void {
const new_item_ptr = try self.addOne();
new_item_ptr.* = item;
}
/// Extend the slice by 1 element, asserting the capacity is already
/// enough to store the new item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i`, shift elements after index
/// `i` forward, and return the removed element.
/// Asserts the slice has at least one item.
/// This operation is O(N).
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.len - 1;
if (newlen == i) return self.pop();
const old_item = self.get(i);
for (self.slice()[i..newlen]) |*b, j| b.* = self.get(i + 1 + j);
self.set(newlen, undefined);
self.len = newlen;
return old_item;
}
/// Remove the element at the specified index and return it.
/// The empty slot is filled from the end of the slice.
/// This operation is O(1).
pub fn swapRemove(self: *Self, i: usize) T {
if (self.len - 1 == i) return self.pop();
const old_item = self.get(i);
self.set(i, self.pop());
return old_item;
}
/// Append the slice of items to the slice.
pub fn appendSlice(self: *Self, items: []const T) error{Overflow}!void {
try self.ensureUnusedCapacity(items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the slice, asserting the capacity is already
/// enough to store the new items.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const oldlen = self.len;
self.len += items.len;
mem.copy(T, self.slice()[oldlen..], items);
}
/// Append a value to the slice `n` times.
/// Allocates more memory as necessary.
pub fn appendNTimes(self: *Self, value: T, n: usize) error{Overflow}!void {
const old_len = self.len;
try self.resize(old_len + n);
mem.set(T, self.slice()[old_len..self.len], value);
}
/// Append a value to the slice `n` times.
/// Asserts the capacity is enough.
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const old_len = self.len;
self.len += n;
assert(self.len <= buffer_capacity);
mem.set(T, self.slice()[old_len..self.len], value);
}
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for BoundedArray(u8, ...) " ++
"but the given type is BoundedArray(" ++ @typeName(T) ++ ", ...)")
else
std.io.Writer(*Self, error{Overflow}, appendWrite);
/// Initializes a writer which will write into the array.
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
/// Same as `appendSlice` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
fn appendWrite(self: *Self, m: []const u8) error{Overflow}!usize {
try self.appendSlice(m);
return m.len;
}
};
}
test "BoundedArray" {
var a = try BoundedArray(u8, 64).init(32);
try testing.expectEqual(a.capacity(), 64);
try testing.expectEqual(a.slice().len, 32);
try testing.expectEqual(a.constSlice().len, 32);
try a.resize(48);
try testing.expectEqual(a.len, 48);
const x = [_]u8{1} ** 10;
a = try BoundedArray(u8, 64).fromSlice(&x);
try testing.expectEqualSlices(u8, &x, a.constSlice());
var a2 = a;
try testing.expectEqualSlices(u8, a.constSlice(), a2.constSlice());
a2.set(0, 0);
try testing.expect(a.get(0) != a2.get(0));
try testing.expectError(error.Overflow, a.resize(100));
try testing.expectError(error.Overflow, BoundedArray(u8, x.len - 1).fromSlice(&x));
try a.resize(0);
try a.ensureUnusedCapacity(a.capacity());
(try a.addOne()).* = 0;
try a.ensureUnusedCapacity(a.capacity() - 1);
try testing.expectEqual(a.len, 1);
const uninitialized = try a.addManyAsArray(4);
try testing.expectEqual(uninitialized.len, 4);
try testing.expectEqual(a.len, 5);
try a.append(0xff);
try testing.expectEqual(a.len, 6);
try testing.expectEqual(a.pop(), 0xff);
a.appendAssumeCapacity(0xff);
try testing.expectEqual(a.len, 6);
try testing.expectEqual(a.pop(), 0xff);
try a.resize(1);
try testing.expectEqual(a.popOrNull(), 0);
try testing.expectEqual(a.popOrNull(), null);
var unused = a.unusedCapacitySlice();
mem.set(u8, unused[0..8], 2);
unused[8] = 3;
unused[9] = 4;
try testing.expectEqual(unused.len, a.capacity());
try a.resize(10);
try a.insert(5, 0xaa);
try testing.expectEqual(a.len, 11);
try testing.expectEqual(a.get(5), 0xaa);
try testing.expectEqual(a.get(9), 3);
try testing.expectEqual(a.get(10), 4);
try a.insert(11, 0xbb);
try testing.expectEqual(a.len, 12);
try testing.expectEqual(a.pop(), 0xbb);
try a.appendSlice(&x);
try testing.expectEqual(a.len, 11 + x.len);
try a.appendNTimes(0xbb, 5);
try testing.expectEqual(a.len, 11 + x.len + 5);
try testing.expectEqual(a.pop(), 0xbb);
a.appendNTimesAssumeCapacity(0xcc, 5);
try testing.expectEqual(a.len, 11 + x.len + 5 - 1 + 5);
try testing.expectEqual(a.pop(), 0xcc);
try testing.expectEqual(a.len, 29);
try a.replaceRange(1, 20, &x);
try testing.expectEqual(a.len, 29 + x.len - 20);
try a.insertSlice(0, &x);
try testing.expectEqual(a.len, 29 + x.len - 20 + x.len);
try a.replaceRange(1, 5, &x);
try testing.expectEqual(a.len, 29 + x.len - 20 + x.len + x.len - 5);
try a.append(10);
try testing.expectEqual(a.pop(), 10);
try a.append(20);
const removed = a.orderedRemove(5);
try testing.expectEqual(removed, 1);
try testing.expectEqual(a.len, 34);
a.set(0, 0xdd);
a.set(a.len - 1, 0xee);
const swapped = a.swapRemove(0);
try testing.expectEqual(swapped, 0xdd);
try testing.expectEqual(a.get(0), 0xee);
while (a.popOrNull()) |_| {}
const w = a.writer();
const s = "hello, this is a test string";
try w.writeAll(s);
try testing.expectEqualStrings(s, a.constSlice());
}