zig/src/zig_llvm.cpp
mlugg dcc3e6e1dd build system: replace fuzzing UI with build UI, add time report
This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.

The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.

When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.

When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.

In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.

If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.

To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.

If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.

Implementation notes:

* The `lib/build-web/` directory holds the client side of the web UI.

* The general server logic is in `std.Build.WebServer`.

* Fuzzing-specific logic is in `std.Build.Fuzz`.

* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
  relates to the build system web UI in general.

* The build runner now has an **actual** general-purpose allocator,
  because thanks to `--watch` and `--webui`, the process can be
  arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
  arena remains backed by `std.heap.page_allocator` for efficiency. I
  fixed several crashes caused by conflation of `gpa` and `arena` in the
  build runner and `std.Build`, but there may still be some I have
  missed.

* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
  *lot* of threads involved. I anticipate this situation improving
  significantly once the `std.Io` interface (with concurrency support)
  is introduced.
2025-08-01 23:48:21 +01:00

587 lines
21 KiB
C++

/*
* Copyright (c) 2015 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
/*
* The point of this file is to contain all the LLVM C++ API interaction so that:
* 1. The compile time of other files is kept under control.
* 2. Provide a C interface to the LLVM functions we need for self-hosting purposes.
* 3. Prevent C++ from infecting the rest of the project.
*/
#include "zig_llvm.h"
#if __GNUC__ >= 9
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winit-list-lifetime"
#endif
#include <llvm/Analysis/AliasAnalysis.h>
#include <llvm/Analysis/TargetLibraryInfo.h>
#include <llvm/Analysis/TargetTransformInfo.h>
#include <llvm/Bitcode/BitcodeWriter.h>
#include <llvm/IR/DiagnosticInfo.h>
#include <llvm/IR/InlineAsm.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/LegacyPassManager.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/OptBisect.h>
#include <llvm/IR/PassManager.h>
#include <llvm/IR/Verifier.h>
#include <llvm/InitializePasses.h>
#include <llvm/MC/TargetRegistry.h>
#include <llvm/Passes/OptimizationLevel.h>
#include <llvm/Passes/PassBuilder.h>
#include <llvm/Passes/StandardInstrumentations.h>
#include <llvm/Object/Archive.h>
#include <llvm/Object/ArchiveWriter.h>
#include <llvm/Object/COFF.h>
#include <llvm/Object/COFFImportFile.h>
#include <llvm/Object/COFFModuleDefinition.h>
#include <llvm/PassRegistry.h>
#include <llvm/Support/CommandLine.h>
#include <llvm/Support/FileSystem.h>
#include <llvm/Support/Process.h>
#include <llvm/Support/TimeProfiler.h>
#include <llvm/Support/Timer.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Target/TargetMachine.h>
#include <llvm/Target/TargetOptions.h>
#include <llvm/Target/CodeGenCWrappers.h>
#include <llvm/Transforms/IPO.h>
#include <llvm/Transforms/IPO/AlwaysInliner.h>
#include <llvm/Transforms/Instrumentation/ThreadSanitizer.h>
#include <llvm/Transforms/Instrumentation/SanitizerCoverage.h>
#include <llvm/Transforms/Scalar.h>
#include <llvm/Transforms/Utils.h>
#include <llvm/Transforms/Utils/AddDiscriminators.h>
#include <llvm/Transforms/Utils/CanonicalizeAliases.h>
#include <llvm/Transforms/Utils/NameAnonGlobals.h>
#include <lld/Common/Driver.h>
#if __GNUC__ >= 9
#pragma GCC diagnostic pop
#endif
#include <new>
#include <stdlib.h>
using namespace llvm;
#ifndef NDEBUG
static const bool assertions_on = true;
#else
static const bool assertions_on = false;
#endif
LLVMTargetMachineRef ZigLLVMCreateTargetMachine(LLVMTargetRef T, const char *Triple,
const char *CPU, const char *Features, LLVMCodeGenOptLevel Level, LLVMRelocMode Reloc,
LLVMCodeModel CodeModel, bool function_sections, bool data_sections, ZigLLVMFloatABI float_abi,
const char *abi_name, bool emulated_tls)
{
std::optional<Reloc::Model> RM;
switch (Reloc){
case LLVMRelocStatic:
RM = Reloc::Static;
break;
case LLVMRelocPIC:
RM = Reloc::PIC_;
break;
case LLVMRelocDynamicNoPic:
RM = Reloc::DynamicNoPIC;
break;
case LLVMRelocROPI:
RM = Reloc::ROPI;
break;
case LLVMRelocRWPI:
RM = Reloc::RWPI;
break;
case LLVMRelocROPI_RWPI:
RM = Reloc::ROPI_RWPI;
break;
default:
break;
}
bool JIT;
std::optional<CodeModel::Model> CM = unwrap(CodeModel, JIT);
CodeGenOptLevel OL;
switch (Level) {
case LLVMCodeGenLevelNone:
OL = CodeGenOptLevel::None;
break;
case LLVMCodeGenLevelLess:
OL = CodeGenOptLevel::Less;
break;
case LLVMCodeGenLevelAggressive:
OL = CodeGenOptLevel::Aggressive;
break;
default:
OL = CodeGenOptLevel::Default;
break;
}
TargetOptions opt;
opt.UseInitArray = true;
opt.FunctionSections = function_sections;
opt.DataSections = data_sections;
switch (float_abi) {
case ZigLLVMFloatABI_Default:
opt.FloatABIType = FloatABI::Default;
break;
case ZigLLVMFloatABI_Soft:
opt.FloatABIType = FloatABI::Soft;
break;
case ZigLLVMFloatABI_Hard:
opt.FloatABIType = FloatABI::Hard;
break;
}
if (abi_name != nullptr) {
opt.MCOptions.ABIName = abi_name;
}
if (emulated_tls) {
opt.EmulatedTLS = true;
}
TargetMachine *TM = reinterpret_cast<Target*>(T)->createTargetMachine(Triple, CPU, Features, opt, RM, CM,
OL, JIT);
return reinterpret_cast<LLVMTargetMachineRef>(TM);
}
namespace {
// LLVM's time profiler can provide a hierarchy view of the time spent
// in each component. It generates JSON report in Chrome's "Trace Event"
// format. So the report can be easily visualized by the Chrome browser.
struct TimeTracerRAII {
// Granularity in ms
unsigned TimeTraceGranularity;
StringRef TimeTraceFile, OutputFilename;
bool EnableTimeTrace;
TimeTracerRAII(StringRef ProgramName, StringRef OF)
: TimeTraceGranularity(500U),
TimeTraceFile(std::getenv("ZIG_LLVM_TIME_TRACE_FILE")),
OutputFilename(OF),
EnableTimeTrace(!TimeTraceFile.empty()) {
if (EnableTimeTrace) {
if (const char *G = std::getenv("ZIG_LLVM_TIME_TRACE_GRANULARITY"))
TimeTraceGranularity = (unsigned)std::atoi(G);
llvm::timeTraceProfilerInitialize(TimeTraceGranularity, ProgramName);
}
}
~TimeTracerRAII() {
if (EnableTimeTrace) {
if (auto E = llvm::timeTraceProfilerWrite(TimeTraceFile, OutputFilename)) {
handleAllErrors(std::move(E), [&](const StringError &SE) {
errs() << SE.getMessage() << "\n";
});
return;
}
timeTraceProfilerCleanup();
}
}
};
} // end anonymous namespace
static SanitizerCoverageOptions getSanCovOptions(ZigLLVMCoverageOptions z) {
SanitizerCoverageOptions o;
o.CoverageType = (SanitizerCoverageOptions::Type)z.CoverageType;
o.IndirectCalls = z.IndirectCalls;
o.TraceBB = z.TraceBB;
o.TraceCmp = z.TraceCmp;
o.TraceDiv = z.TraceDiv;
o.TraceGep = z.TraceGep;
o.Use8bitCounters = z.Use8bitCounters;
o.TracePC = z.TracePC;
o.TracePCGuard = z.TracePCGuard;
o.Inline8bitCounters = z.Inline8bitCounters;
o.InlineBoolFlag = z.InlineBoolFlag;
o.PCTable = z.PCTable;
o.NoPrune = z.NoPrune;
o.StackDepth = z.StackDepth;
o.TraceLoads = z.TraceLoads;
o.TraceStores = z.TraceStores;
o.CollectControlFlow = z.CollectControlFlow;
return o;
}
ZIG_EXTERN_C bool ZigLLVMTargetMachineEmitToFile(LLVMTargetMachineRef targ_machine_ref, LLVMModuleRef module_ref,
char **error_message, const ZigLLVMEmitOptions *options)
{
TimePassesIsEnabled = options->time_report_out != nullptr;
raw_fd_ostream *dest_asm_ptr = nullptr;
raw_fd_ostream *dest_bin_ptr = nullptr;
raw_fd_ostream *dest_bitcode_ptr = nullptr;
if (options->asm_filename) {
std::error_code EC;
dest_asm_ptr = new(std::nothrow) raw_fd_ostream(options->asm_filename, EC, sys::fs::OF_None);
if (EC) {
*error_message = strdup((const char *)StringRef(EC.message()).bytes_begin());
return true;
}
}
if (options->bin_filename) {
std::error_code EC;
dest_bin_ptr = new(std::nothrow) raw_fd_ostream(options->bin_filename, EC, sys::fs::OF_None);
if (EC) {
*error_message = strdup((const char *)StringRef(EC.message()).bytes_begin());
return true;
}
}
if (options->bitcode_filename) {
std::error_code EC;
dest_bitcode_ptr = new(std::nothrow) raw_fd_ostream(options->bitcode_filename, EC, sys::fs::OF_None);
if (EC) {
*error_message = strdup((const char *)StringRef(EC.message()).bytes_begin());
return true;
}
}
std::unique_ptr<raw_fd_ostream> dest_asm(dest_asm_ptr),
dest_bin(dest_bin_ptr),
dest_bitcode(dest_bitcode_ptr);
auto PID = sys::Process::getProcessId();
std::string ProcName = "zig-";
ProcName += std::to_string(PID);
TimeTracerRAII TimeTracer(ProcName,
options->bin_filename? options->bin_filename : options->asm_filename);
TargetMachine &target_machine = *reinterpret_cast<TargetMachine*>(targ_machine_ref);
if (options->allow_fast_isel) {
target_machine.setO0WantsFastISel(true);
} else {
target_machine.setFastISel(false);
}
if (!options->allow_machine_outliner) {
target_machine.setMachineOutliner(false);
}
Module &llvm_module = *unwrap(module_ref);
// Pipeline configurations
PipelineTuningOptions pipeline_opts;
pipeline_opts.LoopUnrolling = !options->is_debug;
pipeline_opts.SLPVectorization = !options->is_debug;
pipeline_opts.LoopVectorization = !options->is_debug;
pipeline_opts.LoopInterleaving = !options->is_debug;
pipeline_opts.MergeFunctions = !options->is_debug;
// Instrumentations
PassInstrumentationCallbacks instr_callbacks;
StandardInstrumentations std_instrumentations(llvm_module.getContext(), false);
std_instrumentations.registerCallbacks(instr_callbacks);
std::optional<PGOOptions> opt_pgo_options = {};
PassBuilder pass_builder(&target_machine, pipeline_opts,
opt_pgo_options, &instr_callbacks);
LoopAnalysisManager loop_am;
FunctionAnalysisManager function_am;
CGSCCAnalysisManager cgscc_am;
ModuleAnalysisManager module_am;
// Register the AA manager first so that our version is the one used
function_am.registerPass([&] {
return pass_builder.buildDefaultAAPipeline();
});
Triple target_triple(llvm_module.getTargetTriple());
auto tlii = std::make_unique<TargetLibraryInfoImpl>(target_triple);
function_am.registerPass([&] { return TargetLibraryAnalysis(*tlii); });
// Initialize the AnalysisManagers
pass_builder.registerModuleAnalyses(module_am);
pass_builder.registerCGSCCAnalyses(cgscc_am);
pass_builder.registerFunctionAnalyses(function_am);
pass_builder.registerLoopAnalyses(loop_am);
pass_builder.crossRegisterProxies(loop_am, function_am, cgscc_am, module_am);
pass_builder.registerPipelineStartEPCallback([&](ModulePassManager &module_pm, OptimizationLevel level) {
// Verify the input
if (assertions_on) {
module_pm.addPass(VerifierPass());
}
if (!options->is_debug) {
module_pm.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
}
});
const bool early_san = options->is_debug;
pass_builder.registerOptimizerEarlyEPCallback([&](ModulePassManager &module_pm, OptimizationLevel level, ThinOrFullLTOPhase lto_phase) {
if (early_san) {
// Code coverage instrumentation.
if (options->sancov) {
module_pm.addPass(SanitizerCoveragePass(getSanCovOptions(options->coverage)));
}
// Thread sanitizer
if (options->tsan) {
module_pm.addPass(ModuleThreadSanitizerPass());
module_pm.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
}
}
});
pass_builder.registerOptimizerLastEPCallback([&](ModulePassManager &module_pm, OptimizationLevel level, ThinOrFullLTOPhase lto_phase) {
if (!early_san) {
// Code coverage instrumentation.
if (options->sancov) {
module_pm.addPass(SanitizerCoveragePass(getSanCovOptions(options->coverage)));
}
// Thread sanitizer
if (options->tsan) {
module_pm.addPass(ModuleThreadSanitizerPass());
module_pm.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
}
}
// Verify the output
if (assertions_on) {
module_pm.addPass(VerifierPass());
}
});
ModulePassManager module_pm;
OptimizationLevel opt_level;
// Setting up the optimization level
if (options->is_debug)
opt_level = OptimizationLevel::O0;
else if (options->is_small)
opt_level = OptimizationLevel::Oz;
else
opt_level = OptimizationLevel::O3;
// Initialize the PassManager
if (opt_level == OptimizationLevel::O0) {
module_pm = pass_builder.buildO0DefaultPipeline(opt_level, static_cast<ThinOrFullLTOPhase>(options->lto));
} else if (options->lto) {
module_pm = pass_builder.buildLTOPreLinkDefaultPipeline(opt_level);
} else {
module_pm = pass_builder.buildPerModuleDefaultPipeline(opt_level);
}
// Unfortunately we don't have new PM for code generation
legacy::PassManager codegen_pm;
codegen_pm.add(
createTargetTransformInfoWrapperPass(target_machine.getTargetIRAnalysis()));
if (dest_bin && !options->lto) {
if (target_machine.addPassesToEmitFile(codegen_pm, *dest_bin, nullptr, CodeGenFileType::ObjectFile)) {
*error_message = strdup("TargetMachine can't emit an object file");
return true;
}
}
if (dest_asm) {
if (target_machine.addPassesToEmitFile(codegen_pm, *dest_asm, nullptr, CodeGenFileType::AssemblyFile)) {
*error_message = strdup("TargetMachine can't emit an assembly file");
return true;
}
}
// Optimization phase
module_pm.run(llvm_module, module_am);
// Code generation phase
codegen_pm.run(llvm_module);
if (options->llvm_ir_filename) {
if (LLVMPrintModuleToFile(module_ref, options->llvm_ir_filename, error_message)) {
return true;
}
}
if (dest_bin && options->lto) {
WriteBitcodeToFile(llvm_module, *dest_bin);
}
if (dest_bitcode) {
WriteBitcodeToFile(llvm_module, *dest_bitcode);
}
// This must only happen once we know we've succeeded and will be returning `false`, because
// this code `malloc`s memory which will become owned by the caller (in Zig code).
if (options->time_report_out != nullptr) {
std::string out_str;
auto os = raw_string_ostream(out_str);
TimerGroup::printAll(os);
TimerGroup::clearAll();
auto c_str = (char *)malloc(out_str.length() + 1);
strcpy(c_str, out_str.c_str());
*options->time_report_out = c_str;
}
return false;
}
void ZigLLVMSetOptBisectLimit(LLVMContextRef context_ref, int limit) {
static OptBisect opt_bisect;
opt_bisect.setLimit(limit);
unwrap(context_ref)->setOptPassGate(opt_bisect);
}
struct ZigDiagnosticHandler : public DiagnosticHandler {
bool BrokenDebugInfo;
ZigDiagnosticHandler() : BrokenDebugInfo(false) {}
bool handleDiagnostics(const DiagnosticInfo &DI) override {
// This dyn_cast should be casting to DiagnosticInfoIgnoringInvalidDebugMetadata
// but DiagnosticInfoIgnoringInvalidDebugMetadata is treated as DiagnosticInfoDebugMetadataVersion
// because of a bug in LLVM (see https://github.com/ziglang/zig/issues/19161).
// After this is fixed add an additional check for DiagnosticInfoIgnoringInvalidDebugMetadata
// but don't remove the current one as both indicate that debug info is broken.
if (auto *Remark = dyn_cast<DiagnosticInfoDebugMetadataVersion>(&DI)) {
BrokenDebugInfo = true;
}
return false;
}
};
void ZigLLVMEnableBrokenDebugInfoCheck(LLVMContextRef context_ref) {
unwrap(context_ref)->setDiagnosticHandler(std::make_unique<ZigDiagnosticHandler>());
}
bool ZigLLVMGetBrokenDebugInfo(LLVMContextRef context_ref) {
return ((const ZigDiagnosticHandler*)
unwrap(context_ref)->getDiagHandlerPtr())->BrokenDebugInfo;
}
void ZigLLVMParseCommandLineOptions(size_t argc, const char *const *argv) {
cl::ParseCommandLineOptions(argc, argv);
}
bool ZigLLVMWriteImportLibrary(const char *def_path, unsigned int coff_machine,
const char *output_lib_path, bool kill_at)
{
COFF::MachineTypes machine = static_cast<COFF::MachineTypes>(coff_machine);
auto bufOrErr = MemoryBuffer::getFile(def_path);
if (!bufOrErr) {
return false;
}
MemoryBuffer& buf = *bufOrErr.get();
Expected<object::COFFModuleDefinition> def =
object::parseCOFFModuleDefinition(buf, machine, /* MingwDef */ true);
if (!def) {
return true;
}
// The exports-juggling code below is ripped from LLVM's DlltoolDriver.cpp
// If ExtName is set (if the "ExtName = Name" syntax was used), overwrite
// Name with ExtName and clear ExtName. When only creating an import
// library and not linking, the internal name is irrelevant. This avoids
// cases where writeImportLibrary tries to transplant decoration from
// symbol decoration onto ExtName.
for (object::COFFShortExport& E : def->Exports) {
if (!E.ExtName.empty()) {
E.Name = E.ExtName;
E.ExtName.clear();
}
}
if (kill_at) {
for (object::COFFShortExport& E : def->Exports) {
if (!E.ImportName.empty() || (!E.Name.empty() && E.Name[0] == '?'))
continue;
if (machine == COFF::IMAGE_FILE_MACHINE_I386) {
// By making sure E.SymbolName != E.Name for decorated symbols,
// writeImportLibrary writes these symbols with the type
// IMPORT_NAME_UNDECORATE.
E.SymbolName = E.Name;
}
// Trim off the trailing decoration. Symbols will always have a
// starting prefix here (either _ for cdecl/stdcall, @ for fastcall
// or ? for C++ functions). Vectorcall functions won't have any
// fixed prefix, but the function base name will still be at least
// one char.
E.Name = E.Name.substr(0, E.Name.find('@', 1));
}
}
return static_cast<bool>(
object::writeImportLibrary(def->OutputFile, output_lib_path,
def->Exports, machine, /* MinGW */ true));
}
bool ZigLLVMWriteArchive(const char *archive_name, const char **file_names, size_t file_name_count,
ZigLLVMArchiveKind archive_kind)
{
SmallVector<NewArchiveMember, 4> new_members;
for (size_t i = 0; i < file_name_count; i += 1) {
Expected<NewArchiveMember> new_member = NewArchiveMember::getFile(file_names[i], true);
Error err = new_member.takeError();
if (err) return true;
new_members.push_back(std::move(*new_member));
}
Error err = writeArchive(archive_name, new_members,
SymtabWritingMode::NormalSymtab, static_cast<object::Archive::Kind>(archive_kind), true, false, nullptr);
if (err) return true;
return false;
}
// The header file in LLD 16 exposed these functions. As of 17 they are only
// exposed via a macro ("LLD_HAS_DRIVER") which I have copied and pasted the
// body of here so that you don't have to wonder what it is doing.
namespace lld {
namespace coff {
bool link(llvm::ArrayRef<const char *> args, llvm::raw_ostream &stdoutOS,
llvm::raw_ostream &stderrOS, bool exitEarly, bool disableOutput);
}
namespace elf {
bool link(llvm::ArrayRef<const char *> args, llvm::raw_ostream &stdoutOS,
llvm::raw_ostream &stderrOS, bool exitEarly, bool disableOutput);
}
namespace wasm {
bool link(llvm::ArrayRef<const char *> args, llvm::raw_ostream &stdoutOS,
llvm::raw_ostream &stderrOS, bool exitEarly, bool disableOutput);
}
}
bool ZigLLDLinkCOFF(int argc, const char **argv, bool can_exit_early, bool disable_output) {
std::vector<const char *> args(argv, argv + argc);
return lld::coff::link(args, llvm::outs(), llvm::errs(), can_exit_early, disable_output);
}
bool ZigLLDLinkELF(int argc, const char **argv, bool can_exit_early, bool disable_output) {
std::vector<const char *> args(argv, argv + argc);
return lld::elf::link(args, llvm::outs(), llvm::errs(), can_exit_early, disable_output);
}
bool ZigLLDLinkWasm(int argc, const char **argv, bool can_exit_early, bool disable_output) {
std::vector<const char *> args(argv, argv + argc);
return lld::wasm::link(args, llvm::outs(), llvm::errs(), can_exit_early, disable_output);
}
static_assert((FloatABI::ABIType)ZigLLVMFloatABI_Default == FloatABI::ABIType::Default, "");
static_assert((FloatABI::ABIType)ZigLLVMFloatABI_Soft == FloatABI::ABIType::Soft, "");
static_assert((FloatABI::ABIType)ZigLLVMFloatABI_Hard == FloatABI::ABIType::Hard, "");
static_assert((object::Archive::Kind)ZigLLVMArchiveKind_GNU == object::Archive::Kind::K_GNU, "");
static_assert((object::Archive::Kind)ZigLLVMArchiveKind_GNU64 == object::Archive::Kind::K_GNU64, "");
static_assert((object::Archive::Kind)ZigLLVMArchiveKind_BSD == object::Archive::Kind::K_BSD, "");
static_assert((object::Archive::Kind)ZigLLVMArchiveKind_DARWIN == object::Archive::Kind::K_DARWIN, "");
static_assert((object::Archive::Kind)ZigLLVMArchiveKind_DARWIN64 == object::Archive::Kind::K_DARWIN64, "");
static_assert((object::Archive::Kind)ZigLLVMArchiveKind_COFF == object::Archive::Kind::K_COFF, "");
static_assert((object::Archive::Kind)ZigLLVMArchiveKind_AIXBIG == object::Archive::Kind::K_AIXBIG, "");