mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
* `@clz` * `@ctz` * `@popCount` * `@byteSwap` * `@bitReverse` * various encodings used by std
494 lines
20 KiB
Zig
494 lines
20 KiB
Zig
const std = @import("../std.zig");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const math = std.math;
|
|
const mem = std.mem;
|
|
const utils = std.crypto.utils;
|
|
|
|
const Precomp = u128;
|
|
|
|
/// GHASH is a universal hash function that uses multiplication by a fixed
|
|
/// parameter within a Galois field.
|
|
///
|
|
/// It is not a general purpose hash function - The key must be secret, unpredictable and never reused.
|
|
///
|
|
/// GHASH is typically used to compute the authentication tag in the AES-GCM construction.
|
|
pub const Ghash = Hash(.Big, true);
|
|
|
|
/// POLYVAL is a universal hash function that uses multiplication by a fixed
|
|
/// parameter within a Galois field.
|
|
///
|
|
/// It is not a general purpose hash function - The key must be secret, unpredictable and never reused.
|
|
///
|
|
/// POLYVAL is typically used to compute the authentication tag in the AES-GCM-SIV construction.
|
|
pub const Polyval = Hash(.Little, false);
|
|
|
|
fn Hash(comptime endian: std.builtin.Endian, comptime shift_key: bool) type {
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
pub const block_length: usize = 16;
|
|
pub const mac_length = 16;
|
|
pub const key_length = 16;
|
|
|
|
const pc_count = if (builtin.mode != .ReleaseSmall) 16 else 2;
|
|
const agg_4_threshold = 22;
|
|
const agg_8_threshold = 84;
|
|
const agg_16_threshold = 328;
|
|
|
|
// Before the Haswell architecture, the carryless multiplication instruction was
|
|
// extremely slow. Even with 128-bit operands, using Karatsuba multiplication was
|
|
// thus faster than a schoolbook multiplication.
|
|
// This is no longer the case -- Modern CPUs, including ARM-based ones, have a fast
|
|
// carryless multiplication instruction; using 4 multiplications is now faster than
|
|
// 3 multiplications with extra shifts and additions.
|
|
const mul_algorithm = if (builtin.cpu.arch == .x86) .karatsuba else .schoolbook;
|
|
|
|
hx: [pc_count]Precomp,
|
|
acc: u128 = 0,
|
|
|
|
leftover: usize = 0,
|
|
buf: [block_length]u8 align(16) = undefined,
|
|
|
|
/// Initialize the GHASH state with a key, and a minimum number of block count.
|
|
pub fn initForBlockCount(key: *const [key_length]u8, block_count: usize) Self {
|
|
var h = mem.readInt(u128, key[0..16], endian);
|
|
if (shift_key) {
|
|
// Shift the key by 1 bit to the left & reduce for GCM.
|
|
const carry = ((@as(u128, 0xc2) << 120) | 1) & (@as(u128, 0) -% (h >> 127));
|
|
h = (h << 1) ^ carry;
|
|
}
|
|
var hx: [pc_count]Precomp = undefined;
|
|
hx[0] = h;
|
|
hx[1] = reduce(clsq128(hx[0])); // h^2
|
|
|
|
if (builtin.mode != .ReleaseSmall) {
|
|
hx[2] = reduce(clmul128(hx[1], h)); // h^3
|
|
hx[3] = reduce(clsq128(hx[1])); // h^4 = h^2^2
|
|
if (block_count >= agg_8_threshold) {
|
|
hx[4] = reduce(clmul128(hx[3], h)); // h^5
|
|
hx[5] = reduce(clsq128(hx[2])); // h^6 = h^3^2
|
|
hx[6] = reduce(clmul128(hx[5], h)); // h^7
|
|
hx[7] = reduce(clsq128(hx[3])); // h^8 = h^4^2
|
|
}
|
|
if (block_count >= agg_16_threshold) {
|
|
var i: usize = 8;
|
|
while (i < 16) : (i += 2) {
|
|
hx[i] = reduce(clmul128(hx[i - 1], h));
|
|
hx[i + 1] = reduce(clsq128(hx[i / 2]));
|
|
}
|
|
}
|
|
}
|
|
return Self{ .hx = hx };
|
|
}
|
|
|
|
/// Initialize the GHASH state with a key.
|
|
pub fn init(key: *const [key_length]u8) Self {
|
|
return Self.initForBlockCount(key, math.maxInt(usize));
|
|
}
|
|
|
|
const Selector = enum { lo, hi, hi_lo };
|
|
|
|
// Carryless multiplication of two 64-bit integers for x86_64.
|
|
inline fn clmulPclmul(x: u128, y: u128, comptime half: Selector) u128 {
|
|
switch (half) {
|
|
.hi => {
|
|
const product = asm (
|
|
\\ vpclmulqdq $0x11, %[x], %[y], %[out]
|
|
: [out] "=x" (-> @Vector(2, u64)),
|
|
: [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
|
|
[y] "x" (@as(@Vector(2, u64), @bitCast(y))),
|
|
);
|
|
return @as(u128, @bitCast(product));
|
|
},
|
|
.lo => {
|
|
const product = asm (
|
|
\\ vpclmulqdq $0x00, %[x], %[y], %[out]
|
|
: [out] "=x" (-> @Vector(2, u64)),
|
|
: [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
|
|
[y] "x" (@as(@Vector(2, u64), @bitCast(y))),
|
|
);
|
|
return @as(u128, @bitCast(product));
|
|
},
|
|
.hi_lo => {
|
|
const product = asm (
|
|
\\ vpclmulqdq $0x10, %[x], %[y], %[out]
|
|
: [out] "=x" (-> @Vector(2, u64)),
|
|
: [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
|
|
[y] "x" (@as(@Vector(2, u64), @bitCast(y))),
|
|
);
|
|
return @as(u128, @bitCast(product));
|
|
},
|
|
}
|
|
}
|
|
|
|
// Carryless multiplication of two 64-bit integers for ARM crypto.
|
|
inline fn clmulPmull(x: u128, y: u128, comptime half: Selector) u128 {
|
|
switch (half) {
|
|
.hi => {
|
|
const product = asm (
|
|
\\ pmull2 %[out].1q, %[x].2d, %[y].2d
|
|
: [out] "=w" (-> @Vector(2, u64)),
|
|
: [x] "w" (@as(@Vector(2, u64), @bitCast(x))),
|
|
[y] "w" (@as(@Vector(2, u64), @bitCast(y))),
|
|
);
|
|
return @as(u128, @bitCast(product));
|
|
},
|
|
.lo => {
|
|
const product = asm (
|
|
\\ pmull %[out].1q, %[x].1d, %[y].1d
|
|
: [out] "=w" (-> @Vector(2, u64)),
|
|
: [x] "w" (@as(@Vector(2, u64), @bitCast(x))),
|
|
[y] "w" (@as(@Vector(2, u64), @bitCast(y))),
|
|
);
|
|
return @as(u128, @bitCast(product));
|
|
},
|
|
.hi_lo => {
|
|
const product = asm (
|
|
\\ pmull %[out].1q, %[x].1d, %[y].1d
|
|
: [out] "=w" (-> @Vector(2, u64)),
|
|
: [x] "w" (@as(@Vector(2, u64), @bitCast(x >> 64))),
|
|
[y] "w" (@as(@Vector(2, u64), @bitCast(y))),
|
|
);
|
|
return @as(u128, @bitCast(product));
|
|
},
|
|
}
|
|
}
|
|
|
|
/// clmulSoft128_64 is faster on platforms with no native 128-bit registers.
|
|
const clmulSoft = switch (builtin.cpu.arch) {
|
|
.wasm32, .wasm64 => clmulSoft128_64,
|
|
else => impl: {
|
|
const vector_size = std.simd.suggestVectorSize(u128) orelse 0;
|
|
if (vector_size < 128) break :impl clmulSoft128_64;
|
|
break :impl clmulSoft128;
|
|
},
|
|
};
|
|
|
|
// Software carryless multiplication of two 64-bit integers using native 128-bit registers.
|
|
fn clmulSoft128(x_: u128, y_: u128, comptime half: Selector) u128 {
|
|
const x = @as(u64, @truncate(if (half == .hi or half == .hi_lo) x_ >> 64 else x_));
|
|
const y = @as(u64, @truncate(if (half == .hi) y_ >> 64 else y_));
|
|
|
|
const x0 = x & 0x1111111111111110;
|
|
const x1 = x & 0x2222222222222220;
|
|
const x2 = x & 0x4444444444444440;
|
|
const x3 = x & 0x8888888888888880;
|
|
const y0 = y & 0x1111111111111111;
|
|
const y1 = y & 0x2222222222222222;
|
|
const y2 = y & 0x4444444444444444;
|
|
const y3 = y & 0x8888888888888888;
|
|
const z0 = (x0 * @as(u128, y0)) ^ (x1 * @as(u128, y3)) ^ (x2 * @as(u128, y2)) ^ (x3 * @as(u128, y1));
|
|
const z1 = (x0 * @as(u128, y1)) ^ (x1 * @as(u128, y0)) ^ (x2 * @as(u128, y3)) ^ (x3 * @as(u128, y2));
|
|
const z2 = (x0 * @as(u128, y2)) ^ (x1 * @as(u128, y1)) ^ (x2 * @as(u128, y0)) ^ (x3 * @as(u128, y3));
|
|
const z3 = (x0 * @as(u128, y3)) ^ (x1 * @as(u128, y2)) ^ (x2 * @as(u128, y1)) ^ (x3 * @as(u128, y0));
|
|
|
|
const x0_mask = @as(u64, 0) -% (x & 1);
|
|
const x1_mask = @as(u64, 0) -% ((x >> 1) & 1);
|
|
const x2_mask = @as(u64, 0) -% ((x >> 2) & 1);
|
|
const x3_mask = @as(u64, 0) -% ((x >> 3) & 1);
|
|
const extra = (x0_mask & y) ^ (@as(u128, x1_mask & y) << 1) ^
|
|
(@as(u128, x2_mask & y) << 2) ^ (@as(u128, x3_mask & y) << 3);
|
|
|
|
return (z0 & 0x11111111111111111111111111111111) ^
|
|
(z1 & 0x22222222222222222222222222222222) ^
|
|
(z2 & 0x44444444444444444444444444444444) ^
|
|
(z3 & 0x88888888888888888888888888888888) ^ extra;
|
|
}
|
|
|
|
// Software carryless multiplication of two 32-bit integers.
|
|
fn clmulSoft32(x: u32, y: u32) u64 {
|
|
const mulWide = math.mulWide;
|
|
const a0 = x & 0x11111111;
|
|
const a1 = x & 0x22222222;
|
|
const a2 = x & 0x44444444;
|
|
const a3 = x & 0x88888888;
|
|
const b0 = y & 0x11111111;
|
|
const b1 = y & 0x22222222;
|
|
const b2 = y & 0x44444444;
|
|
const b3 = y & 0x88888888;
|
|
const c0 = mulWide(u32, a0, b0) ^ mulWide(u32, a1, b3) ^ mulWide(u32, a2, b2) ^ mulWide(u32, a3, b1);
|
|
const c1 = mulWide(u32, a0, b1) ^ mulWide(u32, a1, b0) ^ mulWide(u32, a2, b3) ^ mulWide(u32, a3, b2);
|
|
const c2 = mulWide(u32, a0, b2) ^ mulWide(u32, a1, b1) ^ mulWide(u32, a2, b0) ^ mulWide(u32, a3, b3);
|
|
const c3 = mulWide(u32, a0, b3) ^ mulWide(u32, a1, b2) ^ mulWide(u32, a2, b1) ^ mulWide(u32, a3, b0);
|
|
return (c0 & 0x1111111111111111) | (c1 & 0x2222222222222222) | (c2 & 0x4444444444444444) | (c3 & 0x8888888888888888);
|
|
}
|
|
|
|
// Software carryless multiplication of two 128-bit integers using 64-bit registers.
|
|
fn clmulSoft128_64(x_: u128, y_: u128, comptime half: Selector) u128 {
|
|
const a = @as(u64, @truncate(if (half == .hi or half == .hi_lo) x_ >> 64 else x_));
|
|
const b = @as(u64, @truncate(if (half == .hi) y_ >> 64 else y_));
|
|
const a0 = @as(u32, @truncate(a));
|
|
const a1 = @as(u32, @truncate(a >> 32));
|
|
const b0 = @as(u32, @truncate(b));
|
|
const b1 = @as(u32, @truncate(b >> 32));
|
|
const lo = clmulSoft32(a0, b0);
|
|
const hi = clmulSoft32(a1, b1);
|
|
const mid = clmulSoft32(a0 ^ a1, b0 ^ b1) ^ lo ^ hi;
|
|
const res_lo = lo ^ (mid << 32);
|
|
const res_hi = hi ^ (mid >> 32);
|
|
return @as(u128, res_lo) | (@as(u128, res_hi) << 64);
|
|
}
|
|
|
|
const I256 = struct {
|
|
hi: u128,
|
|
lo: u128,
|
|
mid: u128,
|
|
};
|
|
|
|
inline fn xor256(x: *I256, y: I256) void {
|
|
x.* = I256{
|
|
.hi = x.hi ^ y.hi,
|
|
.lo = x.lo ^ y.lo,
|
|
.mid = x.mid ^ y.mid,
|
|
};
|
|
}
|
|
|
|
// Square a 128-bit integer in GF(2^128).
|
|
fn clsq128(x: u128) I256 {
|
|
return .{
|
|
.hi = clmul(x, x, .hi),
|
|
.lo = clmul(x, x, .lo),
|
|
.mid = 0,
|
|
};
|
|
}
|
|
|
|
// Multiply two 128-bit integers in GF(2^128).
|
|
inline fn clmul128(x: u128, y: u128) I256 {
|
|
if (mul_algorithm == .karatsuba) {
|
|
const x_hi = @as(u64, @truncate(x >> 64));
|
|
const y_hi = @as(u64, @truncate(y >> 64));
|
|
const r_lo = clmul(x, y, .lo);
|
|
const r_hi = clmul(x, y, .hi);
|
|
const r_mid = clmul(x ^ x_hi, y ^ y_hi, .lo) ^ r_lo ^ r_hi;
|
|
return .{
|
|
.hi = r_hi,
|
|
.lo = r_lo,
|
|
.mid = r_mid,
|
|
};
|
|
} else {
|
|
return .{
|
|
.hi = clmul(x, y, .hi),
|
|
.lo = clmul(x, y, .lo),
|
|
.mid = clmul(x, y, .hi_lo) ^ clmul(y, x, .hi_lo),
|
|
};
|
|
}
|
|
}
|
|
|
|
// Reduce a 256-bit representative of a polynomial modulo the irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1.
|
|
// This is done using Shay Gueron's black magic demysticated here:
|
|
// https://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html
|
|
inline fn reduce(x: I256) u128 {
|
|
const hi = x.hi ^ (x.mid >> 64);
|
|
const lo = x.lo ^ (x.mid << 64);
|
|
const p64 = (((1 << 121) | (1 << 126) | (1 << 127)) >> 64);
|
|
const a = clmul(lo, p64, .lo);
|
|
const b = ((lo << 64) | (lo >> 64)) ^ a;
|
|
const c = clmul(b, p64, .lo);
|
|
const d = ((b << 64) | (b >> 64)) ^ c;
|
|
return d ^ hi;
|
|
}
|
|
|
|
const has_pclmul = std.Target.x86.featureSetHas(builtin.cpu.features, .pclmul);
|
|
const has_avx = std.Target.x86.featureSetHas(builtin.cpu.features, .avx);
|
|
const has_armaes = std.Target.aarch64.featureSetHas(builtin.cpu.features, .aes);
|
|
// C backend doesn't currently support passing vectors to inline asm.
|
|
const clmul = if (builtin.cpu.arch == .x86_64 and builtin.zig_backend != .stage2_c and has_pclmul and has_avx) impl: {
|
|
break :impl clmulPclmul;
|
|
} else if (builtin.cpu.arch == .aarch64 and builtin.zig_backend != .stage2_c and has_armaes) impl: {
|
|
break :impl clmulPmull;
|
|
} else impl: {
|
|
break :impl clmulSoft;
|
|
};
|
|
|
|
// Process 16 byte blocks.
|
|
fn blocks(st: *Self, msg: []const u8) void {
|
|
assert(msg.len % 16 == 0); // GHASH blocks() expects full blocks
|
|
var acc = st.acc;
|
|
|
|
var i: usize = 0;
|
|
|
|
if (builtin.mode != .ReleaseSmall and msg.len >= agg_16_threshold * block_length) {
|
|
// 16-blocks aggregated reduction
|
|
while (i + 256 <= msg.len) : (i += 256) {
|
|
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[15 - 0]);
|
|
comptime var j = 1;
|
|
inline while (j < 16) : (j += 1) {
|
|
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[15 - j]));
|
|
}
|
|
acc = reduce(u);
|
|
}
|
|
} else if (builtin.mode != .ReleaseSmall and msg.len >= agg_8_threshold * block_length) {
|
|
// 8-blocks aggregated reduction
|
|
while (i + 128 <= msg.len) : (i += 128) {
|
|
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[7 - 0]);
|
|
comptime var j = 1;
|
|
inline while (j < 8) : (j += 1) {
|
|
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[7 - j]));
|
|
}
|
|
acc = reduce(u);
|
|
}
|
|
} else if (builtin.mode != .ReleaseSmall and msg.len >= agg_4_threshold * block_length) {
|
|
// 4-blocks aggregated reduction
|
|
while (i + 64 <= msg.len) : (i += 64) {
|
|
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[3 - 0]);
|
|
comptime var j = 1;
|
|
inline while (j < 4) : (j += 1) {
|
|
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[3 - j]));
|
|
}
|
|
acc = reduce(u);
|
|
}
|
|
}
|
|
// 2-blocks aggregated reduction
|
|
while (i + 32 <= msg.len) : (i += 32) {
|
|
var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[1 - 0]);
|
|
comptime var j = 1;
|
|
inline while (j < 2) : (j += 1) {
|
|
xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[1 - j]));
|
|
}
|
|
acc = reduce(u);
|
|
}
|
|
// remaining blocks
|
|
if (i < msg.len) {
|
|
const u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[0]);
|
|
acc = reduce(u);
|
|
i += 16;
|
|
}
|
|
assert(i == msg.len);
|
|
st.acc = acc;
|
|
}
|
|
|
|
/// Absorb a message into the GHASH state.
|
|
pub fn update(st: *Self, m: []const u8) void {
|
|
var mb = m;
|
|
|
|
if (st.leftover > 0) {
|
|
const want = @min(block_length - st.leftover, mb.len);
|
|
const mc = mb[0..want];
|
|
for (mc, 0..) |x, i| {
|
|
st.buf[st.leftover + i] = x;
|
|
}
|
|
mb = mb[want..];
|
|
st.leftover += want;
|
|
if (st.leftover < block_length) {
|
|
return;
|
|
}
|
|
st.blocks(&st.buf);
|
|
st.leftover = 0;
|
|
}
|
|
if (mb.len >= block_length) {
|
|
const want = mb.len & ~(block_length - 1);
|
|
st.blocks(mb[0..want]);
|
|
mb = mb[want..];
|
|
}
|
|
if (mb.len > 0) {
|
|
for (mb, 0..) |x, i| {
|
|
st.buf[st.leftover + i] = x;
|
|
}
|
|
st.leftover += mb.len;
|
|
}
|
|
}
|
|
|
|
/// Zero-pad to align the next input to the first byte of a block
|
|
pub fn pad(st: *Self) void {
|
|
if (st.leftover == 0) {
|
|
return;
|
|
}
|
|
var i = st.leftover;
|
|
while (i < block_length) : (i += 1) {
|
|
st.buf[i] = 0;
|
|
}
|
|
st.blocks(&st.buf);
|
|
st.leftover = 0;
|
|
}
|
|
|
|
/// Compute the GHASH of the entire input.
|
|
pub fn final(st: *Self, out: *[mac_length]u8) void {
|
|
st.pad();
|
|
mem.writeInt(u128, out[0..16], st.acc, endian);
|
|
|
|
utils.secureZero(u8, @as([*]u8, @ptrCast(st))[0..@sizeOf(Self)]);
|
|
}
|
|
|
|
/// Compute the GHASH of a message.
|
|
pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void {
|
|
var st = Self.init(key);
|
|
st.update(msg);
|
|
st.final(out);
|
|
}
|
|
};
|
|
}
|
|
|
|
const htest = @import("test.zig");
|
|
|
|
test "ghash" {
|
|
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
|
|
|
|
const key = [_]u8{0x42} ** 16;
|
|
const m = [_]u8{0x69} ** 256;
|
|
|
|
var st = Ghash.init(&key);
|
|
st.update(&m);
|
|
var out: [16]u8 = undefined;
|
|
st.final(&out);
|
|
try htest.assertEqual("889295fa746e8b174bf4ec80a65dea41", &out);
|
|
|
|
st = Ghash.init(&key);
|
|
st.update(m[0..100]);
|
|
st.update(m[100..]);
|
|
st.final(&out);
|
|
try htest.assertEqual("889295fa746e8b174bf4ec80a65dea41", &out);
|
|
}
|
|
|
|
test "ghash2" {
|
|
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
|
|
|
|
var key: [16]u8 = undefined;
|
|
var i: usize = 0;
|
|
while (i < key.len) : (i += 1) {
|
|
key[i] = @as(u8, @intCast(i * 15 + 1));
|
|
}
|
|
const tvs = [_]struct { len: usize, hash: [:0]const u8 }{
|
|
.{ .len = 5263, .hash = "b9395f37c131cd403a327ccf82ec016a" },
|
|
.{ .len = 1361, .hash = "8c24cb3664e9a36e32ddef0c8178ab33" },
|
|
.{ .len = 1344, .hash = "015d7243b52d62eee8be33a66a9658cc" },
|
|
.{ .len = 1000, .hash = "56e148799944193f351f2014ef9dec9d" },
|
|
.{ .len = 512, .hash = "ca4882ce40d37546185c57709d17d1ca" },
|
|
.{ .len = 128, .hash = "d36dc3aac16cfe21a75cd5562d598c1c" },
|
|
.{ .len = 111, .hash = "6e2bea99700fd19cf1694e7b56543320" },
|
|
.{ .len = 80, .hash = "aa28f4092a7cca155f3de279cf21aa17" },
|
|
.{ .len = 16, .hash = "9d7eb5ed121a52a4b0996e4ec9b98911" },
|
|
.{ .len = 1, .hash = "968a203e5c7a98b6d4f3112f4d6b89a7" },
|
|
.{ .len = 0, .hash = "00000000000000000000000000000000" },
|
|
};
|
|
inline for (tvs) |tv| {
|
|
var m: [tv.len]u8 = undefined;
|
|
i = 0;
|
|
while (i < m.len) : (i += 1) {
|
|
m[i] = @as(u8, @truncate(i % 254 + 1));
|
|
}
|
|
var st = Ghash.init(&key);
|
|
st.update(&m);
|
|
var out: [16]u8 = undefined;
|
|
st.final(&out);
|
|
try htest.assertEqual(tv.hash, &out);
|
|
}
|
|
}
|
|
|
|
test "polyval" {
|
|
const key = [_]u8{0x42} ** 16;
|
|
const m = [_]u8{0x69} ** 256;
|
|
|
|
var st = Polyval.init(&key);
|
|
st.update(&m);
|
|
var out: [16]u8 = undefined;
|
|
st.final(&out);
|
|
try htest.assertEqual("0713c82b170eef25c8955ddf72c85ccb", &out);
|
|
|
|
st = Polyval.init(&key);
|
|
st.update(m[0..100]);
|
|
st.update(m[100..]);
|
|
st.final(&out);
|
|
try htest.assertEqual("0713c82b170eef25c8955ddf72c85ccb", &out);
|
|
}
|