zig/src/link/Wasm.zig
Luuk de Gram c0710b0c42
use fixed-size arrays for feature lists
Considering all possible features are known by the linker during
compile-time, we can create arrays on the stack instead of
dynamically allocating hash maps. We use a simple bitset to determine
whether a feature is enabled or not, and from which object file
it originates. This allows us to make feature validation slightly
faster and use less runtime memory.
In the future this could be enhanced further by having a single
array instead with a more sophisticated bitset.
2022-10-25 21:16:51 +02:00

3656 lines
146 KiB
Zig

const Wasm = @This();
const std = @import("std");
const builtin = @import("builtin");
const mem = std.mem;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const fs = std.fs;
const leb = std.leb;
const log = std.log.scoped(.link);
const Atom = @import("Wasm/Atom.zig");
const Dwarf = @import("Dwarf.zig");
const Module = @import("../Module.zig");
const Compilation = @import("../Compilation.zig");
const CodeGen = @import("../arch/wasm/CodeGen.zig");
const codegen = @import("../codegen.zig");
const link = @import("../link.zig");
const lldMain = @import("../main.zig").lldMain;
const trace = @import("../tracy.zig").trace;
const build_options = @import("build_options");
const wasi_libc = @import("../wasi_libc.zig");
const Cache = @import("../Cache.zig");
const Type = @import("../type.zig").Type;
const TypedValue = @import("../TypedValue.zig");
const LlvmObject = @import("../codegen/llvm.zig").Object;
const Air = @import("../Air.zig");
const Liveness = @import("../Liveness.zig");
const Symbol = @import("Wasm/Symbol.zig");
const Object = @import("Wasm/Object.zig");
const Archive = @import("Wasm/Archive.zig");
const types = @import("Wasm/types.zig");
pub const base_tag = link.File.Tag.wasm;
/// deprecated: Use `@import("Wasm/Atom.zig");`
pub const DeclBlock = Atom;
base: link.File,
/// Output name of the file
name: []const u8,
/// If this is not null, an object file is created by LLVM and linked with LLD afterwards.
llvm_object: ?*LlvmObject = null,
/// When importing objects from the host environment, a name must be supplied.
/// LLVM uses "env" by default when none is given. This would be a good default for Zig
/// to support existing code.
/// TODO: Allow setting this through a flag?
host_name: []const u8 = "env",
/// List of all `Decl` that are currently alive.
/// This is ment for bookkeeping so we can safely cleanup all codegen memory
/// when calling `deinit`
decls: std.AutoHashMapUnmanaged(Module.Decl.Index, void) = .{},
/// List of all symbols generated by Zig code.
symbols: std.ArrayListUnmanaged(Symbol) = .{},
/// List of symbol indexes which are free to be used.
symbols_free_list: std.ArrayListUnmanaged(u32) = .{},
/// Maps atoms to their segment index
atoms: std.AutoHashMapUnmanaged(u32, *Atom) = .{},
/// Atoms managed and created by the linker. This contains atoms
/// from object files, and not Atoms generated by a Decl.
managed_atoms: std.ArrayListUnmanaged(*Atom) = .{},
/// Represents the index into `segments` where the 'code' section
/// lives.
code_section_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_info' section.
debug_info_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_line' section.
debug_line_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_loc' section.
debug_loc_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_ranges' section.
debug_ranges_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_pubnames' section.
debug_pubnames_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_pubtypes' section.
debug_pubtypes_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_pubtypes' section.
debug_str_index: ?u32 = null,
/// The index of the segment representing the custom '.debug_pubtypes' section.
debug_abbrev_index: ?u32 = null,
/// The count of imported functions. This number will be appended
/// to the function indexes as their index starts at the lowest non-extern function.
imported_functions_count: u32 = 0,
/// The count of imported wasm globals. This number will be appended
/// to the global indexes when sections are merged.
imported_globals_count: u32 = 0,
/// The count of imported tables. This number will be appended
/// to the table indexes when sections are merged.
imported_tables_count: u32 = 0,
/// Map of symbol locations, represented by its `types.Import`
imports: std.AutoHashMapUnmanaged(SymbolLoc, types.Import) = .{},
/// Represents non-synthetic section entries.
/// Used for code, data and custom sections.
segments: std.ArrayListUnmanaged(Segment) = .{},
/// Maps a data segment key (such as .rodata) to the index into `segments`.
data_segments: std.StringArrayHashMapUnmanaged(u32) = .{},
/// A table of `types.Segment` which provide meta data
/// about a data symbol such as its name where the key is
/// the segment index, which can be found from `data_segments`
segment_info: std.AutoArrayHashMapUnmanaged(u32, types.Segment) = .{},
/// Deduplicated string table for strings used by symbols, imports and exports.
string_table: StringTable = .{},
/// Debug information for wasm
dwarf: ?Dwarf = null,
// Output sections
/// Output type section
func_types: std.ArrayListUnmanaged(std.wasm.Type) = .{},
/// Output function section where the key is the original
/// function index and the value is function.
/// This allows us to map multiple symbols to the same function.
functions: std.AutoArrayHashMapUnmanaged(struct { file: ?u16, index: u32 }, std.wasm.Func) = .{},
/// Output global section
wasm_globals: std.ArrayListUnmanaged(std.wasm.Global) = .{},
/// Memory section
memories: std.wasm.Memory = .{ .limits = .{ .min = 0, .max = null } },
/// Output table section
tables: std.ArrayListUnmanaged(std.wasm.Table) = .{},
/// Output export section
exports: std.ArrayListUnmanaged(types.Export) = .{},
/// Indirect function table, used to call function pointers
/// When this is non-zero, we must emit a table entry,
/// as well as an 'elements' section.
///
/// Note: Key is symbol location, value represents the index into the table
function_table: std.AutoHashMapUnmanaged(SymbolLoc, u32) = .{},
/// All object files and their data which are linked into the final binary
objects: std.ArrayListUnmanaged(Object) = .{},
/// All archive files that are lazy loaded.
/// e.g. when an undefined symbol references a symbol from the archive.
archives: std.ArrayListUnmanaged(Archive) = .{},
/// A map of global names (read: offset into string table) to their symbol location
globals: std.AutoHashMapUnmanaged(u32, SymbolLoc) = .{},
/// Maps discarded symbols and their positions to the location of the symbol
/// it was resolved to
discarded: std.AutoHashMapUnmanaged(SymbolLoc, SymbolLoc) = .{},
/// List of all symbol locations which have been resolved by the linker and will be emit
/// into the final binary.
resolved_symbols: std.AutoArrayHashMapUnmanaged(SymbolLoc, void) = .{},
/// Symbols that remain undefined after symbol resolution.
undefs: std.StringArrayHashMapUnmanaged(SymbolLoc) = .{},
/// Maps a symbol's location to an atom. This can be used to find meta
/// data of a symbol, such as its size, or its offset to perform a relocation.
/// Undefined (and synthetic) symbols do not have an Atom and therefore cannot be mapped.
symbol_atom: std.AutoHashMapUnmanaged(SymbolLoc, *Atom) = .{},
/// Maps a symbol's location to its export name, which may differ from the decl's name
/// which does the exporting.
/// Note: The value represents the offset into the string table, rather than the actual string.
export_names: std.AutoHashMapUnmanaged(SymbolLoc, u32) = .{},
/// Represents the symbol index of the error name table
/// When this is `null`, no code references an error using runtime `@errorName`.
/// During initializion, a symbol with corresponding atom will be created that is
/// used to perform relocations to the pointer of this table.
/// The actual table is populated during `flush`.
error_table_symbol: ?u32 = null,
// Debug section atoms. These are only set when the current compilation
// unit contains Zig code. The lifetime of these atoms are extended
// until the end of the compiler's lifetime. Meaning they're not freed
// during `flush()` in incremental-mode.
debug_info_atom: ?*Atom = null,
debug_line_atom: ?*Atom = null,
debug_loc_atom: ?*Atom = null,
debug_ranges_atom: ?*Atom = null,
debug_abbrev_atom: ?*Atom = null,
debug_str_atom: ?*Atom = null,
debug_pubnames_atom: ?*Atom = null,
debug_pubtypes_atom: ?*Atom = null,
pub const Segment = struct {
alignment: u32,
size: u32,
offset: u32,
};
pub const FnData = struct {
/// Reference to the wasm type that represents this function.
type_index: u32,
/// Contains debug information related to this function.
/// For Wasm, the offset is relative to the code-section.
src_fn: Dwarf.SrcFn,
pub const empty: FnData = .{
.type_index = undefined,
.src_fn = Dwarf.SrcFn.empty,
};
};
pub const Export = struct {
sym_index: ?u32 = null,
};
pub const SymbolLoc = struct {
/// The index of the symbol within the specified file
index: u32,
/// The index of the object file where the symbol resides.
/// When this is `null` the symbol comes from a non-object file.
file: ?u16,
/// From a given location, returns the corresponding symbol in the wasm binary
pub fn getSymbol(loc: SymbolLoc, wasm_bin: *const Wasm) *Symbol {
if (wasm_bin.discarded.get(loc)) |new_loc| {
return new_loc.getSymbol(wasm_bin);
}
if (loc.file) |object_index| {
const object = wasm_bin.objects.items[object_index];
return &object.symtable[loc.index];
}
return &wasm_bin.symbols.items[loc.index];
}
/// From a given location, returns the name of the symbol.
pub fn getName(loc: SymbolLoc, wasm_bin: *const Wasm) []const u8 {
if (wasm_bin.discarded.get(loc)) |new_loc| {
return new_loc.getName(wasm_bin);
}
if (loc.file) |object_index| {
const object = wasm_bin.objects.items[object_index];
return object.string_table.get(object.symtable[loc.index].name);
}
return wasm_bin.string_table.get(wasm_bin.symbols.items[loc.index].name);
}
/// From a given symbol location, returns the final location.
/// e.g. when a symbol was resolved and replaced by the symbol
/// in a different file, this will return said location.
/// If the symbol wasn't replaced by another, this will return
/// the given location itwasm.
pub fn finalLoc(loc: SymbolLoc, wasm_bin: *const Wasm) SymbolLoc {
if (wasm_bin.discarded.get(loc)) |new_loc| {
return new_loc.finalLoc(wasm_bin);
}
return loc;
}
};
/// Generic string table that duplicates strings
/// and converts them into offsets instead.
pub const StringTable = struct {
/// Table that maps string offsets, which is used to de-duplicate strings.
/// Rather than having the offset map to the data, the `StringContext` holds all bytes of the string.
/// The strings are stored as a contigious array where each string is zero-terminated.
string_table: std.HashMapUnmanaged(
u32,
void,
std.hash_map.StringIndexContext,
std.hash_map.default_max_load_percentage,
) = .{},
/// Holds the actual data of the string table.
string_data: std.ArrayListUnmanaged(u8) = .{},
/// Accepts a string and searches for a corresponding string.
/// When found, de-duplicates the string and returns the existing offset instead.
/// When the string is not found in the `string_table`, a new entry will be inserted
/// and the new offset to its data will be returned.
pub fn put(table: *StringTable, allocator: Allocator, string: []const u8) !u32 {
const gop = try table.string_table.getOrPutContextAdapted(
allocator,
string,
std.hash_map.StringIndexAdapter{ .bytes = &table.string_data },
.{ .bytes = &table.string_data },
);
if (gop.found_existing) {
const off = gop.key_ptr.*;
log.debug("reusing string '{s}' at offset 0x{x}", .{ string, off });
return off;
}
try table.string_data.ensureUnusedCapacity(allocator, string.len + 1);
const offset = @intCast(u32, table.string_data.items.len);
log.debug("writing new string '{s}' at offset 0x{x}", .{ string, offset });
table.string_data.appendSliceAssumeCapacity(string);
table.string_data.appendAssumeCapacity(0);
gop.key_ptr.* = offset;
return offset;
}
/// From a given offset, returns its corresponding string value.
/// Asserts offset does not exceed bounds.
pub fn get(table: StringTable, off: u32) []const u8 {
assert(off < table.string_data.items.len);
return mem.sliceTo(@ptrCast([*:0]const u8, table.string_data.items.ptr + off), 0);
}
/// Returns the offset of a given string when it exists.
/// Will return null if the given string does not yet exist within the string table.
pub fn getOffset(table: *StringTable, string: []const u8) ?u32 {
return table.string_table.getKeyAdapted(
string,
std.hash_map.StringIndexAdapter{ .bytes = &table.string_data },
);
}
/// Frees all resources of the string table. Any references pointing
/// to the strings will be invalid.
pub fn deinit(table: *StringTable, allocator: Allocator) void {
table.string_data.deinit(allocator);
table.string_table.deinit(allocator);
table.* = undefined;
}
};
pub fn openPath(allocator: Allocator, sub_path: []const u8, options: link.Options) !*Wasm {
assert(options.target.ofmt == .wasm);
if (build_options.have_llvm and options.use_llvm) {
return createEmpty(allocator, options);
}
const wasm_bin = try createEmpty(allocator, options);
errdefer wasm_bin.base.destroy();
// TODO: read the file and keep valid parts instead of truncating
const file = try options.emit.?.directory.handle.createFile(sub_path, .{ .truncate = true, .read = true });
wasm_bin.base.file = file;
wasm_bin.name = sub_path;
// As sym_index '0' is reserved, we use it for our stack pointer symbol
const sym_name = try wasm_bin.string_table.put(allocator, "__stack_pointer");
const symbol = try wasm_bin.symbols.addOne(allocator);
symbol.* = .{
.name = sym_name,
.tag = .global,
.flags = 0,
.index = 0,
};
const loc: SymbolLoc = .{ .file = null, .index = 0 };
try wasm_bin.resolved_symbols.putNoClobber(allocator, loc, {});
try wasm_bin.globals.putNoClobber(allocator, sym_name, loc);
// For object files we will import the stack pointer symbol
if (options.output_mode == .Obj) {
symbol.setUndefined(true);
try wasm_bin.imports.putNoClobber(
allocator,
.{ .file = null, .index = 0 },
.{
.module_name = try wasm_bin.string_table.put(allocator, wasm_bin.host_name),
.name = sym_name,
.kind = .{ .global = .{ .valtype = .i32, .mutable = true } },
},
);
} else {
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
const global = try wasm_bin.wasm_globals.addOne(allocator);
global.* = .{
.global_type = .{
.valtype = .i32,
.mutable = true,
},
.init = .{ .i32_const = 0 },
};
}
if (!options.strip and options.module != null) {
wasm_bin.dwarf = Dwarf.init(allocator, .wasm, options.target);
try wasm_bin.initDebugSections();
}
return wasm_bin;
}
pub fn createEmpty(gpa: Allocator, options: link.Options) !*Wasm {
const wasm = try gpa.create(Wasm);
errdefer gpa.destroy(wasm);
wasm.* = .{
.base = .{
.tag = .wasm,
.options = options,
.file = null,
.allocator = gpa,
},
.name = undefined,
};
const use_llvm = build_options.have_llvm and options.use_llvm;
const use_stage1 = build_options.have_stage1 and options.use_stage1;
if (use_llvm and !use_stage1) {
wasm.llvm_object = try LlvmObject.create(gpa, options);
}
return wasm;
}
/// Initializes symbols and atoms for the debug sections
/// Initialization is only done when compiling Zig code.
/// When Zig is invoked as a linker instead, the atoms
/// and symbols come from the object files instead.
pub fn initDebugSections(wasm: *Wasm) !void {
if (wasm.dwarf == null) return; // not compiling Zig code, so no need to pre-initialize debug sections
assert(wasm.debug_info_index == null);
// this will create an Atom and set the index for us.
wasm.debug_info_atom = try wasm.createDebugSectionForIndex(&wasm.debug_info_index, ".debug_info");
wasm.debug_line_atom = try wasm.createDebugSectionForIndex(&wasm.debug_line_index, ".debug_line");
wasm.debug_loc_atom = try wasm.createDebugSectionForIndex(&wasm.debug_loc_index, ".debug_loc");
wasm.debug_abbrev_atom = try wasm.createDebugSectionForIndex(&wasm.debug_abbrev_index, ".debug_abbrev");
wasm.debug_ranges_atom = try wasm.createDebugSectionForIndex(&wasm.debug_ranges_index, ".debug_ranges");
wasm.debug_str_atom = try wasm.createDebugSectionForIndex(&wasm.debug_str_index, ".debug_str");
wasm.debug_pubnames_atom = try wasm.createDebugSectionForIndex(&wasm.debug_pubnames_index, ".debug_pubnames");
wasm.debug_pubtypes_atom = try wasm.createDebugSectionForIndex(&wasm.debug_pubtypes_index, ".debug_pubtypes");
}
fn parseInputFiles(wasm: *Wasm, files: []const []const u8) !void {
for (files) |path| {
if (try wasm.parseObjectFile(path)) continue;
if (try wasm.parseArchive(path, false)) continue; // load archives lazily
log.warn("Unexpected file format at path: '{s}'", .{path});
}
}
/// Parses the object file from given path. Returns true when the given file was an object
/// file and parsed successfully. Returns false when file is not an object file.
/// May return an error instead when parsing failed.
fn parseObjectFile(wasm: *Wasm, path: []const u8) !bool {
const file = try fs.cwd().openFile(path, .{});
errdefer file.close();
var object = Object.create(wasm.base.allocator, file, path, null) catch |err| switch (err) {
error.InvalidMagicByte, error.NotObjectFile => return false,
else => |e| return e,
};
errdefer object.deinit(wasm.base.allocator);
try wasm.objects.append(wasm.base.allocator, object);
return true;
}
/// Parses an archive file and will then parse each object file
/// that was found in the archive file.
/// Returns false when the file is not an archive file.
/// May return an error instead when parsing failed.
///
/// When `force_load` is `true`, it will for link all object files in the archive.
/// When false, it will only link with object files that contain symbols that
/// are referenced by other object files or Zig code.
fn parseArchive(wasm: *Wasm, path: []const u8, force_load: bool) !bool {
const file = try fs.cwd().openFile(path, .{});
errdefer file.close();
var archive: Archive = .{
.file = file,
.name = path,
};
archive.parse(wasm.base.allocator) catch |err| switch (err) {
error.EndOfStream, error.NotArchive => {
archive.deinit(wasm.base.allocator);
return false;
},
else => |e| return e,
};
if (!force_load) {
errdefer archive.deinit(wasm.base.allocator);
try wasm.archives.append(wasm.base.allocator, archive);
return true;
}
defer archive.deinit(wasm.base.allocator);
// In this case we must force link all embedded object files within the archive
// We loop over all symbols, and then group them by offset as the offset
// notates where the object file starts.
var offsets = std.AutoArrayHashMap(u32, void).init(wasm.base.allocator);
defer offsets.deinit();
for (archive.toc.values()) |symbol_offsets| {
for (symbol_offsets.items) |sym_offset| {
try offsets.put(sym_offset, {});
}
}
for (offsets.keys()) |file_offset| {
const object = try wasm.objects.addOne(wasm.base.allocator);
object.* = try archive.parseObject(wasm.base.allocator, file_offset);
}
return true;
}
fn resolveSymbolsInObject(wasm: *Wasm, object_index: u16) !void {
const object: Object = wasm.objects.items[object_index];
log.debug("Resolving symbols in object: '{s}'", .{object.name});
for (object.symtable) |symbol, i| {
const sym_index = @intCast(u32, i);
const location: SymbolLoc = .{
.file = object_index,
.index = sym_index,
};
const sym_name = object.string_table.get(symbol.name);
if (mem.eql(u8, sym_name, "__indirect_function_table")) {
continue;
}
const sym_name_index = try wasm.string_table.put(wasm.base.allocator, sym_name);
if (symbol.isLocal()) {
if (symbol.isUndefined()) {
log.err("Local symbols are not allowed to reference imports", .{});
log.err(" symbol '{s}' defined in '{s}'", .{ sym_name, object.name });
return error.UndefinedLocal;
}
try wasm.resolved_symbols.putNoClobber(wasm.base.allocator, location, {});
continue;
}
const maybe_existing = try wasm.globals.getOrPut(wasm.base.allocator, sym_name_index);
if (!maybe_existing.found_existing) {
maybe_existing.value_ptr.* = location;
try wasm.resolved_symbols.putNoClobber(wasm.base.allocator, location, {});
if (symbol.isUndefined()) {
try wasm.undefs.putNoClobber(wasm.base.allocator, sym_name, location);
}
continue;
}
const existing_loc = maybe_existing.value_ptr.*;
const existing_sym: *Symbol = existing_loc.getSymbol(wasm);
const existing_file_path = if (existing_loc.file) |file| blk: {
break :blk wasm.objects.items[file].name;
} else wasm.name;
if (!existing_sym.isUndefined()) outer: {
if (!symbol.isUndefined()) inner: {
if (symbol.isWeak()) {
break :inner; // ignore the new symbol (discard it)
}
if (existing_sym.isWeak()) {
break :outer; // existing is weak, while new one isn't. Replace it.
}
// both are defined and weak, we have a symbol collision.
log.err("symbol '{s}' defined multiple times", .{sym_name});
log.err(" first definition in '{s}'", .{existing_file_path});
log.err(" next definition in '{s}'", .{object.name});
return error.SymbolCollision;
}
try wasm.discarded.put(wasm.base.allocator, location, existing_loc);
continue; // Do not overwrite defined symbols with undefined symbols
}
if (symbol.tag != existing_sym.tag) {
log.err("symbol '{s}' mismatching type '{s}", .{ sym_name, @tagName(symbol.tag) });
log.err(" first definition in '{s}'", .{existing_file_path});
log.err(" next definition in '{s}'", .{object.name});
return error.SymbolMismatchingType;
}
if (existing_sym.isUndefined() and symbol.isUndefined()) {
const existing_name = if (existing_loc.file) |file_index| blk: {
const obj = wasm.objects.items[file_index];
const name_index = obj.findImport(symbol.tag.externalType(), existing_sym.index).module_name;
break :blk obj.string_table.get(name_index);
} else blk: {
const name_index = wasm.imports.get(existing_loc).?.module_name;
break :blk wasm.string_table.get(name_index);
};
const module_index = object.findImport(symbol.tag.externalType(), symbol.index).module_name;
const module_name = object.string_table.get(module_index);
if (!mem.eql(u8, existing_name, module_name)) {
log.err("symbol '{s}' module name mismatch. Expected '{s}', but found '{s}'", .{
sym_name,
existing_name,
module_name,
});
log.err(" first definition in '{s}'", .{existing_file_path});
log.err(" next definition in '{s}'", .{object.name});
return error.ModuleNameMismatch;
}
}
if (existing_sym.tag == .global) {
const existing_ty = wasm.getGlobalType(existing_loc);
const new_ty = wasm.getGlobalType(location);
if (existing_ty.mutable != new_ty.mutable or existing_ty.valtype != new_ty.valtype) {
log.err("symbol '{s}' mismatching global types", .{sym_name});
log.err(" first definition in '{s}'", .{existing_file_path});
log.err(" next definition in '{s}'", .{object.name});
return error.GlobalTypeMismatch;
}
}
if (existing_sym.tag == .function) {
const existing_ty = wasm.getFunctionSignature(existing_loc);
const new_ty = wasm.getFunctionSignature(location);
if (!existing_ty.eql(new_ty)) {
log.err("symbol '{s}' mismatching function signatures.", .{sym_name});
log.err(" expected signature {}, but found signature {}", .{ existing_ty, new_ty });
log.err(" first definition in '{s}'", .{existing_file_path});
log.err(" next definition in '{s}'", .{object.name});
return error.FunctionSignatureMismatch;
}
}
// when both symbols are weak, we skip overwriting
if (existing_sym.isWeak() and symbol.isWeak()) {
try wasm.discarded.put(wasm.base.allocator, location, existing_loc);
continue;
}
// simply overwrite with the new symbol
log.debug("Overwriting symbol '{s}'", .{sym_name});
log.debug(" old definition in '{s}'", .{existing_file_path});
log.debug(" new definition in '{s}'", .{object.name});
try wasm.discarded.putNoClobber(wasm.base.allocator, existing_loc, location);
maybe_existing.value_ptr.* = location;
try wasm.globals.put(wasm.base.allocator, sym_name_index, location);
try wasm.resolved_symbols.put(wasm.base.allocator, location, {});
assert(wasm.resolved_symbols.swapRemove(existing_loc));
if (existing_sym.isUndefined()) {
assert(wasm.undefs.swapRemove(sym_name));
}
}
}
fn resolveSymbolsInArchives(wasm: *Wasm) !void {
if (wasm.archives.items.len == 0) return;
log.debug("Resolving symbols in archives", .{});
var index: u32 = 0;
undef_loop: while (index < wasm.undefs.count()) {
const undef_sym_loc = wasm.undefs.values()[index];
const sym_name = undef_sym_loc.getName(wasm);
for (wasm.archives.items) |archive| {
const offset = archive.toc.get(sym_name) orelse {
// symbol does not exist in this archive
continue;
};
log.debug("Detected symbol '{s}' in archive '{s}', parsing objects..", .{ sym_name, archive.name });
// Symbol is found in unparsed object file within current archive.
// Parse object and and resolve symbols again before we check remaining
// undefined symbols.
const object_file_index = @intCast(u16, wasm.objects.items.len);
var object = try archive.parseObject(wasm.base.allocator, offset.items[0]);
try wasm.objects.append(wasm.base.allocator, object);
try wasm.resolveSymbolsInObject(object_file_index);
// continue loop for any remaining undefined symbols that still exist
// after resolving last object file
continue :undef_loop;
}
index += 1;
}
}
fn validateFeatures(
wasm: *const Wasm,
to_emit: *[@typeInfo(types.Feature.Tag).Enum.fields.len]bool,
emit_features_count: *u32,
) !void {
const cpu_features = wasm.base.options.target.cpu.features;
const infer = cpu_features.isEmpty(); // when the user did not define any features, we infer them from linked objects.
const known_features_count = @typeInfo(types.Feature.Tag).Enum.fields.len;
var allowed = [_]bool{false} ** known_features_count;
var used = [_]u17{0} ** known_features_count;
var disallowed = [_]u17{0} ** known_features_count;
var required = [_]u17{0} ** known_features_count;
// when false, we fail linking. We only verify this after a loop to catch all invalid features.
var valid_feature_set = true;
// When the user has given an explicit list of features to enable,
// we extract them and insert each into the 'allowed' list.
if (!infer) {
inline for (@typeInfo(std.Target.wasm.Feature).Enum.fields) |feature_field| {
if (cpu_features.isEnabled(feature_field.value)) {
allowed[feature_field.value] = true;
emit_features_count.* += 1;
}
}
}
// extract all the used, disallowed and required features from each
// linked object file so we can test them.
for (wasm.objects.items) |object, object_index| {
for (object.features) |feature| {
const value = @intCast(u16, object_index) << 1 | @as(u1, 1);
switch (feature.prefix) {
.used => {
used[@enumToInt(feature.tag)] = value;
},
.disallowed => {
disallowed[@enumToInt(feature.tag)] = value;
},
.required => {
required[@enumToInt(feature.tag)] = value;
used[@enumToInt(feature.tag)] = value;
},
}
}
}
// when we infer the features, we allow each feature found in the 'used' set
// and insert it into the 'allowed' set. When features are not inferred,
// we validate that a used feature is allowed.
for (used) |used_set, used_index| {
const is_enabled = @truncate(u1, used_set) != 0;
if (infer) {
allowed[used_index] = is_enabled;
emit_features_count.* += @boolToInt(is_enabled);
} else if (is_enabled and !allowed[used_index]) {
log.err("feature '{s}' not allowed, but used by linked object", .{(@intToEnum(types.Feature.Tag, used_index)).toString()});
log.err(" defined in '{s}'", .{wasm.objects.items[used_set >> 1].name});
valid_feature_set = false;
}
}
if (!valid_feature_set) {
return error.InvalidFeatureSet;
}
// For each linked object, validate the required and disallowed features
for (wasm.objects.items) |object| {
var object_used_features = [_]bool{false} ** known_features_count;
for (object.features) |feature| {
if (feature.prefix == .disallowed) continue; // already defined in 'disallowed' set.
// from here a feature is always used
const disallowed_feature = disallowed[@enumToInt(feature.tag)];
if (@truncate(u1, disallowed_feature) != 0) {
log.err("feature '{s}' is disallowed, but used by linked object", .{feature.tag.toString()});
log.err(" disallowed by '{s}'", .{wasm.objects.items[disallowed_feature >> 1].name});
log.err(" used in '{s}'", .{object.name});
valid_feature_set = false;
}
object_used_features[@enumToInt(feature.tag)] = true;
}
// validate the linked object file has each required feature
for (required) |required_feature, feature_index| {
const is_required = @truncate(u1, required_feature) != 0;
if (is_required and !object_used_features[feature_index]) {
log.err("feature '{s}' is required but not used in linked object", .{(@intToEnum(types.Feature.Tag, feature_index)).toString()});
log.err(" required by '{s}'", .{wasm.objects.items[required_feature >> 1].name});
log.err(" missing in '{s}'", .{object.name});
valid_feature_set = false;
}
}
}
if (!valid_feature_set) {
return error.InvalidFeatureSet;
}
to_emit.* = allowed;
}
fn checkUndefinedSymbols(wasm: *const Wasm) !void {
if (wasm.base.options.output_mode == .Obj) return;
var found_undefined_symbols = false;
for (wasm.undefs.values()) |undef| {
const symbol = undef.getSymbol(wasm);
if (symbol.tag == .data) {
found_undefined_symbols = true;
const file_name = if (undef.file) |file_index| name: {
break :name wasm.objects.items[file_index].name;
} else wasm.name;
log.err("could not resolve undefined symbol '{s}'", .{undef.getName(wasm)});
log.err(" defined in '{s}'", .{file_name});
}
}
if (found_undefined_symbols) {
return error.UndefinedSymbol;
}
}
pub fn deinit(wasm: *Wasm) void {
const gpa = wasm.base.allocator;
if (build_options.have_llvm) {
if (wasm.llvm_object) |llvm_object| llvm_object.destroy(gpa);
}
if (wasm.base.options.module) |mod| {
var decl_it = wasm.decls.keyIterator();
while (decl_it.next()) |decl_index_ptr| {
const decl = mod.declPtr(decl_index_ptr.*);
decl.link.wasm.deinit(gpa);
}
} else {
assert(wasm.decls.count() == 0);
}
for (wasm.func_types.items) |*func_type| {
func_type.deinit(gpa);
}
for (wasm.segment_info.values()) |segment_info| {
gpa.free(segment_info.name);
}
for (wasm.objects.items) |*object| {
object.deinit(gpa);
}
for (wasm.archives.items) |*archive| {
archive.deinit(gpa);
}
wasm.decls.deinit(gpa);
wasm.symbols.deinit(gpa);
wasm.symbols_free_list.deinit(gpa);
wasm.globals.deinit(gpa);
wasm.resolved_symbols.deinit(gpa);
wasm.undefs.deinit(gpa);
wasm.discarded.deinit(gpa);
wasm.symbol_atom.deinit(gpa);
wasm.export_names.deinit(gpa);
wasm.atoms.deinit(gpa);
for (wasm.managed_atoms.items) |managed_atom| {
managed_atom.deinit(gpa);
gpa.destroy(managed_atom);
}
wasm.managed_atoms.deinit(gpa);
wasm.segments.deinit(gpa);
wasm.data_segments.deinit(gpa);
wasm.segment_info.deinit(gpa);
wasm.objects.deinit(gpa);
wasm.archives.deinit(gpa);
// free output sections
wasm.imports.deinit(gpa);
wasm.func_types.deinit(gpa);
wasm.functions.deinit(gpa);
wasm.wasm_globals.deinit(gpa);
wasm.function_table.deinit(gpa);
wasm.tables.deinit(gpa);
wasm.exports.deinit(gpa);
wasm.string_table.deinit(gpa);
if (wasm.dwarf) |*dwarf| {
dwarf.deinit();
}
}
pub fn allocateDeclIndexes(wasm: *Wasm, decl_index: Module.Decl.Index) !void {
if (wasm.llvm_object) |_| return;
const decl = wasm.base.options.module.?.declPtr(decl_index);
if (decl.link.wasm.sym_index != 0) return;
try wasm.symbols.ensureUnusedCapacity(wasm.base.allocator, 1);
try wasm.decls.putNoClobber(wasm.base.allocator, decl_index, {});
const atom = &decl.link.wasm;
var symbol: Symbol = .{
.name = undefined, // will be set after updateDecl
.flags = @enumToInt(Symbol.Flag.WASM_SYM_BINDING_LOCAL),
.tag = undefined, // will be set after updateDecl
.index = undefined, // will be set after updateDecl
};
if (wasm.symbols_free_list.popOrNull()) |index| {
atom.sym_index = index;
wasm.symbols.items[index] = symbol;
} else {
atom.sym_index = @intCast(u32, wasm.symbols.items.len);
wasm.symbols.appendAssumeCapacity(symbol);
}
try wasm.symbol_atom.putNoClobber(wasm.base.allocator, atom.symbolLoc(), atom);
}
pub fn updateFunc(wasm: *Wasm, mod: *Module, func: *Module.Fn, air: Air, liveness: Liveness) !void {
if (build_options.skip_non_native and builtin.object_format != .wasm) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (build_options.have_llvm) {
if (wasm.llvm_object) |llvm_object| return llvm_object.updateFunc(mod, func, air, liveness);
}
const tracy = trace(@src());
defer tracy.end();
const decl_index = func.owner_decl;
const decl = mod.declPtr(decl_index);
assert(decl.link.wasm.sym_index != 0); // Must call allocateDeclIndexes()
decl.link.wasm.clear();
var decl_state: ?Dwarf.DeclState = if (wasm.dwarf) |*dwarf| try dwarf.initDeclState(mod, decl) else null;
defer if (decl_state) |*ds| ds.deinit();
var code_writer = std.ArrayList(u8).init(wasm.base.allocator);
defer code_writer.deinit();
const result = try codegen.generateFunction(
&wasm.base,
decl.srcLoc(),
func,
air,
liveness,
&code_writer,
if (decl_state) |*ds| .{ .dwarf = ds } else .none,
);
const code = switch (result) {
.appended => code_writer.items,
.fail => |em| {
decl.analysis = .codegen_failure;
try mod.failed_decls.put(mod.gpa, decl_index, em);
return;
},
};
if (wasm.dwarf) |*dwarf| {
try dwarf.commitDeclState(
&wasm.base,
mod,
decl,
// Actual value will be written after relocation.
// For Wasm, this is the offset relative to the code section
// which isn't known until flush().
0,
code.len,
&decl_state.?,
);
}
return wasm.finishUpdateDecl(decl, code);
}
// Generate code for the Decl, storing it in memory to be later written to
// the file on flush().
pub fn updateDecl(wasm: *Wasm, mod: *Module, decl_index: Module.Decl.Index) !void {
if (build_options.skip_non_native and builtin.object_format != .wasm) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (build_options.have_llvm) {
if (wasm.llvm_object) |llvm_object| return llvm_object.updateDecl(mod, decl_index);
}
const tracy = trace(@src());
defer tracy.end();
const decl = mod.declPtr(decl_index);
assert(decl.link.wasm.sym_index != 0); // Must call allocateDeclIndexes()
decl.link.wasm.clear();
if (decl.val.castTag(.function)) |_| {
return;
} else if (decl.val.castTag(.extern_fn)) |_| {
return;
}
if (decl.isExtern()) {
const variable = decl.getVariable().?;
const name = mem.sliceTo(decl.name, 0);
return wasm.addOrUpdateImport(name, decl.link.wasm.sym_index, variable.lib_name, null);
}
const val = if (decl.val.castTag(.variable)) |payload| payload.data.init else decl.val;
var code_writer = std.ArrayList(u8).init(wasm.base.allocator);
defer code_writer.deinit();
const res = try codegen.generateSymbol(
&wasm.base,
decl.srcLoc(),
.{ .ty = decl.ty, .val = val },
&code_writer,
.none,
.{ .parent_atom_index = decl.link.wasm.sym_index },
);
const code = switch (res) {
.externally_managed => |x| x,
.appended => code_writer.items,
.fail => |em| {
decl.analysis = .codegen_failure;
try mod.failed_decls.put(mod.gpa, decl_index, em);
return;
},
};
return wasm.finishUpdateDecl(decl, code);
}
pub fn updateDeclLineNumber(wasm: *Wasm, mod: *Module, decl: *const Module.Decl) !void {
if (wasm.llvm_object) |_| return;
if (wasm.dwarf) |*dw| {
const tracy = trace(@src());
defer tracy.end();
const decl_name = try decl.getFullyQualifiedName(mod);
defer wasm.base.allocator.free(decl_name);
log.debug("updateDeclLineNumber {s}{*}", .{ decl_name, decl });
try dw.updateDeclLineNumber(&wasm.base, decl);
}
}
fn finishUpdateDecl(wasm: *Wasm, decl: *Module.Decl, code: []const u8) !void {
const mod = wasm.base.options.module.?;
const atom: *Atom = &decl.link.wasm;
const symbol = &wasm.symbols.items[atom.sym_index];
const full_name = try decl.getFullyQualifiedName(mod);
defer wasm.base.allocator.free(full_name);
symbol.name = try wasm.string_table.put(wasm.base.allocator, full_name);
try atom.code.appendSlice(wasm.base.allocator, code);
try wasm.resolved_symbols.put(wasm.base.allocator, atom.symbolLoc(), {});
if (code.len == 0) return;
atom.size = @intCast(u32, code.len);
atom.alignment = decl.ty.abiAlignment(wasm.base.options.target);
}
/// From a given symbol location, returns its `wasm.GlobalType`.
/// Asserts the Symbol represents a global.
fn getGlobalType(wasm: *const Wasm, loc: SymbolLoc) std.wasm.GlobalType {
const symbol = loc.getSymbol(wasm);
assert(symbol.tag == .global);
const is_undefined = symbol.isUndefined();
if (loc.file) |file_index| {
const obj: Object = wasm.objects.items[file_index];
if (is_undefined) {
return obj.findImport(.global, symbol.index).kind.global;
}
const import_global_count = obj.importedCountByKind(.global);
return obj.globals[symbol.index - import_global_count].global_type;
}
if (is_undefined) {
return wasm.imports.get(loc).?.kind.global;
}
return wasm.wasm_globals.items[symbol.index].global_type;
}
/// From a given symbol location, returns its `wasm.Type`.
/// Asserts the Symbol represents a function.
fn getFunctionSignature(wasm: *const Wasm, loc: SymbolLoc) std.wasm.Type {
const symbol = loc.getSymbol(wasm);
assert(symbol.tag == .function);
const is_undefined = symbol.isUndefined();
if (loc.file) |file_index| {
const obj: Object = wasm.objects.items[file_index];
if (is_undefined) {
const ty_index = obj.findImport(.function, symbol.index).kind.function;
return obj.func_types[ty_index];
}
const import_function_count = obj.importedCountByKind(.function);
const type_index = obj.functions[symbol.index - import_function_count].type_index;
return obj.func_types[type_index];
}
if (is_undefined) {
const ty_index = wasm.imports.get(loc).?.kind.function;
return wasm.func_types.items[ty_index];
}
return wasm.func_types.items[wasm.functions.get(.{ .file = loc.file, .index = loc.index }).?.type_index];
}
/// Lowers a constant typed value to a local symbol and atom.
/// Returns the symbol index of the local
/// The given `decl` is the parent decl whom owns the constant.
pub fn lowerUnnamedConst(wasm: *Wasm, tv: TypedValue, decl_index: Module.Decl.Index) !u32 {
assert(tv.ty.zigTypeTag() != .Fn); // cannot create local symbols for functions
const mod = wasm.base.options.module.?;
const decl = mod.declPtr(decl_index);
// Create and initialize a new local symbol and atom
const local_index = decl.link.wasm.locals.items.len;
const fqdn = try decl.getFullyQualifiedName(mod);
defer wasm.base.allocator.free(fqdn);
const name = try std.fmt.allocPrintZ(wasm.base.allocator, "__unnamed_{s}_{d}", .{ fqdn, local_index });
defer wasm.base.allocator.free(name);
var symbol: Symbol = .{
.name = try wasm.string_table.put(wasm.base.allocator, name),
.flags = 0,
.tag = .data,
.index = undefined,
};
symbol.setFlag(.WASM_SYM_BINDING_LOCAL);
const atom = try decl.link.wasm.locals.addOne(wasm.base.allocator);
atom.* = Atom.empty;
atom.alignment = tv.ty.abiAlignment(wasm.base.options.target);
try wasm.symbols.ensureUnusedCapacity(wasm.base.allocator, 1);
if (wasm.symbols_free_list.popOrNull()) |index| {
atom.sym_index = index;
wasm.symbols.items[index] = symbol;
} else {
atom.sym_index = @intCast(u32, wasm.symbols.items.len);
wasm.symbols.appendAssumeCapacity(symbol);
}
try wasm.resolved_symbols.putNoClobber(wasm.base.allocator, atom.symbolLoc(), {});
try wasm.symbol_atom.putNoClobber(wasm.base.allocator, atom.symbolLoc(), atom);
var value_bytes = std.ArrayList(u8).init(wasm.base.allocator);
defer value_bytes.deinit();
const result = try codegen.generateSymbol(
&wasm.base,
decl.srcLoc(),
tv,
&value_bytes,
.none,
.{
.parent_atom_index = atom.sym_index,
.addend = null,
},
);
const code = switch (result) {
.externally_managed => |x| x,
.appended => value_bytes.items,
.fail => |em| {
decl.analysis = .codegen_failure;
try mod.failed_decls.put(mod.gpa, decl_index, em);
return error.AnalysisFail;
},
};
atom.size = @intCast(u32, code.len);
try atom.code.appendSlice(wasm.base.allocator, code);
return atom.sym_index;
}
/// Returns the symbol index from a symbol of which its flag is set global,
/// such as an exported or imported symbol.
/// If the symbol does not yet exist, creates a new one symbol instead
/// and then returns the index to it.
pub fn getGlobalSymbol(wasm: *Wasm, name: []const u8) !u32 {
const name_index = try wasm.string_table.put(wasm.base.allocator, name);
const gop = try wasm.globals.getOrPut(wasm.base.allocator, name_index);
if (gop.found_existing) {
return gop.value_ptr.*.index;
}
var symbol: Symbol = .{
.name = name_index,
.flags = 0,
.index = undefined, // index to type will be set after merging function symbols
.tag = .function,
};
symbol.setGlobal(true);
symbol.setUndefined(true);
const sym_index = if (wasm.symbols_free_list.popOrNull()) |index| index else blk: {
var index = @intCast(u32, wasm.symbols.items.len);
try wasm.symbols.ensureUnusedCapacity(wasm.base.allocator, 1);
wasm.symbols.items.len += 1;
break :blk index;
};
wasm.symbols.items[sym_index] = symbol;
gop.value_ptr.* = .{ .index = sym_index, .file = null };
try wasm.resolved_symbols.put(wasm.base.allocator, gop.value_ptr.*, {});
try wasm.undefs.putNoClobber(wasm.base.allocator, name, gop.value_ptr.*);
return sym_index;
}
/// For a given decl, find the given symbol index's atom, and create a relocation for the type.
/// Returns the given pointer address
pub fn getDeclVAddr(
wasm: *Wasm,
decl_index: Module.Decl.Index,
reloc_info: link.File.RelocInfo,
) !u64 {
const mod = wasm.base.options.module.?;
const decl = mod.declPtr(decl_index);
const target_symbol_index = decl.link.wasm.sym_index;
assert(target_symbol_index != 0);
assert(reloc_info.parent_atom_index != 0);
const atom = wasm.symbol_atom.get(.{ .file = null, .index = reloc_info.parent_atom_index }).?;
const is_wasm32 = wasm.base.options.target.cpu.arch == .wasm32;
if (decl.ty.zigTypeTag() == .Fn) {
assert(reloc_info.addend == 0); // addend not allowed for function relocations
// We found a function pointer, so add it to our table,
// as function pointers are not allowed to be stored inside the data section.
// They are instead stored in a function table which are called by index.
try wasm.addTableFunction(target_symbol_index);
try atom.relocs.append(wasm.base.allocator, .{
.index = target_symbol_index,
.offset = @intCast(u32, reloc_info.offset),
.relocation_type = if (is_wasm32) .R_WASM_TABLE_INDEX_I32 else .R_WASM_TABLE_INDEX_I64,
});
} else {
try atom.relocs.append(wasm.base.allocator, .{
.index = target_symbol_index,
.offset = @intCast(u32, reloc_info.offset),
.relocation_type = if (is_wasm32) .R_WASM_MEMORY_ADDR_I32 else .R_WASM_MEMORY_ADDR_I64,
.addend = @intCast(i32, reloc_info.addend),
});
}
// we do not know the final address at this point,
// as atom allocation will determine the address and relocations
// will calculate and rewrite this. Therefore, we simply return the symbol index
// that was targeted.
return target_symbol_index;
}
pub fn deleteExport(wasm: *Wasm, exp: Export) void {
if (wasm.llvm_object) |_| return;
const sym_index = exp.sym_index orelse return;
const loc: SymbolLoc = .{ .file = null, .index = sym_index };
const symbol = loc.getSymbol(wasm);
const symbol_name = wasm.string_table.get(symbol.name);
log.debug("Deleting export for decl '{s}'", .{symbol_name});
if (wasm.export_names.fetchRemove(loc)) |kv| {
assert(wasm.globals.remove(kv.value));
} else {
assert(wasm.globals.remove(symbol.name));
}
}
pub fn updateDeclExports(
wasm: *Wasm,
mod: *Module,
decl_index: Module.Decl.Index,
exports: []const *Module.Export,
) !void {
if (build_options.skip_non_native and builtin.object_format != .wasm) {
@panic("Attempted to compile for object format that was disabled by build configuration");
}
if (build_options.have_llvm) {
if (wasm.llvm_object) |llvm_object| return llvm_object.updateDeclExports(mod, decl_index, exports);
}
const decl = mod.declPtr(decl_index);
for (exports) |exp| {
if (exp.options.section) |section| {
try mod.failed_exports.putNoClobber(mod.gpa, exp, try Module.ErrorMsg.create(
mod.gpa,
decl.srcLoc(),
"Unimplemented: ExportOptions.section '{s}'",
.{section},
));
continue;
}
const export_name = try wasm.string_table.put(wasm.base.allocator, exp.options.name);
if (wasm.globals.getPtr(export_name)) |existing_loc| {
if (existing_loc.index == decl.link.wasm.sym_index) continue;
const existing_sym: Symbol = existing_loc.getSymbol(wasm).*;
const exp_is_weak = exp.options.linkage == .Internal or exp.options.linkage == .Weak;
// When both the to-bo-exported symbol and the already existing symbol
// are strong symbols, we have a linker error.
// In the other case we replace one with the other.
if (!exp_is_weak and !existing_sym.isWeak()) {
try mod.failed_exports.put(mod.gpa, exp, try Module.ErrorMsg.create(
mod.gpa,
decl.srcLoc(),
\\LinkError: symbol '{s}' defined multiple times
\\ first definition in '{s}'
\\ next definition in '{s}'
,
.{ exp.options.name, wasm.name, wasm.name },
));
continue;
} else if (exp_is_weak) {
continue; // to-be-exported symbol is weak, so we keep the existing symbol
} else {
existing_loc.index = decl.link.wasm.sym_index;
existing_loc.file = null;
exp.link.wasm.sym_index = existing_loc.index;
}
}
const exported_decl = mod.declPtr(exp.exported_decl);
const sym_index = exported_decl.link.wasm.sym_index;
const sym_loc = exported_decl.link.wasm.symbolLoc();
const symbol = sym_loc.getSymbol(wasm);
switch (exp.options.linkage) {
.Internal => {
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
},
.Weak => {
symbol.setFlag(.WASM_SYM_BINDING_WEAK);
},
.Strong => {}, // symbols are strong by default
.LinkOnce => {
try mod.failed_exports.putNoClobber(mod.gpa, exp, try Module.ErrorMsg.create(
mod.gpa,
decl.srcLoc(),
"Unimplemented: LinkOnce",
.{},
));
continue;
},
}
// Ensure the symbol will be exported using the given name
if (!mem.eql(u8, exp.options.name, sym_loc.getName(wasm))) {
try wasm.export_names.put(wasm.base.allocator, sym_loc, export_name);
}
symbol.setGlobal(true);
symbol.setUndefined(false);
try wasm.globals.put(
wasm.base.allocator,
export_name,
sym_loc,
);
// if the symbol was previously undefined, remove it as an import
_ = wasm.imports.remove(sym_loc);
_ = wasm.undefs.swapRemove(exp.options.name);
exp.link.wasm.sym_index = sym_index;
}
}
pub fn freeDecl(wasm: *Wasm, decl_index: Module.Decl.Index) void {
if (build_options.have_llvm) {
if (wasm.llvm_object) |llvm_object| return llvm_object.freeDecl(decl_index);
}
const mod = wasm.base.options.module.?;
const decl = mod.declPtr(decl_index);
const atom = &decl.link.wasm;
wasm.symbols_free_list.append(wasm.base.allocator, atom.sym_index) catch {};
_ = wasm.decls.remove(decl_index);
wasm.symbols.items[atom.sym_index].tag = .dead;
for (atom.locals.items) |local_atom| {
const local_symbol = &wasm.symbols.items[local_atom.sym_index];
local_symbol.tag = .dead; // also for any local symbol
wasm.symbols_free_list.append(wasm.base.allocator, local_atom.sym_index) catch {};
assert(wasm.resolved_symbols.swapRemove(local_atom.symbolLoc()));
assert(wasm.symbol_atom.remove(local_atom.symbolLoc()));
}
if (decl.isExtern()) {
_ = wasm.imports.remove(atom.symbolLoc());
}
_ = wasm.resolved_symbols.swapRemove(atom.symbolLoc());
_ = wasm.symbol_atom.remove(atom.symbolLoc());
if (wasm.dwarf) |*dwarf| {
dwarf.freeDecl(decl);
dwarf.freeAtom(&atom.dbg_info_atom);
}
atom.deinit(wasm.base.allocator);
}
/// Appends a new entry to the indirect function table
pub fn addTableFunction(wasm: *Wasm, symbol_index: u32) !void {
const index = @intCast(u32, wasm.function_table.count());
try wasm.function_table.put(wasm.base.allocator, .{ .file = null, .index = symbol_index }, index);
}
/// Assigns indexes to all indirect functions.
/// Starts at offset 1, where the value `0` represents an unresolved function pointer
/// or null-pointer
fn mapFunctionTable(wasm: *Wasm) void {
var it = wasm.function_table.valueIterator();
var index: u32 = 1;
while (it.next()) |value_ptr| : (index += 1) {
value_ptr.* = index;
}
}
/// Either creates a new import, or updates one if existing.
/// When `type_index` is non-null, we assume an external function.
/// In all other cases, a data-symbol will be created instead.
pub fn addOrUpdateImport(
wasm: *Wasm,
/// Name of the import
name: []const u8,
/// Symbol index that is external
symbol_index: u32,
/// Optional library name (i.e. `extern "c" fn foo() void`
lib_name: ?[*:0]const u8,
/// The index of the type that represents the function signature
/// when the extern is a function. When this is null, a data-symbol
/// is asserted instead.
type_index: ?u32,
) !void {
assert(symbol_index != 0);
// For the import name itwasm, we use the decl's name, rather than the fully qualified name
const decl_name_index = try wasm.string_table.put(wasm.base.allocator, name);
const symbol: *Symbol = &wasm.symbols.items[symbol_index];
symbol.setUndefined(true);
symbol.setGlobal(true);
symbol.name = decl_name_index;
const global_gop = try wasm.globals.getOrPut(wasm.base.allocator, decl_name_index);
if (!global_gop.found_existing) {
const loc: SymbolLoc = .{ .file = null, .index = symbol_index };
global_gop.value_ptr.* = loc;
try wasm.resolved_symbols.put(wasm.base.allocator, loc, {});
try wasm.undefs.putNoClobber(wasm.base.allocator, name, loc);
}
if (type_index) |ty_index| {
const gop = try wasm.imports.getOrPut(wasm.base.allocator, .{ .index = symbol_index, .file = null });
const module_name = if (lib_name) |l_name| blk: {
break :blk mem.sliceTo(l_name, 0);
} else wasm.host_name;
if (!gop.found_existing) {
gop.value_ptr.* = .{
.module_name = try wasm.string_table.put(wasm.base.allocator, module_name),
.name = decl_name_index,
.kind = .{ .function = ty_index },
};
}
} else {
symbol.tag = .data;
return; // non-functions will not be imported from the runtime, but only resolved during link-time
}
}
/// Kind represents the type of an Atom, which is only
/// used to parse a decl into an Atom to define in which section
/// or segment it should be placed.
const Kind = union(enum) {
/// Represents the segment the data symbol should
/// be inserted into.
/// TODO: Add TLS segments
data: enum {
read_only,
uninitialized,
initialized,
},
function: FnData,
/// Returns the segment name the data kind represents.
/// Asserts `kind` has its active tag set to `data`.
fn segmentName(kind: Kind) []const u8 {
switch (kind.data) {
.read_only => return ".rodata.",
.uninitialized => return ".bss.",
.initialized => return ".data.",
}
}
};
/// Parses an Atom and inserts its metadata into the corresponding sections.
fn parseAtom(wasm: *Wasm, atom: *Atom, kind: Kind) !void {
const symbol = (SymbolLoc{ .file = null, .index = atom.sym_index }).getSymbol(wasm);
const final_index: u32 = switch (kind) {
.function => |fn_data| result: {
const index = @intCast(u32, wasm.functions.count() + wasm.imported_functions_count);
try wasm.functions.putNoClobber(
wasm.base.allocator,
.{ .file = null, .index = index },
.{ .type_index = fn_data.type_index },
);
symbol.tag = .function;
symbol.index = index;
if (wasm.code_section_index == null) {
wasm.code_section_index = @intCast(u32, wasm.segments.items.len);
try wasm.segments.append(wasm.base.allocator, .{
.alignment = atom.alignment,
.size = atom.size,
.offset = 0,
});
}
break :result wasm.code_section_index.?;
},
.data => result: {
const segment_name = try std.mem.concat(wasm.base.allocator, u8, &.{
kind.segmentName(),
wasm.string_table.get(symbol.name),
});
errdefer wasm.base.allocator.free(segment_name);
const segment_info: types.Segment = .{
.name = segment_name,
.alignment = atom.alignment,
.flags = 0,
};
symbol.tag = .data;
// when creating an object file, or importing memory and the data belongs in the .bss segment
// we set the entire region of it to zeroes.
// We do not have to do this when exporting the memory (the default) because the runtime
// will do it for us, and we do not emit the bss segment at all.
if ((wasm.base.options.output_mode == .Obj or wasm.base.options.import_memory) and kind.data == .uninitialized) {
std.mem.set(u8, atom.code.items, 0);
}
const should_merge = wasm.base.options.output_mode != .Obj;
const gop = try wasm.data_segments.getOrPut(wasm.base.allocator, segment_info.outputName(should_merge));
if (gop.found_existing) {
const index = gop.value_ptr.*;
wasm.segments.items[index].size += atom.size;
symbol.index = @intCast(u32, wasm.segment_info.getIndex(index).?);
// segment info already exists, so free its memory
wasm.base.allocator.free(segment_name);
break :result index;
} else {
const index = @intCast(u32, wasm.segments.items.len);
try wasm.segments.append(wasm.base.allocator, .{
.alignment = atom.alignment,
.size = 0,
.offset = 0,
});
gop.value_ptr.* = index;
const info_index = @intCast(u32, wasm.segment_info.count());
try wasm.segment_info.put(wasm.base.allocator, index, segment_info);
symbol.index = info_index;
break :result index;
}
},
};
const segment: *Segment = &wasm.segments.items[final_index];
segment.alignment = std.math.max(segment.alignment, atom.alignment);
try wasm.appendAtomAtIndex(final_index, atom);
}
/// From a given index, append the given `Atom` at the back of the linked list.
/// Simply inserts it into the map of atoms when it doesn't exist yet.
pub fn appendAtomAtIndex(wasm: *Wasm, index: u32, atom: *Atom) !void {
if (wasm.atoms.getPtr(index)) |last| {
last.*.next = atom;
atom.prev = last.*;
last.* = atom;
} else {
try wasm.atoms.putNoClobber(wasm.base.allocator, index, atom);
}
}
/// Allocates debug atoms into their respective debug sections
/// to merge them with maybe-existing debug atoms from object files.
fn allocateDebugAtoms(wasm: *Wasm) !void {
if (wasm.dwarf == null) return;
const allocAtom = struct {
fn f(bin: *Wasm, maybe_index: *?u32, atom: *Atom) !void {
const index = maybe_index.* orelse idx: {
const index = @intCast(u32, bin.segments.items.len);
try bin.appendDummySegment();
maybe_index.* = index;
break :idx index;
};
atom.size = @intCast(u32, atom.code.items.len);
bin.symbols.items[atom.sym_index].index = index;
try bin.appendAtomAtIndex(index, atom);
}
}.f;
try allocAtom(wasm, &wasm.debug_info_index, wasm.debug_info_atom.?);
try allocAtom(wasm, &wasm.debug_line_index, wasm.debug_line_atom.?);
try allocAtom(wasm, &wasm.debug_loc_index, wasm.debug_loc_atom.?);
try allocAtom(wasm, &wasm.debug_str_index, wasm.debug_str_atom.?);
try allocAtom(wasm, &wasm.debug_ranges_index, wasm.debug_ranges_atom.?);
try allocAtom(wasm, &wasm.debug_abbrev_index, wasm.debug_abbrev_atom.?);
try allocAtom(wasm, &wasm.debug_pubnames_index, wasm.debug_pubnames_atom.?);
try allocAtom(wasm, &wasm.debug_pubtypes_index, wasm.debug_pubtypes_atom.?);
}
fn allocateAtoms(wasm: *Wasm) !void {
// first sort the data segments
try sortDataSegments(wasm);
try allocateDebugAtoms(wasm);
var it = wasm.atoms.iterator();
while (it.next()) |entry| {
const segment = &wasm.segments.items[entry.key_ptr.*];
var atom: *Atom = entry.value_ptr.*.getFirst();
var offset: u32 = 0;
while (true) {
offset = std.mem.alignForwardGeneric(u32, offset, atom.alignment);
atom.offset = offset;
const symbol_loc = atom.symbolLoc();
log.debug("Atom '{s}' allocated from 0x{x:0>8} to 0x{x:0>8} size={d}", .{
symbol_loc.getName(wasm),
offset,
offset + atom.size,
atom.size,
});
offset += atom.size;
try wasm.symbol_atom.put(wasm.base.allocator, atom.symbolLoc(), atom); // Update atom pointers
atom = atom.next orelse break;
}
segment.size = std.mem.alignForwardGeneric(u32, offset, segment.alignment);
}
}
fn sortDataSegments(wasm: *Wasm) !void {
var new_mapping: std.StringArrayHashMapUnmanaged(u32) = .{};
try new_mapping.ensureUnusedCapacity(wasm.base.allocator, wasm.data_segments.count());
errdefer new_mapping.deinit(wasm.base.allocator);
const keys = try wasm.base.allocator.dupe([]const u8, wasm.data_segments.keys());
defer wasm.base.allocator.free(keys);
const SortContext = struct {
fn sort(_: void, lhs: []const u8, rhs: []const u8) bool {
return order(lhs) <= order(rhs);
}
fn order(name: []const u8) u8 {
if (mem.startsWith(u8, name, ".rodata")) return 0;
if (mem.startsWith(u8, name, ".data")) return 1;
if (mem.startsWith(u8, name, ".text")) return 2;
return 3;
}
};
std.sort.sort([]const u8, keys, {}, SortContext.sort);
for (keys) |key| {
const segment_index = wasm.data_segments.get(key).?;
new_mapping.putAssumeCapacity(key, segment_index);
}
wasm.data_segments.deinit(wasm.base.allocator);
wasm.data_segments = new_mapping;
}
fn setupImports(wasm: *Wasm) !void {
log.debug("Merging imports", .{});
var discarded_it = wasm.discarded.keyIterator();
while (discarded_it.next()) |discarded| {
if (discarded.file == null) {
// remove an import if it was resolved
if (wasm.imports.remove(discarded.*)) {
log.debug("Removed symbol '{s}' as an import", .{
discarded.getName(wasm),
});
}
}
}
for (wasm.resolved_symbols.keys()) |symbol_loc| {
if (symbol_loc.file == null) {
// imports generated by Zig code are already in the `import` section
continue;
}
const symbol = symbol_loc.getSymbol(wasm);
if (std.mem.eql(u8, symbol_loc.getName(wasm), "__indirect_function_table")) {
continue;
}
if (!symbol.requiresImport()) {
continue;
}
log.debug("Symbol '{s}' will be imported from the host", .{symbol_loc.getName(wasm)});
const object = wasm.objects.items[symbol_loc.file.?];
const import = object.findImport(symbol.tag.externalType(), symbol.index);
// We copy the import to a new import to ensure the names contain references
// to the internal string table, rather than of the object file.
var new_imp: types.Import = .{
.module_name = try wasm.string_table.put(wasm.base.allocator, object.string_table.get(import.module_name)),
.name = try wasm.string_table.put(wasm.base.allocator, object.string_table.get(import.name)),
.kind = import.kind,
};
// TODO: De-duplicate imports when they contain the same names and type
try wasm.imports.putNoClobber(wasm.base.allocator, symbol_loc, new_imp);
}
// Assign all indexes of the imports to their representing symbols
var function_index: u32 = 0;
var global_index: u32 = 0;
var table_index: u32 = 0;
var it = wasm.imports.iterator();
while (it.next()) |entry| {
const symbol = entry.key_ptr.*.getSymbol(wasm);
const import: types.Import = entry.value_ptr.*;
switch (import.kind) {
.function => {
symbol.index = function_index;
function_index += 1;
},
.global => {
symbol.index = global_index;
global_index += 1;
},
.table => {
symbol.index = table_index;
table_index += 1;
},
else => unreachable,
}
}
wasm.imported_functions_count = function_index;
wasm.imported_globals_count = global_index;
wasm.imported_tables_count = table_index;
log.debug("Merged ({d}) functions, ({d}) globals, and ({d}) tables into import section", .{
function_index,
global_index,
table_index,
});
}
/// Takes the global, function and table section from each linked object file
/// and merges it into a single section for each.
fn mergeSections(wasm: *Wasm) !void {
// append the indirect function table if initialized
if (wasm.string_table.getOffset("__indirect_function_table")) |offset| {
const sym_loc = wasm.globals.get(offset).?;
const table: std.wasm.Table = .{
.limits = .{ .min = @intCast(u32, wasm.function_table.count()), .max = null },
.reftype = .funcref,
};
sym_loc.getSymbol(wasm).index = @intCast(u32, wasm.tables.items.len) + wasm.imported_tables_count;
try wasm.tables.append(wasm.base.allocator, table);
}
for (wasm.resolved_symbols.keys()) |sym_loc| {
if (sym_loc.file == null) {
// Zig code-generated symbols are already within the sections and do not
// require to be merged
continue;
}
const object = wasm.objects.items[sym_loc.file.?];
const symbol = &object.symtable[sym_loc.index];
if (symbol.isUndefined() or (symbol.tag != .function and symbol.tag != .global and symbol.tag != .table)) {
// Skip undefined symbols as they go in the `import` section
// Also skip symbols that do not need to have a section merged.
continue;
}
const offset = object.importedCountByKind(symbol.tag.externalType());
const index = symbol.index - offset;
switch (symbol.tag) {
.function => {
const original_func = object.functions[index];
const gop = try wasm.functions.getOrPut(
wasm.base.allocator,
.{ .file = sym_loc.file, .index = symbol.index },
);
if (!gop.found_existing) {
gop.value_ptr.* = original_func;
}
symbol.index = @intCast(u32, gop.index) + wasm.imported_functions_count;
},
.global => {
const original_global = object.globals[index];
symbol.index = @intCast(u32, wasm.wasm_globals.items.len) + wasm.imported_globals_count;
try wasm.wasm_globals.append(wasm.base.allocator, original_global);
},
.table => {
const original_table = object.tables[index];
symbol.index = @intCast(u32, wasm.tables.items.len) + wasm.imported_tables_count;
try wasm.tables.append(wasm.base.allocator, original_table);
},
else => unreachable,
}
}
log.debug("Merged ({d}) functions", .{wasm.functions.count()});
log.debug("Merged ({d}) globals", .{wasm.wasm_globals.items.len});
log.debug("Merged ({d}) tables", .{wasm.tables.items.len});
}
/// Merges function types of all object files into the final
/// 'types' section, while assigning the type index to the representing
/// section (import, export, function).
fn mergeTypes(wasm: *Wasm) !void {
// A map to track which functions have already had their
// type inserted. If we do this for the same function multiple times,
// it will be overwritten with the incorrect type.
var dirty = std.AutoHashMap(u32, void).init(wasm.base.allocator);
try dirty.ensureUnusedCapacity(@intCast(u32, wasm.functions.count()));
defer dirty.deinit();
for (wasm.resolved_symbols.keys()) |sym_loc| {
if (sym_loc.file == null) {
// zig code-generated symbols are already present in final type section
continue;
}
const object = wasm.objects.items[sym_loc.file.?];
const symbol = object.symtable[sym_loc.index];
if (symbol.tag != .function) {
// Only functions have types
continue;
}
if (symbol.isUndefined()) {
log.debug("Adding type from extern function '{s}'", .{sym_loc.getName(wasm)});
const import: *types.Import = wasm.imports.getPtr(sym_loc).?;
const original_type = object.func_types[import.kind.function];
import.kind.function = try wasm.putOrGetFuncType(original_type);
} else if (!dirty.contains(symbol.index)) {
log.debug("Adding type from function '{s}'", .{sym_loc.getName(wasm)});
const func = &wasm.functions.values()[symbol.index - wasm.imported_functions_count];
func.type_index = try wasm.putOrGetFuncType(object.func_types[func.type_index]);
dirty.putAssumeCapacityNoClobber(symbol.index, {});
}
}
log.debug("Completed merging and deduplicating types. Total count: ({d})", .{wasm.func_types.items.len});
}
fn setupExports(wasm: *Wasm) !void {
if (wasm.base.options.output_mode == .Obj) return;
log.debug("Building exports from symbols", .{});
for (wasm.resolved_symbols.keys()) |sym_loc| {
const symbol = sym_loc.getSymbol(wasm);
if (!symbol.isExported()) continue;
const sym_name = sym_loc.getName(wasm);
const export_name = if (wasm.export_names.get(sym_loc)) |name| name else blk: {
if (sym_loc.file == null) break :blk symbol.name;
break :blk try wasm.string_table.put(wasm.base.allocator, sym_name);
};
const exp: types.Export = .{
.name = export_name,
.kind = symbol.tag.externalType(),
.index = symbol.index,
};
log.debug("Exporting symbol '{s}' as '{s}' at index: ({d})", .{
sym_name,
wasm.string_table.get(exp.name),
exp.index,
});
try wasm.exports.append(wasm.base.allocator, exp);
}
log.debug("Completed building exports. Total count: ({d})", .{wasm.exports.items.len});
}
fn setupStart(wasm: *Wasm) !void {
const entry_name = wasm.base.options.entry orelse "_start";
const symbol_name_offset = wasm.string_table.getOffset(entry_name) orelse {
if (wasm.base.options.output_mode == .Exe) {
if (wasm.base.options.wasi_exec_model == .reactor) return; // Not required for reactors
} else {
return; // No entry point needed for non-executable wasm files
}
log.err("Entry symbol '{s}' missing", .{entry_name});
return error.MissingSymbol;
};
const symbol_loc = wasm.globals.get(symbol_name_offset).?;
const symbol = symbol_loc.getSymbol(wasm);
if (symbol.tag != .function) {
log.err("Entry symbol '{s}' is not a function", .{entry_name});
return error.InvalidEntryKind;
}
// Ensure the symbol is exported so host environment can access it
if (wasm.base.options.output_mode != .Obj) {
symbol.setFlag(.WASM_SYM_EXPORTED);
}
}
/// Sets up the memory section of the wasm module, as well as the stack.
fn setupMemory(wasm: *Wasm) !void {
log.debug("Setting up memory layout", .{});
const page_size = 64 * 1024;
const stack_size = wasm.base.options.stack_size_override orelse page_size * 1;
const stack_alignment = 16; // wasm's stack alignment as specified by tool-convention
// Always place the stack at the start by default
// unless the user specified the global-base flag
var place_stack_first = true;
var memory_ptr: u64 = if (wasm.base.options.global_base) |base| blk: {
place_stack_first = false;
break :blk base;
} else 0;
const is_obj = wasm.base.options.output_mode == .Obj;
if (place_stack_first and !is_obj) {
memory_ptr = std.mem.alignForwardGeneric(u64, memory_ptr, stack_alignment);
memory_ptr += stack_size;
// We always put the stack pointer global at index 0
wasm.wasm_globals.items[0].init.i32_const = @bitCast(i32, @intCast(u32, memory_ptr));
}
var offset: u32 = @intCast(u32, memory_ptr);
for (wasm.data_segments.values()) |segment_index| {
const segment = &wasm.segments.items[segment_index];
memory_ptr = std.mem.alignForwardGeneric(u64, memory_ptr, segment.alignment);
memory_ptr += segment.size;
segment.offset = offset;
offset += segment.size;
}
if (!place_stack_first and !is_obj) {
memory_ptr = std.mem.alignForwardGeneric(u64, memory_ptr, stack_alignment);
memory_ptr += stack_size;
wasm.wasm_globals.items[0].init.i32_const = @bitCast(i32, @intCast(u32, memory_ptr));
}
// Setup the max amount of pages
// For now we only support wasm32 by setting the maximum allowed memory size 2^32-1
const max_memory_allowed: u64 = (1 << 32) - 1;
if (wasm.base.options.initial_memory) |initial_memory| {
if (!std.mem.isAlignedGeneric(u64, initial_memory, page_size)) {
log.err("Initial memory must be {d}-byte aligned", .{page_size});
return error.MissAlignment;
}
if (memory_ptr > initial_memory) {
log.err("Initial memory too small, must be at least {d} bytes", .{memory_ptr});
return error.MemoryTooSmall;
}
if (initial_memory > max_memory_allowed) {
log.err("Initial memory exceeds maximum memory {d}", .{max_memory_allowed});
return error.MemoryTooBig;
}
memory_ptr = initial_memory;
}
// In case we do not import memory, but define it ourselves,
// set the minimum amount of pages on the memory section.
wasm.memories.limits.min = @intCast(u32, std.mem.alignForwardGeneric(u64, memory_ptr, page_size) / page_size);
log.debug("Total memory pages: {d}", .{wasm.memories.limits.min});
if (wasm.base.options.max_memory) |max_memory| {
if (!std.mem.isAlignedGeneric(u64, max_memory, page_size)) {
log.err("Maximum memory must be {d}-byte aligned", .{page_size});
return error.MissAlignment;
}
if (memory_ptr > max_memory) {
log.err("Maxmimum memory too small, must be at least {d} bytes", .{memory_ptr});
return error.MemoryTooSmall;
}
if (max_memory > max_memory_allowed) {
log.err("Maximum memory exceeds maxmium amount {d}", .{max_memory_allowed});
return error.MemoryTooBig;
}
wasm.memories.limits.max = @intCast(u32, max_memory / page_size);
log.debug("Maximum memory pages: {?d}", .{wasm.memories.limits.max});
}
}
/// From a given object's index and the index of the segment, returns the corresponding
/// index of the segment within the final data section. When the segment does not yet
/// exist, a new one will be initialized and appended. The new index will be returned in that case.
pub fn getMatchingSegment(wasm: *Wasm, object_index: u16, relocatable_index: u32) !?u32 {
const object: Object = wasm.objects.items[object_index];
const relocatable_data = object.relocatable_data[relocatable_index];
const index = @intCast(u32, wasm.segments.items.len);
switch (relocatable_data.type) {
.data => {
const segment_info = object.segment_info[relocatable_data.index];
const merge_segment = wasm.base.options.output_mode != .Obj;
const result = try wasm.data_segments.getOrPut(wasm.base.allocator, segment_info.outputName(merge_segment));
if (!result.found_existing) {
result.value_ptr.* = index;
try wasm.appendDummySegment();
return index;
} else return result.value_ptr.*;
},
.code => return wasm.code_section_index orelse blk: {
wasm.code_section_index = index;
try wasm.appendDummySegment();
break :blk index;
},
.debug => {
const debug_name = object.getDebugName(relocatable_data);
if (mem.eql(u8, debug_name, ".debug_info")) {
return wasm.debug_info_index orelse blk: {
wasm.debug_info_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else if (mem.eql(u8, debug_name, ".debug_line")) {
return wasm.debug_line_index orelse blk: {
wasm.debug_line_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else if (mem.eql(u8, debug_name, ".debug_loc")) {
return wasm.debug_loc_index orelse blk: {
wasm.debug_loc_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else if (mem.eql(u8, debug_name, ".debug_ranges")) {
return wasm.debug_line_index orelse blk: {
wasm.debug_ranges_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else if (mem.eql(u8, debug_name, ".debug_pubnames")) {
return wasm.debug_pubnames_index orelse blk: {
wasm.debug_pubnames_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else if (mem.eql(u8, debug_name, ".debug_pubtypes")) {
return wasm.debug_pubtypes_index orelse blk: {
wasm.debug_pubtypes_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else if (mem.eql(u8, debug_name, ".debug_abbrev")) {
return wasm.debug_abbrev_index orelse blk: {
wasm.debug_abbrev_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else if (mem.eql(u8, debug_name, ".debug_str")) {
return wasm.debug_str_index orelse blk: {
wasm.debug_str_index = index;
try wasm.appendDummySegment();
break :blk index;
};
} else {
log.warn("found unknown debug section '{s}'", .{debug_name});
log.warn(" debug section will be skipped", .{});
return null;
}
},
}
}
/// Appends a new segment with default field values
fn appendDummySegment(wasm: *Wasm) !void {
try wasm.segments.append(wasm.base.allocator, .{
.alignment = 1,
.size = 0,
.offset = 0,
});
}
/// Returns the symbol index of the error name table.
///
/// When the symbol does not yet exist, it will create a new one instead.
pub fn getErrorTableSymbol(wasm: *Wasm) !u32 {
if (wasm.error_table_symbol) |symbol| {
return symbol;
}
// no error was referenced yet, so create a new symbol and atom for it
// and then return said symbol's index. The final table will be populated
// during `flush` when we know all possible error names.
// As sym_index '0' is reserved, we use it for our stack pointer symbol
const symbol_index = wasm.symbols_free_list.popOrNull() orelse blk: {
const index = @intCast(u32, wasm.symbols.items.len);
_ = try wasm.symbols.addOne(wasm.base.allocator);
break :blk index;
};
const sym_name = try wasm.string_table.put(wasm.base.allocator, "__zig_err_name_table");
const symbol = &wasm.symbols.items[symbol_index];
symbol.* = .{
.name = sym_name,
.tag = .data,
.flags = 0,
.index = 0,
};
symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
const slice_ty = Type.initTag(.const_slice_u8_sentinel_0);
const atom = try wasm.base.allocator.create(Atom);
atom.* = Atom.empty;
atom.sym_index = symbol_index;
atom.alignment = slice_ty.abiAlignment(wasm.base.options.target);
try wasm.managed_atoms.append(wasm.base.allocator, atom);
const loc = atom.symbolLoc();
try wasm.resolved_symbols.put(wasm.base.allocator, loc, {});
try wasm.symbol_atom.put(wasm.base.allocator, loc, atom);
log.debug("Error name table was created with symbol index: ({d})", .{symbol_index});
wasm.error_table_symbol = symbol_index;
return symbol_index;
}
/// Populates the error name table, when `error_table_symbol` is not null.
///
/// This creates a table that consists of pointers and length to each error name.
/// The table is what is being pointed to within the runtime bodies that are generated.
fn populateErrorNameTable(wasm: *Wasm) !void {
const symbol_index = wasm.error_table_symbol orelse return;
const atom: *Atom = wasm.symbol_atom.get(.{ .file = null, .index = symbol_index }).?;
// Rather than creating a symbol for each individual error name,
// we create a symbol for the entire region of error names. We then calculate
// the pointers into the list using addends which are appended to the relocation.
const names_atom = try wasm.base.allocator.create(Atom);
names_atom.* = Atom.empty;
try wasm.managed_atoms.append(wasm.base.allocator, names_atom);
const names_symbol_index = wasm.symbols_free_list.popOrNull() orelse blk: {
const index = @intCast(u32, wasm.symbols.items.len);
_ = try wasm.symbols.addOne(wasm.base.allocator);
break :blk index;
};
names_atom.sym_index = names_symbol_index;
names_atom.alignment = 1;
const sym_name = try wasm.string_table.put(wasm.base.allocator, "__zig_err_names");
const names_symbol = &wasm.symbols.items[names_symbol_index];
names_symbol.* = .{
.name = sym_name,
.tag = .data,
.flags = 0,
.index = 0,
};
names_symbol.setFlag(.WASM_SYM_VISIBILITY_HIDDEN);
log.debug("Populating error names", .{});
// Addend for each relocation to the table
var addend: u32 = 0;
const mod = wasm.base.options.module.?;
for (mod.error_name_list.items) |error_name| {
const len = @intCast(u32, error_name.len + 1); // names are 0-termianted
const slice_ty = Type.initTag(.const_slice_u8_sentinel_0);
const offset = @intCast(u32, atom.code.items.len);
// first we create the data for the slice of the name
try atom.code.appendNTimes(wasm.base.allocator, 0, 4); // ptr to name, will be relocated
try atom.code.writer(wasm.base.allocator).writeIntLittle(u32, len - 1);
// create relocation to the error name
try atom.relocs.append(wasm.base.allocator, .{
.index = names_symbol_index,
.relocation_type = .R_WASM_MEMORY_ADDR_I32,
.offset = offset,
.addend = @intCast(i32, addend),
});
atom.size += @intCast(u32, slice_ty.abiSize(wasm.base.options.target));
addend += len;
// as we updated the error name table, we now store the actual name within the names atom
try names_atom.code.ensureUnusedCapacity(wasm.base.allocator, len);
names_atom.code.appendSliceAssumeCapacity(error_name);
names_atom.code.appendAssumeCapacity(0);
log.debug("Populated error name: '{s}'", .{error_name});
}
names_atom.size = addend;
const name_loc = names_atom.symbolLoc();
try wasm.resolved_symbols.put(wasm.base.allocator, name_loc, {});
try wasm.symbol_atom.put(wasm.base.allocator, name_loc, names_atom);
// link the atoms with the rest of the binary so they can be allocated
// and relocations will be performed.
try wasm.parseAtom(atom, .{ .data = .read_only });
try wasm.parseAtom(names_atom, .{ .data = .read_only });
}
/// From a given index variable, creates a new debug section.
/// This initializes the index, appends a new segment,
/// and finally, creates a managed `Atom`.
pub fn createDebugSectionForIndex(wasm: *Wasm, index: *?u32, name: []const u8) !*Atom {
const new_index = @intCast(u32, wasm.segments.items.len);
index.* = new_index;
try wasm.appendDummySegment();
// _ = index;
const sym_index = wasm.symbols_free_list.popOrNull() orelse idx: {
const tmp_index = @intCast(u32, wasm.symbols.items.len);
_ = try wasm.symbols.addOne(wasm.base.allocator);
break :idx tmp_index;
};
wasm.symbols.items[sym_index] = .{
.tag = .section,
.name = try wasm.string_table.put(wasm.base.allocator, name),
.index = 0,
.flags = @enumToInt(Symbol.Flag.WASM_SYM_BINDING_LOCAL),
};
const atom = try wasm.base.allocator.create(Atom);
atom.* = Atom.empty;
atom.alignment = 1; // debug sections are always 1-byte-aligned
atom.sym_index = sym_index;
try wasm.managed_atoms.append(wasm.base.allocator, atom);
try wasm.symbol_atom.put(wasm.base.allocator, atom.symbolLoc(), atom);
return atom;
}
fn resetState(wasm: *Wasm) void {
for (wasm.segment_info.values()) |segment_info| {
wasm.base.allocator.free(segment_info.name);
}
if (wasm.base.options.module) |mod| {
var decl_it = wasm.decls.keyIterator();
while (decl_it.next()) |decl_index_ptr| {
const decl = mod.declPtr(decl_index_ptr.*);
const atom = &decl.link.wasm;
atom.next = null;
atom.prev = null;
for (atom.locals.items) |*local_atom| {
local_atom.next = null;
local_atom.prev = null;
}
}
}
wasm.functions.clearRetainingCapacity();
wasm.exports.clearRetainingCapacity();
wasm.segments.clearRetainingCapacity();
wasm.segment_info.clearRetainingCapacity();
wasm.data_segments.clearRetainingCapacity();
wasm.atoms.clearRetainingCapacity();
wasm.symbol_atom.clearRetainingCapacity();
wasm.code_section_index = null;
wasm.debug_info_index = null;
wasm.debug_line_index = null;
wasm.debug_loc_index = null;
wasm.debug_str_index = null;
wasm.debug_ranges_index = null;
wasm.debug_abbrev_index = null;
wasm.debug_pubnames_index = null;
wasm.debug_pubtypes_index = null;
}
pub fn flush(wasm: *Wasm, comp: *Compilation, prog_node: *std.Progress.Node) link.File.FlushError!void {
if (wasm.base.options.emit == null) {
if (build_options.have_llvm) {
if (wasm.llvm_object) |llvm_object| {
return try llvm_object.flushModule(comp, prog_node);
}
}
return;
}
if (build_options.have_llvm and wasm.base.options.use_lld) {
return wasm.linkWithLLD(comp, prog_node);
} else {
return wasm.flushModule(comp, prog_node);
}
}
pub fn flushModule(wasm: *Wasm, comp: *Compilation, prog_node: *std.Progress.Node) link.File.FlushError!void {
const tracy = trace(@src());
defer tracy.end();
if (build_options.have_llvm) {
if (wasm.llvm_object) |llvm_object| {
return try llvm_object.flushModule(comp, prog_node);
}
}
var sub_prog_node = prog_node.start("WASM Flush", 0);
sub_prog_node.activate();
defer sub_prog_node.end();
// ensure the error names table is populated when an error name is referenced
try wasm.populateErrorNameTable();
// The amount of sections that will be written
var section_count: u32 = 0;
// Index of the code section. Used to tell relocation table where the section lives.
var code_section_index: ?u32 = null;
// Index of the data section. Used to tell relocation table where the section lives.
var data_section_index: ?u32 = null;
// Used for all temporary memory allocated during flushin
var arena_instance = std.heap.ArenaAllocator.init(wasm.base.allocator);
defer arena_instance.deinit();
const arena = arena_instance.allocator();
// Positional arguments to the linker such as object files and static archives.
var positionals = std.ArrayList([]const u8).init(arena);
try positionals.ensureUnusedCapacity(wasm.base.options.objects.len);
for (wasm.base.options.objects) |object| {
positionals.appendAssumeCapacity(object.path);
}
for (comp.c_object_table.keys()) |c_object| {
try positionals.append(c_object.status.success.object_path);
}
if (comp.compiler_rt_lib) |lib| {
try positionals.append(lib.full_object_path);
}
try wasm.parseInputFiles(positionals.items);
for (wasm.objects.items) |_, object_index| {
try wasm.resolveSymbolsInObject(@intCast(u16, object_index));
}
var emit_features_count: u32 = 0;
var enabled_features: [@typeInfo(types.Feature.Tag).Enum.fields.len]bool = undefined;
try wasm.validateFeatures(&enabled_features, &emit_features_count);
try wasm.resolveSymbolsInArchives();
try wasm.checkUndefinedSymbols();
// When we finish/error we reset the state of the linker
// So we can rebuild the binary file on each incremental update
defer wasm.resetState();
try wasm.setupStart();
try wasm.setupImports();
if (wasm.base.options.module) |mod| {
var decl_it = wasm.decls.keyIterator();
while (decl_it.next()) |decl_index_ptr| {
const decl = mod.declPtr(decl_index_ptr.*);
if (decl.isExtern()) continue;
const atom = &decl.*.link.wasm;
if (decl.ty.zigTypeTag() == .Fn) {
try wasm.parseAtom(atom, .{ .function = decl.fn_link.wasm });
} else if (decl.getVariable()) |variable| {
if (!variable.is_mutable) {
try wasm.parseAtom(atom, .{ .data = .read_only });
} else if (variable.init.isUndefDeep()) {
try wasm.parseAtom(atom, .{ .data = .uninitialized });
} else {
try wasm.parseAtom(atom, .{ .data = .initialized });
}
} else {
try wasm.parseAtom(atom, .{ .data = .read_only });
}
// also parse atoms for a decl's locals
for (atom.locals.items) |*local_atom| {
try wasm.parseAtom(local_atom, .{ .data = .read_only });
}
}
if (wasm.dwarf) |*dwarf| {
try dwarf.flushModule(&wasm.base, wasm.base.options.module.?);
}
}
for (wasm.objects.items) |*object, object_index| {
try object.parseIntoAtoms(wasm.base.allocator, @intCast(u16, object_index), wasm);
}
try wasm.allocateAtoms();
try wasm.setupMemory();
wasm.mapFunctionTable();
try wasm.mergeSections();
try wasm.mergeTypes();
try wasm.setupExports();
const header_size = 5 + 1;
const is_obj = wasm.base.options.output_mode == .Obj;
var binary_bytes = std.ArrayList(u8).init(wasm.base.allocator);
defer binary_bytes.deinit();
const binary_writer = binary_bytes.writer();
// We write the magic bytes at the end so they will only be written
// if everything succeeded as expected. So populate with 0's for now.
try binary_writer.writeAll(&[_]u8{0} ** 8);
// (Re)set file pointer to 0
try wasm.base.file.?.setEndPos(0);
try wasm.base.file.?.seekTo(0);
// Type section
if (wasm.func_types.items.len != 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
log.debug("Writing type section. Count: ({d})", .{wasm.func_types.items.len});
for (wasm.func_types.items) |func_type| {
try leb.writeULEB128(binary_writer, std.wasm.function_type);
try leb.writeULEB128(binary_writer, @intCast(u32, func_type.params.len));
for (func_type.params) |param_ty| {
try leb.writeULEB128(binary_writer, std.wasm.valtype(param_ty));
}
try leb.writeULEB128(binary_writer, @intCast(u32, func_type.returns.len));
for (func_type.returns) |ret_ty| {
try leb.writeULEB128(binary_writer, std.wasm.valtype(ret_ty));
}
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.type,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@intCast(u32, wasm.func_types.items.len),
);
section_count += 1;
}
// Import section
const import_memory = wasm.base.options.import_memory or is_obj;
const import_table = wasm.base.options.import_table or is_obj;
if (wasm.imports.count() != 0 or import_memory or import_table) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
// import table is always first table so emit that first
if (import_table) {
const table_imp: types.Import = .{
.module_name = try wasm.string_table.put(wasm.base.allocator, wasm.host_name),
.name = try wasm.string_table.put(wasm.base.allocator, "__indirect_function_table"),
.kind = .{
.table = .{
.limits = .{
.min = @intCast(u32, wasm.function_table.count()),
.max = null,
},
.reftype = .funcref,
},
},
};
try wasm.emitImport(binary_writer, table_imp);
}
var it = wasm.imports.iterator();
while (it.next()) |entry| {
assert(entry.key_ptr.*.getSymbol(wasm).isUndefined());
const import = entry.value_ptr.*;
try wasm.emitImport(binary_writer, import);
}
if (import_memory) {
const mem_name = if (is_obj) "__linear_memory" else "memory";
const mem_imp: types.Import = .{
.module_name = try wasm.string_table.put(wasm.base.allocator, wasm.host_name),
.name = try wasm.string_table.put(wasm.base.allocator, mem_name),
.kind = .{ .memory = wasm.memories.limits },
};
try wasm.emitImport(binary_writer, mem_imp);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.import,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@intCast(u32, wasm.imports.count() + @boolToInt(import_memory) + @boolToInt(import_table)),
);
section_count += 1;
}
// Function section
if (wasm.functions.count() != 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
for (wasm.functions.values()) |function| {
try leb.writeULEB128(binary_writer, function.type_index);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.function,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@intCast(u32, wasm.functions.count()),
);
section_count += 1;
}
// Table section
const export_table = wasm.base.options.export_table;
if (!import_table and wasm.function_table.count() != 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
try leb.writeULEB128(binary_writer, std.wasm.reftype(.funcref));
try emitLimits(binary_writer, .{
.min = @intCast(u32, wasm.function_table.count()) + 1,
.max = null,
});
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.table,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@as(u32, 1),
);
section_count += 1;
}
// Memory section
if (!import_memory) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
try emitLimits(binary_writer, wasm.memories.limits);
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.memory,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@as(u32, 1), // wasm currently only supports 1 linear memory segment
);
section_count += 1;
}
// Global section (used to emit stack pointer)
if (wasm.wasm_globals.items.len > 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
for (wasm.wasm_globals.items) |global| {
try binary_writer.writeByte(std.wasm.valtype(global.global_type.valtype));
try binary_writer.writeByte(@boolToInt(global.global_type.mutable));
try emitInit(binary_writer, global.init);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.global,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@intCast(u32, wasm.wasm_globals.items.len),
);
section_count += 1;
}
// Export section
if (wasm.exports.items.len != 0 or export_table or !import_memory) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
for (wasm.exports.items) |exp| {
const name = wasm.string_table.get(exp.name);
try leb.writeULEB128(binary_writer, @intCast(u32, name.len));
try binary_writer.writeAll(name);
try leb.writeULEB128(binary_writer, @enumToInt(exp.kind));
try leb.writeULEB128(binary_writer, exp.index);
}
if (export_table) {
try leb.writeULEB128(binary_writer, @intCast(u32, "__indirect_function_table".len));
try binary_writer.writeAll("__indirect_function_table");
try binary_writer.writeByte(std.wasm.externalKind(.table));
try leb.writeULEB128(binary_writer, @as(u32, 0)); // function table is always the first table
}
if (!import_memory) {
try leb.writeULEB128(binary_writer, @intCast(u32, "memory".len));
try binary_writer.writeAll("memory");
try binary_writer.writeByte(std.wasm.externalKind(.memory));
try leb.writeULEB128(binary_writer, @as(u32, 0));
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.@"export",
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@intCast(u32, wasm.exports.items.len) + @boolToInt(export_table) + @boolToInt(!import_memory),
);
section_count += 1;
}
// element section (function table)
if (wasm.function_table.count() > 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
var flags: u32 = 0x2; // Yes we have a table
try leb.writeULEB128(binary_writer, flags);
try leb.writeULEB128(binary_writer, @as(u32, 0)); // index of that table. TODO: Store synthetic symbols
try emitInit(binary_writer, .{ .i32_const = 1 }); // We start at index 1, so unresolved function pointers are invalid
try leb.writeULEB128(binary_writer, @as(u8, 0));
try leb.writeULEB128(binary_writer, @intCast(u32, wasm.function_table.count()));
var symbol_it = wasm.function_table.keyIterator();
while (symbol_it.next()) |symbol_loc_ptr| {
try leb.writeULEB128(binary_writer, symbol_loc_ptr.*.getSymbol(wasm).index);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.element,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@as(u32, 1),
);
section_count += 1;
}
// Code section
var code_section_size: u32 = 0;
if (wasm.code_section_index) |code_index| {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
var atom: *Atom = wasm.atoms.get(code_index).?.getFirst();
// The code section must be sorted in line with the function order.
var sorted_atoms = try std.ArrayList(*Atom).initCapacity(wasm.base.allocator, wasm.functions.count());
defer sorted_atoms.deinit();
while (true) {
if (!is_obj) {
atom.resolveRelocs(wasm);
}
sorted_atoms.appendAssumeCapacity(atom);
atom = atom.next orelse break;
}
const atom_sort_fn = struct {
fn sort(ctx: *const Wasm, lhs: *const Atom, rhs: *const Atom) bool {
const lhs_sym = lhs.symbolLoc().getSymbol(ctx);
const rhs_sym = rhs.symbolLoc().getSymbol(ctx);
return lhs_sym.index < rhs_sym.index;
}
}.sort;
std.sort.sort(*Atom, sorted_atoms.items, wasm, atom_sort_fn);
for (sorted_atoms.items) |sorted_atom| {
try leb.writeULEB128(binary_writer, sorted_atom.size);
try binary_writer.writeAll(sorted_atom.code.items);
}
code_section_size = @intCast(u32, binary_bytes.items.len - header_offset - header_size);
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.code,
code_section_size,
@intCast(u32, wasm.functions.count()),
);
code_section_index = section_count;
section_count += 1;
}
// Data section
if (wasm.data_segments.count() != 0) {
const header_offset = try reserveVecSectionHeader(&binary_bytes);
var it = wasm.data_segments.iterator();
var segment_count: u32 = 0;
while (it.next()) |entry| {
// do not output 'bss' section unless we import memory and therefore
// want to guarantee the data is zero initialized
if (!import_memory and std.mem.eql(u8, entry.key_ptr.*, ".bss")) continue;
segment_count += 1;
const atom_index = entry.value_ptr.*;
var atom: *Atom = wasm.atoms.getPtr(atom_index).?.*.getFirst();
const segment = wasm.segments.items[atom_index];
// flag and index to memory section (currently, there can only be 1 memory section in wasm)
try leb.writeULEB128(binary_writer, @as(u32, 0));
// offset into data section
try emitInit(binary_writer, .{ .i32_const = @bitCast(i32, segment.offset) });
try leb.writeULEB128(binary_writer, segment.size);
// fill in the offset table and the data segments
var current_offset: u32 = 0;
while (true) {
if (!is_obj) {
atom.resolveRelocs(wasm);
}
// Pad with zeroes to ensure all segments are aligned
if (current_offset != atom.offset) {
const diff = atom.offset - current_offset;
try binary_writer.writeByteNTimes(0, diff);
current_offset += diff;
}
assert(current_offset == atom.offset);
assert(atom.code.items.len == atom.size);
try binary_writer.writeAll(atom.code.items);
current_offset += atom.size;
if (atom.next) |next| {
atom = next;
} else {
// also pad with zeroes when last atom to ensure
// segments are aligned.
if (current_offset != segment.size) {
try binary_writer.writeByteNTimes(0, segment.size - current_offset);
current_offset += segment.size - current_offset;
}
break;
}
}
assert(current_offset == segment.size);
}
try writeVecSectionHeader(
binary_bytes.items,
header_offset,
.data,
@intCast(u32, binary_bytes.items.len - header_offset - header_size),
@intCast(u32, segment_count),
);
data_section_index = section_count;
section_count += 1;
}
if (is_obj) {
// relocations need to point to the index of a symbol in the final symbol table. To save memory,
// we never store all symbols in a single table, but store a location reference instead.
// This means that for a relocatable object file, we need to generate one and provide it to the relocation sections.
var symbol_table = std.AutoArrayHashMap(SymbolLoc, u32).init(arena);
try wasm.emitLinkSection(&binary_bytes, &symbol_table);
if (code_section_index) |code_index| {
try wasm.emitCodeRelocations(&binary_bytes, code_index, symbol_table);
}
if (data_section_index) |data_index| {
try wasm.emitDataRelocations(&binary_bytes, data_index, symbol_table);
}
} else if (!wasm.base.options.strip) {
try wasm.emitNameSection(&binary_bytes, arena);
}
if (!wasm.base.options.strip) {
if (wasm.dwarf) |*dwarf| {
const mod = wasm.base.options.module.?;
try dwarf.writeDbgAbbrev(&wasm.base);
// for debug info and ranges, the address is always 0,
// as locations are always offsets relative to 'code' section.
try dwarf.writeDbgInfoHeader(&wasm.base, mod, 0, code_section_size);
try dwarf.writeDbgAranges(&wasm.base, 0, code_section_size);
try dwarf.writeDbgLineHeader(&wasm.base, mod);
}
var debug_bytes = std.ArrayList(u8).init(wasm.base.allocator);
defer debug_bytes.deinit();
const DebugSection = struct {
name: []const u8,
index: ?u32,
};
const debug_sections: []const DebugSection = &.{
.{ .name = ".debug_info", .index = wasm.debug_info_index },
.{ .name = ".debug_pubtypes", .index = wasm.debug_pubtypes_index },
.{ .name = ".debug_abbrev", .index = wasm.debug_abbrev_index },
.{ .name = ".debug_line", .index = wasm.debug_line_index },
.{ .name = ".debug_str", .index = wasm.debug_str_index },
.{ .name = ".debug_pubnames", .index = wasm.debug_pubnames_index },
.{ .name = ".debug_loc", .index = wasm.debug_loc_index },
.{ .name = ".debug_ranges", .index = wasm.debug_ranges_index },
};
for (debug_sections) |item| {
if (item.index) |index| {
var atom = wasm.atoms.get(index).?.getFirst();
while (true) {
atom.resolveRelocs(wasm);
try debug_bytes.appendSlice(atom.code.items);
atom = atom.next orelse break;
}
try emitDebugSection(&binary_bytes, debug_bytes.items, item.name);
debug_bytes.clearRetainingCapacity();
}
}
try emitProducerSection(&binary_bytes);
if (emit_features_count > 0) {
try emitFeaturesSection(&binary_bytes, &enabled_features, emit_features_count);
}
}
// Only when writing all sections executed properly we write the magic
// bytes. This allows us to easily detect what went wrong while generating
// the final binary.
mem.copy(u8, binary_bytes.items, &(std.wasm.magic ++ std.wasm.version));
// finally, write the entire binary into the file.
var iovec = [_]std.os.iovec_const{.{
.iov_base = binary_bytes.items.ptr,
.iov_len = binary_bytes.items.len,
}};
try wasm.base.file.?.writevAll(&iovec);
}
fn emitDebugSection(binary_bytes: *std.ArrayList(u8), data: []const u8, name: []const u8) !void {
if (data.len == 0) return;
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
try leb.writeULEB128(writer, @intCast(u32, name.len));
try writer.writeAll(name);
const start = binary_bytes.items.len - header_offset;
log.debug("Emit debug section: '{s}' start=0x{x:0>8} end=0x{x:0>8}", .{ name, start, start + data.len });
try writer.writeAll(data);
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@intCast(u32, binary_bytes.items.len - header_offset - 6),
);
}
fn emitProducerSection(binary_bytes: *std.ArrayList(u8)) !void {
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
const producers = "producers";
try leb.writeULEB128(writer, @intCast(u32, producers.len));
try writer.writeAll(producers);
try leb.writeULEB128(writer, @as(u32, 2)); // 2 fields: Language + processed-by
// used for the Zig version
var version_buf: [100]u8 = undefined;
const version = try std.fmt.bufPrint(&version_buf, "{}", .{build_options.semver});
// language field
{
const language = "language";
try leb.writeULEB128(writer, @intCast(u32, language.len));
try writer.writeAll(language);
// field_value_count (TODO: Parse object files for producer sections to detect their language)
try leb.writeULEB128(writer, @as(u32, 1));
// versioned name
{
try leb.writeULEB128(writer, @as(u32, 3)); // len of "Zig"
try writer.writeAll("Zig");
try leb.writeULEB128(writer, @intCast(u32, version.len));
try writer.writeAll(version);
}
}
// processed-by field
{
const processed_by = "processed-by";
try leb.writeULEB128(writer, @intCast(u32, processed_by.len));
try writer.writeAll(processed_by);
// field_value_count (TODO: Parse object files for producer sections to detect other used tools)
try leb.writeULEB128(writer, @as(u32, 1));
// versioned name
{
try leb.writeULEB128(writer, @as(u32, 3)); // len of "Zig"
try writer.writeAll("Zig");
try leb.writeULEB128(writer, @intCast(u32, version.len));
try writer.writeAll(version);
}
}
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@intCast(u32, binary_bytes.items.len - header_offset - 6),
);
}
fn emitFeaturesSection(binary_bytes: *std.ArrayList(u8), enabled_features: []const bool, features_count: u32) !void {
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
const target_features = "target_features";
try leb.writeULEB128(writer, @intCast(u32, target_features.len));
try writer.writeAll(target_features);
try leb.writeULEB128(writer, features_count);
for (enabled_features) |enabled, feature_index| {
if (enabled) {
const feature: types.Feature = .{ .prefix = .used, .tag = @intToEnum(types.Feature.Tag, feature_index) };
try leb.writeULEB128(writer, @enumToInt(feature.prefix));
const string = feature.tag.toString();
try leb.writeULEB128(writer, @intCast(u32, string.len));
try writer.writeAll(string);
}
}
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@intCast(u32, binary_bytes.items.len - header_offset - 6),
);
}
fn emitNameSection(wasm: *Wasm, binary_bytes: *std.ArrayList(u8), arena: std.mem.Allocator) !void {
const Name = struct {
index: u32,
name: []const u8,
fn lessThan(context: void, lhs: @This(), rhs: @This()) bool {
_ = context;
return lhs.index < rhs.index;
}
};
// we must de-duplicate symbols that point to the same function
var funcs = std.AutoArrayHashMap(u32, Name).init(arena);
try funcs.ensureUnusedCapacity(wasm.functions.count() + wasm.imported_functions_count);
var globals = try std.ArrayList(Name).initCapacity(arena, wasm.wasm_globals.items.len + wasm.imported_globals_count);
var segments = try std.ArrayList(Name).initCapacity(arena, wasm.data_segments.count());
for (wasm.resolved_symbols.keys()) |sym_loc| {
const symbol = sym_loc.getSymbol(wasm).*;
const name = if (symbol.isUndefined()) blk: {
break :blk wasm.string_table.get(wasm.imports.get(sym_loc).?.name);
} else sym_loc.getName(wasm);
switch (symbol.tag) {
.function => {
const gop = funcs.getOrPutAssumeCapacity(symbol.index);
if (!gop.found_existing) {
gop.value_ptr.* = .{ .index = symbol.index, .name = name };
}
},
.global => globals.appendAssumeCapacity(.{ .index = symbol.index, .name = name }),
else => {},
}
}
// data segments are already 'ordered'
var data_segment_index: u32 = 0;
for (wasm.data_segments.keys()) |key| {
// bss section is not emitted when this condition holds true, so we also
// do not output a name for it.
if (!wasm.base.options.import_memory and std.mem.eql(u8, key, ".bss")) continue;
segments.appendAssumeCapacity(.{ .index = data_segment_index, .name = key });
data_segment_index += 1;
}
std.sort.sort(Name, funcs.values(), {}, Name.lessThan);
std.sort.sort(Name, globals.items, {}, Name.lessThan);
const header_offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
try leb.writeULEB128(writer, @intCast(u32, "name".len));
try writer.writeAll("name");
try wasm.emitNameSubsection(.function, funcs.values(), writer);
try wasm.emitNameSubsection(.global, globals.items, writer);
try wasm.emitNameSubsection(.data_segment, segments.items, writer);
try writeCustomSectionHeader(
binary_bytes.items,
header_offset,
@intCast(u32, binary_bytes.items.len - header_offset - 6),
);
}
fn emitNameSubsection(wasm: *Wasm, section_id: std.wasm.NameSubsection, names: anytype, writer: anytype) !void {
// We must emit subsection size, so first write to a temporary list
var section_list = std.ArrayList(u8).init(wasm.base.allocator);
defer section_list.deinit();
const sub_writer = section_list.writer();
try leb.writeULEB128(sub_writer, @intCast(u32, names.len));
for (names) |name| {
log.debug("Emit symbol '{s}' type({s})", .{ name.name, @tagName(section_id) });
try leb.writeULEB128(sub_writer, name.index);
try leb.writeULEB128(sub_writer, @intCast(u32, name.name.len));
try sub_writer.writeAll(name.name);
}
// From now, write to the actual writer
try leb.writeULEB128(writer, @enumToInt(section_id));
try leb.writeULEB128(writer, @intCast(u32, section_list.items.len));
try writer.writeAll(section_list.items);
}
fn emitLimits(writer: anytype, limits: std.wasm.Limits) !void {
try leb.writeULEB128(writer, @boolToInt(limits.max != null));
try leb.writeULEB128(writer, limits.min);
if (limits.max) |max| {
try leb.writeULEB128(writer, max);
}
}
fn emitInit(writer: anytype, init_expr: std.wasm.InitExpression) !void {
switch (init_expr) {
.i32_const => |val| {
try writer.writeByte(std.wasm.opcode(.i32_const));
try leb.writeILEB128(writer, val);
},
.i64_const => |val| {
try writer.writeByte(std.wasm.opcode(.i64_const));
try leb.writeILEB128(writer, val);
},
.f32_const => |val| {
try writer.writeByte(std.wasm.opcode(.f32_const));
try writer.writeIntLittle(u32, @bitCast(u32, val));
},
.f64_const => |val| {
try writer.writeByte(std.wasm.opcode(.f64_const));
try writer.writeIntLittle(u64, @bitCast(u64, val));
},
.global_get => |val| {
try writer.writeByte(std.wasm.opcode(.global_get));
try leb.writeULEB128(writer, val);
},
}
try writer.writeByte(std.wasm.opcode(.end));
}
fn emitImport(wasm: *Wasm, writer: anytype, import: types.Import) !void {
const module_name = wasm.string_table.get(import.module_name);
try leb.writeULEB128(writer, @intCast(u32, module_name.len));
try writer.writeAll(module_name);
const name = wasm.string_table.get(import.name);
try leb.writeULEB128(writer, @intCast(u32, name.len));
try writer.writeAll(name);
try writer.writeByte(@enumToInt(import.kind));
switch (import.kind) {
.function => |type_index| try leb.writeULEB128(writer, type_index),
.global => |global_type| {
try leb.writeULEB128(writer, std.wasm.valtype(global_type.valtype));
try writer.writeByte(@boolToInt(global_type.mutable));
},
.table => |table| {
try leb.writeULEB128(writer, std.wasm.reftype(table.reftype));
try emitLimits(writer, table.limits);
},
.memory => |limits| {
try emitLimits(writer, limits);
},
}
}
fn linkWithLLD(wasm: *Wasm, comp: *Compilation, prog_node: *std.Progress.Node) !void {
const tracy = trace(@src());
defer tracy.end();
var arena_allocator = std.heap.ArenaAllocator.init(wasm.base.allocator);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const directory = wasm.base.options.emit.?.directory; // Just an alias to make it shorter to type.
const full_out_path = try directory.join(arena, &[_][]const u8{wasm.base.options.emit.?.sub_path});
// If there is no Zig code to compile, then we should skip flushing the output file because it
// will not be part of the linker line anyway.
const module_obj_path: ?[]const u8 = if (wasm.base.options.module) |mod| blk: {
const use_stage1 = build_options.have_stage1 and wasm.base.options.use_stage1;
if (use_stage1) {
const obj_basename = try std.zig.binNameAlloc(arena, .{
.root_name = wasm.base.options.root_name,
.target = wasm.base.options.target,
.output_mode = .Obj,
});
switch (wasm.base.options.cache_mode) {
.incremental => break :blk try mod.zig_cache_artifact_directory.join(
arena,
&[_][]const u8{obj_basename},
),
.whole => break :blk try fs.path.join(arena, &.{
fs.path.dirname(full_out_path).?, obj_basename,
}),
}
}
try wasm.flushModule(comp, prog_node);
if (fs.path.dirname(full_out_path)) |dirname| {
break :blk try fs.path.join(arena, &.{ dirname, wasm.base.intermediary_basename.? });
} else {
break :blk wasm.base.intermediary_basename.?;
}
} else null;
var sub_prog_node = prog_node.start("LLD Link", 0);
sub_prog_node.activate();
sub_prog_node.context.refresh();
defer sub_prog_node.end();
const is_obj = wasm.base.options.output_mode == .Obj;
const compiler_rt_path: ?[]const u8 = if (wasm.base.options.include_compiler_rt and !is_obj)
comp.compiler_rt_lib.?.full_object_path
else
null;
const target = wasm.base.options.target;
const id_symlink_basename = "lld.id";
var man: Cache.Manifest = undefined;
defer if (!wasm.base.options.disable_lld_caching) man.deinit();
var digest: [Cache.hex_digest_len]u8 = undefined;
if (!wasm.base.options.disable_lld_caching) {
man = comp.cache_parent.obtain();
// We are about to obtain this lock, so here we give other processes a chance first.
wasm.base.releaseLock();
comptime assert(Compilation.link_hash_implementation_version == 7);
for (wasm.base.options.objects) |obj| {
_ = try man.addFile(obj.path, null);
man.hash.add(obj.must_link);
}
for (comp.c_object_table.keys()) |key| {
_ = try man.addFile(key.status.success.object_path, null);
}
try man.addOptionalFile(module_obj_path);
try man.addOptionalFile(compiler_rt_path);
man.hash.addOptionalBytes(wasm.base.options.entry);
man.hash.addOptional(wasm.base.options.stack_size_override);
man.hash.add(wasm.base.options.import_memory);
man.hash.add(wasm.base.options.import_table);
man.hash.add(wasm.base.options.export_table);
man.hash.addOptional(wasm.base.options.initial_memory);
man.hash.addOptional(wasm.base.options.max_memory);
man.hash.add(wasm.base.options.shared_memory);
man.hash.addOptional(wasm.base.options.global_base);
man.hash.add(wasm.base.options.export_symbol_names.len);
// strip does not need to go into the linker hash because it is part of the hash namespace
for (wasm.base.options.export_symbol_names) |symbol_name| {
man.hash.addBytes(symbol_name);
}
// We don't actually care whether it's a cache hit or miss; we just need the digest and the lock.
_ = try man.hit();
digest = man.final();
var prev_digest_buf: [digest.len]u8 = undefined;
const prev_digest: []u8 = Cache.readSmallFile(
directory.handle,
id_symlink_basename,
&prev_digest_buf,
) catch |err| blk: {
log.debug("WASM LLD new_digest={s} error: {s}", .{ std.fmt.fmtSliceHexLower(&digest), @errorName(err) });
// Handle this as a cache miss.
break :blk prev_digest_buf[0..0];
};
if (mem.eql(u8, prev_digest, &digest)) {
log.debug("WASM LLD digest={s} match - skipping invocation", .{std.fmt.fmtSliceHexLower(&digest)});
// Hot diggity dog! The output binary is already there.
wasm.base.lock = man.toOwnedLock();
return;
}
log.debug("WASM LLD prev_digest={s} new_digest={s}", .{ std.fmt.fmtSliceHexLower(prev_digest), std.fmt.fmtSliceHexLower(&digest) });
// We are about to change the output file to be different, so we invalidate the build hash now.
directory.handle.deleteFile(id_symlink_basename) catch |err| switch (err) {
error.FileNotFound => {},
else => |e| return e,
};
}
if (is_obj) {
// LLD's WASM driver does not support the equivalent of `-r` so we do a simple file copy
// here. TODO: think carefully about how we can avoid this redundant operation when doing
// build-obj. See also the corresponding TODO in linkAsArchive.
const the_object_path = blk: {
if (wasm.base.options.objects.len != 0)
break :blk wasm.base.options.objects[0].path;
if (comp.c_object_table.count() != 0)
break :blk comp.c_object_table.keys()[0].status.success.object_path;
if (module_obj_path) |p|
break :blk p;
// TODO I think this is unreachable. Audit this situation when solving the above TODO
// regarding eliding redundant object -> object transformations.
return error.NoObjectsToLink;
};
// This can happen when using --enable-cache and using the stage1 backend. In this case
// we can skip the file copy.
if (!mem.eql(u8, the_object_path, full_out_path)) {
try fs.cwd().copyFile(the_object_path, fs.cwd(), full_out_path, .{});
}
} else {
// Create an LLD command line and invoke it.
var argv = std.ArrayList([]const u8).init(wasm.base.allocator);
defer argv.deinit();
// We will invoke ourselves as a child process to gain access to LLD.
// This is necessary because LLD does not behave properly as a library -
// it calls exit() and does not reset all global data between invocations.
try argv.appendSlice(&[_][]const u8{ comp.self_exe_path.?, "wasm-ld" });
try argv.append("--error-limit=0");
if (wasm.base.options.lto) {
switch (wasm.base.options.optimize_mode) {
.Debug => {},
.ReleaseSmall => try argv.append("-O2"),
.ReleaseFast, .ReleaseSafe => try argv.append("-O3"),
}
}
if (wasm.base.options.import_memory) {
try argv.append("--import-memory");
}
if (wasm.base.options.import_table) {
assert(!wasm.base.options.export_table);
try argv.append("--import-table");
}
if (wasm.base.options.export_table) {
assert(!wasm.base.options.import_table);
try argv.append("--export-table");
}
if (wasm.base.options.strip) {
try argv.append("-s");
}
if (wasm.base.options.initial_memory) |initial_memory| {
const arg = try std.fmt.allocPrint(arena, "--initial-memory={d}", .{initial_memory});
try argv.append(arg);
}
if (wasm.base.options.max_memory) |max_memory| {
const arg = try std.fmt.allocPrint(arena, "--max-memory={d}", .{max_memory});
try argv.append(arg);
}
if (wasm.base.options.shared_memory) {
try argv.append("--shared-memory");
}
if (wasm.base.options.global_base) |global_base| {
const arg = try std.fmt.allocPrint(arena, "--global-base={d}", .{global_base});
try argv.append(arg);
} else {
// We prepend it by default, so when a stack overflow happens the runtime will trap correctly,
// rather than silently overwrite all global declarations. See https://github.com/ziglang/zig/issues/4496
//
// The user can overwrite this behavior by setting the global-base
try argv.append("--stack-first");
}
var auto_export_symbols = true;
// Users are allowed to specify which symbols they want to export to the wasm host.
for (wasm.base.options.export_symbol_names) |symbol_name| {
const arg = try std.fmt.allocPrint(arena, "--export={s}", .{symbol_name});
try argv.append(arg);
auto_export_symbols = false;
}
if (wasm.base.options.rdynamic) {
try argv.append("--export-dynamic");
auto_export_symbols = false;
}
if (auto_export_symbols) {
if (wasm.base.options.module) |mod| {
// when we use stage1, we use the exports that stage1 provided us.
// For stage2, we can directly retrieve them from the module.
const use_stage1 = build_options.have_stage1 and wasm.base.options.use_stage1;
if (use_stage1) {
for (comp.export_symbol_names.items) |symbol_name| {
try argv.append(try std.fmt.allocPrint(arena, "--export={s}", .{symbol_name}));
}
} else {
const skip_export_non_fn = target.os.tag == .wasi and
wasm.base.options.wasi_exec_model == .command;
for (mod.decl_exports.values()) |exports| {
for (exports) |exprt| {
const exported_decl = mod.declPtr(exprt.exported_decl);
if (skip_export_non_fn and exported_decl.ty.zigTypeTag() != .Fn) {
// skip exporting symbols when we're building a WASI command
// and the symbol is not a function
continue;
}
const symbol_name = exported_decl.name;
const arg = try std.fmt.allocPrint(arena, "--export={s}", .{symbol_name});
try argv.append(arg);
}
}
}
}
}
if (wasm.base.options.entry) |entry| {
try argv.append("--entry");
try argv.append(entry);
}
// Increase the default stack size to a more reasonable value of 1MB instead of
// the default of 1 Wasm page being 64KB, unless overridden by the user.
try argv.append("-z");
const stack_size = wasm.base.options.stack_size_override orelse std.wasm.page_size * 16;
const arg = try std.fmt.allocPrint(arena, "stack-size={d}", .{stack_size});
try argv.append(arg);
if (wasm.base.options.output_mode == .Exe) {
if (wasm.base.options.wasi_exec_model == .reactor) {
// Reactor execution model does not have _start so lld doesn't look for it.
try argv.append("--no-entry");
}
} else if (wasm.base.options.entry == null) {
try argv.append("--no-entry"); // So lld doesn't look for _start.
}
try argv.appendSlice(&[_][]const u8{
"--allow-undefined",
"-o",
full_out_path,
});
if (target.cpu.arch == .wasm64) {
try argv.append("-mwasm64");
}
if (target.os.tag == .wasi) {
const is_exe_or_dyn_lib = wasm.base.options.output_mode == .Exe or
(wasm.base.options.output_mode == .Lib and wasm.base.options.link_mode == .Dynamic);
if (is_exe_or_dyn_lib) {
const wasi_emulated_libs = wasm.base.options.wasi_emulated_libs;
for (wasi_emulated_libs) |crt_file| {
try argv.append(try comp.get_libc_crt_file(
arena,
wasi_libc.emulatedLibCRFileLibName(crt_file),
));
}
if (wasm.base.options.link_libc) {
try argv.append(try comp.get_libc_crt_file(
arena,
wasi_libc.execModelCrtFileFullName(wasm.base.options.wasi_exec_model),
));
try argv.append(try comp.get_libc_crt_file(arena, "libc.a"));
}
if (wasm.base.options.link_libcpp) {
try argv.append(comp.libcxx_static_lib.?.full_object_path);
try argv.append(comp.libcxxabi_static_lib.?.full_object_path);
}
}
}
// Positional arguments to the linker such as object files.
var whole_archive = false;
for (wasm.base.options.objects) |obj| {
if (obj.must_link and !whole_archive) {
try argv.append("-whole-archive");
whole_archive = true;
} else if (!obj.must_link and whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
try argv.append(obj.path);
}
if (whole_archive) {
try argv.append("-no-whole-archive");
whole_archive = false;
}
for (comp.c_object_table.keys()) |key| {
try argv.append(key.status.success.object_path);
}
if (module_obj_path) |p| {
try argv.append(p);
}
if (wasm.base.options.output_mode != .Obj and
!wasm.base.options.skip_linker_dependencies and
!wasm.base.options.link_libc)
{
try argv.append(comp.libc_static_lib.?.full_object_path);
}
if (compiler_rt_path) |p| {
try argv.append(p);
}
if (wasm.base.options.verbose_link) {
// Skip over our own name so that the LLD linker name is the first argv item.
Compilation.dump_argv(argv.items[1..]);
}
if (std.process.can_spawn) {
// If possible, we run LLD as a child process because it does not always
// behave properly as a library, unfortunately.
// https://github.com/ziglang/zig/issues/3825
var child = std.ChildProcess.init(argv.items, arena);
if (comp.clang_passthrough_mode) {
child.stdin_behavior = .Inherit;
child.stdout_behavior = .Inherit;
child.stderr_behavior = .Inherit;
const term = child.spawnAndWait() catch |err| {
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
return error.UnableToSpawnWasm;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
std.process.exit(code);
}
},
else => std.process.abort(),
}
} else {
child.stdin_behavior = .Ignore;
child.stdout_behavior = .Ignore;
child.stderr_behavior = .Pipe;
try child.spawn();
const stderr = try child.stderr.?.reader().readAllAlloc(arena, 10 * 1024 * 1024);
const term = child.wait() catch |err| {
log.err("unable to spawn {s}: {s}", .{ argv.items[0], @errorName(err) });
return error.UnableToSpawnWasm;
};
switch (term) {
.Exited => |code| {
if (code != 0) {
// TODO parse this output and surface with the Compilation API rather than
// directly outputting to stderr here.
std.debug.print("{s}", .{stderr});
return error.LLDReportedFailure;
}
},
else => {
log.err("{s} terminated with stderr:\n{s}", .{ argv.items[0], stderr });
return error.LLDCrashed;
},
}
if (stderr.len != 0) {
log.warn("unexpected LLD stderr:\n{s}", .{stderr});
}
}
} else {
const exit_code = try lldMain(arena, argv.items, false);
if (exit_code != 0) {
if (comp.clang_passthrough_mode) {
std.process.exit(exit_code);
} else {
return error.LLDReportedFailure;
}
}
}
}
if (!wasm.base.options.disable_lld_caching) {
// Update the file with the digest. If it fails we can continue; it only
// means that the next invocation will have an unnecessary cache miss.
Cache.writeSmallFile(directory.handle, id_symlink_basename, &digest) catch |err| {
log.warn("failed to save linking hash digest symlink: {s}", .{@errorName(err)});
};
// Again failure here only means an unnecessary cache miss.
man.writeManifest() catch |err| {
log.warn("failed to write cache manifest when linking: {s}", .{@errorName(err)});
};
// We hang on to this lock so that the output file path can be used without
// other processes clobbering it.
wasm.base.lock = man.toOwnedLock();
}
}
fn reserveVecSectionHeader(bytes: *std.ArrayList(u8)) !u32 {
// section id + fixed leb contents size + fixed leb vector length
const header_size = 1 + 5 + 5;
const offset = @intCast(u32, bytes.items.len);
try bytes.appendSlice(&[_]u8{0} ** header_size);
return offset;
}
fn reserveCustomSectionHeader(bytes: *std.ArrayList(u8)) !u32 {
// unlike regular section, we don't emit the count
const header_size = 1 + 5;
const offset = @intCast(u32, bytes.items.len);
try bytes.appendSlice(&[_]u8{0} ** header_size);
return offset;
}
fn writeVecSectionHeader(buffer: []u8, offset: u32, section: std.wasm.Section, size: u32, items: u32) !void {
var buf: [1 + 5 + 5]u8 = undefined;
buf[0] = @enumToInt(section);
leb.writeUnsignedFixed(5, buf[1..6], size);
leb.writeUnsignedFixed(5, buf[6..], items);
mem.copy(u8, buffer[offset..], &buf);
}
fn writeCustomSectionHeader(buffer: []u8, offset: u32, size: u32) !void {
var buf: [1 + 5]u8 = undefined;
buf[0] = 0; // 0 = 'custom' section
leb.writeUnsignedFixed(5, buf[1..6], size);
mem.copy(u8, buffer[offset..], &buf);
}
fn emitLinkSection(wasm: *Wasm, binary_bytes: *std.ArrayList(u8), symbol_table: *std.AutoArrayHashMap(SymbolLoc, u32)) !void {
const offset = try reserveCustomSectionHeader(binary_bytes);
const writer = binary_bytes.writer();
// emit "linking" custom section name
const section_name = "linking";
try leb.writeULEB128(writer, section_name.len);
try writer.writeAll(section_name);
// meta data version, which is currently '2'
try leb.writeULEB128(writer, @as(u32, 2));
// For each subsection type (found in types.Subsection) we can emit a section.
// Currently, we only support emitting segment info and the symbol table.
try wasm.emitSymbolTable(binary_bytes, symbol_table);
try wasm.emitSegmentInfo(binary_bytes);
const size = @intCast(u32, binary_bytes.items.len - offset - 6);
try writeCustomSectionHeader(binary_bytes.items, offset, size);
}
fn emitSymbolTable(wasm: *Wasm, binary_bytes: *std.ArrayList(u8), symbol_table: *std.AutoArrayHashMap(SymbolLoc, u32)) !void {
const writer = binary_bytes.writer();
try leb.writeULEB128(writer, @enumToInt(types.SubsectionType.WASM_SYMBOL_TABLE));
const table_offset = binary_bytes.items.len;
var symbol_count: u32 = 0;
for (wasm.resolved_symbols.keys()) |sym_loc| {
const symbol = sym_loc.getSymbol(wasm).*;
if (symbol.tag == .dead) continue; // Do not emit dead symbols
try symbol_table.putNoClobber(sym_loc, symbol_count);
symbol_count += 1;
log.debug("Emit symbol: {}", .{symbol});
try leb.writeULEB128(writer, @enumToInt(symbol.tag));
try leb.writeULEB128(writer, symbol.flags);
const sym_name = if (wasm.export_names.get(sym_loc)) |exp_name| wasm.string_table.get(exp_name) else sym_loc.getName(wasm);
switch (symbol.tag) {
.data => {
try leb.writeULEB128(writer, @intCast(u32, sym_name.len));
try writer.writeAll(sym_name);
if (symbol.isDefined()) {
try leb.writeULEB128(writer, symbol.index);
const atom = wasm.symbol_atom.get(sym_loc).?;
try leb.writeULEB128(writer, @as(u32, atom.offset));
try leb.writeULEB128(writer, @as(u32, atom.size));
}
},
.section => {
try leb.writeULEB128(writer, symbol.index);
},
else => {
try leb.writeULEB128(writer, symbol.index);
if (symbol.isDefined()) {
try leb.writeULEB128(writer, @intCast(u32, sym_name.len));
try writer.writeAll(sym_name);
}
},
}
}
var buf: [10]u8 = undefined;
leb.writeUnsignedFixed(5, buf[0..5], @intCast(u32, binary_bytes.items.len - table_offset + 5));
leb.writeUnsignedFixed(5, buf[5..], symbol_count);
try binary_bytes.insertSlice(table_offset, &buf);
}
fn emitSegmentInfo(wasm: *Wasm, binary_bytes: *std.ArrayList(u8)) !void {
const writer = binary_bytes.writer();
try leb.writeULEB128(writer, @enumToInt(types.SubsectionType.WASM_SEGMENT_INFO));
const segment_offset = binary_bytes.items.len;
try leb.writeULEB128(writer, @intCast(u32, wasm.segment_info.count()));
for (wasm.segment_info.values()) |segment_info| {
log.debug("Emit segment: {s} align({d}) flags({b})", .{
segment_info.name,
@ctz(segment_info.alignment),
segment_info.flags,
});
try leb.writeULEB128(writer, @intCast(u32, segment_info.name.len));
try writer.writeAll(segment_info.name);
try leb.writeULEB128(writer, @ctz(segment_info.alignment));
try leb.writeULEB128(writer, segment_info.flags);
}
var buf: [5]u8 = undefined;
leb.writeUnsignedFixed(5, &buf, @intCast(u32, binary_bytes.items.len - segment_offset));
try binary_bytes.insertSlice(segment_offset, &buf);
}
pub fn getULEB128Size(uint_value: anytype) u32 {
const T = @TypeOf(uint_value);
const U = if (@typeInfo(T).Int.bits < 8) u8 else T;
var value = @intCast(U, uint_value);
var size: u32 = 0;
while (value != 0) : (size += 1) {
value >>= 7;
}
return size;
}
/// For each relocatable section, emits a custom "relocation.<section_name>" section
fn emitCodeRelocations(
wasm: *Wasm,
binary_bytes: *std.ArrayList(u8),
section_index: u32,
symbol_table: std.AutoArrayHashMap(SymbolLoc, u32),
) !void {
const code_index = wasm.code_section_index orelse return;
const writer = binary_bytes.writer();
const header_offset = try reserveCustomSectionHeader(binary_bytes);
// write custom section information
const name = "reloc.CODE";
try leb.writeULEB128(writer, @intCast(u32, name.len));
try writer.writeAll(name);
try leb.writeULEB128(writer, section_index);
const reloc_start = binary_bytes.items.len;
var count: u32 = 0;
var atom: *Atom = wasm.atoms.get(code_index).?.getFirst();
// for each atom, we calculate the uleb size and append that
var size_offset: u32 = 5; // account for code section size leb128
while (true) {
size_offset += getULEB128Size(atom.size);
for (atom.relocs.items) |relocation| {
count += 1;
const sym_loc: SymbolLoc = .{ .file = atom.file, .index = relocation.index };
const symbol_index = symbol_table.get(sym_loc).?;
try leb.writeULEB128(writer, @enumToInt(relocation.relocation_type));
const offset = atom.offset + relocation.offset + size_offset;
try leb.writeULEB128(writer, offset);
try leb.writeULEB128(writer, symbol_index);
if (relocation.relocation_type.addendIsPresent()) {
try leb.writeILEB128(writer, relocation.addend);
}
log.debug("Emit relocation: {}", .{relocation});
}
atom = atom.next orelse break;
}
if (count == 0) return;
var buf: [5]u8 = undefined;
leb.writeUnsignedFixed(5, &buf, count);
try binary_bytes.insertSlice(reloc_start, &buf);
const size = @intCast(u32, binary_bytes.items.len - header_offset - 6);
try writeCustomSectionHeader(binary_bytes.items, header_offset, size);
}
fn emitDataRelocations(
wasm: *Wasm,
binary_bytes: *std.ArrayList(u8),
section_index: u32,
symbol_table: std.AutoArrayHashMap(SymbolLoc, u32),
) !void {
if (wasm.data_segments.count() == 0) return;
const writer = binary_bytes.writer();
const header_offset = try reserveCustomSectionHeader(binary_bytes);
// write custom section information
const name = "reloc.DATA";
try leb.writeULEB128(writer, @intCast(u32, name.len));
try writer.writeAll(name);
try leb.writeULEB128(writer, section_index);
const reloc_start = binary_bytes.items.len;
var count: u32 = 0;
// for each atom, we calculate the uleb size and append that
var size_offset: u32 = 5; // account for code section size leb128
for (wasm.data_segments.values()) |segment_index| {
var atom: *Atom = wasm.atoms.get(segment_index).?.getFirst();
while (true) {
size_offset += getULEB128Size(atom.size);
for (atom.relocs.items) |relocation| {
count += 1;
const sym_loc: SymbolLoc = .{
.file = atom.file,
.index = relocation.index,
};
const symbol_index = symbol_table.get(sym_loc).?;
try leb.writeULEB128(writer, @enumToInt(relocation.relocation_type));
const offset = atom.offset + relocation.offset + size_offset;
try leb.writeULEB128(writer, offset);
try leb.writeULEB128(writer, symbol_index);
if (relocation.relocation_type.addendIsPresent()) {
try leb.writeILEB128(writer, relocation.addend);
}
log.debug("Emit relocation: {}", .{relocation});
}
atom = atom.next orelse break;
}
}
if (count == 0) return;
var buf: [5]u8 = undefined;
leb.writeUnsignedFixed(5, &buf, count);
try binary_bytes.insertSlice(reloc_start, &buf);
const size = @intCast(u32, binary_bytes.items.len - header_offset - 6);
try writeCustomSectionHeader(binary_bytes.items, header_offset, size);
}
/// Searches for an a matching function signature, when not found
/// a new entry will be made. The index of the existing/new signature will be returned.
pub fn putOrGetFuncType(wasm: *Wasm, func_type: std.wasm.Type) !u32 {
var index: u32 = 0;
while (index < wasm.func_types.items.len) : (index += 1) {
if (wasm.func_types.items[index].eql(func_type)) return index;
}
// functype does not exist.
const params = try wasm.base.allocator.dupe(std.wasm.Valtype, func_type.params);
errdefer wasm.base.allocator.free(params);
const returns = try wasm.base.allocator.dupe(std.wasm.Valtype, func_type.returns);
errdefer wasm.base.allocator.free(returns);
try wasm.func_types.append(wasm.base.allocator, .{
.params = params,
.returns = returns,
});
return index;
}