zig/src/link/Coff/Relocation.zig
2024-01-01 17:51:19 -07:00

234 lines
8.6 KiB
Zig

const Relocation = @This();
const std = @import("std");
const assert = std.debug.assert;
const log = std.log.scoped(.link);
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const aarch64 = @import("../../arch/aarch64/bits.zig");
const Atom = @import("Atom.zig");
const Coff = @import("../Coff.zig");
const SymbolWithLoc = Coff.SymbolWithLoc;
type: enum {
// x86, x86_64
/// RIP-relative displacement to a GOT pointer
got,
/// RIP-relative displacement to an import pointer
import,
// aarch64
/// PC-relative distance to target page in GOT section
got_page,
/// Offset to a GOT pointer relative to the start of a page in GOT section
got_pageoff,
/// PC-relative distance to target page in a section (e.g., .rdata)
page,
/// Offset to a pointer relative to the start of a page in a section (e.g., .rdata)
pageoff,
/// PC-relative distance to target page in a import section
import_page,
/// Offset to a pointer relative to the start of a page in an import section (e.g., .rdata)
import_pageoff,
// common
/// Absolute pointer value
direct,
},
target: SymbolWithLoc,
offset: u32,
addend: u32,
pcrel: bool,
length: u2,
dirty: bool = true,
/// Returns true if and only if the reloc can be resolved.
pub fn isResolvable(self: Relocation, coff_file: *Coff) bool {
_ = self.getTargetAddress(coff_file) orelse return false;
return true;
}
pub fn isGotIndirection(self: Relocation) bool {
return switch (self.type) {
.got, .got_page, .got_pageoff => true,
else => false,
};
}
/// Returns address of the target if any.
pub fn getTargetAddress(self: Relocation, coff_file: *const Coff) ?u32 {
switch (self.type) {
.got, .got_page, .got_pageoff => {
const got_index = coff_file.got_table.lookup.get(self.target) orelse return null;
const header = coff_file.sections.items(.header)[coff_file.got_section_index.?];
return header.virtual_address + got_index * coff_file.ptr_width.size();
},
.import, .import_page, .import_pageoff => {
const sym = coff_file.getSymbol(self.target);
const index = coff_file.import_tables.getIndex(sym.value) orelse return null;
const itab = coff_file.import_tables.values()[index];
return itab.getImportAddress(self.target, .{
.coff_file = coff_file,
.index = index,
.name_off = sym.value,
});
},
else => {
const target_atom_index = coff_file.getAtomIndexForSymbol(self.target) orelse return null;
const target_atom = coff_file.getAtom(target_atom_index);
return target_atom.getSymbol(coff_file).value;
},
}
}
pub fn resolve(self: Relocation, atom_index: Atom.Index, code: []u8, image_base: u64, coff_file: *Coff) void {
const atom = coff_file.getAtom(atom_index);
const source_sym = atom.getSymbol(coff_file);
const source_vaddr = source_sym.value + self.offset;
const target_vaddr = self.getTargetAddress(coff_file).?; // Oops, you didn't check if the relocation can be resolved with isResolvable().
const target_vaddr_with_addend = target_vaddr + self.addend;
log.debug(" ({x}: [() => 0x{x} ({s})) ({s}) ", .{
source_vaddr,
target_vaddr_with_addend,
coff_file.getSymbolName(self.target),
@tagName(self.type),
});
const ctx: Context = .{
.source_vaddr = source_vaddr,
.target_vaddr = target_vaddr_with_addend,
.image_base = image_base,
.code = code,
.ptr_width = coff_file.ptr_width,
};
const target = coff_file.base.comp.root_mod.resolved_target.result;
switch (target.cpu.arch) {
.aarch64 => self.resolveAarch64(ctx),
.x86, .x86_64 => self.resolveX86(ctx),
else => unreachable, // unhandled target architecture
}
}
const Context = struct {
source_vaddr: u32,
target_vaddr: u32,
image_base: u64,
code: []u8,
ptr_width: Coff.PtrWidth,
};
fn resolveAarch64(self: Relocation, ctx: Context) void {
var buffer = ctx.code[self.offset..];
switch (self.type) {
.got_page, .import_page, .page => {
const source_page = @as(i32, @intCast(ctx.source_vaddr >> 12));
const target_page = @as(i32, @intCast(ctx.target_vaddr >> 12));
const pages = @as(u21, @bitCast(@as(i21, @intCast(target_page - source_page))));
var inst = aarch64.Instruction{
.pc_relative_address = mem.bytesToValue(meta.TagPayload(
aarch64.Instruction,
aarch64.Instruction.pc_relative_address,
), buffer[0..4]),
};
inst.pc_relative_address.immhi = @as(u19, @truncate(pages >> 2));
inst.pc_relative_address.immlo = @as(u2, @truncate(pages));
mem.writeInt(u32, buffer[0..4], inst.toU32(), .little);
},
.got_pageoff, .import_pageoff, .pageoff => {
assert(!self.pcrel);
const narrowed = @as(u12, @truncate(@as(u64, @intCast(ctx.target_vaddr))));
if (isArithmeticOp(buffer[0..4])) {
var inst = aarch64.Instruction{
.add_subtract_immediate = mem.bytesToValue(meta.TagPayload(
aarch64.Instruction,
aarch64.Instruction.add_subtract_immediate,
), buffer[0..4]),
};
inst.add_subtract_immediate.imm12 = narrowed;
mem.writeInt(u32, buffer[0..4], inst.toU32(), .little);
} else {
var inst = aarch64.Instruction{
.load_store_register = mem.bytesToValue(meta.TagPayload(
aarch64.Instruction,
aarch64.Instruction.load_store_register,
), buffer[0..4]),
};
const offset: u12 = blk: {
if (inst.load_store_register.size == 0) {
if (inst.load_store_register.v == 1) {
// 128-bit SIMD is scaled by 16.
break :blk @divExact(narrowed, 16);
}
// Otherwise, 8-bit SIMD or ldrb.
break :blk narrowed;
} else {
const denom: u4 = math.powi(u4, 2, inst.load_store_register.size) catch unreachable;
break :blk @divExact(narrowed, denom);
}
};
inst.load_store_register.offset = offset;
mem.writeInt(u32, buffer[0..4], inst.toU32(), .little);
}
},
.direct => {
assert(!self.pcrel);
switch (self.length) {
2 => mem.writeInt(
u32,
buffer[0..4],
@as(u32, @truncate(ctx.target_vaddr + ctx.image_base)),
.little,
),
3 => mem.writeInt(u64, buffer[0..8], ctx.target_vaddr + ctx.image_base, .little),
else => unreachable,
}
},
.got => unreachable,
.import => unreachable,
}
}
fn resolveX86(self: Relocation, ctx: Context) void {
var buffer = ctx.code[self.offset..];
switch (self.type) {
.got_page => unreachable,
.got_pageoff => unreachable,
.page => unreachable,
.pageoff => unreachable,
.import_page => unreachable,
.import_pageoff => unreachable,
.got, .import => {
assert(self.pcrel);
const disp = @as(i32, @intCast(ctx.target_vaddr)) - @as(i32, @intCast(ctx.source_vaddr)) - 4;
mem.writeInt(i32, buffer[0..4], disp, .little);
},
.direct => {
if (self.pcrel) {
const disp = @as(i32, @intCast(ctx.target_vaddr)) - @as(i32, @intCast(ctx.source_vaddr)) - 4;
mem.writeInt(i32, buffer[0..4], disp, .little);
} else switch (ctx.ptr_width) {
.p32 => mem.writeInt(u32, buffer[0..4], @as(u32, @intCast(ctx.target_vaddr + ctx.image_base)), .little),
.p64 => switch (self.length) {
2 => mem.writeInt(u32, buffer[0..4], @as(u32, @truncate(ctx.target_vaddr + ctx.image_base)), .little),
3 => mem.writeInt(u64, buffer[0..8], ctx.target_vaddr + ctx.image_base, .little),
else => unreachable,
},
}
},
}
}
inline fn isArithmeticOp(inst: *const [4]u8) bool {
const group_decode = @as(u5, @truncate(inst[3]));
return ((group_decode >> 2) == 4);
}