mirror of
https://github.com/ziglang/zig.git
synced 2025-12-25 15:43:06 +00:00
988 lines
44 KiB
Zig
988 lines
44 KiB
Zig
const std = @import("std");
|
|
const Allocator = std.mem.Allocator;
|
|
const Target = std.Target;
|
|
const log = std.log.scoped(.codegen);
|
|
const assert = std.debug.assert;
|
|
|
|
const spec = @import("spirv/spec.zig");
|
|
const Opcode = spec.Opcode;
|
|
|
|
const Module = @import("../Module.zig");
|
|
const Decl = Module.Decl;
|
|
const Type = @import("../type.zig").Type;
|
|
const Value = @import("../value.zig").Value;
|
|
const LazySrcLoc = Module.LazySrcLoc;
|
|
const Air = @import("../Air.zig");
|
|
const Liveness = @import("../Liveness.zig");
|
|
|
|
pub const Word = u32;
|
|
pub const ResultId = u32;
|
|
|
|
pub const TypeMap = std.HashMap(Type, u32, Type.HashContext64, std.hash_map.default_max_load_percentage);
|
|
pub const InstMap = std.AutoHashMap(Air.Inst.Index, ResultId);
|
|
|
|
const IncomingBlock = struct {
|
|
src_label_id: ResultId,
|
|
break_value_id: ResultId,
|
|
};
|
|
|
|
pub const BlockMap = std.AutoHashMap(Air.Inst.Index, struct {
|
|
label_id: ResultId,
|
|
incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
|
|
});
|
|
|
|
pub fn writeOpcode(code: *std.ArrayList(Word), opcode: Opcode, arg_count: u16) !void {
|
|
const word_count: Word = arg_count + 1;
|
|
try code.append((word_count << 16) | @enumToInt(opcode));
|
|
}
|
|
|
|
pub fn writeInstruction(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word) !void {
|
|
try writeOpcode(code, opcode, @intCast(u16, args.len));
|
|
try code.appendSlice(args);
|
|
}
|
|
|
|
pub fn writeInstructionWithString(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word, str: []const u8) !void {
|
|
// Str needs to be written zero-terminated, so we need to add one to the length.
|
|
const zero_terminated_len = str.len + 1;
|
|
const str_words = (zero_terminated_len + @sizeOf(Word) - 1) / @sizeOf(Word);
|
|
|
|
try writeOpcode(code, opcode, @intCast(u16, args.len + str_words));
|
|
try code.ensureUnusedCapacity(args.len + str_words);
|
|
code.appendSliceAssumeCapacity(args);
|
|
|
|
// TODO: Not actually sure whether this is correct for big-endian.
|
|
// See https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#Literal
|
|
var i: usize = 0;
|
|
while (i < zero_terminated_len) : (i += @sizeOf(Word)) {
|
|
var word: Word = 0;
|
|
|
|
var j: usize = 0;
|
|
while (j < @sizeOf(Word) and i + j < str.len) : (j += 1) {
|
|
word |= @as(Word, str[i + j]) << @intCast(std.math.Log2Int(Word), j * std.meta.bitCount(u8));
|
|
}
|
|
|
|
code.appendAssumeCapacity(word);
|
|
}
|
|
}
|
|
|
|
/// This structure represents a SPIR-V (binary) module being compiled, and keeps track of all relevant information.
|
|
/// That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
|
|
/// of data which needs to be persistent over different calls to Decl code generation.
|
|
pub const SPIRVModule = struct {
|
|
/// A general-purpose allocator which may be used to allocate temporary resources required for compilation.
|
|
gpa: *Allocator,
|
|
|
|
/// The parent module.
|
|
module: *Module,
|
|
|
|
/// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these.
|
|
next_result_id: ResultId,
|
|
|
|
/// Code of the actual SPIR-V binary, divided into the relevant logical sections.
|
|
/// Note: To save some bytes, these could also be unmanaged, but since there is only one instance of SPIRVModule
|
|
/// and this removes some clutter in the rest of the backend, it's fine like this.
|
|
binary: struct {
|
|
/// OpCapability and OpExtension instructions (in that order).
|
|
capabilities_and_extensions: std.ArrayList(Word),
|
|
|
|
/// OpString, OpSourceExtension, OpSource, OpSourceContinued.
|
|
debug_strings: std.ArrayList(Word),
|
|
|
|
/// Type declaration instructions, constant instructions, global variable declarations, OpUndef instructions.
|
|
types_globals_constants: std.ArrayList(Word),
|
|
|
|
/// Regular functions.
|
|
fn_decls: std.ArrayList(Word),
|
|
},
|
|
|
|
/// Global type cache to reduce the amount of generated types.
|
|
types: TypeMap,
|
|
|
|
/// Cache for results of OpString instructions for module file names fed to OpSource.
|
|
/// Since OpString is pretty much only used for those, we don't need to keep track of all strings,
|
|
/// just the ones for OpLine. Note that OpLine needs the result of OpString, and not that of OpSource.
|
|
file_names: std.StringHashMap(ResultId),
|
|
|
|
pub fn init(gpa: *Allocator, module: *Module) SPIRVModule {
|
|
return .{
|
|
.gpa = gpa,
|
|
.module = module,
|
|
.next_result_id = 1, // 0 is an invalid SPIR-V result ID.
|
|
.binary = .{
|
|
.capabilities_and_extensions = std.ArrayList(Word).init(gpa),
|
|
.debug_strings = std.ArrayList(Word).init(gpa),
|
|
.types_globals_constants = std.ArrayList(Word).init(gpa),
|
|
.fn_decls = std.ArrayList(Word).init(gpa),
|
|
},
|
|
.types = TypeMap.init(gpa),
|
|
.file_names = std.StringHashMap(ResultId).init(gpa),
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *SPIRVModule) void {
|
|
self.file_names.deinit();
|
|
self.types.deinit();
|
|
|
|
self.binary.fn_decls.deinit();
|
|
self.binary.types_globals_constants.deinit();
|
|
self.binary.debug_strings.deinit();
|
|
self.binary.capabilities_and_extensions.deinit();
|
|
}
|
|
|
|
pub fn allocResultId(self: *SPIRVModule) Word {
|
|
defer self.next_result_id += 1;
|
|
return self.next_result_id;
|
|
}
|
|
|
|
pub fn resultIdBound(self: *SPIRVModule) Word {
|
|
return self.next_result_id;
|
|
}
|
|
|
|
fn resolveSourceFileName(self: *SPIRVModule, decl: *Decl) !ResultId {
|
|
const path = decl.getFileScope().sub_file_path;
|
|
const result = try self.file_names.getOrPut(path);
|
|
if (!result.found_existing) {
|
|
result.value_ptr.* = self.allocResultId();
|
|
try writeInstructionWithString(&self.binary.debug_strings, .OpString, &[_]Word{result.value_ptr.*}, path);
|
|
try writeInstruction(&self.binary.debug_strings, .OpSource, &[_]Word{
|
|
@enumToInt(spec.SourceLanguage.Unknown), // TODO: Register Zig source language.
|
|
0, // TODO: Zig version as u32?
|
|
result.value_ptr.*,
|
|
});
|
|
}
|
|
|
|
return result.value_ptr.*;
|
|
}
|
|
};
|
|
|
|
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
|
|
pub const DeclGen = struct {
|
|
/// The SPIR-V module code should be put in.
|
|
spv: *SPIRVModule,
|
|
|
|
air: Air,
|
|
liveness: Liveness,
|
|
|
|
/// An array of function argument result-ids. Each index corresponds with the
|
|
/// function argument of the same index.
|
|
args: std.ArrayList(ResultId),
|
|
|
|
/// A counter to keep track of how many `arg` instructions we've seen yet.
|
|
next_arg_index: u32,
|
|
|
|
/// A map keeping track of which instruction generated which result-id.
|
|
inst_results: InstMap,
|
|
|
|
/// We need to keep track of result ids for block labels, as well as the 'incoming'
|
|
/// blocks for a block.
|
|
blocks: BlockMap,
|
|
|
|
/// The label of the SPIR-V block we are currently generating.
|
|
current_block_label_id: ResultId,
|
|
|
|
/// The actual instructions for this function. We need to declare all locals in
|
|
/// the first block, and because we don't know which locals there are going to be,
|
|
/// we're just going to generate everything after the locals-section in this array.
|
|
/// Note: It will not contain OpFunction, OpFunctionParameter, OpVariable and the
|
|
/// initial OpLabel. These will be generated into spv.binary.fn_decls directly.
|
|
code: std.ArrayList(Word),
|
|
|
|
/// The decl we are currently generating code for.
|
|
decl: *Decl,
|
|
|
|
/// If `gen` returned `Error.AnalysisFail`, this contains an explanatory message.
|
|
/// Memory is owned by `module.gpa`.
|
|
error_msg: ?*Module.ErrorMsg,
|
|
|
|
/// Possible errors the `gen` function may return.
|
|
const Error = error{ AnalysisFail, OutOfMemory };
|
|
|
|
/// This structure is used to return information about a type typically used for
|
|
/// arithmetic operations. These types may either be integers, floats, or a vector
|
|
/// of these. Most scalar operations also work on vectors, so we can easily represent
|
|
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
|
|
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
|
|
const ArithmeticTypeInfo = struct {
|
|
/// A classification of the inner type.
|
|
const Class = enum {
|
|
/// A boolean.
|
|
bool,
|
|
|
|
/// A regular, **native**, integer.
|
|
/// This is only returned when the backend supports this int as a native type (when
|
|
/// the relevant capability is enabled).
|
|
integer,
|
|
|
|
/// A regular float. These are all required to be natively supported. Floating points
|
|
/// for which the relevant capability is not enabled are not emulated.
|
|
float,
|
|
|
|
/// An integer of a 'strange' size (which' bit size is not the same as its backing
|
|
/// type. **Note**: this may **also** include power-of-2 integers for which the
|
|
/// relevant capability is not enabled), but still within the limits of the largest
|
|
/// natively supported integer type.
|
|
strange_integer,
|
|
|
|
/// An integer with more bits than the largest natively supported integer type.
|
|
composite_integer,
|
|
};
|
|
|
|
/// The number of bits in the inner type.
|
|
/// This is the actual number of bits of the type, not the size of the backing integer.
|
|
bits: u16,
|
|
|
|
/// Whether the type is a vector.
|
|
is_vector: bool,
|
|
|
|
/// Whether the inner type is signed. Only relevant for integers.
|
|
signedness: std.builtin.Signedness,
|
|
|
|
/// A classification of the inner type. These scenarios
|
|
/// will all have to be handled slightly different.
|
|
class: Class,
|
|
};
|
|
|
|
/// Initialize the common resources of a DeclGen. Some fields are left uninitialized,
|
|
/// only set when `gen` is called.
|
|
pub fn init(spv: *SPIRVModule) DeclGen {
|
|
return .{
|
|
.spv = spv,
|
|
.air = undefined,
|
|
.liveness = undefined,
|
|
.args = std.ArrayList(ResultId).init(spv.gpa),
|
|
.next_arg_index = undefined,
|
|
.inst_results = InstMap.init(spv.gpa),
|
|
.blocks = BlockMap.init(spv.gpa),
|
|
.current_block_label_id = undefined,
|
|
.code = std.ArrayList(Word).init(spv.gpa),
|
|
.decl = undefined,
|
|
.error_msg = undefined,
|
|
};
|
|
}
|
|
|
|
/// Generate the code for `decl`. If a reportable error occurred during code generation,
|
|
/// a message is returned by this function. Callee owns the memory. If this function
|
|
/// returns such a reportable error, it is valid to be called again for a different decl.
|
|
pub fn gen(self: *DeclGen, decl: *Decl, air: Air, liveness: Liveness) !?*Module.ErrorMsg {
|
|
// Reset internal resources, we don't want to re-allocate these.
|
|
self.air = air;
|
|
self.liveness = liveness;
|
|
self.args.items.len = 0;
|
|
self.next_arg_index = 0;
|
|
self.inst_results.clearRetainingCapacity();
|
|
self.blocks.clearRetainingCapacity();
|
|
self.current_block_label_id = undefined;
|
|
self.code.items.len = 0;
|
|
self.decl = decl;
|
|
self.error_msg = null;
|
|
|
|
try self.genDecl();
|
|
return self.error_msg;
|
|
}
|
|
|
|
/// Free resources owned by the DeclGen.
|
|
pub fn deinit(self: *DeclGen) void {
|
|
self.args.deinit();
|
|
self.inst_results.deinit();
|
|
self.blocks.deinit();
|
|
self.code.deinit();
|
|
}
|
|
|
|
fn getTarget(self: *DeclGen) std.Target {
|
|
return self.spv.module.getTarget();
|
|
}
|
|
|
|
fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
|
|
@setCold(true);
|
|
const src: LazySrcLoc = .{ .node_offset = 0 };
|
|
const src_loc = src.toSrcLoc(self.decl);
|
|
self.error_msg = try Module.ErrorMsg.create(self.spv.module.gpa, src_loc, format, args);
|
|
return error.AnalysisFail;
|
|
}
|
|
|
|
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !ResultId {
|
|
if (self.air.value(inst)) |val| {
|
|
return self.genConstant(self.air.typeOf(inst), val);
|
|
}
|
|
const index = Air.refToIndex(inst).?;
|
|
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
|
|
}
|
|
|
|
fn beginSPIRVBlock(self: *DeclGen, label_id: ResultId) !void {
|
|
try writeInstruction(&self.code, .OpLabel, &[_]Word{label_id});
|
|
self.current_block_label_id = label_id;
|
|
}
|
|
|
|
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
|
|
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
|
|
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
|
|
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
|
|
/// that size. In this case, multiple elements of the largest type should be used.
|
|
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
|
|
/// The result is valid to be used with OpTypeInt.
|
|
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
|
|
/// TODO: Should the result of this function be cached?
|
|
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
|
|
const target = self.getTarget();
|
|
|
|
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
|
|
assert(bits != 0);
|
|
|
|
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
|
|
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
|
|
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
|
|
.{ .bits = 8, .feature = .Int8 },
|
|
.{ .bits = 16, .feature = .Int16 },
|
|
.{ .bits = 32, .feature = null },
|
|
.{ .bits = 64, .feature = .Int64 },
|
|
};
|
|
|
|
for (ints) |int| {
|
|
const has_feature = if (int.feature) |feature|
|
|
Target.spirv.featureSetHas(target.cpu.features, feature)
|
|
else
|
|
true;
|
|
|
|
if (bits <= int.bits and has_feature) {
|
|
return int.bits;
|
|
}
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
|
|
/// the Int64 capability is enabled).
|
|
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
|
|
/// is no way of knowing whether those are actually supported.
|
|
/// TODO: Maybe this should be cached?
|
|
fn largestSupportedIntBits(self: *DeclGen) u16 {
|
|
const target = self.getTarget();
|
|
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
|
|
64
|
|
else
|
|
32;
|
|
}
|
|
|
|
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
|
|
/// arrays of largestSupportedIntBits().
|
|
/// Asserts `ty` is an integer.
|
|
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
|
|
return self.backingIntBits(ty) == null;
|
|
}
|
|
|
|
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
|
|
const target = self.getTarget();
|
|
return switch (ty.zigTypeTag()) {
|
|
.Bool => ArithmeticTypeInfo{
|
|
.bits = 1, // Doesn't matter for this class.
|
|
.is_vector = false,
|
|
.signedness = .unsigned, // Technically, but doesn't matter for this class.
|
|
.class = .bool,
|
|
},
|
|
.Float => ArithmeticTypeInfo{
|
|
.bits = ty.floatBits(target),
|
|
.is_vector = false,
|
|
.signedness = .signed, // Technically, but doesn't matter for this class.
|
|
.class = .float,
|
|
},
|
|
.Int => blk: {
|
|
const int_info = ty.intInfo(target);
|
|
// TODO: Maybe it's useful to also return this value.
|
|
const maybe_backing_bits = self.backingIntBits(int_info.bits);
|
|
break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits|
|
|
if (backing_bits == int_info.bits)
|
|
ArithmeticTypeInfo.Class.integer
|
|
else
|
|
ArithmeticTypeInfo.Class.strange_integer
|
|
else
|
|
.composite_integer };
|
|
},
|
|
// As of yet, there is no vector support in the self-hosted compiler.
|
|
.Vector => self.fail("TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}),
|
|
// TODO: For which types is this the case?
|
|
else => self.fail("TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}),
|
|
};
|
|
}
|
|
|
|
/// Generate a constant representing `val`.
|
|
/// TODO: Deduplication?
|
|
fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!ResultId {
|
|
const target = self.getTarget();
|
|
const code = &self.spv.binary.types_globals_constants;
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(ty);
|
|
|
|
if (val.isUndef()) {
|
|
try writeInstruction(code, .OpUndef, &[_]Word{ result_type_id, result_id });
|
|
return result_id;
|
|
}
|
|
|
|
switch (ty.zigTypeTag()) {
|
|
.Int => {
|
|
const int_info = ty.intInfo(target);
|
|
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
|
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
|
|
return self.fail("TODO: SPIR-V backend: implement composite int constants for {}", .{ty});
|
|
};
|
|
|
|
// We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any
|
|
// SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this
|
|
// might need to be updated.
|
|
assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64));
|
|
var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt();
|
|
|
|
// Mask the low bits which make up the actual integer. This is to make sure that negative values
|
|
// only use the actual bits of the type.
|
|
// TODO: Should this be the backing type bits or the actual type bits?
|
|
int_bits &= (@as(u64, 1) << @intCast(u6, backing_bits)) - 1;
|
|
|
|
switch (backing_bits) {
|
|
0 => unreachable,
|
|
1...32 => try writeInstruction(code, .OpConstant, &[_]Word{
|
|
result_type_id,
|
|
result_id,
|
|
@truncate(u32, int_bits),
|
|
}),
|
|
33...64 => try writeInstruction(code, .OpConstant, &[_]Word{
|
|
result_type_id,
|
|
result_id,
|
|
@truncate(u32, int_bits),
|
|
@truncate(u32, int_bits >> @bitSizeOf(u32)),
|
|
}),
|
|
else => unreachable, // backing_bits is bounded by largestSupportedIntBits.
|
|
}
|
|
},
|
|
.Bool => {
|
|
const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
|
|
try writeInstruction(code, opcode, &[_]Word{ result_type_id, result_id });
|
|
},
|
|
.Float => {
|
|
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
|
|
// would have exited at genType(ty).
|
|
|
|
// f16 and f32 require one word of storage. f64 requires 2, low-order first.
|
|
|
|
switch (ty.floatBits(target)) {
|
|
16 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u16, val.toFloat(f16)) }),
|
|
32 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u32, val.toFloat(f32)) }),
|
|
64 => {
|
|
const float_bits = @bitCast(u64, val.toFloat(f64));
|
|
try writeInstruction(code, .OpConstant, &[_]Word{
|
|
result_type_id,
|
|
result_id,
|
|
@truncate(u32, float_bits),
|
|
@truncate(u32, float_bits >> @bitSizeOf(u32)),
|
|
});
|
|
},
|
|
128 => unreachable, // Filtered out in the call to genType.
|
|
// TODO: Insert case for long double when the layout for that is determined.
|
|
else => unreachable,
|
|
}
|
|
},
|
|
.Void => unreachable,
|
|
else => return self.fail("TODO: SPIR-V backend: constant generation of type {}", .{ty}),
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn genType(self: *DeclGen, ty: Type) Error!ResultId {
|
|
// We can't use getOrPut here so we can recursively generate types.
|
|
if (self.spv.types.get(ty)) |already_generated| {
|
|
return already_generated;
|
|
}
|
|
|
|
const target = self.getTarget();
|
|
const code = &self.spv.binary.types_globals_constants;
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
switch (ty.zigTypeTag()) {
|
|
.Void => try writeInstruction(code, .OpTypeVoid, &[_]Word{result_id}),
|
|
.Bool => try writeInstruction(code, .OpTypeBool, &[_]Word{result_id}),
|
|
.Int => {
|
|
const int_info = ty.intInfo(target);
|
|
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
|
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
|
|
return self.fail("TODO: SPIR-V backend: implement composite int {}", .{ty});
|
|
};
|
|
|
|
// TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
|
|
try writeInstruction(code, .OpTypeInt, &[_]Word{
|
|
result_id,
|
|
backing_bits,
|
|
switch (int_info.signedness) {
|
|
.unsigned => 0,
|
|
.signed => 1,
|
|
},
|
|
});
|
|
},
|
|
.Float => {
|
|
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
|
|
// so if the float is not supported, just return an error.
|
|
const bits = ty.floatBits(target);
|
|
const supported = switch (bits) {
|
|
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
|
|
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
|
|
32 => true,
|
|
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
|
|
else => false,
|
|
};
|
|
|
|
if (!supported) {
|
|
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
|
|
}
|
|
|
|
try writeInstruction(code, .OpTypeFloat, &[_]Word{ result_id, bits });
|
|
},
|
|
.Fn => {
|
|
// We only support zig-calling-convention functions, no varargs.
|
|
if (ty.fnCallingConvention() != .Unspecified)
|
|
return self.fail("Unsupported calling convention for SPIR-V", .{});
|
|
if (ty.fnIsVarArgs())
|
|
return self.fail("VarArgs unsupported for SPIR-V", .{});
|
|
|
|
// In order to avoid a temporary here, first generate all the required types and then simply look them up
|
|
// when generating the function type.
|
|
const params = ty.fnParamLen();
|
|
var i: usize = 0;
|
|
while (i < params) : (i += 1) {
|
|
_ = try self.genType(ty.fnParamType(i));
|
|
}
|
|
|
|
const return_type_id = try self.genType(ty.fnReturnType());
|
|
|
|
// result id + result type id + parameter type ids.
|
|
try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u16, ty.fnParamLen()));
|
|
try code.appendSlice(&.{ result_id, return_type_id });
|
|
|
|
i = 0;
|
|
while (i < params) : (i += 1) {
|
|
const param_type_id = self.spv.types.get(ty.fnParamType(i)).?;
|
|
try code.append(param_type_id);
|
|
}
|
|
},
|
|
// When recursively generating a type, we cannot infer the pointer's storage class. See genPointerType.
|
|
.Pointer => return self.fail("Cannot create pointer with unknown storage class", .{}),
|
|
.Vector => {
|
|
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
|
|
// which work on them), so simply use those.
|
|
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
|
|
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
|
|
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
|
|
// is adequate at all for this.
|
|
|
|
// TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
|
|
return self.fail("TODO: SPIR-V backend: implement type Vector", .{});
|
|
},
|
|
.Null,
|
|
.Undefined,
|
|
.EnumLiteral,
|
|
.ComptimeFloat,
|
|
.ComptimeInt,
|
|
.Type,
|
|
=> unreachable, // Must be const or comptime.
|
|
|
|
.BoundFn => unreachable, // this type will be deleted from the language.
|
|
|
|
else => |tag| return self.fail("TODO: SPIR-V backend: implement type {}s", .{tag}),
|
|
}
|
|
|
|
try self.spv.types.putNoClobber(ty, result_id);
|
|
return result_id;
|
|
}
|
|
|
|
/// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that.
|
|
/// TODO: The result of this needs to be cached.
|
|
fn genPointerType(self: *DeclGen, ty: Type, storage_class: spec.StorageClass) !ResultId {
|
|
assert(ty.zigTypeTag() == .Pointer);
|
|
|
|
const code = &self.spv.binary.types_globals_constants;
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
// TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types
|
|
// if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled.
|
|
// These also relates to the pointer's address space.
|
|
const child_id = try self.genType(ty.elemType());
|
|
|
|
try writeInstruction(code, .OpTypePointer, &[_]Word{ result_id, @enumToInt(storage_class), child_id });
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn genDecl(self: *DeclGen) !void {
|
|
const decl = self.decl;
|
|
const result_id = decl.fn_link.spirv.id;
|
|
|
|
if (decl.val.castTag(.function)) |_| {
|
|
assert(decl.ty.zigTypeTag() == .Fn);
|
|
const prototype_id = try self.genType(decl.ty);
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpFunction, &[_]Word{
|
|
self.spv.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
|
|
result_id,
|
|
@bitCast(Word, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
|
|
prototype_id,
|
|
});
|
|
|
|
const params = decl.ty.fnParamLen();
|
|
var i: usize = 0;
|
|
|
|
try self.args.ensureTotalCapacity(params);
|
|
while (i < params) : (i += 1) {
|
|
const param_type_id = self.spv.types.get(decl.ty.fnParamType(i)).?;
|
|
const arg_result_id = self.spv.allocResultId();
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionParameter, &[_]Word{ param_type_id, arg_result_id });
|
|
self.args.appendAssumeCapacity(arg_result_id);
|
|
}
|
|
|
|
// TODO: This could probably be done in a better way...
|
|
const root_block_id = self.spv.allocResultId();
|
|
|
|
// We need to generate the label directly in the fn_decls here because we're going to write the local variables after
|
|
// here. Since we're not generating in self.code, we're just going to bypass self.beginSPIRVBlock here.
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpLabel, &[_]Word{root_block_id});
|
|
self.current_block_label_id = root_block_id;
|
|
|
|
const main_body = self.air.getMainBody();
|
|
try self.genBody(main_body);
|
|
|
|
// Append the actual code into the fn_decls section.
|
|
try self.spv.binary.fn_decls.appendSlice(self.code.items);
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionEnd, &[_]Word{});
|
|
} else {
|
|
return self.fail("TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()});
|
|
}
|
|
}
|
|
|
|
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
|
|
for (body) |inst| {
|
|
try self.genInst(inst);
|
|
}
|
|
}
|
|
|
|
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const air_tags = self.air.instructions.items(.tag);
|
|
const result_id = switch (air_tags[inst]) {
|
|
// zig fmt: off
|
|
.add, .addwrap => try self.airArithOp(inst, .{.OpFAdd, .OpIAdd, .OpIAdd}),
|
|
.sub, .subwrap => try self.airArithOp(inst, .{.OpFSub, .OpISub, .OpISub}),
|
|
.mul, .mulwrap => try self.airArithOp(inst, .{.OpFMul, .OpIMul, .OpIMul}),
|
|
.div => try self.airArithOp(inst, .{.OpFDiv, .OpSDiv, .OpUDiv}),
|
|
|
|
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
|
|
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
|
|
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
|
|
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
|
|
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
|
|
|
|
.not => try self.airNot(inst),
|
|
|
|
.cmp_eq => try self.airCmp(inst, .{.OpFOrdEqual, .OpLogicalEqual, .OpIEqual}),
|
|
.cmp_neq => try self.airCmp(inst, .{.OpFOrdNotEqual, .OpLogicalNotEqual, .OpINotEqual}),
|
|
.cmp_gt => try self.airCmp(inst, .{.OpFOrdGreaterThan, .OpSGreaterThan, .OpUGreaterThan}),
|
|
.cmp_gte => try self.airCmp(inst, .{.OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual}),
|
|
.cmp_lt => try self.airCmp(inst, .{.OpFOrdLessThan, .OpSLessThan, .OpULessThan}),
|
|
.cmp_lte => try self.airCmp(inst, .{.OpFOrdLessThanEqual, .OpSLessThanEqual, .OpULessThanEqual}),
|
|
|
|
.arg => self.airArg(),
|
|
.alloc => try self.airAlloc(inst),
|
|
.block => (try self.airBlock(inst)) orelse return,
|
|
.load => try self.airLoad(inst),
|
|
|
|
.br => return self.airBr(inst),
|
|
.breakpoint => return,
|
|
.cond_br => return self.airCondBr(inst),
|
|
.constant => unreachable,
|
|
.dbg_stmt => return self.airDbgStmt(inst),
|
|
.loop => return self.airLoop(inst),
|
|
.ret => return self.airRet(inst),
|
|
.store => return self.airStore(inst),
|
|
.unreach => return self.airUnreach(),
|
|
// zig fmt: on
|
|
|
|
else => |tag| return self.fail("TODO: SPIR-V backend: implement AIR tag {s}", .{
|
|
@tagName(tag),
|
|
}),
|
|
};
|
|
|
|
try self.inst_results.putNoClobber(inst, result_id);
|
|
}
|
|
|
|
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, opcode: Opcode) !ResultId {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(self.air.typeOfIndex(inst));
|
|
try writeInstruction(&self.code, opcode, &[_]Word{
|
|
result_type_id, result_id, lhs_id, rhs_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airArithOp(self: *DeclGen, inst: Air.Inst.Index, ops: [3]Opcode) !ResultId {
|
|
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
|
|
// the result to be the same as the LHS and RHS, which matches SPIR-V.
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(ty);
|
|
|
|
assert(self.air.typeOf(bin_op.lhs).eql(ty));
|
|
assert(self.air.typeOf(bin_op.rhs).eql(ty));
|
|
|
|
// Binary operations are generally applicable to both scalar and vector operations
|
|
// in SPIR-V, but int and float versions of operations require different opcodes.
|
|
const info = try self.arithmeticTypeInfo(ty);
|
|
|
|
const opcode_index: usize = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.fail("TODO: SPIR-V backend: binary operations for composite integers", .{});
|
|
},
|
|
.strange_integer => {
|
|
return self.fail("TODO: SPIR-V backend: binary operations for strange integers", .{});
|
|
},
|
|
.integer => switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
},
|
|
.float => 0,
|
|
else => unreachable,
|
|
};
|
|
const opcode = ops[opcode_index];
|
|
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
|
|
|
|
// TODO: Trap on overflow? Probably going to be annoying.
|
|
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airCmp(self: *DeclGen, inst: Air.Inst.Index, ops: [3]Opcode) !ResultId {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(Type.initTag(.bool));
|
|
const op_ty = self.air.typeOf(bin_op.lhs);
|
|
assert(op_ty.eql(self.air.typeOf(bin_op.rhs)));
|
|
|
|
// Comparisons are generally applicable to both scalar and vector operations in SPIR-V,
|
|
// but int and float versions of operations require different opcodes.
|
|
const info = try self.arithmeticTypeInfo(op_ty);
|
|
|
|
const opcode_index: usize = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.fail("TODO: SPIR-V backend: binary operations for composite integers", .{});
|
|
},
|
|
.strange_integer => {
|
|
return self.fail("TODO: SPIR-V backend: comparison for strange integers", .{});
|
|
},
|
|
.float => 0,
|
|
.bool => 1,
|
|
.integer => switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
},
|
|
};
|
|
const opcode = ops[opcode_index];
|
|
|
|
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
|
|
return result_id;
|
|
}
|
|
|
|
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const result_id = self.spv.allocResultId();
|
|
const result_type_id = try self.genType(Type.initTag(.bool));
|
|
const opcode: Opcode = .OpLogicalNot;
|
|
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, operand_id });
|
|
return result_id;
|
|
}
|
|
|
|
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const storage_class = spec.StorageClass.Function;
|
|
const result_type_id = try self.genPointerType(ty, storage_class);
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
// Rather than generating into code here, we're just going to generate directly into the fn_decls section so that
|
|
// variable declarations appear in the first block of the function.
|
|
try writeInstruction(&self.spv.binary.fn_decls, .OpVariable, &[_]Word{ result_type_id, result_id, @enumToInt(storage_class) });
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airArg(self: *DeclGen) ResultId {
|
|
defer self.next_arg_index += 1;
|
|
return self.args.items[self.next_arg_index];
|
|
}
|
|
|
|
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?ResultId {
|
|
// In IR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
|
|
// "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
|
|
// the current block by first generating the code of the block, then a label, and then generate the rest of the current
|
|
// ir.Block in a different SPIR-V block.
|
|
|
|
const label_id = self.spv.allocResultId();
|
|
|
|
// 4 chosen as arbitrary initial capacity.
|
|
var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.spv.gpa, 4);
|
|
|
|
try self.blocks.putNoClobber(inst, .{
|
|
.label_id = label_id,
|
|
.incoming_blocks = &incoming_blocks,
|
|
});
|
|
defer {
|
|
assert(self.blocks.remove(inst));
|
|
incoming_blocks.deinit(self.spv.gpa);
|
|
}
|
|
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const inst_datas = self.air.instructions.items(.data);
|
|
const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
|
|
try self.genBody(body);
|
|
try self.beginSPIRVBlock(label_id);
|
|
|
|
// If this block didn't produce a value, simply return here.
|
|
if (!ty.hasCodeGenBits())
|
|
return null;
|
|
|
|
// Combine the result from the blocks using the Phi instruction.
|
|
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
// TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
|
|
// are not allowed to be created from a phi node, and throw an error for those. For now, genType already throws
|
|
// an error for pointers.
|
|
const result_type_id = try self.genType(ty);
|
|
_ = result_type_id;
|
|
|
|
try writeOpcode(&self.code, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent...
|
|
|
|
for (incoming_blocks.items) |incoming| {
|
|
try self.code.appendSlice(&[_]Word{ incoming.break_value_id, incoming.src_label_id });
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const br = self.air.instructions.items(.data)[inst].br;
|
|
const block = self.blocks.get(br.block_inst).?;
|
|
const operand_ty = self.air.typeOf(br.operand);
|
|
|
|
if (operand_ty.hasCodeGenBits()) {
|
|
const operand_id = try self.resolve(br.operand);
|
|
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
|
|
try block.incoming_blocks.append(self.spv.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id });
|
|
}
|
|
|
|
try writeInstruction(&self.code, .OpBranch, &[_]Word{block.label_id});
|
|
}
|
|
|
|
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
|
|
const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
|
|
const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
|
|
const condition_id = try self.resolve(pl_op.operand);
|
|
|
|
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
|
|
const then_label_id = self.spv.allocResultId();
|
|
const else_label_id = self.spv.allocResultId();
|
|
|
|
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
|
|
// but i don't know if those will always resolve to the same block.
|
|
|
|
try writeInstruction(&self.code, .OpBranchConditional, &[_]Word{
|
|
condition_id,
|
|
then_label_id,
|
|
else_label_id,
|
|
});
|
|
|
|
try self.beginSPIRVBlock(then_label_id);
|
|
try self.genBody(then_body);
|
|
try self.beginSPIRVBlock(else_label_id);
|
|
try self.genBody(else_body);
|
|
}
|
|
|
|
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
|
|
const src_fname_id = try self.spv.resolveSourceFileName(self.decl);
|
|
try writeInstruction(&self.code, .OpLine, &[_]Word{ src_fname_id, dbg_stmt.line, dbg_stmt.column });
|
|
}
|
|
|
|
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const ty = self.air.typeOfIndex(inst);
|
|
|
|
const result_type_id = try self.genType(ty);
|
|
const result_id = self.spv.allocResultId();
|
|
|
|
const operands = if (ty.isVolatilePtr())
|
|
&[_]Word{ result_type_id, result_id, operand_id, @bitCast(u32, spec.MemoryAccess{ .Volatile = true }) }
|
|
else
|
|
&[_]Word{ result_type_id, result_id, operand_id };
|
|
|
|
try writeInstruction(&self.code, .OpLoad, operands);
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const loop = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[loop.end..][0..loop.data.body_len];
|
|
const loop_label_id = self.spv.allocResultId();
|
|
|
|
// Jump to the loop entry point
|
|
try writeInstruction(&self.code, .OpBranch, &[_]Word{loop_label_id});
|
|
|
|
// TODO: Look into OpLoopMerge.
|
|
|
|
try self.beginSPIRVBlock(loop_label_id);
|
|
try self.genBody(body);
|
|
|
|
try writeInstruction(&self.code, .OpBranch, &[_]Word{loop_label_id});
|
|
}
|
|
|
|
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const operand = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand_ty = self.air.typeOf(operand);
|
|
if (operand_ty.hasCodeGenBits()) {
|
|
const operand_id = try self.resolve(operand);
|
|
try writeInstruction(&self.code, .OpReturnValue, &[_]Word{operand_id});
|
|
} else {
|
|
try writeInstruction(&self.code, .OpReturn, &[_]Word{});
|
|
}
|
|
}
|
|
|
|
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const dst_ptr_id = try self.resolve(bin_op.lhs);
|
|
const src_val_id = try self.resolve(bin_op.rhs);
|
|
const lhs_ty = self.air.typeOf(bin_op.lhs);
|
|
|
|
const operands = if (lhs_ty.isVolatilePtr())
|
|
&[_]Word{ dst_ptr_id, src_val_id, @bitCast(u32, spec.MemoryAccess{ .Volatile = true }) }
|
|
else
|
|
&[_]Word{ dst_ptr_id, src_val_id };
|
|
|
|
try writeInstruction(&self.code, .OpStore, operands);
|
|
}
|
|
|
|
fn airUnreach(self: *DeclGen) !void {
|
|
try writeInstruction(&self.code, .OpUnreachable, &[_]Word{});
|
|
}
|
|
};
|