Ryan Liptak 5f15acc463 Add preliminary support for Windows .manifest files
An embedded manifest file is really just XML data embedded as a RT_MANIFEST resource (ID = 24). Typically, the Windows-only 'Manifest Tool' (`mt.exe`) is used to embed manifest files, and `mt.exe` also seems to perform some transformation of the manifest data before embedding, but in testing it doesn't seem like the transformations are necessary to get the intended result.

So, to handle embedding manifest files, Zig now takes the following approach:

- Generate a .rc file with the contents `1 24 "path-to-manifest.manifest"`
- Compile that generated .rc file into a .res file
- Link the .res file into the final binary

This effectively achieves the same thing as `mt.exe` minus the validation/transformations of the XML data that it performs.

How this is used:

On the command line:
```
zig build-exe main.zig main.manifest
```
(on the command line, specifying a .manifest file when the target object format is not COFF is an error)

or in build.zig:

```
const exe = b.addExecutable(.{
    .name = "manifest-test",
    .root_source_file = .{ .path = "main.zig" },
    .target = target,
    .optimize = optimize,
    .win32_manifest = .{ .path = "main.manifest" },
});
```
(in build.zig, the manifest file is ignored if the target object format is not COFF)

Note: Currently, only one manifest file can be specified per compilation. This is because the ID of the manifest resource is currently always 1. Specifying multiple manifests could be supported if a way for the user to specify an ID for each manifest is added (manifest IDs must be a u16).

Closes #17406

options
2023-10-15 13:33:16 -07:00
2023-10-01 23:51:54 +03:00
2023-10-03 14:58:13 -07:00
2023-10-01 23:51:54 +03:00
2023-08-04 11:01:18 -07:00
2023-10-08 16:54:31 -07:00

ZIG

A general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.

https://ziglang.org/

Documentation

If you are looking at this README file in a source tree, please refer to the Release Notes, Language Reference, or Standard Library Documentation corresponding to the version of Zig that you are using by following the appropriate link on the download page.

Otherwise, you're looking at a release of Zig, and you can find documentation here:

  • doc/langref.html
  • doc/std/index.html

Installation

A Zig installation is composed of two things:

  1. The Zig executable
  2. The lib/ directory

At runtime, the executable searches up the file system for the lib/ directory, relative to itself:

  • lib/
  • lib/zig/
  • ../lib/
  • ../lib/zig/
  • (and so on)

In other words, you can unpack a release of Zig anywhere, and then begin using it immediately. There is no need to install it globally, although this mechanism supports that use case too (i.e. /usr/bin/zig and /usr/lib/zig/).

Building from Source

Ensure you have the required dependencies:

  • CMake >= 3.5
  • System C/C++ Toolchain
  • LLVM, Clang, LLD development libraries == 17.x

Then it is the standard CMake build process:

mkdir build
cd build
cmake ..
make install

For more options, tips, and troubleshooting, please see the Building Zig From Source page on the wiki.

Contributing

Zig is Free and Open Source Software. We welcome bug reports and patches from everyone. However, keep in mind that Zig governance is BDFN (Benevolent Dictator For Now) which means that Andrew Kelley has final say on the design and implementation of everything.

One of the best ways you can contribute to Zig is to start using it for an open-source personal project.

This leads to discovering bugs and helps flesh out use cases, which lead to further design iterations of Zig. Importantly, each issue found this way comes with real world motivations, making it straightforward to explain the reasoning behind proposals and feature requests.

You will be taken much more seriously on the issue tracker if you have a personal project that uses Zig.

The issue label Contributor Friendly exists to help you find issues that are limited in scope and/or knowledge of Zig internals.

Please note that issues labeled Proposal but do not also have the Accepted label are still under consideration, and efforts to implement such a proposal have a high risk of being wasted. If you are interested in a proposal which is still under consideration, please express your interest in the issue tracker, providing extra insights and considerations that others have not yet expressed. The most highly regarded argument in such a discussion is a real world use case.

For more tips, please see the Contributing page on the wiki.

Community

The Zig community is decentralized. Anyone is free to start and maintain their own space for Zig users to gather. There is no concept of "official" or "unofficial". Each gathering place has its own moderators and rules. Users are encouraged to be aware of the social structures of the spaces they inhabit, and work purposefully to facilitate spaces that align with their values.

Please see the Community wiki page for a public listing of social spaces.

Description
General-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.
Readme MIT 710 MiB
Languages
Zig 98.3%
C 1.1%
C++ 0.2%
Python 0.1%