Wooster 5d241a1478 std.debug: detect general protection faults on x86_64-linux
```zig
const std = @import("std");

pub fn main() !void {
	var addr: *u8 = @ptrFromInt(0xaaaaaaaaaaaaaaaa);
	addr.* = 1;
}
```

On x86_64-linux:

Before:
```
$ zig run x.zig
Segmentation fault at address 0x0
/home/wooster/Desktop/zig/x.zig:5:5: 0x21d887 in main (x)
    addr.* = 1;
    ^
/home/wooster/Desktop/zig-linux-x86_64/lib/std/start.zig:583:37: 0x21d847 in posixCallMainAndExit (x)
            const result = root.main() catch |err| {
                                    ^
/home/wooster/Desktop/zig-linux-x86_64/lib/std/start.zig:251:5: 0x21d371 in _start (x)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
Aborted (core dumped)
```

After:
```
$ zig run x.zig --zig-lib-dir lib
General protection exception
/home/wooster/Desktop/zig/x.zig:5:5: 0x21d907 in main (x)
    addr.* = 1;
    ^
/home/wooster/Desktop/zig/lib/std/start.zig:583:37: 0x21d8c7 in posixCallMainAndExit (x)
            const result = root.main() catch |err| {
                                    ^
/home/wooster/Desktop/zig/lib/std/start.zig:251:5: 0x21d3f1 in _start (x)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
Aborted (core dumped)
```

As @IntegratedQuantum pointed out in <https://github.com/ziglang/zig/issues/17745#issuecomment-1783815386>,
it seems that if `code` of the `siginfo_t` instance is a certain value (128), you are able to distinguish between
a general protection exception and a segmentation fault.

This does not seem to be documented on `man sigaction`:
```
The following values can be placed in si_code for a SIGSEGV signal:

           SEGV_MAPERR
                  Address not mapped to object.

           SEGV_ACCERR
                  Invalid permissions for mapped object.

           SEGV_BNDERR (since Linux 3.19)
                  Failed address bound checks.

           SEGV_PKUERR (since Linux 4.6)
                  Access was denied by memory protection keys.  See pkeys(7).  The protection key which applied to this access is available via si_pkey.
```
(those constants are 1, 2, 3, and 4; none of them are the 128)

I can't find a lot of documentation about this but it seems to work consistently for me on x86_64-linux.
Here is a gist which provides additional evidence that this is a reliable way of checking for a general protection fault:
https://gist.github.com/ytoshima/5682393 (read comment in first line)

See also: https://stackoverflow.com/questions/64309366/why-is-the-segfault-address-null-when-accessing-memory-that-has-any-of-the-16-mo

This only seems to affect x86_64 and on 32-bit x86 this does not seem to be a problem.

Helps with #17745 but doesn't close it because the issue still exists on Windows and other POSIX OSs.

I also limited this to x86_64-linux for now because that's the only platform where I tested it. Might work on more POSIX OSs.
2023-11-21 14:22:11 +02:00
2023-11-15 11:26:49 +02:00
2023-10-01 23:51:54 +03:00
2023-08-04 11:01:18 -07:00

ZIG

A general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.

https://ziglang.org/

Documentation

If you are looking at this README file in a source tree, please refer to the Release Notes, Language Reference, or Standard Library Documentation corresponding to the version of Zig that you are using by following the appropriate link on the download page.

Otherwise, you're looking at a release of Zig, and you can find documentation here:

  • doc/langref.html
  • doc/std/index.html

Installation

A Zig installation is composed of two things:

  1. The Zig executable
  2. The lib/ directory

At runtime, the executable searches up the file system for the lib/ directory, relative to itself:

  • lib/
  • lib/zig/
  • ../lib/
  • ../lib/zig/
  • (and so on)

In other words, you can unpack a release of Zig anywhere, and then begin using it immediately. There is no need to install it globally, although this mechanism supports that use case too (i.e. /usr/bin/zig and /usr/lib/zig/).

Building from Source

Ensure you have the required dependencies:

  • CMake >= 3.5
  • System C/C++ Toolchain
  • LLVM, Clang, LLD development libraries == 17.x

Then it is the standard CMake build process:

mkdir build
cd build
cmake ..
make install

For more options, tips, and troubleshooting, please see the Building Zig From Source page on the wiki.

Building from Source without LLVM

In this case, the only system dependency is a C compiler.

cc -o bootstrap bootstrap.c
./bootstrap

This produces a zig2 executable in the current working directory. This is a "stage2" build of the compiler, without LLVM extensions, and is therefore lacking these features:

However, a compiler built this way does provide a C backend, which may be useful for creating system packages of Zig projects using the system C toolchain. In such case, LLVM is not needed!

Contributing

Donate monthly.

Zig is Free and Open Source Software. We welcome bug reports and patches from everyone. However, keep in mind that Zig governance is BDFN (Benevolent Dictator For Now) which means that Andrew Kelley has final say on the design and implementation of everything.

One of the best ways you can contribute to Zig is to start using it for an open-source personal project.

This leads to discovering bugs and helps flesh out use cases, which lead to further design iterations of Zig. Importantly, each issue found this way comes with real world motivations, making it straightforward to explain the reasoning behind proposals and feature requests.

You will be taken much more seriously on the issue tracker if you have a personal project that uses Zig.

The issue label Contributor Friendly exists to help you find issues that are limited in scope and/or knowledge of Zig internals.

Please note that issues labeled Proposal but do not also have the Accepted label are still under consideration, and efforts to implement such a proposal have a high risk of being wasted. If you are interested in a proposal which is still under consideration, please express your interest in the issue tracker, providing extra insights and considerations that others have not yet expressed. The most highly regarded argument in such a discussion is a real world use case.

For more tips, please see the Contributing page on the wiki.

Community

The Zig community is decentralized. Anyone is free to start and maintain their own space for Zig users to gather. There is no concept of "official" or "unofficial". Each gathering place has its own moderators and rules. Users are encouraged to be aware of the social structures of the spaces they inhabit, and work purposefully to facilitate spaces that align with their values.

Please see the Community wiki page for a public listing of social spaces.

Description
General-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.
Readme MIT 711 MiB
Languages
Zig 98.3%
C 1.1%
C++ 0.2%
Python 0.1%