zig/src/codegen/llvm.zig
Andrew Kelley 5b4885fe89 stage2 llvm backend: DeclGen and DeclFn have context field
instead of a context() accessor method.
2021-07-25 18:49:25 -07:00

1318 lines
49 KiB
Zig

const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Compilation = @import("../Compilation.zig");
const llvm = @import("llvm/bindings.zig");
const link = @import("../link.zig");
const log = std.log.scoped(.codegen);
const math = std.math;
const Module = @import("../Module.zig");
const TypedValue = @import("../TypedValue.zig");
const Zir = @import("../Zir.zig");
const Air = @import("../Air.zig");
const Liveness = @import("../Liveness.zig");
const Value = @import("../value.zig").Value;
const Type = @import("../type.zig").Type;
const LazySrcLoc = Module.LazySrcLoc;
pub fn targetTriple(allocator: *Allocator, target: std.Target) ![:0]u8 {
const llvm_arch = switch (target.cpu.arch) {
.arm => "arm",
.armeb => "armeb",
.aarch64 => "aarch64",
.aarch64_be => "aarch64_be",
.aarch64_32 => "aarch64_32",
.arc => "arc",
.avr => "avr",
.bpfel => "bpfel",
.bpfeb => "bpfeb",
.csky => "csky",
.hexagon => "hexagon",
.mips => "mips",
.mipsel => "mipsel",
.mips64 => "mips64",
.mips64el => "mips64el",
.msp430 => "msp430",
.powerpc => "powerpc",
.powerpcle => "powerpcle",
.powerpc64 => "powerpc64",
.powerpc64le => "powerpc64le",
.r600 => "r600",
.amdgcn => "amdgcn",
.riscv32 => "riscv32",
.riscv64 => "riscv64",
.sparc => "sparc",
.sparcv9 => "sparcv9",
.sparcel => "sparcel",
.s390x => "s390x",
.tce => "tce",
.tcele => "tcele",
.thumb => "thumb",
.thumbeb => "thumbeb",
.i386 => "i386",
.x86_64 => "x86_64",
.xcore => "xcore",
.nvptx => "nvptx",
.nvptx64 => "nvptx64",
.le32 => "le32",
.le64 => "le64",
.amdil => "amdil",
.amdil64 => "amdil64",
.hsail => "hsail",
.hsail64 => "hsail64",
.spir => "spir",
.spir64 => "spir64",
.kalimba => "kalimba",
.shave => "shave",
.lanai => "lanai",
.wasm32 => "wasm32",
.wasm64 => "wasm64",
.renderscript32 => "renderscript32",
.renderscript64 => "renderscript64",
.ve => "ve",
.spu_2 => return error.@"LLVM backend does not support SPU Mark II",
.spirv32 => return error.@"LLVM backend does not support SPIR-V",
.spirv64 => return error.@"LLVM backend does not support SPIR-V",
};
const llvm_os = switch (target.os.tag) {
.freestanding => "unknown",
.ananas => "ananas",
.cloudabi => "cloudabi",
.dragonfly => "dragonfly",
.freebsd => "freebsd",
.fuchsia => "fuchsia",
.ios => "ios",
.kfreebsd => "kfreebsd",
.linux => "linux",
.lv2 => "lv2",
.macos => "macosx",
.netbsd => "netbsd",
.openbsd => "openbsd",
.solaris => "solaris",
.windows => "windows",
.zos => "zos",
.haiku => "haiku",
.minix => "minix",
.rtems => "rtems",
.nacl => "nacl",
.aix => "aix",
.cuda => "cuda",
.nvcl => "nvcl",
.amdhsa => "amdhsa",
.ps4 => "ps4",
.elfiamcu => "elfiamcu",
.tvos => "tvos",
.watchos => "watchos",
.mesa3d => "mesa3d",
.contiki => "contiki",
.amdpal => "amdpal",
.hermit => "hermit",
.hurd => "hurd",
.wasi => "wasi",
.emscripten => "emscripten",
.uefi => "windows",
.opencl,
.glsl450,
.vulkan,
.plan9,
.other,
=> "unknown",
};
const llvm_abi = switch (target.abi) {
.none => "unknown",
.gnu => "gnu",
.gnuabin32 => "gnuabin32",
.gnuabi64 => "gnuabi64",
.gnueabi => "gnueabi",
.gnueabihf => "gnueabihf",
.gnux32 => "gnux32",
.gnuilp32 => "gnuilp32",
.code16 => "code16",
.eabi => "eabi",
.eabihf => "eabihf",
.android => "android",
.musl => "musl",
.musleabi => "musleabi",
.musleabihf => "musleabihf",
.msvc => "msvc",
.itanium => "itanium",
.cygnus => "cygnus",
.coreclr => "coreclr",
.simulator => "simulator",
.macabi => "macabi",
};
return std.fmt.allocPrintZ(allocator, "{s}-unknown-{s}-{s}", .{ llvm_arch, llvm_os, llvm_abi });
}
pub const Object = struct {
llvm_module: *const llvm.Module,
context: *const llvm.Context,
target_machine: *const llvm.TargetMachine,
pub fn create(gpa: *Allocator, options: link.Options) !*Object {
const obj = try gpa.create(Object);
errdefer gpa.destroy(obj);
obj.* = try Object.init(gpa, options);
return obj;
}
pub fn init(gpa: *Allocator, options: link.Options) !Object {
const context = llvm.Context.create();
errdefer context.dispose();
initializeLLVMTargets();
const root_nameZ = try gpa.dupeZ(u8, options.root_name);
defer gpa.free(root_nameZ);
const llvm_module = llvm.Module.createWithName(root_nameZ.ptr, context);
errdefer llvm_module.dispose();
const llvm_target_triple = try targetTriple(gpa, options.target);
defer gpa.free(llvm_target_triple);
var error_message: [*:0]const u8 = undefined;
var target: *const llvm.Target = undefined;
if (llvm.Target.getFromTriple(llvm_target_triple.ptr, &target, &error_message).toBool()) {
defer llvm.disposeMessage(error_message);
log.err("LLVM failed to parse '{s}': {s}", .{ llvm_target_triple, error_message });
return error.InvalidLlvmTriple;
}
const opt_level: llvm.CodeGenOptLevel = if (options.optimize_mode == .Debug)
.None
else
.Aggressive;
const reloc_mode: llvm.RelocMode = if (options.pic)
.PIC
else if (options.link_mode == .Dynamic)
llvm.RelocMode.DynamicNoPIC
else
.Static;
const code_model: llvm.CodeModel = switch (options.machine_code_model) {
.default => .Default,
.tiny => .Tiny,
.small => .Small,
.kernel => .Kernel,
.medium => .Medium,
.large => .Large,
};
// TODO handle float ABI better- it should depend on the ABI portion of std.Target
const float_abi: llvm.ABIType = .Default;
// TODO a way to override this as part of std.Target ABI?
const abi_name: ?[*:0]const u8 = switch (options.target.cpu.arch) {
.riscv32 => switch (options.target.os.tag) {
.linux => "ilp32d",
else => "ilp32",
},
.riscv64 => switch (options.target.os.tag) {
.linux => "lp64d",
else => "lp64",
},
else => null,
};
const target_machine = llvm.TargetMachine.create(
target,
llvm_target_triple.ptr,
if (options.target.cpu.model.llvm_name) |s| s.ptr else null,
options.llvm_cpu_features,
opt_level,
reloc_mode,
code_model,
options.function_sections,
float_abi,
abi_name,
);
errdefer target_machine.dispose();
return Object{
.llvm_module = llvm_module,
.context = context,
.target_machine = target_machine,
};
}
pub fn deinit(self: *Object) void {
self.target_machine.dispose();
self.llvm_module.dispose();
self.context.dispose();
self.* = undefined;
}
pub fn destroy(self: *Object, gpa: *Allocator) void {
self.deinit();
gpa.destroy(self);
}
fn initializeLLVMTargets() void {
llvm.initializeAllTargets();
llvm.initializeAllTargetInfos();
llvm.initializeAllTargetMCs();
llvm.initializeAllAsmPrinters();
llvm.initializeAllAsmParsers();
}
fn locPath(
arena: *Allocator,
opt_loc: ?Compilation.EmitLoc,
cache_directory: Compilation.Directory,
) !?[*:0]u8 {
const loc = opt_loc orelse return null;
const directory = loc.directory orelse cache_directory;
const slice = try directory.joinZ(arena, &[_][]const u8{loc.basename});
return slice.ptr;
}
pub fn flushModule(self: *Object, comp: *Compilation) !void {
if (comp.verbose_llvm_ir) {
self.llvm_module.dump();
}
if (std.debug.runtime_safety) {
var error_message: [*:0]const u8 = undefined;
// verifyModule always allocs the error_message even if there is no error
defer llvm.disposeMessage(error_message);
if (self.llvm_module.verify(.ReturnStatus, &error_message).toBool()) {
std.debug.print("\n{s}\n", .{error_message});
@panic("LLVM module verification failed");
}
}
var arena_allocator = std.heap.ArenaAllocator.init(comp.gpa);
defer arena_allocator.deinit();
const arena = &arena_allocator.allocator;
const mod = comp.bin_file.options.module.?;
const cache_dir = mod.zig_cache_artifact_directory;
const emit_bin_path: ?[*:0]const u8 = if (comp.bin_file.options.emit != null) blk: {
const obj_basename = try std.zig.binNameAlloc(arena, .{
.root_name = comp.bin_file.options.root_name,
.target = comp.bin_file.options.target,
.output_mode = .Obj,
});
if (cache_dir.joinZ(arena, &[_][]const u8{obj_basename})) |p| {
break :blk p.ptr;
} else |err| {
return err;
}
} else null;
const emit_asm_path = try locPath(arena, comp.emit_asm, cache_dir);
const emit_llvm_ir_path = try locPath(arena, comp.emit_llvm_ir, cache_dir);
const emit_llvm_bc_path = try locPath(arena, comp.emit_llvm_bc, cache_dir);
var error_message: [*:0]const u8 = undefined;
if (self.target_machine.emitToFile(
self.llvm_module,
&error_message,
comp.bin_file.options.optimize_mode == .Debug,
comp.bin_file.options.optimize_mode == .ReleaseSmall,
comp.time_report,
comp.bin_file.options.tsan,
comp.bin_file.options.lto,
emit_asm_path,
emit_bin_path,
emit_llvm_ir_path,
emit_llvm_bc_path,
)) {
defer llvm.disposeMessage(error_message);
const emit_asm_msg = emit_asm_path orelse "(none)";
const emit_bin_msg = emit_bin_path orelse "(none)";
const emit_llvm_ir_msg = emit_llvm_ir_path orelse "(none)";
const emit_llvm_bc_msg = emit_llvm_bc_path orelse "(none)";
log.err("LLVM failed to emit asm={s} bin={s} ir={s} bc={s}: {s}", .{
emit_asm_msg, emit_bin_msg, emit_llvm_ir_msg, emit_llvm_bc_msg,
error_message,
});
return error.FailedToEmit;
}
}
pub fn updateFunc(
self: *Object,
module: *Module,
func: *Module.Fn,
air: Air,
liveness: Liveness,
) !void {
var dg: DeclGen = .{
.context = self.context,
.object = self,
.module = module,
.decl = func.owner_decl,
.err_msg = null,
.gpa = module.gpa,
};
const llvm_func = try dg.resolveLLVMFunction(func.owner_decl);
// This gets the LLVM values from the function and stores them in `dg.args`.
const fn_param_len = func.owner_decl.ty.fnParamLen();
var args = try dg.gpa.alloc(*const llvm.Value, fn_param_len);
for (args) |*arg, i| {
arg.* = llvm.getParam(llvm_func, @intCast(c_uint, i));
}
// We remove all the basic blocks of a function to support incremental
// compilation!
// TODO: remove all basic blocks if functions can have more than one
if (llvm_func.getFirstBasicBlock()) |bb| {
bb.deleteBasicBlock();
}
const builder = dg.context.createBuilder();
const entry_block = dg.context.appendBasicBlock(llvm_func, "Entry");
builder.positionBuilderAtEnd(entry_block);
var fg: FuncGen = .{
.gpa = dg.gpa,
.air = air,
.liveness = liveness,
.context = dg.context,
.dg = &dg,
.builder = builder,
.args = args,
.arg_index = 0,
.func_inst_table = .{},
.entry_block = entry_block,
.latest_alloca_inst = null,
.llvm_func = llvm_func,
.blocks = .{},
};
defer fg.deinit();
fg.genBody(air.getMainBody()) catch |err| switch (err) {
error.CodegenFail => {
func.owner_decl.analysis = .codegen_failure;
try module.failed_decls.put(module.gpa, func.owner_decl, dg.err_msg.?);
dg.err_msg = null;
return;
},
else => |e| return e,
};
}
pub fn updateDecl(self: *Object, module: *Module, decl: *Module.Decl) !void {
var dg: DeclGen = .{
.context = self.context,
.object = self,
.module = module,
.decl = decl,
.err_msg = null,
.gpa = module.gpa,
};
dg.genDecl() catch |err| switch (err) {
error.CodegenFail => {
decl.analysis = .codegen_failure;
try module.failed_decls.put(module.gpa, decl, dg.err_msg.?);
dg.err_msg = null;
return;
},
else => |e| return e,
};
}
};
pub const DeclGen = struct {
context: *const llvm.Context,
object: *Object,
module: *Module,
decl: *Module.Decl,
err_msg: ?*Module.ErrorMsg,
gpa: *Allocator,
fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) error{ OutOfMemory, CodegenFail } {
@setCold(true);
assert(self.err_msg == null);
const src_loc = @as(LazySrcLoc, .{ .node_offset = 0 }).toSrcLocWithDecl(self.decl);
self.err_msg = try Module.ErrorMsg.create(self.gpa, src_loc, "TODO (LLVM): " ++ format, args);
return error.CodegenFail;
}
fn llvmModule(self: *DeclGen) *const llvm.Module {
return self.object.llvm_module;
}
fn genDecl(self: *DeclGen) !void {
const decl = self.decl;
assert(decl.has_tv);
log.debug("gen: {s} type: {}, value: {}", .{ decl.name, decl.ty, decl.val });
if (decl.val.castTag(.function)) |func_payload| {
_ = func_payload;
@panic("TODO llvm backend genDecl function pointer");
} else if (decl.val.castTag(.extern_fn)) |extern_fn| {
_ = try self.resolveLLVMFunction(extern_fn.data);
} else {
_ = try self.resolveGlobalDecl(decl);
}
}
/// If the llvm function does not exist, create it
fn resolveLLVMFunction(self: *DeclGen, func: *Module.Decl) !*const llvm.Value {
// TODO: do we want to store this in our own datastructure?
if (self.llvmModule().getNamedFunction(func.name)) |llvm_fn| return llvm_fn;
assert(func.has_tv);
const zig_fn_type = func.ty;
const return_type = zig_fn_type.fnReturnType();
const fn_param_len = zig_fn_type.fnParamLen();
const fn_param_types = try self.gpa.alloc(Type, fn_param_len);
defer self.gpa.free(fn_param_types);
zig_fn_type.fnParamTypes(fn_param_types);
const llvm_param = try self.gpa.alloc(*const llvm.Type, fn_param_len);
defer self.gpa.free(llvm_param);
for (fn_param_types) |fn_param, i| {
llvm_param[i] = try self.llvmType(fn_param);
}
const fn_type = llvm.functionType(
try self.llvmType(return_type),
llvm_param.ptr,
@intCast(c_uint, fn_param_len),
.False,
);
const llvm_fn = self.llvmModule().addFunction(func.name, fn_type);
if (return_type.tag() == .noreturn) {
self.addFnAttr(llvm_fn, "noreturn");
}
return llvm_fn;
}
fn resolveGlobalDecl(self: *DeclGen, decl: *Module.Decl) error{ OutOfMemory, CodegenFail }!*const llvm.Value {
// TODO: do we want to store this in our own datastructure?
if (self.llvmModule().getNamedGlobal(decl.name)) |val| return val;
assert(decl.has_tv);
// TODO: remove this redundant `llvmType`, it is also called in `genTypedValue`.
const llvm_type = try self.llvmType(decl.ty);
const val = try self.genTypedValue(.{ .ty = decl.ty, .val = decl.val }, null);
const global = self.llvmModule().addGlobal(llvm_type, decl.name);
llvm.setInitializer(global, val);
// TODO ask the Decl if it is const
// https://github.com/ziglang/zig/issues/7582
return global;
}
fn llvmType(self: *DeclGen, t: Type) error{ OutOfMemory, CodegenFail }!*const llvm.Type {
log.debug("llvmType for {}", .{t});
switch (t.zigTypeTag()) {
.Void => return self.context.voidType(),
.NoReturn => return self.context.voidType(),
.Int => {
const info = t.intInfo(self.module.getTarget());
return self.context.intType(info.bits);
},
.Bool => return self.context.intType(1),
.Pointer => {
if (t.isSlice()) {
return self.todo("implement slices", .{});
} else {
const elem_type = try self.llvmType(t.elemType());
return elem_type.pointerType(0);
}
},
.Array => {
const elem_type = try self.llvmType(t.elemType());
return elem_type.arrayType(@intCast(c_uint, t.abiSize(self.module.getTarget())));
},
.Optional => {
if (!t.isPtrLikeOptional()) {
var buf: Type.Payload.ElemType = undefined;
const child_type = t.optionalChild(&buf);
var optional_types: [2]*const llvm.Type = .{
try self.llvmType(child_type),
self.context.intType(1),
};
return self.context.structType(&optional_types, 2, .False);
} else {
return self.todo("implement optional pointers as actual pointers", .{});
}
},
.ErrorUnion => {
return self.todo("implement llvmType for error unions", .{});
},
.ComptimeInt => unreachable,
.ComptimeFloat => unreachable,
.Type => unreachable,
.Undefined => unreachable,
.Null => unreachable,
.EnumLiteral => unreachable,
.BoundFn => @panic("TODO remove BoundFn from the language"),
.Float,
.Struct,
.ErrorSet,
.Enum,
.Union,
.Fn,
.Opaque,
.Frame,
.AnyFrame,
.Vector,
=> return self.todo("implement llvmType for type '{}'", .{t}),
}
}
// TODO: figure out a way to remove the FuncGen argument
fn genTypedValue(self: *DeclGen, tv: TypedValue, fg: ?*FuncGen) error{ OutOfMemory, CodegenFail }!*const llvm.Value {
const llvm_type = try self.llvmType(tv.ty);
if (tv.val.isUndef())
return llvm_type.getUndef();
switch (tv.ty.zigTypeTag()) {
.Bool => return if (tv.val.toBool()) llvm_type.constAllOnes() else llvm_type.constNull(),
.Int => {
var bigint_space: Value.BigIntSpace = undefined;
const bigint = tv.val.toBigInt(&bigint_space);
if (bigint.eqZero()) return llvm_type.constNull();
if (bigint.limbs.len != 1) {
return self.todo("implement bigger bigint", .{});
}
const llvm_int = llvm_type.constInt(bigint.limbs[0], .False);
if (!bigint.positive) {
return llvm.constNeg(llvm_int);
}
return llvm_int;
},
.Pointer => switch (tv.val.tag()) {
.decl_ref => {
const decl = tv.val.castTag(.decl_ref).?.data;
const val = try self.resolveGlobalDecl(decl);
const usize_type = try self.llvmType(Type.initTag(.usize));
// TODO: second index should be the index into the memory!
var indices: [2]*const llvm.Value = .{
usize_type.constNull(),
usize_type.constNull(),
};
// TODO: consider using buildInBoundsGEP2 for opaque pointers
return fg.?.builder.buildInBoundsGEP(val, &indices, 2, "");
},
.ref_val => {
const elem_value = tv.val.castTag(.ref_val).?.data;
const elem_type = tv.ty.castPointer().?.data;
const alloca = fg.?.buildAlloca(try self.llvmType(elem_type));
_ = fg.?.builder.buildStore(try self.genTypedValue(.{ .ty = elem_type, .val = elem_value }, fg), alloca);
return alloca;
},
else => return self.todo("implement const of pointer type '{}'", .{tv.ty}),
},
.Array => {
if (tv.val.castTag(.bytes)) |payload| {
const zero_sentinel = if (tv.ty.sentinel()) |sentinel| blk: {
if (sentinel.tag() == .zero) break :blk true;
return self.todo("handle other sentinel values", .{});
} else false;
return self.context.constString(payload.data.ptr, @intCast(c_uint, payload.data.len), llvm.Bool.fromBool(!zero_sentinel));
} else {
return self.todo("handle more array values", .{});
}
},
.Optional => {
if (!tv.ty.isPtrLikeOptional()) {
var buf: Type.Payload.ElemType = undefined;
const child_type = tv.ty.optionalChild(&buf);
const llvm_child_type = try self.llvmType(child_type);
if (tv.val.tag() == .null_value) {
var optional_values: [2]*const llvm.Value = .{
llvm_child_type.constNull(),
self.context.intType(1).constNull(),
};
return self.context.constStruct(&optional_values, 2, .False);
} else {
var optional_values: [2]*const llvm.Value = .{
try self.genTypedValue(.{ .ty = child_type, .val = tv.val }, fg),
self.context.intType(1).constAllOnes(),
};
return self.context.constStruct(&optional_values, 2, .False);
}
} else {
return self.todo("implement const of optional pointer", .{});
}
},
else => return self.todo("implement const of type '{}'", .{tv.ty}),
}
}
// Helper functions
fn addAttr(self: *DeclGen, val: *const llvm.Value, index: llvm.AttributeIndex, name: []const u8) void {
const kind_id = llvm.getEnumAttributeKindForName(name.ptr, name.len);
assert(kind_id != 0);
const llvm_attr = self.context.createEnumAttribute(kind_id, 0);
val.addAttributeAtIndex(index, llvm_attr);
}
fn addFnAttr(self: *DeclGen, val: *const llvm.Value, attr_name: []const u8) void {
// TODO: improve this API, `addAttr(-1, attr_name)`
self.addAttr(val, std.math.maxInt(llvm.AttributeIndex), attr_name);
}
};
pub const FuncGen = struct {
gpa: *Allocator,
dg: *DeclGen,
air: Air,
liveness: Liveness,
context: *const llvm.Context,
builder: *const llvm.Builder,
/// This stores the LLVM values used in a function, such that they can be referred to
/// in other instructions. This table is cleared before every function is generated.
func_inst_table: std.AutoHashMapUnmanaged(Air.Inst.Index, *const llvm.Value),
/// These fields are used to refer to the LLVM value of the function paramaters
/// in an Arg instruction.
args: []*const llvm.Value,
arg_index: usize,
entry_block: *const llvm.BasicBlock,
/// This fields stores the last alloca instruction, such that we can append
/// more alloca instructions to the top of the function.
latest_alloca_inst: ?*const llvm.Value,
llvm_func: *const llvm.Value,
/// This data structure is used to implement breaking to blocks.
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
parent_bb: *const llvm.BasicBlock,
break_bbs: *BreakBasicBlocks,
break_vals: *BreakValues,
}),
const BreakBasicBlocks = std.ArrayListUnmanaged(*const llvm.BasicBlock);
const BreakValues = std.ArrayListUnmanaged(*const llvm.Value);
fn deinit(self: *FuncGen) void {
self.builder.dispose();
self.func_inst_table.deinit(self.gpa);
self.gpa.free(self.args);
self.blocks.deinit(self.gpa);
}
fn todo(self: *FuncGen, comptime format: []const u8, args: anytype) error{ OutOfMemory, CodegenFail } {
@setCold(true);
return self.dg.todo(format, args);
}
fn llvmModule(self: *FuncGen) *const llvm.Module {
return self.dg.object.llvm_module;
}
fn resolveInst(self: *FuncGen, inst: Air.Inst.Ref) !*const llvm.Value {
if (self.air.value(inst)) |val| {
return self.dg.genTypedValue(.{ .ty = self.air.typeOf(inst), .val = val }, self);
}
const inst_index = Air.refToIndex(inst).?;
if (self.func_inst_table.get(inst_index)) |value| return value;
return self.todo("implement global llvm values (or the value is not in the func_inst_table table)", .{});
}
fn genBody(self: *FuncGen, body: []const Air.Inst.Index) error{ OutOfMemory, CodegenFail }!void {
const air_tags = self.air.instructions.items(.tag);
for (body) |inst| {
const opt_value: ?*const llvm.Value = switch (air_tags[inst]) {
.add => try self.airAdd(inst),
.sub => try self.airSub(inst),
.cmp_eq => try self.airCmp(inst, .eq),
.cmp_gt => try self.airCmp(inst, .gt),
.cmp_gte => try self.airCmp(inst, .gte),
.cmp_lt => try self.airCmp(inst, .lt),
.cmp_lte => try self.airCmp(inst, .lte),
.cmp_neq => try self.airCmp(inst, .neq),
.is_non_null => try self.airIsNonNull(inst, false),
.is_non_null_ptr => try self.airIsNonNull(inst, true),
.is_null => try self.airIsNull(inst, false),
.is_null_ptr => try self.airIsNull(inst, true),
.alloc => try self.airAlloc(inst),
.arg => try self.airArg(inst),
.bitcast => try self.airBitCast(inst),
.block => try self.airBlock(inst),
.br => try self.airBr(inst),
.breakpoint => try self.airBreakpoint(inst),
.call => try self.airCall(inst),
.cond_br => try self.airCondBr(inst),
.intcast => try self.airIntCast(inst),
.ptrtoint => try self.airPtrToInt(inst),
.load => try self.airLoad(inst),
.loop => try self.airLoop(inst),
.not => try self.airNot(inst),
.ret => try self.airRet(inst),
.store => try self.airStore(inst),
.unreach => self.airUnreach(inst),
.optional_payload => try self.airOptionalPayload(inst, false),
.optional_payload_ptr => try self.airOptionalPayload(inst, true),
.assembly => try self.airAssembly(inst),
.dbg_stmt => blk: {
// TODO: implement debug info
break :blk null;
},
else => |tag| return self.todo("implement AIR instruction: {}", .{tag}),
};
if (opt_value) |val| try self.func_inst_table.putNoClobber(self.gpa, inst, val);
}
}
fn airCall(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const extra = self.air.extraData(Air.Call, pl_op.payload);
const args = @bitCast([]const Air.Inst.Ref, self.air.extra[extra.end..][0..extra.data.args_len]);
if (self.air.value(pl_op.operand)) |func_value| {
const fn_decl = if (func_value.castTag(.extern_fn)) |extern_fn|
extern_fn.data
else if (func_value.castTag(.function)) |func_payload|
func_payload.data.owner_decl
else
unreachable;
assert(fn_decl.has_tv);
const zig_fn_type = fn_decl.ty;
const llvm_fn = try self.dg.resolveLLVMFunction(fn_decl);
const llvm_param_vals = try self.gpa.alloc(*const llvm.Value, args.len);
defer self.gpa.free(llvm_param_vals);
for (args) |arg, i| {
llvm_param_vals[i] = try self.resolveInst(arg);
}
// TODO: LLVMBuildCall2 handles opaque function pointers, according to llvm docs
// Do we need that?
const call = self.builder.buildCall(
llvm_fn,
llvm_param_vals.ptr,
@intCast(c_uint, args.len),
"",
);
const return_type = zig_fn_type.fnReturnType();
if (return_type.tag() == .noreturn) {
_ = self.builder.buildUnreachable();
}
// No need to store the LLVM value if the return type is void or noreturn
if (!return_type.hasCodeGenBits()) return null;
return call;
} else {
return self.todo("implement calling runtime known function pointer", .{});
}
}
fn airRet(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const un_op = self.air.instructions.items(.data)[inst].un_op;
if (!self.air.typeOf(un_op).hasCodeGenBits()) {
_ = self.builder.buildRetVoid();
return null;
}
const operand = try self.resolveInst(un_op);
_ = self.builder.buildRet(operand);
return null;
}
fn airCmp(self: *FuncGen, inst: Air.Inst.Index, op: math.CompareOperator) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs = try self.resolveInst(bin_op.lhs);
const rhs = try self.resolveInst(bin_op.rhs);
const inst_ty = self.air.typeOfIndex(inst);
if (!inst_ty.isInt())
if (inst_ty.tag() != .bool)
return self.todo("implement 'airCmp' for type {}", .{inst_ty});
const is_signed = inst_ty.isSignedInt();
const operation = switch (op) {
.eq => .EQ,
.neq => .NE,
.lt => @as(llvm.IntPredicate, if (is_signed) .SLT else .ULT),
.lte => @as(llvm.IntPredicate, if (is_signed) .SLE else .ULE),
.gt => @as(llvm.IntPredicate, if (is_signed) .SGT else .UGT),
.gte => @as(llvm.IntPredicate, if (is_signed) .SGE else .UGE),
};
return self.builder.buildICmp(operation, lhs, rhs, "");
}
fn airBlock(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.Block, ty_pl.payload);
const body = self.air.extra[extra.end..][0..extra.data.body_len];
const parent_bb = self.context.createBasicBlock("Block");
// 5 breaks to a block seems like a reasonable default.
var break_bbs = try BreakBasicBlocks.initCapacity(self.gpa, 5);
var break_vals = try BreakValues.initCapacity(self.gpa, 5);
try self.blocks.putNoClobber(self.gpa, inst, .{
.parent_bb = parent_bb,
.break_bbs = &break_bbs,
.break_vals = &break_vals,
});
defer {
assert(self.blocks.remove(inst));
break_bbs.deinit(self.gpa);
break_vals.deinit(self.gpa);
}
try self.genBody(body);
self.llvm_func.appendExistingBasicBlock(parent_bb);
self.builder.positionBuilderAtEnd(parent_bb);
// If the block does not return a value, we dont have to create a phi node.
const inst_ty = self.air.typeOfIndex(inst);
if (!inst_ty.hasCodeGenBits()) return null;
const phi_node = self.builder.buildPhi(try self.dg.llvmType(inst_ty), "");
phi_node.addIncoming(
break_vals.items.ptr,
break_bbs.items.ptr,
@intCast(c_uint, break_vals.items.len),
);
return phi_node;
}
fn airBr(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const branch = self.air.instructions.items(.data)[inst].br;
const block = self.blocks.get(branch.block_inst).?;
// If the break doesn't break a value, then we don't have to add
// the values to the lists.
if (self.air.typeOf(branch.operand).hasCodeGenBits()) {
const val = try self.resolveInst(branch.operand);
// For the phi node, we need the basic blocks and the values of the
// break instructions.
try block.break_bbs.append(self.gpa, self.builder.getInsertBlock());
try block.break_vals.append(self.gpa, val);
}
_ = self.builder.buildBr(block.parent_bb);
return null;
}
fn airCondBr(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const cond = try self.resolveInst(pl_op.operand);
const extra = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body = self.air.extra[extra.end..][0..extra.data.then_body_len];
const else_body = self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len];
const then_block = self.context.appendBasicBlock(self.llvm_func, "Then");
const else_block = self.context.appendBasicBlock(self.llvm_func, "Else");
{
const prev_block = self.builder.getInsertBlock();
defer self.builder.positionBuilderAtEnd(prev_block);
self.builder.positionBuilderAtEnd(then_block);
try self.genBody(then_body);
self.builder.positionBuilderAtEnd(else_block);
try self.genBody(else_body);
}
_ = self.builder.buildCondBr(cond, then_block, else_block);
return null;
}
fn airLoop(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body = self.air.extra[loop.end..][0..loop.data.body_len];
const loop_block = self.context.appendBasicBlock(self.llvm_func, "Loop");
_ = self.builder.buildBr(loop_block);
self.builder.positionBuilderAtEnd(loop_block);
try self.genBody(body);
_ = self.builder.buildBr(loop_block);
return null;
}
fn airNot(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand = try self.resolveInst(ty_op.operand);
return self.builder.buildNot(operand, "");
}
fn airUnreach(self: *FuncGen, inst: Air.Inst.Index) ?*const llvm.Value {
_ = inst;
_ = self.builder.buildUnreachable();
return null;
}
fn airAssembly(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
// Eventually, the Zig compiler needs to be reworked to have inline assembly go
// through the same parsing code regardless of backend, and have LLVM-flavored
// inline assembly be *output* from that assembler.
// We don't have such an assembler implemented yet though. For now, this
// implementation feeds the inline assembly code directly to LLVM, same
// as stage1.
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const air_asm = self.air.extraData(Air.Asm, ty_pl.payload);
const zir = self.dg.decl.namespace.file_scope.zir;
const extended = zir.instructions.items(.data)[air_asm.data.zir_index].extended;
const zir_extra = zir.extraData(Zir.Inst.Asm, extended.operand);
const asm_source = zir.nullTerminatedString(zir_extra.data.asm_source);
const outputs_len = @truncate(u5, extended.small);
const args_len = @truncate(u5, extended.small >> 5);
const clobbers_len = @truncate(u5, extended.small >> 10);
const is_volatile = @truncate(u1, extended.small >> 15) != 0;
const outputs = @bitCast([]const Air.Inst.Ref, self.air.extra[air_asm.end..][0..outputs_len]);
const args = @bitCast([]const Air.Inst.Ref, self.air.extra[air_asm.end + outputs.len ..][0..args_len]);
if (outputs_len > 1) {
return self.todo("implement llvm codegen for asm with more than 1 output", .{});
}
var extra_i: usize = zir_extra.end;
const output_constraint: ?[]const u8 = out: {
var i: usize = 0;
while (i < outputs_len) : (i += 1) {
const output = zir.extraData(Zir.Inst.Asm.Output, extra_i);
extra_i = output.end;
break :out zir.nullTerminatedString(output.data.constraint);
}
break :out null;
};
if (!is_volatile and self.liveness.isUnused(inst)) {
return null;
}
var llvm_constraints: std.ArrayListUnmanaged(u8) = .{};
defer llvm_constraints.deinit(self.gpa);
var arena_allocator = std.heap.ArenaAllocator.init(self.gpa);
defer arena_allocator.deinit();
const arena = &arena_allocator.allocator;
const llvm_params_len = args.len + @boolToInt(output_constraint != null);
const llvm_param_types = try arena.alloc(*const llvm.Type, llvm_params_len);
const llvm_param_values = try arena.alloc(*const llvm.Value, llvm_params_len);
var llvm_param_i: usize = 0;
var total_i: usize = 0;
if (output_constraint) |constraint| {
try llvm_constraints.ensureUnusedCapacity(self.gpa, constraint.len + 1);
if (total_i != 0) {
llvm_constraints.appendAssumeCapacity(',');
}
llvm_constraints.appendSliceAssumeCapacity(constraint);
total_i += 1;
}
for (args) |arg| {
const input = zir.extraData(Zir.Inst.Asm.Input, extra_i);
extra_i = input.end;
const constraint = zir.nullTerminatedString(input.data.constraint);
const arg_llvm_value = try self.resolveInst(arg);
llvm_param_values[llvm_param_i] = arg_llvm_value;
llvm_param_types[llvm_param_i] = arg_llvm_value.typeOf();
try llvm_constraints.ensureUnusedCapacity(self.gpa, constraint.len + 1);
if (total_i != 0) {
llvm_constraints.appendAssumeCapacity(',');
}
llvm_constraints.appendSliceAssumeCapacity(constraint);
llvm_param_i += 1;
total_i += 1;
}
const clobbers = zir.extra[extra_i..][0..clobbers_len];
for (clobbers) |clobber_index| {
const clobber = zir.nullTerminatedString(clobber_index);
try llvm_constraints.ensureUnusedCapacity(self.gpa, clobber.len + 4);
if (total_i != 0) {
llvm_constraints.appendAssumeCapacity(',');
}
llvm_constraints.appendSliceAssumeCapacity("~{");
llvm_constraints.appendSliceAssumeCapacity(clobber);
llvm_constraints.appendSliceAssumeCapacity("}");
total_i += 1;
}
const ret_ty = self.air.typeOfIndex(inst);
const ret_llvm_ty = try self.dg.llvmType(ret_ty);
const llvm_fn_ty = llvm.functionType(
ret_llvm_ty,
llvm_param_types.ptr,
@intCast(c_uint, llvm_param_types.len),
.False,
);
const asm_fn = llvm.getInlineAsm(
llvm_fn_ty,
asm_source.ptr,
asm_source.len,
llvm_constraints.items.ptr,
llvm_constraints.items.len,
llvm.Bool.fromBool(is_volatile),
.False,
.ATT,
);
return self.builder.buildCall(
asm_fn,
llvm_param_values.ptr,
@intCast(c_uint, llvm_param_values.len),
"",
);
}
fn airIsNonNull(self: *FuncGen, inst: Air.Inst.Index, operand_is_ptr: bool) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const un_op = self.air.instructions.items(.data)[inst].un_op;
const operand = try self.resolveInst(un_op);
if (operand_is_ptr) {
const index_type = self.context.intType(32);
var indices: [2]*const llvm.Value = .{
index_type.constNull(),
index_type.constInt(1, .False),
};
return self.builder.buildLoad(self.builder.buildInBoundsGEP(operand, &indices, 2, ""), "");
} else {
return self.builder.buildExtractValue(operand, 1, "");
}
}
fn airIsNull(self: *FuncGen, inst: Air.Inst.Index, operand_is_ptr: bool) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
return self.builder.buildNot((try self.airIsNonNull(inst, operand_is_ptr)).?, "");
}
fn airOptionalPayload(
self: *FuncGen,
inst: Air.Inst.Index,
operand_is_ptr: bool,
) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand = try self.resolveInst(ty_op.operand);
if (operand_is_ptr) {
const index_type = self.context.intType(32);
var indices: [2]*const llvm.Value = .{
index_type.constNull(),
index_type.constNull(),
};
return self.builder.buildInBoundsGEP(operand, &indices, 2, "");
} else {
return self.builder.buildExtractValue(operand, 0, "");
}
}
fn airAdd(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs = try self.resolveInst(bin_op.lhs);
const rhs = try self.resolveInst(bin_op.rhs);
const inst_ty = self.air.typeOfIndex(inst);
if (!inst_ty.isInt())
return self.todo("implement 'airAdd' for type {}", .{inst_ty});
return if (inst_ty.isSignedInt())
self.builder.buildNSWAdd(lhs, rhs, "")
else
self.builder.buildNUWAdd(lhs, rhs, "");
}
fn airSub(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs = try self.resolveInst(bin_op.lhs);
const rhs = try self.resolveInst(bin_op.rhs);
const inst_ty = self.air.typeOfIndex(inst);
if (!inst_ty.isInt())
return self.todo("implement 'airSub' for type {}", .{inst_ty});
return if (inst_ty.isSignedInt())
self.builder.buildNSWSub(lhs, rhs, "")
else
self.builder.buildNUWSub(lhs, rhs, "");
}
fn airIntCast(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand = try self.resolveInst(ty_op.operand);
const inst_ty = self.air.typeOfIndex(inst);
const signed = inst_ty.isSignedInt();
// TODO: Should we use intcast here or just a simple bitcast?
// LLVM does truncation vs bitcast (+signed extension) in the intcast depending on the sizes
return self.builder.buildIntCast2(operand, try self.dg.llvmType(inst_ty), llvm.Bool.fromBool(signed), "");
}
fn airPtrToInt(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const un_op = self.air.instructions.items(.data)[inst].un_op;
const operand = try self.resolveInst(un_op);
const dest_llvm_ty = try self.dg.llvmType(self.air.typeOfIndex(inst));
return self.builder.buildPtrToInt(operand, dest_llvm_ty, "");
}
fn airBitCast(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand = try self.resolveInst(ty_op.operand);
const inst_ty = self.air.typeOfIndex(inst);
const dest_type = try self.dg.llvmType(inst_ty);
return self.builder.buildBitCast(operand, dest_type, "");
}
fn airArg(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const arg_val = self.args[self.arg_index];
self.arg_index += 1;
const inst_ty = self.air.typeOfIndex(inst);
const ptr_val = self.buildAlloca(try self.dg.llvmType(inst_ty));
_ = self.builder.buildStore(arg_val, ptr_val);
return self.builder.buildLoad(ptr_val, "");
}
fn airAlloc(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
if (self.liveness.isUnused(inst))
return null;
// buildAlloca expects the pointee type, not the pointer type, so assert that
// a Payload.PointerSimple is passed to the alloc instruction.
const inst_ty = self.air.typeOfIndex(inst);
const pointee_type = inst_ty.castPointer().?.data;
// TODO: figure out a way to get the name of the var decl.
// TODO: set alignment and volatile
return self.buildAlloca(try self.dg.llvmType(pointee_type));
}
/// Use this instead of builder.buildAlloca, because this function makes sure to
/// put the alloca instruction at the top of the function!
fn buildAlloca(self: *FuncGen, t: *const llvm.Type) *const llvm.Value {
const prev_block = self.builder.getInsertBlock();
defer self.builder.positionBuilderAtEnd(prev_block);
if (self.latest_alloca_inst) |latest_alloc| {
// builder.positionBuilder adds it before the instruction,
// but we want to put it after the last alloca instruction.
self.builder.positionBuilder(self.entry_block, latest_alloc.getNextInstruction().?);
} else {
// There might have been other instructions emitted before the
// first alloca has been generated. However the alloca should still
// be first in the function.
if (self.entry_block.getFirstInstruction()) |first_inst| {
self.builder.positionBuilder(self.entry_block, first_inst);
}
}
const val = self.builder.buildAlloca(t, "");
self.latest_alloca_inst = val;
return val;
}
fn airStore(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const dest_ptr = try self.resolveInst(bin_op.lhs);
const src_operand = try self.resolveInst(bin_op.rhs);
// TODO set volatile on this store properly
_ = self.builder.buildStore(src_operand, dest_ptr);
return null;
}
fn airLoad(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const is_volatile = self.air.typeOf(ty_op.operand).isVolatilePtr();
if (!is_volatile and self.liveness.isUnused(inst))
return null;
const ptr = try self.resolveInst(ty_op.operand);
// TODO set volatile on this load properly
return self.builder.buildLoad(ptr, "");
}
fn airBreakpoint(self: *FuncGen, inst: Air.Inst.Index) !?*const llvm.Value {
_ = inst;
const llvn_fn = self.getIntrinsic("llvm.debugtrap");
_ = self.builder.buildCall(llvn_fn, undefined, 0, "");
return null;
}
fn getIntrinsic(self: *FuncGen, name: []const u8) *const llvm.Value {
const id = llvm.lookupIntrinsicID(name.ptr, name.len);
assert(id != 0);
// TODO: add support for overload intrinsics by passing the prefix of the intrinsic
// to `lookupIntrinsicID` and then passing the correct types to
// `getIntrinsicDeclaration`
return self.llvmModule().getIntrinsicDeclaration(id, null, 0);
}
};