zig/lib/std/debug/Dwarf.zig

2374 lines
88 KiB
Zig

//! Implements parsing, decoding, and caching of DWARF information.
//!
//! This API does not assume the current executable is itself the thing being
//! debugged, however, it does assume the debug info has the same CPU
//! architecture and OS as the current executable. It is planned to remove this
//! limitation.
//!
//! For unopinionated types and bits, see `std.dwarf`.
const builtin = @import("builtin");
const native_endian = builtin.cpu.arch.endian();
const std = @import("../std.zig");
const Allocator = std.mem.Allocator;
const elf = std.elf;
const mem = std.mem;
const DW = std.dwarf;
const AT = DW.AT;
const EH = DW.EH;
const FORM = DW.FORM;
const Format = DW.Format;
const RLE = DW.RLE;
const UT = DW.UT;
const assert = std.debug.assert;
const cast = std.math.cast;
const maxInt = std.math.maxInt;
const MemoryAccessor = std.debug.MemoryAccessor;
const Path = std.Build.Cache.Path;
const FixedBufferReader = std.debug.FixedBufferReader;
const Dwarf = @This();
pub const expression = @import("Dwarf/expression.zig");
pub const abi = @import("Dwarf/abi.zig");
pub const call_frame = @import("Dwarf/call_frame.zig");
endian: std.builtin.Endian,
sections: SectionArray = null_section_array,
is_macho: bool,
compile_units_sorted: bool,
// Filled later by the initializer
abbrev_table_list: std.ArrayListUnmanaged(Abbrev.Table) = .{},
compile_unit_list: std.ArrayListUnmanaged(CompileUnit) = .{},
func_list: std.ArrayListUnmanaged(Func) = .{},
eh_frame_hdr: ?ExceptionFrameHeader = null,
// These lookup tables are only used if `eh_frame_hdr` is null
cie_map: std.AutoArrayHashMapUnmanaged(u64, CommonInformationEntry) = .{},
// Sorted by start_pc
fde_list: std.ArrayListUnmanaged(FrameDescriptionEntry) = .{},
pub const Section = struct {
data: []const u8,
// Module-relative virtual address.
// Only set if the section data was loaded from disk.
virtual_address: ?usize = null,
// If `data` is owned by this Dwarf.
owned: bool,
pub const Id = enum {
debug_info,
debug_abbrev,
debug_str,
debug_str_offsets,
debug_line,
debug_line_str,
debug_ranges,
debug_loclists,
debug_rnglists,
debug_addr,
debug_names,
debug_frame,
eh_frame,
eh_frame_hdr,
};
// For sections that are not memory mapped by the loader, this is an offset
// from `data.ptr` to where the section would have been mapped. Otherwise,
// `data` is directly backed by the section and the offset is zero.
pub fn virtualOffset(self: Section, base_address: usize) i64 {
return if (self.virtual_address) |va|
@as(i64, @intCast(base_address + va)) -
@as(i64, @intCast(@intFromPtr(self.data.ptr)))
else
0;
}
};
pub const Abbrev = struct {
code: u64,
tag_id: u64,
has_children: bool,
attrs: []Attr,
fn deinit(abbrev: *Abbrev, allocator: Allocator) void {
allocator.free(abbrev.attrs);
abbrev.* = undefined;
}
const Attr = struct {
id: u64,
form_id: u64,
/// Only valid if form_id is .implicit_const
payload: i64,
};
const Table = struct {
// offset from .debug_abbrev
offset: u64,
abbrevs: []Abbrev,
fn deinit(table: *Table, allocator: Allocator) void {
for (table.abbrevs) |*abbrev| {
abbrev.deinit(allocator);
}
allocator.free(table.abbrevs);
table.* = undefined;
}
fn get(table: *const Table, abbrev_code: u64) ?*const Abbrev {
return for (table.abbrevs) |*abbrev| {
if (abbrev.code == abbrev_code) break abbrev;
} else null;
}
};
};
pub const CompileUnit = struct {
version: u16,
format: Format,
die: Die,
pc_range: ?PcRange,
str_offsets_base: usize,
addr_base: usize,
rnglists_base: usize,
loclists_base: usize,
frame_base: ?*const FormValue,
src_loc_cache: ?SrcLocCache,
pub const SrcLocCache = struct {
line_table: LineTable,
directories: []const FileEntry,
files: []FileEntry,
version: u16,
pub const LineTable = std.AutoArrayHashMapUnmanaged(u64, LineEntry);
pub const LineEntry = struct {
line: u32,
column: u32,
/// Offset by 1 depending on whether Dwarf version is >= 5.
file: u32,
};
pub fn findSource(slc: *const SrcLocCache, address: u64) !LineEntry {
const index = std.sort.upperBound(u64, address, slc.line_table.keys(), {}, std.sort.asc(u64));
if (index == 0) return missing();
return slc.line_table.values()[index - 1];
}
};
};
pub const FormValue = union(enum) {
addr: u64,
addrx: usize,
block: []const u8,
udata: u64,
data16: *const [16]u8,
sdata: i64,
exprloc: []const u8,
flag: bool,
sec_offset: u64,
ref: u64,
ref_addr: u64,
string: [:0]const u8,
strp: u64,
strx: usize,
line_strp: u64,
loclistx: u64,
rnglistx: u64,
fn getString(fv: FormValue, di: Dwarf) ![:0]const u8 {
switch (fv) {
.string => |s| return s,
.strp => |off| return di.getString(off),
.line_strp => |off| return di.getLineString(off),
else => return bad(),
}
}
fn getUInt(fv: FormValue, comptime U: type) !U {
return switch (fv) {
inline .udata,
.sdata,
.sec_offset,
=> |c| cast(U, c) orelse bad(),
else => bad(),
};
}
};
pub const Die = struct {
tag_id: u64,
has_children: bool,
attrs: []Attr,
const Attr = struct {
id: u64,
value: FormValue,
};
fn deinit(self: *Die, allocator: Allocator) void {
allocator.free(self.attrs);
self.* = undefined;
}
fn getAttr(self: *const Die, id: u64) ?*const FormValue {
for (self.attrs) |*attr| {
if (attr.id == id) return &attr.value;
}
return null;
}
fn getAttrAddr(
self: *const Die,
di: *const Dwarf,
id: u64,
compile_unit: CompileUnit,
) error{ InvalidDebugInfo, MissingDebugInfo }!u64 {
const form_value = self.getAttr(id) orelse return error.MissingDebugInfo;
return switch (form_value.*) {
.addr => |value| value,
.addrx => |index| di.readDebugAddr(compile_unit, index),
else => error.InvalidDebugInfo,
};
}
fn getAttrSecOffset(self: *const Die, id: u64) !u64 {
const form_value = self.getAttr(id) orelse return error.MissingDebugInfo;
return form_value.getUInt(u64);
}
fn getAttrUnsignedLe(self: *const Die, id: u64) !u64 {
const form_value = self.getAttr(id) orelse return error.MissingDebugInfo;
return switch (form_value.*) {
.Const => |value| value.asUnsignedLe(),
else => error.InvalidDebugInfo,
};
}
fn getAttrRef(self: *const Die, id: u64) !u64 {
const form_value = self.getAttr(id) orelse return error.MissingDebugInfo;
return switch (form_value.*) {
.ref => |value| value,
else => error.InvalidDebugInfo,
};
}
pub fn getAttrString(
self: *const Die,
di: *Dwarf,
id: u64,
opt_str: ?[]const u8,
compile_unit: CompileUnit,
) error{ InvalidDebugInfo, MissingDebugInfo }![]const u8 {
const form_value = self.getAttr(id) orelse return error.MissingDebugInfo;
switch (form_value.*) {
.string => |value| return value,
.strp => |offset| return di.getString(offset),
.strx => |index| {
const debug_str_offsets = di.section(.debug_str_offsets) orelse return bad();
if (compile_unit.str_offsets_base == 0) return bad();
switch (compile_unit.format) {
.@"32" => {
const byte_offset = compile_unit.str_offsets_base + 4 * index;
if (byte_offset + 4 > debug_str_offsets.len) return bad();
const offset = mem.readInt(u32, debug_str_offsets[byte_offset..][0..4], di.endian);
return getStringGeneric(opt_str, offset);
},
.@"64" => {
const byte_offset = compile_unit.str_offsets_base + 8 * index;
if (byte_offset + 8 > debug_str_offsets.len) return bad();
const offset = mem.readInt(u64, debug_str_offsets[byte_offset..][0..8], di.endian);
return getStringGeneric(opt_str, offset);
},
}
},
.line_strp => |offset| return di.getLineString(offset),
else => return bad(),
}
}
};
/// This represents the decoded .eh_frame_hdr header
pub const ExceptionFrameHeader = struct {
eh_frame_ptr: usize,
table_enc: u8,
fde_count: usize,
entries: []const u8,
pub fn entrySize(table_enc: u8) !u8 {
return switch (table_enc & EH.PE.type_mask) {
EH.PE.udata2,
EH.PE.sdata2,
=> 4,
EH.PE.udata4,
EH.PE.sdata4,
=> 8,
EH.PE.udata8,
EH.PE.sdata8,
=> 16,
// This is a binary search table, so all entries must be the same length
else => return bad(),
};
}
fn isValidPtr(
self: ExceptionFrameHeader,
comptime T: type,
ptr: usize,
ma: *MemoryAccessor,
eh_frame_len: ?usize,
) bool {
if (eh_frame_len) |len| {
return ptr >= self.eh_frame_ptr and ptr <= self.eh_frame_ptr + len - @sizeOf(T);
} else {
return ma.load(T, ptr) != null;
}
}
/// Find an entry by binary searching the eh_frame_hdr section.
///
/// Since the length of the eh_frame section (`eh_frame_len`) may not be known by the caller,
/// MemoryAccessor will be used to verify readability of the header entries.
/// If `eh_frame_len` is provided, then these checks can be skipped.
pub fn findEntry(
self: ExceptionFrameHeader,
ma: *MemoryAccessor,
eh_frame_len: ?usize,
eh_frame_hdr_ptr: usize,
pc: usize,
cie: *CommonInformationEntry,
fde: *FrameDescriptionEntry,
) !void {
const entry_size = try entrySize(self.table_enc);
var left: usize = 0;
var len: usize = self.fde_count;
var fbr: FixedBufferReader = .{ .buf = self.entries, .endian = native_endian };
while (len > 1) {
const mid = left + len / 2;
fbr.pos = mid * entry_size;
const pc_begin = try readEhPointer(&fbr, self.table_enc, @sizeOf(usize), .{
.pc_rel_base = @intFromPtr(&self.entries[fbr.pos]),
.follow_indirect = true,
.data_rel_base = eh_frame_hdr_ptr,
}) orelse return bad();
if (pc < pc_begin) {
len /= 2;
} else {
left = mid;
if (pc == pc_begin) break;
len -= len / 2;
}
}
if (len == 0) return bad();
fbr.pos = left * entry_size;
// Read past the pc_begin field of the entry
_ = try readEhPointer(&fbr, self.table_enc, @sizeOf(usize), .{
.pc_rel_base = @intFromPtr(&self.entries[fbr.pos]),
.follow_indirect = true,
.data_rel_base = eh_frame_hdr_ptr,
}) orelse return bad();
const fde_ptr = cast(usize, try readEhPointer(&fbr, self.table_enc, @sizeOf(usize), .{
.pc_rel_base = @intFromPtr(&self.entries[fbr.pos]),
.follow_indirect = true,
.data_rel_base = eh_frame_hdr_ptr,
}) orelse return bad()) orelse return bad();
if (fde_ptr < self.eh_frame_ptr) return bad();
// Even if eh_frame_len is not specified, all ranges accssed are checked via MemoryAccessor
const eh_frame = @as([*]const u8, @ptrFromInt(self.eh_frame_ptr))[0 .. eh_frame_len orelse maxInt(u32)];
const fde_offset = fde_ptr - self.eh_frame_ptr;
var eh_frame_fbr: FixedBufferReader = .{
.buf = eh_frame,
.pos = fde_offset,
.endian = native_endian,
};
const fde_entry_header = try EntryHeader.read(&eh_frame_fbr, if (eh_frame_len == null) ma else null, .eh_frame);
if (!self.isValidPtr(u8, @intFromPtr(&fde_entry_header.entry_bytes[fde_entry_header.entry_bytes.len - 1]), ma, eh_frame_len)) return bad();
if (fde_entry_header.type != .fde) return bad();
// CIEs always come before FDEs (the offset is a subtraction), so we can assume this memory is readable
const cie_offset = fde_entry_header.type.fde;
try eh_frame_fbr.seekTo(cie_offset);
const cie_entry_header = try EntryHeader.read(&eh_frame_fbr, if (eh_frame_len == null) ma else null, .eh_frame);
if (!self.isValidPtr(u8, @intFromPtr(&cie_entry_header.entry_bytes[cie_entry_header.entry_bytes.len - 1]), ma, eh_frame_len)) return bad();
if (cie_entry_header.type != .cie) return bad();
cie.* = try CommonInformationEntry.parse(
cie_entry_header.entry_bytes,
0,
true,
cie_entry_header.format,
.eh_frame,
cie_entry_header.length_offset,
@sizeOf(usize),
native_endian,
);
fde.* = try FrameDescriptionEntry.parse(
fde_entry_header.entry_bytes,
0,
true,
cie.*,
@sizeOf(usize),
native_endian,
);
}
};
pub const EntryHeader = struct {
/// Offset of the length field in the backing buffer
length_offset: usize,
format: Format,
type: union(enum) {
cie,
/// Value is the offset of the corresponding CIE
fde: u64,
terminator,
},
/// The entry's contents, not including the ID field
entry_bytes: []const u8,
/// The length of the entry including the ID field, but not the length field itself
pub fn entryLength(self: EntryHeader) usize {
return self.entry_bytes.len + @as(u8, if (self.format == .@"64") 8 else 4);
}
/// Reads a header for either an FDE or a CIE, then advances the fbr to the position after the trailing structure.
/// `fbr` must be a FixedBufferReader backed by either the .eh_frame or .debug_frame sections.
pub fn read(
fbr: *FixedBufferReader,
opt_ma: ?*MemoryAccessor,
dwarf_section: Section.Id,
) !EntryHeader {
assert(dwarf_section == .eh_frame or dwarf_section == .debug_frame);
const length_offset = fbr.pos;
const unit_header = try readUnitHeader(fbr, opt_ma);
const unit_length = cast(usize, unit_header.unit_length) orelse return bad();
if (unit_length == 0) return .{
.length_offset = length_offset,
.format = unit_header.format,
.type = .terminator,
.entry_bytes = &.{},
};
const start_offset = fbr.pos;
const end_offset = start_offset + unit_length;
defer fbr.pos = end_offset;
const id = try if (opt_ma) |ma|
fbr.readAddressChecked(unit_header.format, ma)
else
fbr.readAddress(unit_header.format);
const entry_bytes = fbr.buf[fbr.pos..end_offset];
const cie_id: u64 = switch (dwarf_section) {
.eh_frame => CommonInformationEntry.eh_id,
.debug_frame => switch (unit_header.format) {
.@"32" => CommonInformationEntry.dwarf32_id,
.@"64" => CommonInformationEntry.dwarf64_id,
},
else => unreachable,
};
return .{
.length_offset = length_offset,
.format = unit_header.format,
.type = if (id == cie_id) .cie else .{ .fde = switch (dwarf_section) {
.eh_frame => try std.math.sub(u64, start_offset, id),
.debug_frame => id,
else => unreachable,
} },
.entry_bytes = entry_bytes,
};
}
};
pub const CommonInformationEntry = struct {
// Used in .eh_frame
pub const eh_id = 0;
// Used in .debug_frame (DWARF32)
pub const dwarf32_id = maxInt(u32);
// Used in .debug_frame (DWARF64)
pub const dwarf64_id = maxInt(u64);
// Offset of the length field of this entry in the eh_frame section.
// This is the key that FDEs use to reference CIEs.
length_offset: u64,
version: u8,
address_size: u8,
format: Format,
// Only present in version 4
segment_selector_size: ?u8,
code_alignment_factor: u32,
data_alignment_factor: i32,
return_address_register: u8,
aug_str: []const u8,
aug_data: []const u8,
lsda_pointer_enc: u8,
personality_enc: ?u8,
personality_routine_pointer: ?u64,
fde_pointer_enc: u8,
initial_instructions: []const u8,
pub fn isSignalFrame(self: CommonInformationEntry) bool {
for (self.aug_str) |c| if (c == 'S') return true;
return false;
}
pub fn addressesSignedWithBKey(self: CommonInformationEntry) bool {
for (self.aug_str) |c| if (c == 'B') return true;
return false;
}
pub fn mteTaggedFrame(self: CommonInformationEntry) bool {
for (self.aug_str) |c| if (c == 'G') return true;
return false;
}
/// This function expects to read the CIE starting with the version field.
/// The returned struct references memory backed by cie_bytes.
///
/// See the FrameDescriptionEntry.parse documentation for the description
/// of `pc_rel_offset` and `is_runtime`.
///
/// `length_offset` specifies the offset of this CIE's length field in the
/// .eh_frame / .debug_frame section.
pub fn parse(
cie_bytes: []const u8,
pc_rel_offset: i64,
is_runtime: bool,
format: Format,
dwarf_section: Section.Id,
length_offset: u64,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !CommonInformationEntry {
if (addr_size_bytes > 8) return error.UnsupportedAddrSize;
var fbr: FixedBufferReader = .{ .buf = cie_bytes, .endian = endian };
const version = try fbr.readByte();
switch (dwarf_section) {
.eh_frame => if (version != 1 and version != 3) return error.UnsupportedDwarfVersion,
.debug_frame => if (version != 4) return error.UnsupportedDwarfVersion,
else => return error.UnsupportedDwarfSection,
}
var has_eh_data = false;
var has_aug_data = false;
var aug_str_len: usize = 0;
const aug_str_start = fbr.pos;
var aug_byte = try fbr.readByte();
while (aug_byte != 0) : (aug_byte = try fbr.readByte()) {
switch (aug_byte) {
'z' => {
if (aug_str_len != 0) return bad();
has_aug_data = true;
},
'e' => {
if (has_aug_data or aug_str_len != 0) return bad();
if (try fbr.readByte() != 'h') return bad();
has_eh_data = true;
},
else => if (has_eh_data) return bad(),
}
aug_str_len += 1;
}
if (has_eh_data) {
// legacy data created by older versions of gcc - unsupported here
for (0..addr_size_bytes) |_| _ = try fbr.readByte();
}
const address_size = if (version == 4) try fbr.readByte() else addr_size_bytes;
const segment_selector_size = if (version == 4) try fbr.readByte() else null;
const code_alignment_factor = try fbr.readUleb128(u32);
const data_alignment_factor = try fbr.readIleb128(i32);
const return_address_register = if (version == 1) try fbr.readByte() else try fbr.readUleb128(u8);
var lsda_pointer_enc: u8 = EH.PE.omit;
var personality_enc: ?u8 = null;
var personality_routine_pointer: ?u64 = null;
var fde_pointer_enc: u8 = EH.PE.absptr;
var aug_data: []const u8 = &[_]u8{};
const aug_str = if (has_aug_data) blk: {
const aug_data_len = try fbr.readUleb128(usize);
const aug_data_start = fbr.pos;
aug_data = cie_bytes[aug_data_start..][0..aug_data_len];
const aug_str = cie_bytes[aug_str_start..][0..aug_str_len];
for (aug_str[1..]) |byte| {
switch (byte) {
'L' => {
lsda_pointer_enc = try fbr.readByte();
},
'P' => {
personality_enc = try fbr.readByte();
personality_routine_pointer = try readEhPointer(&fbr, personality_enc.?, addr_size_bytes, .{
.pc_rel_base = try pcRelBase(@intFromPtr(&cie_bytes[fbr.pos]), pc_rel_offset),
.follow_indirect = is_runtime,
});
},
'R' => {
fde_pointer_enc = try fbr.readByte();
},
'S', 'B', 'G' => {},
else => return bad(),
}
}
// aug_data_len can include padding so the CIE ends on an address boundary
fbr.pos = aug_data_start + aug_data_len;
break :blk aug_str;
} else &[_]u8{};
const initial_instructions = cie_bytes[fbr.pos..];
return .{
.length_offset = length_offset,
.version = version,
.address_size = address_size,
.format = format,
.segment_selector_size = segment_selector_size,
.code_alignment_factor = code_alignment_factor,
.data_alignment_factor = data_alignment_factor,
.return_address_register = return_address_register,
.aug_str = aug_str,
.aug_data = aug_data,
.lsda_pointer_enc = lsda_pointer_enc,
.personality_enc = personality_enc,
.personality_routine_pointer = personality_routine_pointer,
.fde_pointer_enc = fde_pointer_enc,
.initial_instructions = initial_instructions,
};
}
};
pub const FrameDescriptionEntry = struct {
// Offset into eh_frame where the CIE for this FDE is stored
cie_length_offset: u64,
pc_begin: u64,
pc_range: u64,
lsda_pointer: ?u64,
aug_data: []const u8,
instructions: []const u8,
/// This function expects to read the FDE starting at the PC Begin field.
/// The returned struct references memory backed by `fde_bytes`.
///
/// `pc_rel_offset` specifies an offset to be applied to pc_rel_base values
/// used when decoding pointers. This should be set to zero if fde_bytes is
/// backed by the memory of a .eh_frame / .debug_frame section in the running executable.
/// Otherwise, it should be the relative offset to translate addresses from
/// where the section is currently stored in memory, to where it *would* be
/// stored at runtime: section base addr - backing data base ptr.
///
/// Similarly, `is_runtime` specifies this function is being called on a runtime
/// section, and so indirect pointers can be followed.
pub fn parse(
fde_bytes: []const u8,
pc_rel_offset: i64,
is_runtime: bool,
cie: CommonInformationEntry,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !FrameDescriptionEntry {
if (addr_size_bytes > 8) return error.InvalidAddrSize;
var fbr: FixedBufferReader = .{ .buf = fde_bytes, .endian = endian };
const pc_begin = try readEhPointer(&fbr, cie.fde_pointer_enc, addr_size_bytes, .{
.pc_rel_base = try pcRelBase(@intFromPtr(&fde_bytes[fbr.pos]), pc_rel_offset),
.follow_indirect = is_runtime,
}) orelse return bad();
const pc_range = try readEhPointer(&fbr, cie.fde_pointer_enc, addr_size_bytes, .{
.pc_rel_base = 0,
.follow_indirect = false,
}) orelse return bad();
var aug_data: []const u8 = &[_]u8{};
const lsda_pointer = if (cie.aug_str.len > 0) blk: {
const aug_data_len = try fbr.readUleb128(usize);
const aug_data_start = fbr.pos;
aug_data = fde_bytes[aug_data_start..][0..aug_data_len];
const lsda_pointer = if (cie.lsda_pointer_enc != EH.PE.omit)
try readEhPointer(&fbr, cie.lsda_pointer_enc, addr_size_bytes, .{
.pc_rel_base = try pcRelBase(@intFromPtr(&fde_bytes[fbr.pos]), pc_rel_offset),
.follow_indirect = is_runtime,
})
else
null;
fbr.pos = aug_data_start + aug_data_len;
break :blk lsda_pointer;
} else null;
const instructions = fde_bytes[fbr.pos..];
return .{
.cie_length_offset = cie.length_offset,
.pc_begin = pc_begin,
.pc_range = pc_range,
.lsda_pointer = lsda_pointer,
.aug_data = aug_data,
.instructions = instructions,
};
}
};
const num_sections = std.enums.directEnumArrayLen(Section.Id, 0);
pub const SectionArray = [num_sections]?Section;
pub const null_section_array = [_]?Section{null} ** num_sections;
pub const OpenError = ScanError;
/// Initialize DWARF info. The caller has the responsibility to initialize most
/// the `Dwarf` fields before calling. `binary_mem` is the raw bytes of the
/// main binary file (not the secondary debug info file).
pub fn open(d: *Dwarf, gpa: Allocator) OpenError!void {
try d.scanAllFunctions(gpa);
try d.scanAllCompileUnits(gpa);
}
const PcRange = struct {
start: u64,
end: u64,
};
const Func = struct {
pc_range: ?PcRange,
name: ?[]const u8,
};
pub fn section(di: Dwarf, dwarf_section: Section.Id) ?[]const u8 {
return if (di.sections[@intFromEnum(dwarf_section)]) |s| s.data else null;
}
pub fn sectionVirtualOffset(di: Dwarf, dwarf_section: Section.Id, base_address: usize) ?i64 {
return if (di.sections[@intFromEnum(dwarf_section)]) |s| s.virtualOffset(base_address) else null;
}
pub fn deinit(di: *Dwarf, gpa: Allocator) void {
for (di.sections) |opt_section| {
if (opt_section) |s| if (s.owned) gpa.free(s.data);
}
for (di.abbrev_table_list.items) |*abbrev| {
abbrev.deinit(gpa);
}
di.abbrev_table_list.deinit(gpa);
for (di.compile_unit_list.items) |*cu| {
if (cu.src_loc_cache) |*slc| {
slc.line_table.deinit(gpa);
gpa.free(slc.directories);
gpa.free(slc.files);
}
cu.die.deinit(gpa);
}
di.compile_unit_list.deinit(gpa);
di.func_list.deinit(gpa);
di.cie_map.deinit(gpa);
di.fde_list.deinit(gpa);
di.* = undefined;
}
pub fn getSymbolName(di: *Dwarf, address: u64) ?[]const u8 {
for (di.func_list.items) |*func| {
if (func.pc_range) |range| {
if (address >= range.start and address < range.end) {
return func.name;
}
}
}
return null;
}
pub const ScanError = error{
InvalidDebugInfo,
MissingDebugInfo,
} || Allocator.Error || std.debug.FixedBufferReader.Error;
fn scanAllFunctions(di: *Dwarf, allocator: Allocator) ScanError!void {
var fbr: FixedBufferReader = .{ .buf = di.section(.debug_info).?, .endian = di.endian };
var this_unit_offset: u64 = 0;
while (this_unit_offset < fbr.buf.len) {
try fbr.seekTo(this_unit_offset);
const unit_header = try readUnitHeader(&fbr, null);
if (unit_header.unit_length == 0) return;
const next_offset = unit_header.header_length + unit_header.unit_length;
const version = try fbr.readInt(u16);
if (version < 2 or version > 5) return bad();
var address_size: u8 = undefined;
var debug_abbrev_offset: u64 = undefined;
if (version >= 5) {
const unit_type = try fbr.readInt(u8);
if (unit_type != DW.UT.compile) return bad();
address_size = try fbr.readByte();
debug_abbrev_offset = try fbr.readAddress(unit_header.format);
} else {
debug_abbrev_offset = try fbr.readAddress(unit_header.format);
address_size = try fbr.readByte();
}
if (address_size != @sizeOf(usize)) return bad();
const abbrev_table = try di.getAbbrevTable(allocator, debug_abbrev_offset);
var max_attrs: usize = 0;
var zig_padding_abbrev_code: u7 = 0;
for (abbrev_table.abbrevs) |abbrev| {
max_attrs = @max(max_attrs, abbrev.attrs.len);
if (cast(u7, abbrev.code)) |code| {
if (abbrev.tag_id == DW.TAG.ZIG_padding and
!abbrev.has_children and
abbrev.attrs.len == 0)
{
zig_padding_abbrev_code = code;
}
}
}
const attrs_buf = try allocator.alloc(Die.Attr, max_attrs * 3);
defer allocator.free(attrs_buf);
var attrs_bufs: [3][]Die.Attr = undefined;
for (&attrs_bufs, 0..) |*buf, index| buf.* = attrs_buf[index * max_attrs ..][0..max_attrs];
const next_unit_pos = this_unit_offset + next_offset;
var compile_unit: CompileUnit = .{
.version = version,
.format = unit_header.format,
.die = undefined,
.pc_range = null,
.str_offsets_base = 0,
.addr_base = 0,
.rnglists_base = 0,
.loclists_base = 0,
.frame_base = null,
.src_loc_cache = null,
};
while (true) {
fbr.pos = std.mem.indexOfNonePos(u8, fbr.buf, fbr.pos, &.{
zig_padding_abbrev_code, 0,
}) orelse fbr.buf.len;
if (fbr.pos >= next_unit_pos) break;
var die_obj = (try parseDie(
&fbr,
attrs_bufs[0],
abbrev_table,
unit_header.format,
)) orelse continue;
switch (die_obj.tag_id) {
DW.TAG.compile_unit => {
compile_unit.die = die_obj;
compile_unit.die.attrs = attrs_bufs[1][0..die_obj.attrs.len];
@memcpy(compile_unit.die.attrs, die_obj.attrs);
compile_unit.str_offsets_base = if (die_obj.getAttr(AT.str_offsets_base)) |fv| try fv.getUInt(usize) else 0;
compile_unit.addr_base = if (die_obj.getAttr(AT.addr_base)) |fv| try fv.getUInt(usize) else 0;
compile_unit.rnglists_base = if (die_obj.getAttr(AT.rnglists_base)) |fv| try fv.getUInt(usize) else 0;
compile_unit.loclists_base = if (die_obj.getAttr(AT.loclists_base)) |fv| try fv.getUInt(usize) else 0;
compile_unit.frame_base = die_obj.getAttr(AT.frame_base);
},
DW.TAG.subprogram, DW.TAG.inlined_subroutine, DW.TAG.subroutine, DW.TAG.entry_point => {
const fn_name = x: {
var this_die_obj = die_obj;
// Prevent endless loops
for (0..3) |_| {
if (this_die_obj.getAttr(AT.name)) |_| {
break :x try this_die_obj.getAttrString(di, AT.name, di.section(.debug_str), compile_unit);
} else if (this_die_obj.getAttr(AT.abstract_origin)) |_| {
const after_die_offset = fbr.pos;
defer fbr.pos = after_die_offset;
// Follow the DIE it points to and repeat
const ref_offset = try this_die_obj.getAttrRef(AT.abstract_origin);
if (ref_offset > next_offset) return bad();
try fbr.seekTo(this_unit_offset + ref_offset);
this_die_obj = (try parseDie(
&fbr,
attrs_bufs[2],
abbrev_table,
unit_header.format,
)) orelse return bad();
} else if (this_die_obj.getAttr(AT.specification)) |_| {
const after_die_offset = fbr.pos;
defer fbr.pos = after_die_offset;
// Follow the DIE it points to and repeat
const ref_offset = try this_die_obj.getAttrRef(AT.specification);
if (ref_offset > next_offset) return bad();
try fbr.seekTo(this_unit_offset + ref_offset);
this_die_obj = (try parseDie(
&fbr,
attrs_bufs[2],
abbrev_table,
unit_header.format,
)) orelse return bad();
} else {
break :x null;
}
}
break :x null;
};
var range_added = if (die_obj.getAttrAddr(di, AT.low_pc, compile_unit)) |low_pc| blk: {
if (die_obj.getAttr(AT.high_pc)) |high_pc_value| {
const pc_end = switch (high_pc_value.*) {
.addr => |value| value,
.udata => |offset| low_pc + offset,
else => return bad(),
};
try di.func_list.append(allocator, .{
.name = fn_name,
.pc_range = .{
.start = low_pc,
.end = pc_end,
},
});
break :blk true;
}
break :blk false;
} else |err| blk: {
if (err != error.MissingDebugInfo) return err;
break :blk false;
};
if (die_obj.getAttr(AT.ranges)) |ranges_value| blk: {
var iter = DebugRangeIterator.init(ranges_value, di, &compile_unit) catch |err| {
if (err != error.MissingDebugInfo) return err;
break :blk;
};
while (try iter.next()) |range| {
range_added = true;
try di.func_list.append(allocator, .{
.name = fn_name,
.pc_range = .{
.start = range.start_addr,
.end = range.end_addr,
},
});
}
}
if (fn_name != null and !range_added) {
try di.func_list.append(allocator, .{
.name = fn_name,
.pc_range = null,
});
}
},
else => {},
}
}
this_unit_offset += next_offset;
}
}
fn scanAllCompileUnits(di: *Dwarf, allocator: Allocator) ScanError!void {
var fbr: FixedBufferReader = .{ .buf = di.section(.debug_info).?, .endian = di.endian };
var this_unit_offset: u64 = 0;
var attrs_buf = std.ArrayList(Die.Attr).init(allocator);
defer attrs_buf.deinit();
while (this_unit_offset < fbr.buf.len) {
try fbr.seekTo(this_unit_offset);
const unit_header = try readUnitHeader(&fbr, null);
if (unit_header.unit_length == 0) return;
const next_offset = unit_header.header_length + unit_header.unit_length;
const version = try fbr.readInt(u16);
if (version < 2 or version > 5) return bad();
var address_size: u8 = undefined;
var debug_abbrev_offset: u64 = undefined;
if (version >= 5) {
const unit_type = try fbr.readInt(u8);
if (unit_type != UT.compile) return bad();
address_size = try fbr.readByte();
debug_abbrev_offset = try fbr.readAddress(unit_header.format);
} else {
debug_abbrev_offset = try fbr.readAddress(unit_header.format);
address_size = try fbr.readByte();
}
if (address_size != @sizeOf(usize)) return bad();
const abbrev_table = try di.getAbbrevTable(allocator, debug_abbrev_offset);
var max_attrs: usize = 0;
for (abbrev_table.abbrevs) |abbrev| {
max_attrs = @max(max_attrs, abbrev.attrs.len);
}
try attrs_buf.resize(max_attrs);
var compile_unit_die = (try parseDie(
&fbr,
attrs_buf.items,
abbrev_table,
unit_header.format,
)) orelse return bad();
if (compile_unit_die.tag_id != DW.TAG.compile_unit) return bad();
compile_unit_die.attrs = try allocator.dupe(Die.Attr, compile_unit_die.attrs);
var compile_unit: CompileUnit = .{
.version = version,
.format = unit_header.format,
.pc_range = null,
.die = compile_unit_die,
.str_offsets_base = if (compile_unit_die.getAttr(AT.str_offsets_base)) |fv| try fv.getUInt(usize) else 0,
.addr_base = if (compile_unit_die.getAttr(AT.addr_base)) |fv| try fv.getUInt(usize) else 0,
.rnglists_base = if (compile_unit_die.getAttr(AT.rnglists_base)) |fv| try fv.getUInt(usize) else 0,
.loclists_base = if (compile_unit_die.getAttr(AT.loclists_base)) |fv| try fv.getUInt(usize) else 0,
.frame_base = compile_unit_die.getAttr(AT.frame_base),
.src_loc_cache = null,
};
compile_unit.pc_range = x: {
if (compile_unit_die.getAttrAddr(di, AT.low_pc, compile_unit)) |low_pc| {
if (compile_unit_die.getAttr(AT.high_pc)) |high_pc_value| {
const pc_end = switch (high_pc_value.*) {
.addr => |value| value,
.udata => |offset| low_pc + offset,
else => return bad(),
};
break :x PcRange{
.start = low_pc,
.end = pc_end,
};
} else {
break :x null;
}
} else |err| {
if (err != error.MissingDebugInfo) return err;
break :x null;
}
};
try di.compile_unit_list.append(allocator, compile_unit);
this_unit_offset += next_offset;
}
}
/// Populate missing PC ranges in compilation units, and then sort them by start address.
/// Does not guarantee pc_range to be non-null because there could be missing debug info.
pub fn sortCompileUnits(d: *Dwarf) ScanError!void {
assert(!d.compile_units_sorted);
for (d.compile_unit_list.items) |*cu| {
if (cu.pc_range != null) continue;
const ranges_value = cu.die.getAttr(AT.ranges) orelse continue;
var iter = DebugRangeIterator.init(ranges_value, d, cu) catch continue;
var start: u64 = maxInt(u64);
var end: u64 = 0;
while (try iter.next()) |range| {
start = @min(start, range.start_addr);
end = @max(end, range.end_addr);
}
if (end != 0) cu.pc_range = .{
.start = start,
.end = end,
};
}
std.mem.sortUnstable(CompileUnit, d.compile_unit_list.items, {}, struct {
pub fn lessThan(ctx: void, a: CompileUnit, b: CompileUnit) bool {
_ = ctx;
const a_range = a.pc_range orelse return false;
const b_range = b.pc_range orelse return true;
return a_range.start < b_range.start;
}
}.lessThan);
d.compile_units_sorted = true;
}
const DebugRangeIterator = struct {
base_address: u64,
section_type: Section.Id,
di: *const Dwarf,
compile_unit: *const CompileUnit,
fbr: FixedBufferReader,
pub fn init(ranges_value: *const FormValue, di: *const Dwarf, compile_unit: *const CompileUnit) !@This() {
const section_type = if (compile_unit.version >= 5) Section.Id.debug_rnglists else Section.Id.debug_ranges;
const debug_ranges = di.section(section_type) orelse return error.MissingDebugInfo;
const ranges_offset = switch (ranges_value.*) {
.sec_offset, .udata => |off| off,
.rnglistx => |idx| off: {
switch (compile_unit.format) {
.@"32" => {
const offset_loc = @as(usize, @intCast(compile_unit.rnglists_base + 4 * idx));
if (offset_loc + 4 > debug_ranges.len) return bad();
const offset = mem.readInt(u32, debug_ranges[offset_loc..][0..4], di.endian);
break :off compile_unit.rnglists_base + offset;
},
.@"64" => {
const offset_loc = @as(usize, @intCast(compile_unit.rnglists_base + 8 * idx));
if (offset_loc + 8 > debug_ranges.len) return bad();
const offset = mem.readInt(u64, debug_ranges[offset_loc..][0..8], di.endian);
break :off compile_unit.rnglists_base + offset;
},
}
},
else => return bad(),
};
// All the addresses in the list are relative to the value
// specified by DW_AT.low_pc or to some other value encoded
// in the list itself.
// If no starting value is specified use zero.
const base_address = compile_unit.die.getAttrAddr(di, AT.low_pc, compile_unit.*) catch |err| switch (err) {
error.MissingDebugInfo => 0,
else => return err,
};
return .{
.base_address = base_address,
.section_type = section_type,
.di = di,
.compile_unit = compile_unit,
.fbr = .{
.buf = debug_ranges,
.pos = cast(usize, ranges_offset) orelse return bad(),
.endian = di.endian,
},
};
}
// Returns the next range in the list, or null if the end was reached.
pub fn next(self: *@This()) !?struct { start_addr: u64, end_addr: u64 } {
switch (self.section_type) {
.debug_rnglists => {
const kind = try self.fbr.readByte();
switch (kind) {
RLE.end_of_list => return null,
RLE.base_addressx => {
const index = try self.fbr.readUleb128(usize);
self.base_address = try self.di.readDebugAddr(self.compile_unit.*, index);
return try self.next();
},
RLE.startx_endx => {
const start_index = try self.fbr.readUleb128(usize);
const start_addr = try self.di.readDebugAddr(self.compile_unit.*, start_index);
const end_index = try self.fbr.readUleb128(usize);
const end_addr = try self.di.readDebugAddr(self.compile_unit.*, end_index);
return .{
.start_addr = start_addr,
.end_addr = end_addr,
};
},
RLE.startx_length => {
const start_index = try self.fbr.readUleb128(usize);
const start_addr = try self.di.readDebugAddr(self.compile_unit.*, start_index);
const len = try self.fbr.readUleb128(usize);
const end_addr = start_addr + len;
return .{
.start_addr = start_addr,
.end_addr = end_addr,
};
},
RLE.offset_pair => {
const start_addr = try self.fbr.readUleb128(usize);
const end_addr = try self.fbr.readUleb128(usize);
// This is the only kind that uses the base address
return .{
.start_addr = self.base_address + start_addr,
.end_addr = self.base_address + end_addr,
};
},
RLE.base_address => {
self.base_address = try self.fbr.readInt(usize);
return try self.next();
},
RLE.start_end => {
const start_addr = try self.fbr.readInt(usize);
const end_addr = try self.fbr.readInt(usize);
return .{
.start_addr = start_addr,
.end_addr = end_addr,
};
},
RLE.start_length => {
const start_addr = try self.fbr.readInt(usize);
const len = try self.fbr.readUleb128(usize);
const end_addr = start_addr + len;
return .{
.start_addr = start_addr,
.end_addr = end_addr,
};
},
else => return bad(),
}
},
.debug_ranges => {
const start_addr = try self.fbr.readInt(usize);
const end_addr = try self.fbr.readInt(usize);
if (start_addr == 0 and end_addr == 0) return null;
// This entry selects a new value for the base address
if (start_addr == maxInt(usize)) {
self.base_address = end_addr;
return try self.next();
}
return .{
.start_addr = self.base_address + start_addr,
.end_addr = self.base_address + end_addr,
};
},
else => unreachable,
}
}
};
/// TODO: change this to binary searching the sorted compile unit list
pub fn findCompileUnit(di: *const Dwarf, target_address: u64) !*CompileUnit {
for (di.compile_unit_list.items) |*compile_unit| {
if (compile_unit.pc_range) |range| {
if (target_address >= range.start and target_address < range.end) return compile_unit;
}
const ranges_value = compile_unit.die.getAttr(AT.ranges) orelse continue;
var iter = DebugRangeIterator.init(ranges_value, di, compile_unit) catch continue;
while (try iter.next()) |range| {
if (target_address >= range.start_addr and target_address < range.end_addr) return compile_unit;
}
}
return missing();
}
/// Gets an already existing AbbrevTable given the abbrev_offset, or if not found,
/// seeks in the stream and parses it.
fn getAbbrevTable(di: *Dwarf, allocator: Allocator, abbrev_offset: u64) !*const Abbrev.Table {
for (di.abbrev_table_list.items) |*table| {
if (table.offset == abbrev_offset) {
return table;
}
}
try di.abbrev_table_list.append(
allocator,
try di.parseAbbrevTable(allocator, abbrev_offset),
);
return &di.abbrev_table_list.items[di.abbrev_table_list.items.len - 1];
}
fn parseAbbrevTable(di: *Dwarf, allocator: Allocator, offset: u64) !Abbrev.Table {
var fbr: FixedBufferReader = .{
.buf = di.section(.debug_abbrev).?,
.pos = cast(usize, offset) orelse return bad(),
.endian = di.endian,
};
var abbrevs = std.ArrayList(Abbrev).init(allocator);
defer {
for (abbrevs.items) |*abbrev| {
abbrev.deinit(allocator);
}
abbrevs.deinit();
}
var attrs = std.ArrayList(Abbrev.Attr).init(allocator);
defer attrs.deinit();
while (true) {
const code = try fbr.readUleb128(u64);
if (code == 0) break;
const tag_id = try fbr.readUleb128(u64);
const has_children = (try fbr.readByte()) == DW.CHILDREN.yes;
while (true) {
const attr_id = try fbr.readUleb128(u64);
const form_id = try fbr.readUleb128(u64);
if (attr_id == 0 and form_id == 0) break;
try attrs.append(.{
.id = attr_id,
.form_id = form_id,
.payload = switch (form_id) {
FORM.implicit_const => try fbr.readIleb128(i64),
else => undefined,
},
});
}
try abbrevs.append(.{
.code = code,
.tag_id = tag_id,
.has_children = has_children,
.attrs = try attrs.toOwnedSlice(),
});
}
return .{
.offset = offset,
.abbrevs = try abbrevs.toOwnedSlice(),
};
}
fn parseDie(
fbr: *FixedBufferReader,
attrs_buf: []Die.Attr,
abbrev_table: *const Abbrev.Table,
format: Format,
) ScanError!?Die {
const abbrev_code = try fbr.readUleb128(u64);
if (abbrev_code == 0) return null;
const table_entry = abbrev_table.get(abbrev_code) orelse return bad();
const attrs = attrs_buf[0..table_entry.attrs.len];
for (attrs, table_entry.attrs) |*result_attr, attr| result_attr.* = Die.Attr{
.id = attr.id,
.value = try parseFormValue(
fbr,
attr.form_id,
format,
attr.payload,
),
};
return .{
.tag_id = table_entry.tag_id,
.has_children = table_entry.has_children,
.attrs = attrs,
};
}
fn runLineNumberProgram(d: *Dwarf, gpa: Allocator, compile_unit: *CompileUnit) !CompileUnit.SrcLocCache {
const compile_unit_cwd = try compile_unit.die.getAttrString(d, AT.comp_dir, d.section(.debug_line_str), compile_unit.*);
const line_info_offset = try compile_unit.die.getAttrSecOffset(AT.stmt_list);
var fbr: FixedBufferReader = .{
.buf = d.section(.debug_line).?,
.endian = d.endian,
};
try fbr.seekTo(line_info_offset);
const unit_header = try readUnitHeader(&fbr, null);
if (unit_header.unit_length == 0) return missing();
const next_offset = unit_header.header_length + unit_header.unit_length;
const version = try fbr.readInt(u16);
if (version < 2) return bad();
const addr_size: u8, const seg_size: u8 = if (version >= 5) .{
try fbr.readByte(),
try fbr.readByte(),
} else .{
switch (unit_header.format) {
.@"32" => 4,
.@"64" => 8,
},
0,
};
_ = addr_size;
_ = seg_size;
const prologue_length = try fbr.readAddress(unit_header.format);
const prog_start_offset = fbr.pos + prologue_length;
const minimum_instruction_length = try fbr.readByte();
if (minimum_instruction_length == 0) return bad();
if (version >= 4) {
const maximum_operations_per_instruction = try fbr.readByte();
_ = maximum_operations_per_instruction;
}
const default_is_stmt = (try fbr.readByte()) != 0;
const line_base = try fbr.readByteSigned();
const line_range = try fbr.readByte();
if (line_range == 0) return bad();
const opcode_base = try fbr.readByte();
const standard_opcode_lengths = try fbr.readBytes(opcode_base - 1);
var directories: std.ArrayListUnmanaged(FileEntry) = .{};
defer directories.deinit(gpa);
var file_entries: std.ArrayListUnmanaged(FileEntry) = .{};
defer file_entries.deinit(gpa);
if (version < 5) {
try directories.append(gpa, .{ .path = compile_unit_cwd });
while (true) {
const dir = try fbr.readBytesTo(0);
if (dir.len == 0) break;
try directories.append(gpa, .{ .path = dir });
}
while (true) {
const file_name = try fbr.readBytesTo(0);
if (file_name.len == 0) break;
const dir_index = try fbr.readUleb128(u32);
const mtime = try fbr.readUleb128(u64);
const size = try fbr.readUleb128(u64);
try file_entries.append(gpa, .{
.path = file_name,
.dir_index = dir_index,
.mtime = mtime,
.size = size,
});
}
} else {
const FileEntFmt = struct {
content_type_code: u8,
form_code: u16,
};
{
var dir_ent_fmt_buf: [10]FileEntFmt = undefined;
const directory_entry_format_count = try fbr.readByte();
if (directory_entry_format_count > dir_ent_fmt_buf.len) return bad();
for (dir_ent_fmt_buf[0..directory_entry_format_count]) |*ent_fmt| {
ent_fmt.* = .{
.content_type_code = try fbr.readUleb128(u8),
.form_code = try fbr.readUleb128(u16),
};
}
const directories_count = try fbr.readUleb128(usize);
for (try directories.addManyAsSlice(gpa, directories_count)) |*e| {
e.* = .{ .path = &.{} };
for (dir_ent_fmt_buf[0..directory_entry_format_count]) |ent_fmt| {
const form_value = try parseFormValue(
&fbr,
ent_fmt.form_code,
unit_header.format,
null,
);
switch (ent_fmt.content_type_code) {
DW.LNCT.path => e.path = try form_value.getString(d.*),
DW.LNCT.directory_index => e.dir_index = try form_value.getUInt(u32),
DW.LNCT.timestamp => e.mtime = try form_value.getUInt(u64),
DW.LNCT.size => e.size = try form_value.getUInt(u64),
DW.LNCT.MD5 => e.md5 = switch (form_value) {
.data16 => |data16| data16.*,
else => return bad(),
},
else => continue,
}
}
}
}
var file_ent_fmt_buf: [10]FileEntFmt = undefined;
const file_name_entry_format_count = try fbr.readByte();
if (file_name_entry_format_count > file_ent_fmt_buf.len) return bad();
for (file_ent_fmt_buf[0..file_name_entry_format_count]) |*ent_fmt| {
ent_fmt.* = .{
.content_type_code = try fbr.readUleb128(u8),
.form_code = try fbr.readUleb128(u16),
};
}
const file_names_count = try fbr.readUleb128(usize);
try file_entries.ensureUnusedCapacity(gpa, file_names_count);
for (try file_entries.addManyAsSlice(gpa, file_names_count)) |*e| {
e.* = .{ .path = &.{} };
for (file_ent_fmt_buf[0..file_name_entry_format_count]) |ent_fmt| {
const form_value = try parseFormValue(
&fbr,
ent_fmt.form_code,
unit_header.format,
null,
);
switch (ent_fmt.content_type_code) {
DW.LNCT.path => e.path = try form_value.getString(d.*),
DW.LNCT.directory_index => e.dir_index = try form_value.getUInt(u32),
DW.LNCT.timestamp => e.mtime = try form_value.getUInt(u64),
DW.LNCT.size => e.size = try form_value.getUInt(u64),
DW.LNCT.MD5 => e.md5 = switch (form_value) {
.data16 => |data16| data16.*,
else => return bad(),
},
else => continue,
}
}
}
}
var prog = LineNumberProgram.init(default_is_stmt, version);
var line_table: CompileUnit.SrcLocCache.LineTable = .{};
errdefer line_table.deinit(gpa);
try fbr.seekTo(prog_start_offset);
const next_unit_pos = line_info_offset + next_offset;
while (fbr.pos < next_unit_pos) {
const opcode = try fbr.readByte();
if (opcode == DW.LNS.extended_op) {
const op_size = try fbr.readUleb128(u64);
if (op_size < 1) return bad();
const sub_op = try fbr.readByte();
switch (sub_op) {
DW.LNE.end_sequence => {
prog.end_sequence = true;
try prog.addRow(gpa, &line_table);
prog.reset();
},
DW.LNE.set_address => {
const addr = try fbr.readInt(usize);
prog.address = addr;
},
DW.LNE.define_file => {
const path = try fbr.readBytesTo(0);
const dir_index = try fbr.readUleb128(u32);
const mtime = try fbr.readUleb128(u64);
const size = try fbr.readUleb128(u64);
try file_entries.append(gpa, .{
.path = path,
.dir_index = dir_index,
.mtime = mtime,
.size = size,
});
},
else => try fbr.seekForward(op_size - 1),
}
} else if (opcode >= opcode_base) {
// special opcodes
const adjusted_opcode = opcode - opcode_base;
const inc_addr = minimum_instruction_length * (adjusted_opcode / line_range);
const inc_line = @as(i32, line_base) + @as(i32, adjusted_opcode % line_range);
prog.line += inc_line;
prog.address += inc_addr;
try prog.addRow(gpa, &line_table);
prog.basic_block = false;
} else {
switch (opcode) {
DW.LNS.copy => {
try prog.addRow(gpa, &line_table);
prog.basic_block = false;
},
DW.LNS.advance_pc => {
const arg = try fbr.readUleb128(usize);
prog.address += arg * minimum_instruction_length;
},
DW.LNS.advance_line => {
const arg = try fbr.readIleb128(i64);
prog.line += arg;
},
DW.LNS.set_file => {
const arg = try fbr.readUleb128(usize);
prog.file = arg;
},
DW.LNS.set_column => {
const arg = try fbr.readUleb128(u64);
prog.column = arg;
},
DW.LNS.negate_stmt => {
prog.is_stmt = !prog.is_stmt;
},
DW.LNS.set_basic_block => {
prog.basic_block = true;
},
DW.LNS.const_add_pc => {
const inc_addr = minimum_instruction_length * ((255 - opcode_base) / line_range);
prog.address += inc_addr;
},
DW.LNS.fixed_advance_pc => {
const arg = try fbr.readInt(u16);
prog.address += arg;
},
DW.LNS.set_prologue_end => {},
else => {
if (opcode - 1 >= standard_opcode_lengths.len) return bad();
try fbr.seekForward(standard_opcode_lengths[opcode - 1]);
},
}
}
}
return .{
.line_table = line_table,
.directories = try directories.toOwnedSlice(gpa),
.files = try file_entries.toOwnedSlice(gpa),
.version = version,
};
}
pub fn populateSrcLocCache(d: *Dwarf, gpa: Allocator, cu: *CompileUnit) ScanError!void {
if (cu.src_loc_cache != null) return;
cu.src_loc_cache = try runLineNumberProgram(d, gpa, cu);
}
pub fn getLineNumberInfo(
d: *Dwarf,
gpa: Allocator,
compile_unit: *CompileUnit,
target_address: u64,
) !std.debug.SourceLocation {
try populateSrcLocCache(d, gpa, compile_unit);
const slc = &compile_unit.src_loc_cache.?;
const entry = try slc.findSource(target_address);
const file_index = entry.file - @intFromBool(slc.version < 5);
if (file_index >= slc.files.len) return bad();
const file_entry = &slc.files[file_index];
if (file_entry.dir_index >= slc.directories.len) return bad();
const dir_name = slc.directories[file_entry.dir_index].path;
const file_name = try std.fs.path.join(gpa, &.{ dir_name, file_entry.path });
return .{
.line = entry.line,
.column = entry.column,
.file_name = file_name,
};
}
fn getString(di: Dwarf, offset: u64) ![:0]const u8 {
return getStringGeneric(di.section(.debug_str), offset);
}
fn getLineString(di: Dwarf, offset: u64) ![:0]const u8 {
return getStringGeneric(di.section(.debug_line_str), offset);
}
fn readDebugAddr(di: Dwarf, compile_unit: CompileUnit, index: u64) !u64 {
const debug_addr = di.section(.debug_addr) orelse return bad();
// addr_base points to the first item after the header, however we
// need to read the header to know the size of each item. Empirically,
// it may disagree with is_64 on the compile unit.
// The header is 8 or 12 bytes depending on is_64.
if (compile_unit.addr_base < 8) return bad();
const version = mem.readInt(u16, debug_addr[compile_unit.addr_base - 4 ..][0..2], di.endian);
if (version != 5) return bad();
const addr_size = debug_addr[compile_unit.addr_base - 2];
const seg_size = debug_addr[compile_unit.addr_base - 1];
const byte_offset = @as(usize, @intCast(compile_unit.addr_base + (addr_size + seg_size) * index));
if (byte_offset + addr_size > debug_addr.len) return bad();
return switch (addr_size) {
1 => debug_addr[byte_offset],
2 => mem.readInt(u16, debug_addr[byte_offset..][0..2], di.endian),
4 => mem.readInt(u32, debug_addr[byte_offset..][0..4], di.endian),
8 => mem.readInt(u64, debug_addr[byte_offset..][0..8], di.endian),
else => bad(),
};
}
/// If .eh_frame_hdr is present, then only the header needs to be parsed.
///
/// Otherwise, .eh_frame and .debug_frame are scanned and a sorted list
/// of FDEs is built for binary searching during unwinding.
pub fn scanAllUnwindInfo(di: *Dwarf, allocator: Allocator, base_address: usize) !void {
if (di.section(.eh_frame_hdr)) |eh_frame_hdr| blk: {
var fbr: FixedBufferReader = .{ .buf = eh_frame_hdr, .endian = native_endian };
const version = try fbr.readByte();
if (version != 1) break :blk;
const eh_frame_ptr_enc = try fbr.readByte();
if (eh_frame_ptr_enc == EH.PE.omit) break :blk;
const fde_count_enc = try fbr.readByte();
if (fde_count_enc == EH.PE.omit) break :blk;
const table_enc = try fbr.readByte();
if (table_enc == EH.PE.omit) break :blk;
const eh_frame_ptr = cast(usize, try readEhPointer(&fbr, eh_frame_ptr_enc, @sizeOf(usize), .{
.pc_rel_base = @intFromPtr(&eh_frame_hdr[fbr.pos]),
.follow_indirect = true,
}) orelse return bad()) orelse return bad();
const fde_count = cast(usize, try readEhPointer(&fbr, fde_count_enc, @sizeOf(usize), .{
.pc_rel_base = @intFromPtr(&eh_frame_hdr[fbr.pos]),
.follow_indirect = true,
}) orelse return bad()) orelse return bad();
const entry_size = try ExceptionFrameHeader.entrySize(table_enc);
const entries_len = fde_count * entry_size;
if (entries_len > eh_frame_hdr.len - fbr.pos) return bad();
di.eh_frame_hdr = .{
.eh_frame_ptr = eh_frame_ptr,
.table_enc = table_enc,
.fde_count = fde_count,
.entries = eh_frame_hdr[fbr.pos..][0..entries_len],
};
// No need to scan .eh_frame, we have a binary search table already
return;
}
const frame_sections = [2]Section.Id{ .eh_frame, .debug_frame };
for (frame_sections) |frame_section| {
if (di.section(frame_section)) |section_data| {
var fbr: FixedBufferReader = .{ .buf = section_data, .endian = di.endian };
while (fbr.pos < fbr.buf.len) {
const entry_header = try EntryHeader.read(&fbr, null, frame_section);
switch (entry_header.type) {
.cie => {
const cie = try CommonInformationEntry.parse(
entry_header.entry_bytes,
di.sectionVirtualOffset(frame_section, base_address).?,
true,
entry_header.format,
frame_section,
entry_header.length_offset,
@sizeOf(usize),
di.endian,
);
try di.cie_map.put(allocator, entry_header.length_offset, cie);
},
.fde => |cie_offset| {
const cie = di.cie_map.get(cie_offset) orelse return bad();
const fde = try FrameDescriptionEntry.parse(
entry_header.entry_bytes,
di.sectionVirtualOffset(frame_section, base_address).?,
true,
cie,
@sizeOf(usize),
di.endian,
);
try di.fde_list.append(allocator, fde);
},
.terminator => break,
}
}
std.mem.sortUnstable(FrameDescriptionEntry, di.fde_list.items, {}, struct {
fn lessThan(ctx: void, a: FrameDescriptionEntry, b: FrameDescriptionEntry) bool {
_ = ctx;
return a.pc_begin < b.pc_begin;
}
}.lessThan);
}
}
}
fn parseFormValue(
fbr: *FixedBufferReader,
form_id: u64,
format: Format,
implicit_const: ?i64,
) ScanError!FormValue {
return switch (form_id) {
FORM.addr => .{ .addr = try fbr.readAddress(switch (@bitSizeOf(usize)) {
32 => .@"32",
64 => .@"64",
else => @compileError("unsupported @sizeOf(usize)"),
}) },
FORM.addrx1 => .{ .addrx = try fbr.readInt(u8) },
FORM.addrx2 => .{ .addrx = try fbr.readInt(u16) },
FORM.addrx3 => .{ .addrx = try fbr.readInt(u24) },
FORM.addrx4 => .{ .addrx = try fbr.readInt(u32) },
FORM.addrx => .{ .addrx = try fbr.readUleb128(usize) },
FORM.block1,
FORM.block2,
FORM.block4,
FORM.block,
=> .{ .block = try fbr.readBytes(switch (form_id) {
FORM.block1 => try fbr.readInt(u8),
FORM.block2 => try fbr.readInt(u16),
FORM.block4 => try fbr.readInt(u32),
FORM.block => try fbr.readUleb128(usize),
else => unreachable,
}) },
FORM.data1 => .{ .udata = try fbr.readInt(u8) },
FORM.data2 => .{ .udata = try fbr.readInt(u16) },
FORM.data4 => .{ .udata = try fbr.readInt(u32) },
FORM.data8 => .{ .udata = try fbr.readInt(u64) },
FORM.data16 => .{ .data16 = (try fbr.readBytes(16))[0..16] },
FORM.udata => .{ .udata = try fbr.readUleb128(u64) },
FORM.sdata => .{ .sdata = try fbr.readIleb128(i64) },
FORM.exprloc => .{ .exprloc = try fbr.readBytes(try fbr.readUleb128(usize)) },
FORM.flag => .{ .flag = (try fbr.readByte()) != 0 },
FORM.flag_present => .{ .flag = true },
FORM.sec_offset => .{ .sec_offset = try fbr.readAddress(format) },
FORM.ref1 => .{ .ref = try fbr.readInt(u8) },
FORM.ref2 => .{ .ref = try fbr.readInt(u16) },
FORM.ref4 => .{ .ref = try fbr.readInt(u32) },
FORM.ref8 => .{ .ref = try fbr.readInt(u64) },
FORM.ref_udata => .{ .ref = try fbr.readUleb128(u64) },
FORM.ref_addr => .{ .ref_addr = try fbr.readAddress(format) },
FORM.ref_sig8 => .{ .ref = try fbr.readInt(u64) },
FORM.string => .{ .string = try fbr.readBytesTo(0) },
FORM.strp => .{ .strp = try fbr.readAddress(format) },
FORM.strx1 => .{ .strx = try fbr.readInt(u8) },
FORM.strx2 => .{ .strx = try fbr.readInt(u16) },
FORM.strx3 => .{ .strx = try fbr.readInt(u24) },
FORM.strx4 => .{ .strx = try fbr.readInt(u32) },
FORM.strx => .{ .strx = try fbr.readUleb128(usize) },
FORM.line_strp => .{ .line_strp = try fbr.readAddress(format) },
FORM.indirect => parseFormValue(fbr, try fbr.readUleb128(u64), format, implicit_const),
FORM.implicit_const => .{ .sdata = implicit_const orelse return bad() },
FORM.loclistx => .{ .loclistx = try fbr.readUleb128(u64) },
FORM.rnglistx => .{ .rnglistx = try fbr.readUleb128(u64) },
else => {
//debug.print("unrecognized form id: {x}\n", .{form_id});
return bad();
},
};
}
const FileEntry = struct {
path: []const u8,
dir_index: u32 = 0,
mtime: u64 = 0,
size: u64 = 0,
md5: [16]u8 = [1]u8{0} ** 16,
};
const LineNumberProgram = struct {
address: u64,
file: usize,
line: i64,
column: u64,
version: u16,
is_stmt: bool,
basic_block: bool,
end_sequence: bool,
default_is_stmt: bool,
// Reset the state machine following the DWARF specification
pub fn reset(self: *LineNumberProgram) void {
self.address = 0;
self.file = 1;
self.line = 1;
self.column = 0;
self.is_stmt = self.default_is_stmt;
self.basic_block = false;
self.end_sequence = false;
}
pub fn init(is_stmt: bool, version: u16) LineNumberProgram {
return .{
.address = 0,
.file = 1,
.line = 1,
.column = 0,
.version = version,
.is_stmt = is_stmt,
.basic_block = false,
.end_sequence = false,
.default_is_stmt = is_stmt,
};
}
pub fn addRow(prog: *LineNumberProgram, gpa: Allocator, table: *CompileUnit.SrcLocCache.LineTable) !void {
if (prog.line == 0) return; // garbage data
try table.put(gpa, prog.address, .{
.line = cast(u32, prog.line) orelse maxInt(u32),
.column = cast(u32, prog.column) orelse maxInt(u32),
.file = cast(u32, prog.file) orelse return bad(),
});
}
};
const UnitHeader = struct {
format: Format,
header_length: u4,
unit_length: u64,
};
fn readUnitHeader(fbr: *FixedBufferReader, opt_ma: ?*MemoryAccessor) ScanError!UnitHeader {
return switch (try if (opt_ma) |ma| fbr.readIntChecked(u32, ma) else fbr.readInt(u32)) {
0...0xfffffff0 - 1 => |unit_length| .{
.format = .@"32",
.header_length = 4,
.unit_length = unit_length,
},
0xfffffff0...0xffffffff - 1 => bad(),
0xffffffff => .{
.format = .@"64",
.header_length = 12,
.unit_length = try if (opt_ma) |ma| fbr.readIntChecked(u64, ma) else fbr.readInt(u64),
},
};
}
/// Returns the DWARF register number for an x86_64 register number found in compact unwind info
pub fn compactUnwindToDwarfRegNumber(unwind_reg_number: u3) !u8 {
return switch (unwind_reg_number) {
1 => 3, // RBX
2 => 12, // R12
3 => 13, // R13
4 => 14, // R14
5 => 15, // R15
6 => 6, // RBP
else => error.InvalidUnwindRegisterNumber,
};
}
/// This function is to make it handy to comment out the return and make it
/// into a crash when working on this file.
pub fn bad() error{InvalidDebugInfo} {
//if (true) @panic("bad dwarf"); // can be handy to uncomment when working on this file
return error.InvalidDebugInfo;
}
fn missing() error{MissingDebugInfo} {
//if (true) @panic("missing dwarf"); // can be handy to uncomment when working on this file
return error.MissingDebugInfo;
}
fn getStringGeneric(opt_str: ?[]const u8, offset: u64) ![:0]const u8 {
const str = opt_str orelse return bad();
if (offset > str.len) return bad();
const casted_offset = cast(usize, offset) orelse return bad();
// Valid strings always have a terminating zero byte
const last = std.mem.indexOfScalarPos(u8, str, casted_offset, 0) orelse return bad();
return str[casted_offset..last :0];
}
const EhPointerContext = struct {
// The address of the pointer field itself
pc_rel_base: u64,
// Whether or not to follow indirect pointers. This should only be
// used when decoding pointers at runtime using the current process's
// debug info
follow_indirect: bool,
// These relative addressing modes are only used in specific cases, and
// might not be available / required in all parsing contexts
data_rel_base: ?u64 = null,
text_rel_base: ?u64 = null,
function_rel_base: ?u64 = null,
};
fn readEhPointer(fbr: *FixedBufferReader, enc: u8, addr_size_bytes: u8, ctx: EhPointerContext) !?u64 {
if (enc == EH.PE.omit) return null;
const value: union(enum) {
signed: i64,
unsigned: u64,
} = switch (enc & EH.PE.type_mask) {
EH.PE.absptr => .{
.unsigned = switch (addr_size_bytes) {
2 => try fbr.readInt(u16),
4 => try fbr.readInt(u32),
8 => try fbr.readInt(u64),
else => return error.InvalidAddrSize,
},
},
EH.PE.uleb128 => .{ .unsigned = try fbr.readUleb128(u64) },
EH.PE.udata2 => .{ .unsigned = try fbr.readInt(u16) },
EH.PE.udata4 => .{ .unsigned = try fbr.readInt(u32) },
EH.PE.udata8 => .{ .unsigned = try fbr.readInt(u64) },
EH.PE.sleb128 => .{ .signed = try fbr.readIleb128(i64) },
EH.PE.sdata2 => .{ .signed = try fbr.readInt(i16) },
EH.PE.sdata4 => .{ .signed = try fbr.readInt(i32) },
EH.PE.sdata8 => .{ .signed = try fbr.readInt(i64) },
else => return bad(),
};
const base = switch (enc & EH.PE.rel_mask) {
EH.PE.pcrel => ctx.pc_rel_base,
EH.PE.textrel => ctx.text_rel_base orelse return error.PointerBaseNotSpecified,
EH.PE.datarel => ctx.data_rel_base orelse return error.PointerBaseNotSpecified,
EH.PE.funcrel => ctx.function_rel_base orelse return error.PointerBaseNotSpecified,
else => null,
};
const ptr: u64 = if (base) |b| switch (value) {
.signed => |s| @intCast(try std.math.add(i64, s, @as(i64, @intCast(b)))),
// absptr can actually contain signed values in some cases (aarch64 MachO)
.unsigned => |u| u +% b,
} else switch (value) {
.signed => |s| @as(u64, @intCast(s)),
.unsigned => |u| u,
};
if ((enc & EH.PE.indirect) > 0 and ctx.follow_indirect) {
if (@sizeOf(usize) != addr_size_bytes) {
// See the documentation for `follow_indirect`
return error.NonNativeIndirection;
}
const native_ptr = cast(usize, ptr) orelse return error.PointerOverflow;
return switch (addr_size_bytes) {
2, 4, 8 => return @as(*const usize, @ptrFromInt(native_ptr)).*,
else => return error.UnsupportedAddrSize,
};
} else {
return ptr;
}
}
fn pcRelBase(field_ptr: usize, pc_rel_offset: i64) !usize {
if (pc_rel_offset < 0) {
return std.math.sub(usize, field_ptr, @as(usize, @intCast(-pc_rel_offset)));
} else {
return std.math.add(usize, field_ptr, @as(usize, @intCast(pc_rel_offset)));
}
}
pub const ElfModule = struct {
base_address: usize,
dwarf: Dwarf,
mapped_memory: []align(std.mem.page_size) const u8,
external_mapped_memory: ?[]align(std.mem.page_size) const u8,
pub fn deinit(self: *@This(), allocator: Allocator) void {
self.dwarf.deinit(allocator);
std.posix.munmap(self.mapped_memory);
if (self.external_mapped_memory) |m| std.posix.munmap(m);
}
pub fn getSymbolAtAddress(self: *@This(), allocator: Allocator, address: usize) !std.debug.Symbol {
// Translate the VA into an address into this object
const relocated_address = address - self.base_address;
return self.dwarf.getSymbol(allocator, relocated_address);
}
pub fn getDwarfInfoForAddress(self: *@This(), allocator: Allocator, address: usize) !?*const Dwarf {
_ = allocator;
_ = address;
return &self.dwarf;
}
pub const LoadError = error{
InvalidDebugInfo,
MissingDebugInfo,
InvalidElfMagic,
InvalidElfVersion,
InvalidElfEndian,
/// TODO: implement this and then remove this error code
UnimplementedDwarfForeignEndian,
/// The debug info may be valid but this implementation uses memory
/// mapping which limits things to usize. If the target debug info is
/// 64-bit and host is 32-bit, there may be debug info that is not
/// supportable using this method.
Overflow,
PermissionDenied,
LockedMemoryLimitExceeded,
MemoryMappingNotSupported,
} || Allocator.Error || std.fs.File.OpenError || OpenError;
/// Reads debug info from an already mapped ELF file.
///
/// If the required sections aren't present but a reference to external debug
/// info is, then this this function will recurse to attempt to load the debug
/// sections from an external file.
pub fn load(
gpa: Allocator,
mapped_mem: []align(std.mem.page_size) const u8,
build_id: ?[]const u8,
expected_crc: ?u32,
parent_sections: *Dwarf.SectionArray,
parent_mapped_mem: ?[]align(std.mem.page_size) const u8,
elf_filename: ?[]const u8,
) LoadError!Dwarf.ElfModule {
if (expected_crc) |crc| if (crc != std.hash.crc.Crc32.hash(mapped_mem)) return error.InvalidDebugInfo;
const hdr: *const elf.Ehdr = @ptrCast(&mapped_mem[0]);
if (!mem.eql(u8, hdr.e_ident[0..4], elf.MAGIC)) return error.InvalidElfMagic;
if (hdr.e_ident[elf.EI_VERSION] != 1) return error.InvalidElfVersion;
const endian: std.builtin.Endian = switch (hdr.e_ident[elf.EI_DATA]) {
elf.ELFDATA2LSB => .little,
elf.ELFDATA2MSB => .big,
else => return error.InvalidElfEndian,
};
if (endian != native_endian) return error.UnimplementedDwarfForeignEndian;
const shoff = hdr.e_shoff;
const str_section_off = shoff + @as(u64, hdr.e_shentsize) * @as(u64, hdr.e_shstrndx);
const str_shdr: *const elf.Shdr = @ptrCast(@alignCast(&mapped_mem[cast(usize, str_section_off) orelse return error.Overflow]));
const header_strings = mapped_mem[str_shdr.sh_offset..][0..str_shdr.sh_size];
const shdrs = @as(
[*]const elf.Shdr,
@ptrCast(@alignCast(&mapped_mem[shoff])),
)[0..hdr.e_shnum];
var sections: Dwarf.SectionArray = Dwarf.null_section_array;
// Combine section list. This takes ownership over any owned sections from the parent scope.
for (parent_sections, &sections) |*parent, *section_elem| {
if (parent.*) |*p| {
section_elem.* = p.*;
p.owned = false;
}
}
errdefer for (sections) |opt_section| if (opt_section) |s| if (s.owned) gpa.free(s.data);
var separate_debug_filename: ?[]const u8 = null;
var separate_debug_crc: ?u32 = null;
for (shdrs) |*shdr| {
if (shdr.sh_type == elf.SHT_NULL or shdr.sh_type == elf.SHT_NOBITS) continue;
const name = mem.sliceTo(header_strings[shdr.sh_name..], 0);
if (mem.eql(u8, name, ".gnu_debuglink")) {
const gnu_debuglink = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
const debug_filename = mem.sliceTo(@as([*:0]const u8, @ptrCast(gnu_debuglink.ptr)), 0);
const crc_offset = mem.alignForward(usize, @intFromPtr(&debug_filename[debug_filename.len]) + 1, 4) - @intFromPtr(gnu_debuglink.ptr);
const crc_bytes = gnu_debuglink[crc_offset..][0..4];
separate_debug_crc = mem.readInt(u32, crc_bytes, native_endian);
separate_debug_filename = debug_filename;
continue;
}
var section_index: ?usize = null;
inline for (@typeInfo(Dwarf.Section.Id).Enum.fields, 0..) |sect, i| {
if (mem.eql(u8, "." ++ sect.name, name)) section_index = i;
}
if (section_index == null) continue;
if (sections[section_index.?] != null) continue;
const section_bytes = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
sections[section_index.?] = if ((shdr.sh_flags & elf.SHF_COMPRESSED) > 0) blk: {
var section_stream = std.io.fixedBufferStream(section_bytes);
const section_reader = section_stream.reader();
const chdr = section_reader.readStruct(elf.Chdr) catch continue;
if (chdr.ch_type != .ZLIB) continue;
var zlib_stream = std.compress.zlib.decompressor(section_reader);
const decompressed_section = try gpa.alloc(u8, chdr.ch_size);
errdefer gpa.free(decompressed_section);
const read = zlib_stream.reader().readAll(decompressed_section) catch continue;
assert(read == decompressed_section.len);
break :blk .{
.data = decompressed_section,
.virtual_address = shdr.sh_addr,
.owned = true,
};
} else .{
.data = section_bytes,
.virtual_address = shdr.sh_addr,
.owned = false,
};
}
const missing_debug_info =
sections[@intFromEnum(Dwarf.Section.Id.debug_info)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_abbrev)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_str)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_line)] == null;
// Attempt to load debug info from an external file
// See: https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
if (missing_debug_info) {
// Only allow one level of debug info nesting
if (parent_mapped_mem) |_| {
return error.MissingDebugInfo;
}
const global_debug_directories = [_][]const u8{
"/usr/lib/debug",
};
// <global debug directory>/.build-id/<2-character id prefix>/<id remainder>.debug
if (build_id) |id| blk: {
if (id.len < 3) break :blk;
// Either md5 (16 bytes) or sha1 (20 bytes) are used here in practice
const extension = ".debug";
var id_prefix_buf: [2]u8 = undefined;
var filename_buf: [38 + extension.len]u8 = undefined;
_ = std.fmt.bufPrint(&id_prefix_buf, "{s}", .{std.fmt.fmtSliceHexLower(id[0..1])}) catch unreachable;
const filename = std.fmt.bufPrint(
&filename_buf,
"{s}" ++ extension,
.{std.fmt.fmtSliceHexLower(id[1..])},
) catch break :blk;
for (global_debug_directories) |global_directory| {
const path: Path = .{
.root_dir = std.Build.Cache.Directory.cwd(),
.sub_path = try std.fs.path.join(gpa, &.{
global_directory, ".build-id", &id_prefix_buf, filename,
}),
};
defer gpa.free(path.sub_path);
return loadPath(gpa, path, null, separate_debug_crc, &sections, mapped_mem) catch continue;
}
}
// use the path from .gnu_debuglink, in the same search order as gdb
if (separate_debug_filename) |separate_filename| blk: {
if (elf_filename != null and mem.eql(u8, elf_filename.?, separate_filename))
return error.MissingDebugInfo;
// <cwd>/<gnu_debuglink>
if (loadPath(
gpa,
.{
.root_dir = std.Build.Cache.Directory.cwd(),
.sub_path = separate_filename,
},
null,
separate_debug_crc,
&sections,
mapped_mem,
)) |debug_info| {
return debug_info;
} else |_| {}
// <cwd>/.debug/<gnu_debuglink>
{
const path: Path = .{
.root_dir = std.Build.Cache.Directory.cwd(),
.sub_path = try std.fs.path.join(gpa, &.{ ".debug", separate_filename }),
};
defer gpa.free(path.sub_path);
if (loadPath(gpa, path, null, separate_debug_crc, &sections, mapped_mem)) |debug_info| return debug_info else |_| {}
}
var cwd_buf: [std.fs.max_path_bytes]u8 = undefined;
const cwd_path = std.posix.realpath(".", &cwd_buf) catch break :blk;
// <global debug directory>/<absolute folder of current binary>/<gnu_debuglink>
for (global_debug_directories) |global_directory| {
const path: Path = .{
.root_dir = std.Build.Cache.Directory.cwd(),
.sub_path = try std.fs.path.join(gpa, &.{ global_directory, cwd_path, separate_filename }),
};
defer gpa.free(path.sub_path);
if (loadPath(gpa, path, null, separate_debug_crc, &sections, mapped_mem)) |debug_info| return debug_info else |_| {}
}
}
return error.MissingDebugInfo;
}
var di: Dwarf = .{
.endian = endian,
.sections = sections,
.is_macho = false,
.compile_units_sorted = false,
};
try Dwarf.open(&di, gpa);
return .{
.base_address = 0,
.dwarf = di,
.mapped_memory = parent_mapped_mem orelse mapped_mem,
.external_mapped_memory = if (parent_mapped_mem != null) mapped_mem else null,
};
}
pub fn loadPath(
gpa: Allocator,
elf_file_path: Path,
build_id: ?[]const u8,
expected_crc: ?u32,
parent_sections: *Dwarf.SectionArray,
parent_mapped_mem: ?[]align(std.mem.page_size) const u8,
) LoadError!Dwarf.ElfModule {
const elf_file = elf_file_path.root_dir.handle.openFile(elf_file_path.sub_path, .{}) catch |err| switch (err) {
error.FileNotFound => return missing(),
else => return err,
};
defer elf_file.close();
const end_pos = elf_file.getEndPos() catch return bad();
const file_len = cast(usize, end_pos) orelse return error.Overflow;
const mapped_mem = try std.posix.mmap(
null,
file_len,
std.posix.PROT.READ,
.{ .TYPE = .SHARED },
elf_file.handle,
0,
);
errdefer std.posix.munmap(mapped_mem);
return load(
gpa,
mapped_mem,
build_id,
expected_crc,
parent_sections,
parent_mapped_mem,
elf_file_path.sub_path,
);
}
};
fn getSymbol(di: *Dwarf, allocator: Allocator, address: u64) !std.debug.Symbol {
if (di.findCompileUnit(address)) |compile_unit| {
return .{
.name = di.getSymbolName(address) orelse "???",
.compile_unit_name = compile_unit.die.getAttrString(di, std.dwarf.AT.name, di.section(.debug_str), compile_unit.*) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => "???",
},
.source_location = di.getLineNumberInfo(allocator, compile_unit, address) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => null,
else => return err,
},
};
} else |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => return .{},
else => return err,
}
}
pub fn chopSlice(ptr: []const u8, offset: u64, size: u64) error{Overflow}![]const u8 {
const start = cast(usize, offset) orelse return error.Overflow;
const end = start + (cast(usize, size) orelse return error.Overflow);
return ptr[start..end];
}