mlugg 4d7818a76a
compiler: allow files with AstGen errors to undergo semantic analysis
This commit enhances AstGen to introduce a form of error resilience
which allows valid ZIR to be emitted even when AstGen errors occur.

When a non-fatal AstGen error (e.g. `appendErrorNode`) occurs, ZIR
generation is not affected; the error is added to `astgen.errors` and
ultimately to the errors stored in `extra`, but that doesn't stop us
getting valid ZIR. Fatal AstGen errors (e.g. `failNode`) are a bit
trickier. These errors return `error.AnalysisFail`, which is propagated
up the stack. In theory, any parent expression can catch this error and
handle it, continuing ZIR generation whilst throwing away whatever was
lost. For now, we only do this in one place: when creating declarations.
If a call to `fnDecl`, `comptimeDecl`, `globalVarDecl`, etc, returns
`error.AnalysisFail`, the `declaration` instruction is still created,
but its body simply contains the new `extended(astgen_error())`
instruction, which instructs Sema to terminate semantic analysis with a
transitive error. This means that a fatal AstGen error causes the
innermost declaration containing the error to fail, but the rest of the
file remains intact.

If a source file contains parse errors, or an `error.AnalysisFail`
happens when lowering the top-level struct (e.g. there is an error in
one of its fields, or a name has multiple declarations), then lowering
for the entire file fails. Alongside the existing `Zir.hasCompileErrors`
query, this commit introduces `Zir.loweringFailed`, which returns `true`
only in this case.

The end result here is that files with AstGen failures will almost
always still emit valid ZIR, and hence can undergo semantic analysis on
the parts of the file which are (from AstGen's perspective) valid. This
is a noteworthy improvement to UX, but the main motivation here is
actually incremental compilation. Previously, AstGen failures caused
lots of semantic analysis work to be thrown out, because all `AnalUnit`s
in the file required re-analysis so as to trigger necessary transitive
failures and remove stored compile errors which would no longer make
sense (because a fresh compilation of this code would not emit those
errors, as the units those errors applied to would fail sooner due to
referencing a failed file). Now, this case only applies when a file has
severe top-level errors, which is far less common than something like
having an unused variable.

Lastly, this commit changes a few errors in `AstGen` to become fatal
when they were previously non-fatal and vice versa. If there is still a
reasonable way to continue AstGen and lower to ZIR after an error, it is
non-fatal; otherwise, it is fatal. For instance, `comptime const`, while
redundant syntax, has a clear meaning we can lower; on the other hand,
using an undeclared identifer has no sane lowering, so must trigger a
fatal error.
2024-12-05 19:58:38 +00:00
2024-11-25 15:00:10 -08:00
2024-11-25 01:11:15 -08:00
2024-03-06 14:17:41 -05:00
2024-04-19 13:16:09 -07:00
2024-09-19 23:06:09 -07:00

ZIG

A general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.

https://ziglang.org/

Documentation

If you are looking at this README file in a source tree, please refer to the Release Notes, Language Reference, or Standard Library Documentation corresponding to the version of Zig that you are using by following the appropriate link on the download page.

Otherwise, you're looking at a release of Zig, so you can find the language reference at doc/langref.html, and the standard library documentation by running zig std, which will open a browser tab.

Installation

A Zig installation is composed of two things:

  1. The Zig executable
  2. The lib/ directory

At runtime, the executable searches up the file system for the lib/ directory, relative to itself:

  • lib/
  • lib/zig/
  • ../lib/
  • ../lib/zig/
  • (and so on)

In other words, you can unpack a release of Zig anywhere, and then begin using it immediately. There is no need to install it globally, although this mechanism supports that use case too (i.e. /usr/bin/zig and /usr/lib/zig/).

Building from Source

Ensure you have the required dependencies:

  • CMake >= 3.15
  • System C/C++ Toolchain
  • LLVM, Clang, LLD development libraries == 19.x

Then it is the standard CMake build process:

mkdir build
cd build
cmake ..
make install

For more options, tips, and troubleshooting, please see the Building Zig From Source page on the wiki.

Building from Source without LLVM

In this case, the only system dependency is a C compiler.

cc -o bootstrap bootstrap.c
./bootstrap

This produces a zig2 executable in the current working directory. This is a "stage2" build of the compiler, without LLVM extensions, and is therefore lacking these features:

However, a compiler built this way does provide a C backend, which may be useful for creating system packages of Zig projects using the system C toolchain. In this case, LLVM is not needed!

Furthermore, a compiler built this way provides an LLVM backend that produces bitcode files, which may be compiled into object files via a system Clang package. This can be used to produce system packages of Zig applications without the Zig package dependency on LLVM.

Contributing

Donate monthly.

Zig is Free and Open Source Software. We welcome bug reports and patches from everyone. However, keep in mind that Zig governance is BDFN (Benevolent Dictator For Now) which means that Andrew Kelley has final say on the design and implementation of everything.

One of the best ways you can contribute to Zig is to start using it for an open-source personal project.

This leads to discovering bugs and helps flesh out use cases, which lead to further design iterations of Zig. Importantly, each issue found this way comes with real world motivations, making it straightforward to explain the reasoning behind proposals and feature requests.

You will be taken much more seriously on the issue tracker if you have a personal project that uses Zig.

The issue label Contributor Friendly exists to help you find issues that are limited in scope and/or knowledge of Zig internals.

Please note that issues labeled Proposal but do not also have the Accepted label are still under consideration, and efforts to implement such a proposal have a high risk of being wasted. If you are interested in a proposal which is still under consideration, please express your interest in the issue tracker, providing extra insights and considerations that others have not yet expressed. The most highly regarded argument in such a discussion is a real world use case.

For more tips, please see the Contributing page on the wiki.

Community

The Zig community is decentralized. Anyone is free to start and maintain their own space for Zig users to gather. There is no concept of "official" or "unofficial". Each gathering place has its own moderators and rules. Users are encouraged to be aware of the social structures of the spaces they inhabit, and work purposefully to facilitate spaces that align with their values.

Please see the Community wiki page for a public listing of social spaces.

Description
General-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.
Readme MIT 711 MiB
Languages
Zig 98.3%
C 1.1%
C++ 0.2%
Python 0.1%