zig/lib/std/cache_hash.zig
2020-05-25 13:48:43 -04:00

495 lines
17 KiB
Zig

const Blake3 = @import("crypto.zig").Blake3;
const fs = @import("fs.zig");
const base64 = @import("base64.zig");
const ArrayList = @import("array_list.zig").ArrayList;
const debug = @import("debug.zig");
const testing = @import("testing.zig");
const mem = @import("mem.zig");
const fmt = @import("fmt.zig");
const Allocator = mem.Allocator;
const os = @import("os.zig");
const time = @import("time.zig");
const base64_encoder = fs.base64_encoder;
const base64_decoder = fs.base64_decoder;
const BIN_DIGEST_LEN = 48;
const BASE64_DIGEST_LEN = base64.Base64Encoder.calcSize(BIN_DIGEST_LEN);
pub const File = struct {
path: ?[]const u8,
stat: fs.File.Stat,
bin_digest: [BIN_DIGEST_LEN]u8,
pub fn deinit(self: *@This(), alloc: *Allocator) void {
if (self.path) |owned_slice| {
alloc.free(owned_slice);
self.path = null;
}
}
};
pub const CacheHash = struct {
alloc: *Allocator,
blake3: Blake3,
manifest_dir: fs.Dir,
manifest_file: ?fs.File,
manifest_dirty: bool,
files: ArrayList(File),
b64_digest: [BASE64_DIGEST_LEN]u8,
pub fn init(alloc: *Allocator, manifest_dir_path: []const u8) !@This() {
try fs.cwd().makePath(manifest_dir_path);
const manifest_dir = try fs.cwd().openDir(manifest_dir_path, .{ .iterate = true });
return CacheHash{
.alloc = alloc,
.blake3 = Blake3.init(),
.manifest_dir = manifest_dir,
.manifest_file = null,
.manifest_dirty = false,
.files = ArrayList(File).init(alloc),
.b64_digest = undefined,
};
}
/// Record a slice of bytes as an dependency of the process being cached
pub fn addSlice(self: *@This(), val: []const u8) void {
debug.assert(self.manifest_file == null);
self.blake3.update(val);
self.blake3.update(&[_]u8{0});
}
/// Convert the input value into bytes and record it as a dependency of the
/// process being cached
pub fn add(self: *@This(), val: var) void {
debug.assert(self.manifest_file == null);
const valPtr = switch (@typeInfo(@TypeOf(val))) {
.Int => &val,
.Pointer => val,
else => &val,
};
self.addSlice(mem.asBytes(valPtr));
}
/// Add a file as a dependency of process being cached. When `CacheHash.hit` is
/// called, the file's contents will be checked to ensure that it matches
/// the contents from previous times.
pub fn addFile(self: *@This(), file_path: []const u8) !void {
debug.assert(self.manifest_file == null);
var cache_hash_file = try self.files.addOne();
cache_hash_file.path = try fs.path.resolve(self.alloc, &[_][]const u8{file_path});
self.addSlice(cache_hash_file.path.?);
}
/// Check the cache to see if the input exists in it. If it exists, a base64 encoding
/// of it's hash will be returned; otherwise, null will be returned.
///
/// This function will also acquire an exclusive lock to the manifest file. This means
/// that a process holding a CacheHash will block any other process attempting to
/// acquire the lock.
///
/// The lock on the manifest file is released when `CacheHash.release` is called.
pub fn hit(self: *@This()) !?[BASE64_DIGEST_LEN]u8 {
debug.assert(self.manifest_file == null);
var bin_digest: [BIN_DIGEST_LEN]u8 = undefined;
self.blake3.final(&bin_digest);
base64_encoder.encode(self.b64_digest[0..], &bin_digest);
self.blake3 = Blake3.init();
self.blake3.update(&bin_digest);
const manifest_file_path = try fmt.allocPrint(self.alloc, "{}.txt", .{self.b64_digest});
defer self.alloc.free(manifest_file_path);
if (self.files.items.len != 0) {
self.manifest_file = try self.manifest_dir.createFile(manifest_file_path, .{
.read = true,
.truncate = false,
.lock = .Exclusive,
});
} else {
// If there are no file inputs, we check if the manifest file exists instead of
// comparing the hashes on the files used for the cached item
self.manifest_file = self.manifest_dir.openFile(manifest_file_path, .{
.read = true,
.write = true,
.lock = .Exclusive,
}) catch |err| switch (err) {
error.FileNotFound => {
self.manifest_dirty = true;
self.manifest_file = try self.manifest_dir.createFile(manifest_file_path, .{
.read = true,
.truncate = false,
.lock = .Exclusive,
});
return null;
},
else => |e| return e,
};
}
// TODO: Figure out a good max value?
const file_contents = try self.manifest_file.?.inStream().readAllAlloc(self.alloc, 16 * 1024);
defer self.alloc.free(file_contents);
const input_file_count = self.files.items.len;
var any_file_changed = false;
var line_iter = mem.tokenize(file_contents, "\n");
var idx: usize = 0;
while (line_iter.next()) |line| {
defer idx += 1;
var cache_hash_file: *File = undefined;
if (idx < input_file_count) {
cache_hash_file = &self.files.items[idx];
} else {
cache_hash_file = try self.files.addOne();
cache_hash_file.path = null;
}
var iter = mem.tokenize(line, " ");
const inode = iter.next() orelse return error.InvalidFormat;
const mtime_nsec_str = iter.next() orelse return error.InvalidFormat;
const digest_str = iter.next() orelse return error.InvalidFormat;
const file_path = iter.rest();
cache_hash_file.stat.inode = fmt.parseInt(os.ino_t, mtime_nsec_str, 10) catch return error.InvalidFormat;
cache_hash_file.stat.mtime = fmt.parseInt(i64, mtime_nsec_str, 10) catch return error.InvalidFormat;
base64_decoder.decode(&cache_hash_file.bin_digest, digest_str) catch return error.InvalidFormat;
if (file_path.len == 0) {
return error.InvalidFormat;
}
if (cache_hash_file.path != null and !mem.eql(u8, file_path, cache_hash_file.path.?)) {
return error.InvalidFormat;
}
const this_file = fs.cwd().openFile(cache_hash_file.path.?, .{ .read = true }) catch {
return error.CacheUnavailable;
};
defer this_file.close();
const actual_stat = try this_file.stat();
const mtime_match = actual_stat.mtime == cache_hash_file.stat.mtime;
const inode_match = actual_stat.inode == cache_hash_file.stat.inode;
if (!mtime_match or !inode_match) {
self.manifest_dirty = true;
cache_hash_file.stat = actual_stat;
if (is_problematic_timestamp(cache_hash_file.stat.mtime)) {
cache_hash_file.stat.mtime = 0;
cache_hash_file.stat.inode = 0;
}
var actual_digest: [BIN_DIGEST_LEN]u8 = undefined;
const contents = try hash_file(self.alloc, &actual_digest, &this_file);
self.alloc.free(contents);
if (!mem.eql(u8, &cache_hash_file.bin_digest, &actual_digest)) {
mem.copy(u8, &cache_hash_file.bin_digest, &actual_digest);
// keep going until we have the input file digests
any_file_changed = true;
}
}
if (!any_file_changed) {
self.blake3.update(&cache_hash_file.bin_digest);
}
}
if (any_file_changed) {
// cache miss
// keep the manifest file open
// reset the hash
self.blake3 = Blake3.init();
self.blake3.update(&bin_digest);
try self.files.resize(input_file_count);
for (self.files.items) |file| {
self.blake3.update(&file.bin_digest);
}
return null;
}
if (idx < input_file_count) {
self.manifest_dirty = true;
while (idx < input_file_count) : (idx += 1) {
var cache_hash_file = &self.files.items[idx];
const contents = self.populate_file_hash(cache_hash_file) catch |err| {
return error.CacheUnavailable;
};
}
return null;
}
return self.final();
}
fn populate_file_hash_fetch(self: *@This(), otherAlloc: *mem.Allocator, cache_hash_file: *File) ![]u8 {
debug.assert(cache_hash_file.path != null);
const this_file = try fs.cwd().openFile(cache_hash_file.path.?, .{});
defer this_file.close();
cache_hash_file.stat = try this_file.stat();
if (is_problematic_timestamp(cache_hash_file.stat.mtime)) {
cache_hash_file.stat.mtime = 0;
cache_hash_file.stat.inode = 0;
}
const contents = try hash_file(otherAlloc, &cache_hash_file.bin_digest, &this_file);
self.blake3.update(&cache_hash_file.bin_digest);
return contents;
}
fn populate_file_hash(self: *@This(), cache_hash_file: *File) !void {
const contents = try self.populate_file_hash_fetch(self.alloc, cache_hash_file);
self.alloc.free(contents);
}
/// Add a file as a dependency of process being cached, after the initial hash has been
/// calculated. This is useful for processes that don't know the all the files that
/// are depended on ahead of time. For example, a source file that can import other files
/// will need to be recompiled if the imported file is changed.
///
/// Returns the contents of the file, allocated with the given allocator.
pub fn addFilePostFetch(self: *@This(), otherAlloc: *mem.Allocator, file_path: []const u8) ![]u8 {
debug.assert(self.manifest_file != null);
var cache_hash_file = try self.files.addOne();
cache_hash_file.path = try fs.path.resolve(self.alloc, &[_][]const u8{file_path});
return try self.populate_file_hash_fetch(otherAlloc, cache_hash_file);
}
/// Add a file as a dependency of process being cached, after the initial hash has been
/// calculated. This is useful for processes that don't know the all the files that
/// are depended on ahead of time. For example, a source file that can import other files
/// will need to be recompiled if the imported file is changed.
pub fn addFilePost(self: *@This(), file_path: []const u8) !void {
const contents = try self.addFilePostFetch(self.alloc, file_path);
self.alloc.free(contents);
}
/// Returns a base64 encoded hash of the inputs.
pub fn final(self: *@This()) [BASE64_DIGEST_LEN]u8 {
debug.assert(self.manifest_file != null);
// We don't close the manifest file yet, because we want to
// keep it locked until the API user is done using it.
// We also don't write out the manifest yet, because until
// cache_release is called we still might be working on creating
// the artifacts to cache.
var bin_digest: [BIN_DIGEST_LEN]u8 = undefined;
self.blake3.final(&bin_digest);
var out_digest: [BASE64_DIGEST_LEN]u8 = undefined;
base64_encoder.encode(&out_digest, &bin_digest);
return out_digest;
}
pub fn write_manifest(self: *@This()) !void {
debug.assert(self.manifest_file != null);
var encoded_digest: [BASE64_DIGEST_LEN]u8 = undefined;
var contents = ArrayList(u8).init(self.alloc);
var outStream = contents.outStream();
defer contents.deinit();
for (self.files.items) |file| {
base64_encoder.encode(encoded_digest[0..], &file.bin_digest);
try outStream.print("{} {} {} {}\n", .{ file.stat.inode, file.stat.mtime, encoded_digest[0..], file.path });
}
try self.manifest_file.?.seekTo(0);
try self.manifest_file.?.writeAll(contents.items);
}
/// Releases the manifest file and frees any memory the CacheHash was using.
/// `CacheHash.hit` must be called first.
///
/// Will also attempt to write to the manifest file if the manifest is dirty.
/// Writing to the manifest file is the only way that this file can return an
/// error.
pub fn release(self: *@This()) !void {
debug.assert(self.manifest_file != null);
if (self.manifest_dirty) {
try self.write_manifest();
}
self.manifest_file.?.close();
for (self.files.items) |*file| {
file.deinit(self.alloc);
}
self.files.deinit();
self.manifest_dir.close();
}
};
/// Hash the file, and return the contents as an array
fn hash_file(alloc: *Allocator, bin_digest: []u8, handle: *const fs.File) ![]u8 {
var blake3 = Blake3.init();
const contents = try handle.inStream().readAllAlloc(alloc, 64 * 1024);
blake3.update(contents);
blake3.final(bin_digest);
return contents;
}
/// If the wall clock time, rounded to the same precision as the
/// mtime, is equal to the mtime, then we cannot rely on this mtime
/// yet. We will instead save an mtime value that indicates the hash
/// must be unconditionally computed.
fn is_problematic_timestamp(file_mtime_ns: i64) bool {
const now_ms = time.milliTimestamp();
const file_mtime_ms = @divFloor(file_mtime_ns, time.millisecond);
return now_ms == file_mtime_ms;
}
test "cache file and then recall it" {
const cwd = fs.cwd();
const temp_file = "test.txt";
const temp_manifest_dir = "temp_manifest_dir";
try cwd.writeFile(temp_file, "Hello, world!\n");
var digest1: [BASE64_DIGEST_LEN]u8 = undefined;
var digest2: [BASE64_DIGEST_LEN]u8 = undefined;
{
var ch = try CacheHash.init(testing.allocator, temp_manifest_dir);
defer ch.release() catch unreachable;
ch.add(true);
ch.add(@as(u16, 1234));
ch.add("1234");
try ch.addFile(temp_file);
// There should be nothing in the cache
testing.expectEqual(@as(?[64]u8, null), try ch.hit());
digest1 = ch.final();
}
{
var ch = try CacheHash.init(testing.allocator, temp_manifest_dir);
defer ch.release() catch unreachable;
ch.add(true);
ch.add(@as(u16, 1234));
ch.add("1234");
try ch.addFile(temp_file);
// Cache hit! We just "built" the same file
digest2 = (try ch.hit()).?;
}
testing.expectEqual(digest1, digest2);
try cwd.deleteTree(temp_manifest_dir);
try cwd.deleteFile(temp_file);
}
test "give problematic timestamp" {
const now_ns = @intCast(i64, time.milliTimestamp() * time.millisecond);
testing.expect(is_problematic_timestamp(now_ns));
}
test "give nonproblematic timestamp" {
const now_ns = @intCast(i64, time.milliTimestamp() * time.millisecond) - 1000;
testing.expect(!is_problematic_timestamp(now_ns));
}
test "check that changing a file makes cache fail" {
const cwd = fs.cwd();
const temp_file = "cache_hash_change_file_test.txt";
const temp_manifest_dir = "cache_hash_change_file_manifest_dir";
try cwd.writeFile(temp_file, "Hello, world!\n");
var digest1: [BASE64_DIGEST_LEN]u8 = undefined;
var digest2: [BASE64_DIGEST_LEN]u8 = undefined;
{
var ch = try CacheHash.init(testing.allocator, temp_manifest_dir);
defer ch.release() catch unreachable;
ch.add("1234");
try ch.addFile(temp_file);
// There should be nothing in the cache
testing.expectEqual(@as(?[64]u8, null), try ch.hit());
digest1 = ch.final();
}
try cwd.writeFile(temp_file, "Hello, world; but updated!\n");
{
var ch = try CacheHash.init(testing.allocator, temp_manifest_dir);
defer ch.release() catch unreachable;
ch.add("1234");
try ch.addFile(temp_file);
// A file that we depend on has been updated, so the cache should not contain an entry for it
testing.expectEqual(@as(?[64]u8, null), try ch.hit());
digest2 = ch.final();
}
testing.expect(!mem.eql(u8, digest1[0..], digest2[0..]));
try cwd.deleteTree(temp_manifest_dir);
try cwd.deleteFile(temp_file);
}
test "no file inputs" {
const cwd = fs.cwd();
const temp_manifest_dir = "no_file_inputs_manifest_dir";
defer cwd.deleteTree(temp_manifest_dir) catch unreachable;
var digest1: [BASE64_DIGEST_LEN]u8 = undefined;
var digest2: [BASE64_DIGEST_LEN]u8 = undefined;
{
var ch = try CacheHash.init(testing.allocator, temp_manifest_dir);
defer ch.release() catch unreachable;
ch.add("1234");
// There should be nothing in the cache
testing.expectEqual(@as(?[64]u8, null), try ch.hit());
digest1 = ch.final();
}
{
var ch = try CacheHash.init(testing.allocator, temp_manifest_dir);
defer ch.release() catch unreachable;
ch.add("1234");
digest2 = (try ch.hit()).?;
}
testing.expectEqual(digest1, digest2);
}