zig/lib/std/rand/Pcg.zig
Andrew Kelley 013efaf139 std: introduce a thread-local CSPRNG for general use
std.crypto.random

* cross platform, even freestanding
* can't fail. on initialization for some systems requires calling
  os.getrandom(), in which case there are rare but theoretically
  possible errors. The code panics in these cases, however the
  application may choose to override the default seed function and then
  handle the failure another way.
* thread-safe
* supports the full Random interface
* cryptographically secure
* no syscall required to initialize on Linux (AT_RANDOM)
* calls arc4random on systems that support it

`std.crypto.randomBytes` is removed in favor of `std.crypto.random.bytes`.

I moved some of the Random implementations into their own files in the
interest of organization.

stage2 no longer requires passing a RNG; instead it uses this API.

Closes #6704
2020-12-18 12:22:46 -07:00

102 lines
2.3 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
//! PCG32 - http://www.pcg-random.org/
//!
//! PRNG
const std = @import("std");
const Random = std.rand.Random;
const Pcg = @This();
const default_multiplier = 6364136223846793005;
random: Random,
s: u64,
i: u64,
pub fn init(init_s: u64) Pcg {
var pcg = Pcg{
.random = Random{ .fillFn = fill },
.s = undefined,
.i = undefined,
};
pcg.seed(init_s);
return pcg;
}
fn next(self: *Pcg) u32 {
const l = self.s;
self.s = l *% default_multiplier +% (self.i | 1);
const xor_s = @truncate(u32, ((l >> 18) ^ l) >> 27);
const rot = @intCast(u32, l >> 59);
return (xor_s >> @intCast(u5, rot)) | (xor_s << @intCast(u5, (0 -% rot) & 31));
}
fn seed(self: *Pcg, init_s: u64) void {
// Pcg requires 128-bits of seed.
var gen = std.rand.SplitMix64.init(init_s);
self.seedTwo(gen.next(), gen.next());
}
fn seedTwo(self: *Pcg, init_s: u64, init_i: u64) void {
self.s = 0;
self.i = (init_s << 1) | 1;
self.s = self.s *% default_multiplier +% self.i;
self.s +%= init_i;
self.s = self.s *% default_multiplier +% self.i;
}
fn fill(r: *Random, buf: []u8) void {
const self = @fieldParentPtr(Pcg, "random", r);
var i: usize = 0;
const aligned_len = buf.len - (buf.len & 7);
// Complete 4 byte segments.
while (i < aligned_len) : (i += 4) {
var n = self.next();
comptime var j: usize = 0;
inline while (j < 4) : (j += 1) {
buf[i + j] = @truncate(u8, n);
n >>= 8;
}
}
// Remaining. (cuts the stream)
if (i != buf.len) {
var n = self.next();
while (i < buf.len) : (i += 1) {
buf[i] = @truncate(u8, n);
n >>= 4;
}
}
}
test "pcg sequence" {
var r = Pcg.init(0);
const s0: u64 = 0x9394bf54ce5d79de;
const s1: u64 = 0x84e9c579ef59bbf7;
r.seedTwo(s0, s1);
const seq = [_]u32{
2881561918,
3063928540,
1199791034,
2487695858,
1479648952,
3247963454,
};
for (seq) |s| {
std.testing.expect(s == r.next());
}
}