zig/lib/std/crypto/scrypt.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

658 lines
23 KiB
Zig

// https://tools.ietf.org/html/rfc7914
// https://github.com/golang/crypto/blob/master/scrypt/scrypt.go
const std = @import("std");
const crypto = std.crypto;
const fmt = std.fmt;
const io = std.io;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const pwhash = crypto.pwhash;
const phc_format = @import("phc_encoding.zig");
const HmacSha256 = crypto.auth.hmac.sha2.HmacSha256;
const KdfError = pwhash.KdfError;
const HasherError = pwhash.HasherError;
const EncodingError = phc_format.Error;
const Error = pwhash.Error;
const max_size = math.maxInt(usize);
const max_int = max_size >> 1;
const default_salt_len = 32;
const default_hash_len = 32;
const max_salt_len = 64;
const max_hash_len = 64;
fn blockCopy(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
mem.copy(u32, dst, src[0 .. n * 16]);
}
fn blockXor(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
for (src[0 .. n * 16]) |v, i| {
dst[i] ^= v;
}
}
const QuarterRound = struct { a: usize, b: usize, c: usize, d: u6 };
fn Rp(a: usize, b: usize, c: usize, d: u6) QuarterRound {
return QuarterRound{ .a = a, .b = b, .c = c, .d = d };
}
fn salsa8core(b: *align(16) [16]u32) void {
const arx_steps = comptime [_]QuarterRound{
Rp(4, 0, 12, 7), Rp(8, 4, 0, 9), Rp(12, 8, 4, 13), Rp(0, 12, 8, 18),
Rp(9, 5, 1, 7), Rp(13, 9, 5, 9), Rp(1, 13, 9, 13), Rp(5, 1, 13, 18),
Rp(14, 10, 6, 7), Rp(2, 14, 10, 9), Rp(6, 2, 14, 13), Rp(10, 6, 2, 18),
Rp(3, 15, 11, 7), Rp(7, 3, 15, 9), Rp(11, 7, 3, 13), Rp(15, 11, 7, 18),
Rp(1, 0, 3, 7), Rp(2, 1, 0, 9), Rp(3, 2, 1, 13), Rp(0, 3, 2, 18),
Rp(6, 5, 4, 7), Rp(7, 6, 5, 9), Rp(4, 7, 6, 13), Rp(5, 4, 7, 18),
Rp(11, 10, 9, 7), Rp(8, 11, 10, 9), Rp(9, 8, 11, 13), Rp(10, 9, 8, 18),
Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18),
};
var x = b.*;
var j: usize = 0;
while (j < 8) : (j += 2) {
inline for (arx_steps) |r| {
x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d);
}
}
j = 0;
while (j < 16) : (j += 1) {
b[j] +%= x[j];
}
}
fn salsaXor(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32) void {
blockXor(tmp, in, 1);
salsa8core(tmp);
blockCopy(out, tmp, 1);
}
fn blockMix(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32, r: u30) void {
blockCopy(tmp, in[(2 * r - 1) * 16 ..], 1);
var i: usize = 0;
while (i < 2 * r) : (i += 2) {
salsaXor(tmp, in[i * 16 ..], out[i * 8 ..]);
salsaXor(tmp, in[i * 16 + 16 ..], out[i * 8 + r * 16 ..]);
}
}
fn integerify(b: []align(16) const u32, r: u30) u64 {
const j = (2 * r - 1) * 16;
return @as(u64, b[j]) | @as(u64, b[j + 1]) << 32;
}
fn smix(b: []align(16) u8, r: u30, n: usize, v: []align(16) u32, xy: []align(16) u32) void {
var x = xy[0 .. 32 * r];
var y = xy[32 * r ..];
for (x) |*v1, j| {
v1.* = mem.readIntSliceLittle(u32, b[4 * j ..]);
}
var tmp: [16]u32 align(16) = undefined;
var i: usize = 0;
while (i < n) : (i += 2) {
blockCopy(v[i * (32 * r) ..], x, 2 * r);
blockMix(&tmp, x, y, r);
blockCopy(v[(i + 1) * (32 * r) ..], y, 2 * r);
blockMix(&tmp, y, x, r);
}
i = 0;
while (i < n) : (i += 2) {
var j = @intCast(usize, integerify(x, r) & (n - 1));
blockXor(x, v[j * (32 * r) ..], 2 * r);
blockMix(&tmp, x, y, r);
j = @intCast(usize, integerify(y, r) & (n - 1));
blockXor(y, v[j * (32 * r) ..], 2 * r);
blockMix(&tmp, y, x, r);
}
for (x) |v1, j| {
mem.writeIntLittle(u32, b[4 * j ..][0..4], v1);
}
}
pub const Params = struct {
const Self = @This();
ln: u6,
r: u30,
p: u30,
/// Baseline parameters for interactive logins
pub const interactive = Self.fromLimits(524288, 16777216);
/// Baseline parameters for offline usage
pub const sensitive = Self.fromLimits(33554432, 1073741824);
/// Create parameters from ops and mem limits
pub fn fromLimits(ops_limit: u64, mem_limit: usize) Self {
const ops = math.max(32768, ops_limit);
const r: u30 = 8;
if (ops < mem_limit / 32) {
const max_n = ops / (r * 4);
return Self{ .r = r, .p = 1, .ln = @intCast(u6, math.log2(max_n)) };
} else {
const max_n = mem_limit / (@intCast(usize, r) * 128);
const ln = @intCast(u6, math.log2(max_n));
const max_rp = math.min(0x3fffffff, (ops / 4) / (@as(u64, 1) << ln));
return Self{ .r = r, .p = @intCast(u30, max_rp / @as(u64, r)), .ln = ln };
}
}
};
/// Apply scrypt to generate a key from a password.
///
/// scrypt is defined in RFC 7914.
///
/// allocator: *mem.Allocator.
///
/// derived_key: Slice of appropriate size for generated key. Generally 16 or 32 bytes in length.
/// May be uninitialized. All bytes will be overwritten.
/// Maximum size is `derived_key.len / 32 == 0xffff_ffff`.
///
/// password: Arbitrary sequence of bytes of any length.
///
/// salt: Arbitrary sequence of bytes of any length.
///
/// params: Params.
pub fn kdf(
allocator: *mem.Allocator,
derived_key: []u8,
password: []const u8,
salt: []const u8,
params: Params,
) KdfError!void {
if (derived_key.len == 0 or derived_key.len / 32 > 0xffff_ffff) return KdfError.OutputTooLong;
if (params.ln == 0 or params.r == 0 or params.p == 0) return KdfError.WeakParameters;
const n64 = @as(u64, 1) << params.ln;
if (n64 > max_size) return KdfError.WeakParameters;
const n = @intCast(usize, n64);
if (@as(u64, params.r) * @as(u64, params.p) >= 1 << 30 or
params.r > max_int / 128 / @as(u64, params.p) or
params.r > max_int / 256 or
n > max_int / 128 / @as(u64, params.r)) return KdfError.WeakParameters;
var xy = try allocator.alignedAlloc(u32, 16, 64 * params.r);
defer allocator.free(xy);
var v = try allocator.alignedAlloc(u32, 16, 32 * n * params.r);
defer allocator.free(v);
var dk = try allocator.alignedAlloc(u8, 16, params.p * 128 * params.r);
defer allocator.free(dk);
try pwhash.pbkdf2(dk, password, salt, 1, HmacSha256);
var i: u32 = 0;
while (i < params.p) : (i += 1) {
smix(dk[i * 128 * params.r ..], params.r, n, v, xy);
}
try pwhash.pbkdf2(derived_key, password, dk, 1, HmacSha256);
}
const crypt_format = struct {
/// String prefix for scrypt
pub const prefix = "$7$";
/// Standard type for a set of scrypt parameters, with the salt and hash.
pub fn HashResult(comptime crypt_max_hash_len: usize) type {
return struct {
ln: u6,
r: u30,
p: u30,
salt: []const u8,
hash: BinValue(crypt_max_hash_len),
};
}
const Codec = CustomB64Codec("./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".*);
/// A wrapped binary value whose maximum size is `max_len`.
///
/// This type must be used whenever a binary value is encoded in a PHC-formatted string.
/// This includes `salt`, `hash`, and any other binary parameters such as keys.
///
/// Once initialized, the actual value can be read with the `constSlice()` function.
pub fn BinValue(comptime max_len: usize) type {
return struct {
const Self = @This();
const capacity = max_len;
const max_encoded_length = Codec.encodedLen(max_len);
buf: [max_len]u8 = undefined,
len: usize = 0,
/// Wrap an existing byte slice
pub fn fromSlice(slice: []const u8) EncodingError!Self {
if (slice.len > capacity) return EncodingError.NoSpaceLeft;
var bin_value: Self = undefined;
mem.copy(u8, &bin_value.buf, slice);
bin_value.len = slice.len;
return bin_value;
}
/// Return the slice containing the actual value.
pub fn constSlice(self: Self) []const u8 {
return self.buf[0..self.len];
}
fn fromB64(self: *Self, str: []const u8) !void {
const len = Codec.decodedLen(str.len);
if (len > self.buf.len) return EncodingError.NoSpaceLeft;
try Codec.decode(self.buf[0..len], str);
self.len = len;
}
fn toB64(self: Self, buf: []u8) ![]const u8 {
const value = self.constSlice();
const len = Codec.encodedLen(value.len);
if (len > buf.len) return EncodingError.NoSpaceLeft;
var encoded = buf[0..len];
Codec.encode(encoded, value);
return encoded;
}
};
}
/// Expand binary data into a salt for the modular crypt format.
pub fn saltFromBin(comptime len: usize, salt: [len]u8) [Codec.encodedLen(len)]u8 {
var buf: [Codec.encodedLen(len)]u8 = undefined;
Codec.encode(&buf, &salt);
return buf;
}
/// Deserialize a string into a structure `T` (matching `HashResult`).
pub fn deserialize(comptime T: type, str: []const u8) EncodingError!T {
var out: T = undefined;
if (str.len < 16) return EncodingError.InvalidEncoding;
if (!mem.eql(u8, prefix, str[0..3])) return EncodingError.InvalidEncoding;
out.ln = try Codec.intDecode(u6, str[3..4]);
out.r = try Codec.intDecode(u30, str[4..9]);
out.p = try Codec.intDecode(u30, str[9..14]);
var it = mem.split(u8, str[14..], "$");
const salt = it.next() orelse return EncodingError.InvalidEncoding;
if (@hasField(T, "salt")) out.salt = salt;
const hash_str = it.next() orelse return EncodingError.InvalidEncoding;
if (@hasField(T, "hash")) try out.hash.fromB64(hash_str);
return out;
}
/// Serialize parameters into a string in modular crypt format.
pub fn serialize(params: anytype, str: []u8) EncodingError![]const u8 {
var buf = io.fixedBufferStream(str);
try serializeTo(params, buf.writer());
return buf.getWritten();
}
/// Compute the number of bytes required to serialize `params`
pub fn calcSize(params: anytype) usize {
var buf = io.countingWriter(io.null_writer);
serializeTo(params, buf.writer()) catch unreachable;
return @intCast(usize, buf.bytes_written);
}
fn serializeTo(params: anytype, out: anytype) !void {
var header: [14]u8 = undefined;
mem.copy(u8, header[0..3], prefix);
Codec.intEncode(header[3..4], params.ln);
Codec.intEncode(header[4..9], params.r);
Codec.intEncode(header[9..14], params.p);
try out.writeAll(&header);
try out.writeAll(params.salt);
try out.writeAll("$");
var buf: [@TypeOf(params.hash).max_encoded_length]u8 = undefined;
const hash_str = try params.hash.toB64(&buf);
try out.writeAll(hash_str);
}
/// Custom codec that maps 6 bits into 8 like regular Base64, but uses its own alphabet,
/// encodes bits in little-endian, and can also encode integers.
fn CustomB64Codec(comptime map: [64]u8) type {
return struct {
const map64 = map;
fn encodedLen(len: usize) usize {
return (len * 4 + 2) / 3;
}
fn decodedLen(len: usize) usize {
return len / 4 * 3 + (len % 4) * 3 / 4;
}
fn intEncode(dst: []u8, src: anytype) void {
var n = src;
for (dst) |*x| {
x.* = map64[@truncate(u6, n)];
n = math.shr(@TypeOf(src), n, 6);
}
}
fn intDecode(comptime T: type, src: *const [(meta.bitCount(T) + 5) / 6]u8) !T {
var v: T = 0;
for (src) |x, i| {
const vi = mem.indexOfScalar(u8, &map64, x) orelse return EncodingError.InvalidEncoding;
v |= @intCast(T, vi) << @intCast(math.Log2Int(T), i * 6);
}
return v;
}
fn decode(dst: []u8, src: []const u8) !void {
std.debug.assert(dst.len == decodedLen(src.len));
var i: usize = 0;
while (i < src.len / 4) : (i += 1) {
mem.writeIntSliceLittle(u24, dst[i * 3 ..], try intDecode(u24, src[i * 4 ..][0..4]));
}
const leftover = src[i * 4 ..];
var v: u24 = 0;
for (leftover) |_, j| {
v |= @as(u24, try intDecode(u6, leftover[j..][0..1])) << @intCast(u5, j * 6);
}
for (dst[i * 3 ..]) |*x, j| {
x.* = @truncate(u8, v >> @intCast(u5, j * 8));
}
}
fn encode(dst: []u8, src: []const u8) void {
std.debug.assert(dst.len == encodedLen(src.len));
var i: usize = 0;
while (i < src.len / 3) : (i += 1) {
intEncode(dst[i * 4 ..][0..4], mem.readIntSliceLittle(u24, src[i * 3 ..]));
}
const leftover = src[i * 3 ..];
var v: u24 = 0;
for (leftover) |x, j| {
v |= @as(u24, x) << @intCast(u5, j * 8);
}
intEncode(dst[i * 4 ..], v);
}
};
}
};
/// Hash and verify passwords using the PHC format.
const PhcFormatHasher = struct {
const alg_id = "scrypt";
const BinValue = phc_format.BinValue;
const HashResult = struct {
alg_id: []const u8,
ln: u6,
r: u30,
p: u30,
salt: BinValue(max_salt_len),
hash: BinValue(max_hash_len),
};
/// Return a non-deterministic hash of the password encoded as a PHC-format string
pub fn create(
allocator: *mem.Allocator,
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
var salt: [default_salt_len]u8 = undefined;
crypto.random.bytes(&salt);
var hash: [default_hash_len]u8 = undefined;
try kdf(allocator, &hash, password, &salt, params);
return phc_format.serialize(HashResult{
.alg_id = alg_id,
.ln = params.ln,
.r = params.r,
.p = params.p,
.salt = try BinValue(max_salt_len).fromSlice(&salt),
.hash = try BinValue(max_hash_len).fromSlice(&hash),
}, buf);
}
/// Verify a password against a PHC-format encoded string
pub fn verify(
allocator: *mem.Allocator,
str: []const u8,
password: []const u8,
) HasherError!void {
const hash_result = try phc_format.deserialize(HashResult, str);
if (!mem.eql(u8, hash_result.alg_id, alg_id)) return HasherError.PasswordVerificationFailed;
const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
const expected_hash = hash_result.hash.constSlice();
var hash_buf: [max_hash_len]u8 = undefined;
if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
var hash = hash_buf[0..expected_hash.len];
try kdf(allocator, hash, password, hash_result.salt.constSlice(), params);
if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
}
};
/// Hash and verify passwords using the modular crypt format.
const CryptFormatHasher = struct {
const BinValue = crypt_format.BinValue;
const HashResult = crypt_format.HashResult(max_hash_len);
/// Length of a string returned by the create() function
pub const pwhash_str_length: usize = 101;
/// Return a non-deterministic hash of the password encoded into the modular crypt format
pub fn create(
allocator: *mem.Allocator,
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
var salt_bin: [default_salt_len]u8 = undefined;
crypto.random.bytes(&salt_bin);
const salt = crypt_format.saltFromBin(salt_bin.len, salt_bin);
var hash: [default_hash_len]u8 = undefined;
try kdf(allocator, &hash, password, &salt, params);
return crypt_format.serialize(HashResult{
.ln = params.ln,
.r = params.r,
.p = params.p,
.salt = &salt,
.hash = try BinValue(max_hash_len).fromSlice(&hash),
}, buf);
}
/// Verify a password against a string in modular crypt format
pub fn verify(
allocator: *mem.Allocator,
str: []const u8,
password: []const u8,
) HasherError!void {
const hash_result = try crypt_format.deserialize(HashResult, str);
const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
const expected_hash = hash_result.hash.constSlice();
var hash_buf: [max_hash_len]u8 = undefined;
if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
var hash = hash_buf[0..expected_hash.len];
try kdf(allocator, hash, password, hash_result.salt, params);
if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
}
};
/// Options for hashing a password.
pub const HashOptions = struct {
allocator: ?*mem.Allocator,
params: Params,
encoding: pwhash.Encoding,
};
/// Compute a hash of a password using the scrypt key derivation function.
/// The function returns a string that includes all the parameters required for verification.
pub fn strHash(
password: []const u8,
options: HashOptions,
out: []u8,
) Error![]const u8 {
const allocator = options.allocator orelse return Error.AllocatorRequired;
switch (options.encoding) {
.phc => return PhcFormatHasher.create(allocator, password, options.params, out),
.crypt => return CryptFormatHasher.create(allocator, password, options.params, out),
}
}
/// Options for hash verification.
pub const VerifyOptions = struct {
allocator: ?*mem.Allocator,
};
/// Verify that a previously computed hash is valid for a given password.
pub fn strVerify(
str: []const u8,
password: []const u8,
options: VerifyOptions,
) Error!void {
const allocator = options.allocator orelse return Error.AllocatorRequired;
if (mem.startsWith(u8, str, crypt_format.prefix)) {
return CryptFormatHasher.verify(allocator, str, password);
} else {
return PhcFormatHasher.verify(allocator, str, password);
}
}
test "scrypt kdf" {
const password = "testpass";
const salt = "saltsalt";
var dk: [32]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 15, .r = 8, .p = 1 });
const hex = "1e0f97c3f6609024022fbe698da29c2fe53ef1087a8e396dc6d5d2a041e886de";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 1" {
const password = "";
const salt = "";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 4, .r = 1, .p = 1 });
const hex = "77d6576238657b203b19ca42c18a0497f16b4844e3074ae8dfdffa3fede21442fcd0069ded0948f8326a753a0fc81f17e8d3e0fb2e0d3628cf35e20c38d18906";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 2" {
const password = "password";
const salt = "NaCl";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 10, .r = 8, .p = 16 });
const hex = "fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 3" {
const password = "pleaseletmein";
const salt = "SodiumChloride";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 14, .r = 8, .p = 1 });
const hex = "7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 4" {
// skip slow test
if (true) {
return error.SkipZigTest;
}
const password = "pleaseletmein";
const salt = "SodiumChloride";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 20, .r = 8, .p = 1 });
const hex = "2101cb9b6a511aaeaddbbe09cf70f881ec568d574a2ffd4dabe5ee9820adaa478e56fd8f4ba5d09ffa1c6d927c40f4c337304049e8a952fbcbf45c6fa77a41a4";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt password hashing (crypt format)" {
const str = "$7$A6....1....TrXs5Zk6s8sWHpQgWDIXTR8kUU3s6Jc3s.DtdS8M2i4$a4ik5hGDN7foMuHOW.cp.CtX01UyCeO0.JAG.AHPpx5";
const password = "Y0!?iQa9M%5ekffW(`";
try CryptFormatHasher.verify(std.testing.allocator, str, password);
const params = Params.interactive;
var buf: [CryptFormatHasher.pwhash_str_length]u8 = undefined;
const str2 = try CryptFormatHasher.create(std.testing.allocator, password, params, &buf);
try CryptFormatHasher.verify(std.testing.allocator, str2, password);
}
test "scrypt strHash and strVerify" {
const alloc = std.testing.allocator;
const password = "testpass";
const verify_options = VerifyOptions{ .allocator = alloc };
var buf: [128]u8 = undefined;
const s = try strHash(
password,
HashOptions{ .allocator = alloc, .params = Params.interactive, .encoding = .crypt },
&buf,
);
try strVerify(s, password, verify_options);
const s1 = try strHash(
password,
HashOptions{ .allocator = alloc, .params = Params.interactive, .encoding = .phc },
&buf,
);
try strVerify(s1, password, verify_options);
}
test "scrypt unix-scrypt" {
const alloc = std.testing.allocator;
// https://gitlab.com/jas/scrypt-unix-crypt/blob/master/unix-scrypt.txt
{
const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
const password = "pleaseletmein";
try strVerify(str, password, .{ .allocator = alloc });
}
// one of the libsodium test vectors
{
const str = "$7$B6....1....75gBMAGwfFWZqBdyF3WdTQnWdUsuTiWjG1fF9c1jiSD$tc8RoB3.Em3/zNgMLWo2u00oGIoTyJv4fl3Fl8Tix72";
const password = "^T5H$JYt39n%K*j:W]!1s?vg!:jGi]Ax?..l7[p0v:1jHTpla9;]bUN;?bWyCbtqg nrDFal+Jxl3,2`#^tFSu%v_+7iYse8-cCkNf!tD=KrW)";
try strVerify(str, password, .{ .allocator = alloc });
}
}
test "scrypt crypt format" {
const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
const params = try crypt_format.deserialize(crypt_format.HashResult(32), str);
var buf: [str.len]u8 = undefined;
const s1 = try crypt_format.serialize(params, &buf);
try std.testing.expectEqualStrings(s1, str);
}