zig/lib/std/Build/Step.zig
mlugg dcc3e6e1dd build system: replace fuzzing UI with build UI, add time report
This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.

The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.

When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.

When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.

In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.

If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.

To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.

If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.

Implementation notes:

* The `lib/build-web/` directory holds the client side of the web UI.

* The general server logic is in `std.Build.WebServer`.

* Fuzzing-specific logic is in `std.Build.Fuzz`.

* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
  relates to the build system web UI in general.

* The build runner now has an **actual** general-purpose allocator,
  because thanks to `--watch` and `--webui`, the process can be
  arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
  arena remains backed by `std.heap.page_allocator` for efficiency. I
  fixed several crashes caused by conflation of `gpa` and `arena` in the
  build runner and `std.Build`, but there may still be some I have
  missed.

* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
  *lot* of threads involved. I anticipate this situation improving
  significantly once the `std.Io` interface (with concurrency support)
  is introduced.
2025-08-01 23:48:21 +01:00

1030 lines
38 KiB
Zig

id: Id,
name: []const u8,
owner: *Build,
makeFn: MakeFn,
dependencies: std.ArrayList(*Step),
/// This field is empty during execution of the user's build script, and
/// then populated during dependency loop checking in the build runner.
dependants: std.ArrayListUnmanaged(*Step),
/// Collects the set of files that retrigger this step to run.
///
/// This is used by the build system's implementation of `--watch` but it can
/// also be potentially useful for IDEs to know what effects editing a
/// particular file has.
///
/// Populated within `make`. Implementation may choose to clear and repopulate,
/// retain previous value, or update.
inputs: Inputs,
state: State,
/// Set this field to declare an upper bound on the amount of bytes of memory it will
/// take to run the step. Zero means no limit.
///
/// The idea to annotate steps that might use a high amount of RAM with an
/// upper bound. For example, perhaps a particular set of unit tests require 4
/// GiB of RAM, and those tests will be run under 4 different build
/// configurations at once. This would potentially require 16 GiB of memory on
/// the system if all 4 steps executed simultaneously, which could easily be
/// greater than what is actually available, potentially causing the system to
/// crash when using `zig build` at the default concurrency level.
///
/// This field causes the build runner to do two things:
/// 1. ulimit child processes, so that they will fail if it would exceed this
/// memory limit. This serves to enforce that this upper bound value is
/// correct.
/// 2. Ensure that the set of concurrent steps at any given time have a total
/// max_rss value that does not exceed the `max_total_rss` value of the build
/// runner. This value is configurable on the command line, and defaults to the
/// total system memory available.
max_rss: usize,
result_error_msgs: std.ArrayListUnmanaged([]const u8),
result_error_bundle: std.zig.ErrorBundle,
result_stderr: []const u8,
result_cached: bool,
result_duration_ns: ?u64,
/// 0 means unavailable or not reported.
result_peak_rss: usize,
test_results: TestResults,
/// The return address associated with creation of this step that can be useful
/// to print along with debugging messages.
debug_stack_trace: []usize,
pub const TestResults = struct {
fail_count: u32 = 0,
skip_count: u32 = 0,
leak_count: u32 = 0,
log_err_count: u32 = 0,
test_count: u32 = 0,
pub fn isSuccess(tr: TestResults) bool {
return tr.fail_count == 0 and tr.leak_count == 0 and tr.log_err_count == 0;
}
pub fn passCount(tr: TestResults) u32 {
return tr.test_count - tr.fail_count - tr.skip_count;
}
};
pub const MakeOptions = struct {
progress_node: std.Progress.Node,
thread_pool: *std.Thread.Pool,
watch: bool,
web_server: switch (builtin.target.cpu.arch) {
else => ?*Build.WebServer,
// WASM code references `Build.abi` which happens to incidentally reference this type, but
// it currently breaks because `std.net.Address` doesn't work there. Work around for now.
.wasm32 => void,
},
/// Not to be confused with `Build.allocator`, which is an alias of `Build.graph.arena`.
gpa: Allocator,
};
pub const MakeFn = *const fn (step: *Step, options: MakeOptions) anyerror!void;
pub const State = enum {
precheck_unstarted,
precheck_started,
/// This is also used to indicate "dirty" steps that have been modified
/// after a previous build completed, in which case, the step may or may
/// not have been completed before. Either way, one or more of its direct
/// file system inputs have been modified, meaning that the step needs to
/// be re-evaluated.
precheck_done,
running,
dependency_failure,
success,
failure,
/// This state indicates that the step did not complete, however, it also did not fail,
/// and it is safe to continue executing its dependencies.
skipped,
/// This step was skipped because it specified a max_rss that exceeded the runner's maximum.
/// It is not safe to run its dependencies.
skipped_oom,
};
pub const Id = enum {
top_level,
compile,
install_artifact,
install_file,
install_dir,
remove_dir,
fail,
fmt,
translate_c,
write_file,
update_source_files,
run,
check_file,
check_object,
config_header,
objcopy,
options,
custom,
pub fn Type(comptime id: Id) type {
return switch (id) {
.top_level => Build.TopLevelStep,
.compile => Compile,
.install_artifact => InstallArtifact,
.install_file => InstallFile,
.install_dir => InstallDir,
.remove_dir => RemoveDir,
.fail => Fail,
.fmt => Fmt,
.translate_c => TranslateC,
.write_file => WriteFile,
.update_source_files => UpdateSourceFiles,
.run => Run,
.check_file => CheckFile,
.check_object => CheckObject,
.config_header => ConfigHeader,
.objcopy => ObjCopy,
.options => Options,
.custom => @compileError("no type available for custom step"),
};
}
};
pub const CheckFile = @import("Step/CheckFile.zig");
pub const CheckObject = @import("Step/CheckObject.zig");
pub const ConfigHeader = @import("Step/ConfigHeader.zig");
pub const Fail = @import("Step/Fail.zig");
pub const Fmt = @import("Step/Fmt.zig");
pub const InstallArtifact = @import("Step/InstallArtifact.zig");
pub const InstallDir = @import("Step/InstallDir.zig");
pub const InstallFile = @import("Step/InstallFile.zig");
pub const ObjCopy = @import("Step/ObjCopy.zig");
pub const Compile = @import("Step/Compile.zig");
pub const Options = @import("Step/Options.zig");
pub const RemoveDir = @import("Step/RemoveDir.zig");
pub const Run = @import("Step/Run.zig");
pub const TranslateC = @import("Step/TranslateC.zig");
pub const WriteFile = @import("Step/WriteFile.zig");
pub const UpdateSourceFiles = @import("Step/UpdateSourceFiles.zig");
pub const Inputs = struct {
table: Table,
pub const init: Inputs = .{
.table = .{},
};
pub const Table = std.ArrayHashMapUnmanaged(Build.Cache.Path, Files, Build.Cache.Path.TableAdapter, false);
/// The special file name "." means any changes inside the directory.
pub const Files = std.ArrayListUnmanaged([]const u8);
pub fn populated(inputs: *Inputs) bool {
return inputs.table.count() != 0;
}
pub fn clear(inputs: *Inputs, gpa: Allocator) void {
for (inputs.table.values()) |*files| files.deinit(gpa);
inputs.table.clearRetainingCapacity();
}
};
pub const StepOptions = struct {
id: Id,
name: []const u8,
owner: *Build,
makeFn: MakeFn = makeNoOp,
first_ret_addr: ?usize = null,
max_rss: usize = 0,
};
pub fn init(options: StepOptions) Step {
const arena = options.owner.allocator;
return .{
.id = options.id,
.name = arena.dupe(u8, options.name) catch @panic("OOM"),
.owner = options.owner,
.makeFn = options.makeFn,
.dependencies = std.ArrayList(*Step).init(arena),
.dependants = .{},
.inputs = Inputs.init,
.state = .precheck_unstarted,
.max_rss = options.max_rss,
.debug_stack_trace = blk: {
if (!std.debug.sys_can_stack_trace) break :blk &.{};
const addresses = arena.alloc(usize, options.owner.debug_stack_frames_count) catch @panic("OOM");
@memset(addresses, 0);
const first_ret_addr = options.first_ret_addr orelse @returnAddress();
var stack_trace = std.builtin.StackTrace{
.instruction_addresses = addresses,
.index = 0,
};
std.debug.captureStackTrace(first_ret_addr, &stack_trace);
break :blk addresses;
},
.result_error_msgs = .{},
.result_error_bundle = std.zig.ErrorBundle.empty,
.result_stderr = "",
.result_cached = false,
.result_duration_ns = null,
.result_peak_rss = 0,
.test_results = .{},
};
}
/// If the Step's `make` function reports `error.MakeFailed`, it indicates they
/// have already reported the error. Otherwise, we add a simple error report
/// here.
pub fn make(s: *Step, options: MakeOptions) error{ MakeFailed, MakeSkipped }!void {
const arena = s.owner.allocator;
var timer: ?std.time.Timer = t: {
if (!s.owner.graph.time_report) break :t null;
if (s.id == .compile) break :t null;
break :t std.time.Timer.start() catch @panic("--time-report not supported on this host");
};
const make_result = s.makeFn(s, options);
if (timer) |*t| {
options.web_server.?.updateTimeReportGeneric(s, t.read());
}
make_result catch |err| switch (err) {
error.MakeFailed => return error.MakeFailed,
error.MakeSkipped => return error.MakeSkipped,
else => {
s.result_error_msgs.append(arena, @errorName(err)) catch @panic("OOM");
return error.MakeFailed;
},
};
if (!s.test_results.isSuccess()) {
return error.MakeFailed;
}
if (s.max_rss != 0 and s.result_peak_rss > s.max_rss) {
const msg = std.fmt.allocPrint(arena, "memory usage peaked at {d} bytes, exceeding the declared upper bound of {d}", .{
s.result_peak_rss, s.max_rss,
}) catch @panic("OOM");
s.result_error_msgs.append(arena, msg) catch @panic("OOM");
}
}
pub fn dependOn(step: *Step, other: *Step) void {
step.dependencies.append(other) catch @panic("OOM");
}
pub fn getStackTrace(s: *Step) ?std.builtin.StackTrace {
var len: usize = 0;
while (len < s.debug_stack_trace.len and s.debug_stack_trace[len] != 0) {
len += 1;
}
return if (len == 0) null else .{
.instruction_addresses = s.debug_stack_trace,
.index = len,
};
}
fn makeNoOp(step: *Step, options: MakeOptions) anyerror!void {
_ = options;
var all_cached = true;
for (step.dependencies.items) |dep| {
all_cached = all_cached and dep.result_cached;
}
step.result_cached = all_cached;
}
pub fn cast(step: *Step, comptime T: type) ?*T {
if (step.id == T.base_id) {
return @fieldParentPtr("step", step);
}
return null;
}
/// For debugging purposes, prints identifying information about this Step.
pub fn dump(step: *Step, w: *std.Io.Writer, tty_config: std.Io.tty.Config) void {
const debug_info = std.debug.getSelfDebugInfo() catch |err| {
w.print("Unable to dump stack trace: Unable to open debug info: {s}\n", .{
@errorName(err),
}) catch {};
return;
};
if (step.getStackTrace()) |stack_trace| {
w.print("name: '{s}'. creation stack trace:\n", .{step.name}) catch {};
std.debug.writeStackTrace(stack_trace, w, debug_info, tty_config) catch |err| {
w.print("Unable to dump stack trace: {s}\n", .{@errorName(err)}) catch {};
return;
};
} else {
const field = "debug_stack_frames_count";
comptime assert(@hasField(Build, field));
tty_config.setColor(w, .yellow) catch {};
w.print("name: '{s}'. no stack trace collected for this step, see std.Build." ++ field ++ "\n", .{step.name}) catch {};
tty_config.setColor(w, .reset) catch {};
}
}
const Step = @This();
const std = @import("../std.zig");
const Build = std.Build;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const builtin = @import("builtin");
const Cache = Build.Cache;
const Path = Cache.Path;
pub fn evalChildProcess(s: *Step, argv: []const []const u8) ![]u8 {
const run_result = try captureChildProcess(s, std.Progress.Node.none, argv);
try handleChildProcessTerm(s, run_result.term, null, argv);
return run_result.stdout;
}
pub fn captureChildProcess(
s: *Step,
progress_node: std.Progress.Node,
argv: []const []const u8,
) !std.process.Child.RunResult {
const arena = s.owner.allocator;
try handleChildProcUnsupported(s, null, argv);
try handleVerbose(s.owner, null, argv);
const result = std.process.Child.run(.{
.allocator = arena,
.argv = argv,
.progress_node = progress_node,
}) catch |err| return s.fail("failed to run {s}: {s}", .{ argv[0], @errorName(err) });
if (result.stderr.len > 0) {
try s.result_error_msgs.append(arena, result.stderr);
}
return result;
}
pub fn fail(step: *Step, comptime fmt: []const u8, args: anytype) error{ OutOfMemory, MakeFailed } {
try step.addError(fmt, args);
return error.MakeFailed;
}
pub fn addError(step: *Step, comptime fmt: []const u8, args: anytype) error{OutOfMemory}!void {
const arena = step.owner.allocator;
const msg = try std.fmt.allocPrint(arena, fmt, args);
try step.result_error_msgs.append(arena, msg);
}
pub const ZigProcess = struct {
child: std.process.Child,
poller: std.Io.Poller(StreamEnum),
progress_ipc_fd: if (std.Progress.have_ipc) ?std.posix.fd_t else void,
pub const StreamEnum = enum { stdout, stderr };
};
/// Assumes that argv contains `--listen=-` and that the process being spawned
/// is the zig compiler - the same version that compiled the build runner.
pub fn evalZigProcess(
s: *Step,
argv: []const []const u8,
prog_node: std.Progress.Node,
watch: bool,
web_server: ?*Build.WebServer,
gpa: Allocator,
) !?Path {
if (s.getZigProcess()) |zp| update: {
assert(watch);
if (std.Progress.have_ipc) if (zp.progress_ipc_fd) |fd| prog_node.setIpcFd(fd);
const result = zigProcessUpdate(s, zp, watch, web_server, gpa) catch |err| switch (err) {
error.BrokenPipe => {
// Process restart required.
const term = zp.child.wait() catch |e| {
return s.fail("unable to wait for {s}: {s}", .{ argv[0], @errorName(e) });
};
_ = term;
s.clearZigProcess(gpa);
break :update;
},
else => |e| return e,
};
if (s.result_error_bundle.errorMessageCount() > 0)
return s.fail("{d} compilation errors", .{s.result_error_bundle.errorMessageCount()});
if (s.result_error_msgs.items.len > 0 and result == null) {
// Crash detected.
const term = zp.child.wait() catch |e| {
return s.fail("unable to wait for {s}: {s}", .{ argv[0], @errorName(e) });
};
s.result_peak_rss = zp.child.resource_usage_statistics.getMaxRss() orelse 0;
s.clearZigProcess(gpa);
try handleChildProcessTerm(s, term, null, argv);
return error.MakeFailed;
}
return result;
}
assert(argv.len != 0);
const b = s.owner;
const arena = b.allocator;
try handleChildProcUnsupported(s, null, argv);
try handleVerbose(s.owner, null, argv);
var child = std.process.Child.init(argv, arena);
child.env_map = &b.graph.env_map;
child.stdin_behavior = .Pipe;
child.stdout_behavior = .Pipe;
child.stderr_behavior = .Pipe;
child.request_resource_usage_statistics = true;
child.progress_node = prog_node;
child.spawn() catch |err| return s.fail("failed to spawn zig compiler {s}: {s}", .{
argv[0], @errorName(err),
});
const zp = try gpa.create(ZigProcess);
zp.* = .{
.child = child,
.poller = std.Io.poll(gpa, ZigProcess.StreamEnum, .{
.stdout = child.stdout.?,
.stderr = child.stderr.?,
}),
.progress_ipc_fd = if (std.Progress.have_ipc) child.progress_node.getIpcFd() else {},
};
if (watch) s.setZigProcess(zp);
defer if (!watch) {
zp.poller.deinit();
gpa.destroy(zp);
};
const result = try zigProcessUpdate(s, zp, watch, web_server, gpa);
if (!watch) {
// Send EOF to stdin.
zp.child.stdin.?.close();
zp.child.stdin = null;
const term = zp.child.wait() catch |err| {
return s.fail("unable to wait for {s}: {s}", .{ argv[0], @errorName(err) });
};
s.result_peak_rss = zp.child.resource_usage_statistics.getMaxRss() orelse 0;
// Special handling for Compile step that is expecting compile errors.
if (s.cast(Compile)) |compile| switch (term) {
.Exited => {
// Note that the exit code may be 0 in this case due to the
// compiler server protocol.
if (compile.expect_errors != null) {
return error.NeedCompileErrorCheck;
}
},
else => {},
};
try handleChildProcessTerm(s, term, null, argv);
}
// This is intentionally printed for failure on the first build but not for
// subsequent rebuilds.
if (s.result_error_bundle.errorMessageCount() > 0) {
return s.fail("the following command failed with {d} compilation errors:\n{s}", .{
s.result_error_bundle.errorMessageCount(),
try allocPrintCmd(arena, null, argv),
});
}
return result;
}
/// Wrapper around `std.fs.Dir.updateFile` that handles verbose and error output.
pub fn installFile(s: *Step, src_lazy_path: Build.LazyPath, dest_path: []const u8) !std.fs.Dir.PrevStatus {
const b = s.owner;
const src_path = src_lazy_path.getPath3(b, s);
try handleVerbose(b, null, &.{ "install", "-C", b.fmt("{f}", .{src_path}), dest_path });
return src_path.root_dir.handle.updateFile(src_path.sub_path, std.fs.cwd(), dest_path, .{}) catch |err| {
return s.fail("unable to update file from '{f}' to '{s}': {s}", .{
src_path, dest_path, @errorName(err),
});
};
}
/// Wrapper around `std.fs.Dir.makePathStatus` that handles verbose and error output.
pub fn installDir(s: *Step, dest_path: []const u8) !std.fs.Dir.MakePathStatus {
const b = s.owner;
try handleVerbose(b, null, &.{ "install", "-d", dest_path });
return std.fs.cwd().makePathStatus(dest_path) catch |err| {
return s.fail("unable to create dir '{s}': {s}", .{
dest_path, @errorName(err),
});
};
}
fn zigProcessUpdate(s: *Step, zp: *ZigProcess, watch: bool, web_server: ?*Build.WebServer, gpa: Allocator) !?Path {
const b = s.owner;
const arena = b.allocator;
var timer = try std.time.Timer.start();
try sendMessage(zp.child.stdin.?, .update);
if (!watch) try sendMessage(zp.child.stdin.?, .exit);
var result: ?Path = null;
const stdout = zp.poller.reader(.stdout);
poll: while (true) {
const Header = std.zig.Server.Message.Header;
while (stdout.buffered().len < @sizeOf(Header)) if (!try zp.poller.poll()) break :poll;
const header = stdout.takeStruct(Header, .little) catch unreachable;
while (stdout.buffered().len < header.bytes_len) if (!try zp.poller.poll()) break :poll;
const body = stdout.take(header.bytes_len) catch unreachable;
switch (header.tag) {
.zig_version => {
if (!std.mem.eql(u8, builtin.zig_version_string, body)) {
return s.fail(
"zig version mismatch build runner vs compiler: '{s}' vs '{s}'",
.{ builtin.zig_version_string, body },
);
}
},
.error_bundle => {
const EbHdr = std.zig.Server.Message.ErrorBundle;
const eb_hdr = @as(*align(1) const EbHdr, @ptrCast(body));
const extra_bytes =
body[@sizeOf(EbHdr)..][0 .. @sizeOf(u32) * eb_hdr.extra_len];
const string_bytes =
body[@sizeOf(EbHdr) + extra_bytes.len ..][0..eb_hdr.string_bytes_len];
// TODO: use @ptrCast when the compiler supports it
const unaligned_extra = std.mem.bytesAsSlice(u32, extra_bytes);
{
s.result_error_bundle = .{ .string_bytes = &.{}, .extra = &.{} };
errdefer s.result_error_bundle.deinit(gpa);
s.result_error_bundle.string_bytes = try gpa.dupe(u8, string_bytes);
const extra = try gpa.alloc(u32, unaligned_extra.len);
@memcpy(extra, unaligned_extra);
s.result_error_bundle.extra = extra;
}
// This message indicates the end of the update.
if (watch) break :poll;
},
.emit_digest => {
const EmitDigest = std.zig.Server.Message.EmitDigest;
const emit_digest = @as(*align(1) const EmitDigest, @ptrCast(body));
s.result_cached = emit_digest.flags.cache_hit;
const digest = body[@sizeOf(EmitDigest)..][0..Cache.bin_digest_len];
result = .{
.root_dir = b.cache_root,
.sub_path = try arena.dupe(u8, "o" ++ std.fs.path.sep_str ++ Cache.binToHex(digest.*)),
};
},
.file_system_inputs => {
s.clearWatchInputs();
var it = std.mem.splitScalar(u8, body, 0);
while (it.next()) |prefixed_path| {
const prefix_index: std.zig.Server.Message.PathPrefix = @enumFromInt(prefixed_path[0] - 1);
const sub_path = try arena.dupe(u8, prefixed_path[1..]);
const sub_path_dirname = std.fs.path.dirname(sub_path) orelse "";
switch (prefix_index) {
.cwd => {
const path: Build.Cache.Path = .{
.root_dir = Build.Cache.Directory.cwd(),
.sub_path = sub_path_dirname,
};
try addWatchInputFromPath(s, path, std.fs.path.basename(sub_path));
},
.zig_lib => zl: {
if (s.cast(Step.Compile)) |compile| {
if (compile.zig_lib_dir) |zig_lib_dir| {
const lp = try zig_lib_dir.join(arena, sub_path);
try addWatchInput(s, lp);
break :zl;
}
}
const path: Build.Cache.Path = .{
.root_dir = s.owner.graph.zig_lib_directory,
.sub_path = sub_path_dirname,
};
try addWatchInputFromPath(s, path, std.fs.path.basename(sub_path));
},
.local_cache => {
const path: Build.Cache.Path = .{
.root_dir = b.cache_root,
.sub_path = sub_path_dirname,
};
try addWatchInputFromPath(s, path, std.fs.path.basename(sub_path));
},
.global_cache => {
const path: Build.Cache.Path = .{
.root_dir = s.owner.graph.global_cache_root,
.sub_path = sub_path_dirname,
};
try addWatchInputFromPath(s, path, std.fs.path.basename(sub_path));
},
}
}
},
.time_report => if (web_server) |ws| {
const TimeReport = std.zig.Server.Message.TimeReport;
const tr: *align(1) const TimeReport = @ptrCast(body[0..@sizeOf(TimeReport)]);
ws.updateTimeReportCompile(.{
.compile = s.cast(Step.Compile).?,
.use_llvm = tr.flags.use_llvm,
.stats = tr.stats,
.ns_total = timer.read(),
.llvm_pass_timings_len = tr.llvm_pass_timings_len,
.files_len = tr.files_len,
.decls_len = tr.decls_len,
.trailing = body[@sizeOf(TimeReport)..],
});
},
else => {}, // ignore other messages
}
}
s.result_duration_ns = timer.read();
const stderr_contents = try zp.poller.toOwnedSlice(.stderr);
if (stderr_contents.len > 0) {
try s.result_error_msgs.append(arena, try arena.dupe(u8, stderr_contents));
}
return result;
}
pub fn getZigProcess(s: *Step) ?*ZigProcess {
return switch (s.id) {
.compile => s.cast(Compile).?.zig_process,
else => null,
};
}
fn setZigProcess(s: *Step, zp: *ZigProcess) void {
switch (s.id) {
.compile => s.cast(Compile).?.zig_process = zp,
else => unreachable,
}
}
fn clearZigProcess(s: *Step, gpa: Allocator) void {
switch (s.id) {
.compile => {
const compile = s.cast(Compile).?;
if (compile.zig_process) |zp| {
gpa.destroy(zp);
compile.zig_process = null;
}
},
else => unreachable,
}
}
fn sendMessage(file: std.fs.File, tag: std.zig.Client.Message.Tag) !void {
const header: std.zig.Client.Message.Header = .{
.tag = tag,
.bytes_len = 0,
};
try file.writeAll(std.mem.asBytes(&header));
}
pub fn handleVerbose(
b: *Build,
opt_cwd: ?[]const u8,
argv: []const []const u8,
) error{OutOfMemory}!void {
return handleVerbose2(b, opt_cwd, null, argv);
}
pub fn handleVerbose2(
b: *Build,
opt_cwd: ?[]const u8,
opt_env: ?*const std.process.EnvMap,
argv: []const []const u8,
) error{OutOfMemory}!void {
if (b.verbose) {
// Intention of verbose is to print all sub-process command lines to
// stderr before spawning them.
const text = try allocPrintCmd2(b.allocator, opt_cwd, opt_env, argv);
std.debug.print("{s}\n", .{text});
}
}
pub inline fn handleChildProcUnsupported(
s: *Step,
opt_cwd: ?[]const u8,
argv: []const []const u8,
) error{ OutOfMemory, MakeFailed }!void {
if (!std.process.can_spawn) {
return s.fail(
"unable to execute the following command: host cannot spawn child processes\n{s}",
.{try allocPrintCmd(s.owner.allocator, opt_cwd, argv)},
);
}
}
pub fn handleChildProcessTerm(
s: *Step,
term: std.process.Child.Term,
opt_cwd: ?[]const u8,
argv: []const []const u8,
) error{ MakeFailed, OutOfMemory }!void {
const arena = s.owner.allocator;
switch (term) {
.Exited => |code| {
if (code != 0) {
return s.fail(
"the following command exited with error code {d}:\n{s}",
.{ code, try allocPrintCmd(arena, opt_cwd, argv) },
);
}
},
.Signal, .Stopped, .Unknown => {
return s.fail(
"the following command terminated unexpectedly:\n{s}",
.{try allocPrintCmd(arena, opt_cwd, argv)},
);
},
}
}
pub fn allocPrintCmd(
arena: Allocator,
opt_cwd: ?[]const u8,
argv: []const []const u8,
) Allocator.Error![]u8 {
return allocPrintCmd2(arena, opt_cwd, null, argv);
}
pub fn allocPrintCmd2(
arena: Allocator,
opt_cwd: ?[]const u8,
opt_env: ?*const std.process.EnvMap,
argv: []const []const u8,
) Allocator.Error![]u8 {
const shell = struct {
fn escape(writer: *std.Io.Writer, string: []const u8, is_argv0: bool) !void {
for (string) |c| {
if (switch (c) {
else => true,
'%', '+'...':', '@'...'Z', '_', 'a'...'z' => false,
'=' => is_argv0,
}) break;
} else return writer.writeAll(string);
try writer.writeByte('"');
for (string) |c| {
if (switch (c) {
std.ascii.control_code.nul => break,
'!', '"', '$', '\\', '`' => true,
else => !std.ascii.isPrint(c),
}) try writer.writeByte('\\');
switch (c) {
std.ascii.control_code.nul => unreachable,
std.ascii.control_code.bel => try writer.writeByte('a'),
std.ascii.control_code.bs => try writer.writeByte('b'),
std.ascii.control_code.ht => try writer.writeByte('t'),
std.ascii.control_code.lf => try writer.writeByte('n'),
std.ascii.control_code.vt => try writer.writeByte('v'),
std.ascii.control_code.ff => try writer.writeByte('f'),
std.ascii.control_code.cr => try writer.writeByte('r'),
std.ascii.control_code.esc => try writer.writeByte('E'),
' '...'~' => try writer.writeByte(c),
else => try writer.print("{o:0>3}", .{c}),
}
}
try writer.writeByte('"');
}
};
var aw: std.Io.Writer.Allocating = .init(arena);
const writer = &aw.writer;
if (opt_cwd) |cwd| writer.print("cd {s} && ", .{cwd}) catch return error.OutOfMemory;
if (opt_env) |env| {
const process_env_map = std.process.getEnvMap(arena) catch std.process.EnvMap.init(arena);
var it = env.iterator();
while (it.next()) |entry| {
const key = entry.key_ptr.*;
const value = entry.value_ptr.*;
if (process_env_map.get(key)) |process_value| {
if (std.mem.eql(u8, value, process_value)) continue;
}
writer.print("{s}=", .{key}) catch return error.OutOfMemory;
shell.escape(writer, value, false) catch return error.OutOfMemory;
writer.writeByte(' ') catch return error.OutOfMemory;
}
}
shell.escape(writer, argv[0], true) catch return error.OutOfMemory;
for (argv[1..]) |arg| {
writer.writeByte(' ') catch return error.OutOfMemory;
shell.escape(writer, arg, false) catch return error.OutOfMemory;
}
return aw.toOwnedSlice();
}
/// Prefer `cacheHitAndWatch` unless you already added watch inputs
/// separately from using the cache system.
pub fn cacheHit(s: *Step, man: *Build.Cache.Manifest) !bool {
s.result_cached = man.hit() catch |err| return failWithCacheError(s, man, err);
return s.result_cached;
}
/// Clears previous watch inputs, if any, and then populates watch inputs from
/// the full set of files picked up by the cache manifest.
///
/// Must be accompanied with `writeManifestAndWatch`.
pub fn cacheHitAndWatch(s: *Step, man: *Build.Cache.Manifest) !bool {
const is_hit = man.hit() catch |err| return failWithCacheError(s, man, err);
s.result_cached = is_hit;
// The above call to hit() populates the manifest with files, so in case of
// a hit, we need to populate watch inputs.
if (is_hit) try setWatchInputsFromManifest(s, man);
return is_hit;
}
fn failWithCacheError(s: *Step, man: *const Build.Cache.Manifest, err: Build.Cache.Manifest.HitError) error{ OutOfMemory, MakeFailed } {
switch (err) {
error.CacheCheckFailed => switch (man.diagnostic) {
.none => unreachable,
.manifest_create, .manifest_read, .manifest_lock => |e| return s.fail("failed to check cache: {s} {s}", .{
@tagName(man.diagnostic), @errorName(e),
}),
.file_open, .file_stat, .file_read, .file_hash => |op| {
const pp = man.files.keys()[op.file_index].prefixed_path;
const prefix = man.cache.prefixes()[pp.prefix].path orelse "";
return s.fail("failed to check cache: '{s}{c}{s}' {s} {s}", .{
prefix, std.fs.path.sep, pp.sub_path, @tagName(man.diagnostic), @errorName(op.err),
});
},
},
error.OutOfMemory => return error.OutOfMemory,
error.InvalidFormat => return s.fail("failed to check cache: invalid manifest file format", .{}),
}
}
/// Prefer `writeManifestAndWatch` unless you already added watch inputs
/// separately from using the cache system.
pub fn writeManifest(s: *Step, man: *Build.Cache.Manifest) !void {
if (s.test_results.isSuccess()) {
man.writeManifest() catch |err| {
try s.addError("unable to write cache manifest: {s}", .{@errorName(err)});
};
}
}
/// Clears previous watch inputs, if any, and then populates watch inputs from
/// the full set of files picked up by the cache manifest.
///
/// Must be accompanied with `cacheHitAndWatch`.
pub fn writeManifestAndWatch(s: *Step, man: *Build.Cache.Manifest) !void {
try writeManifest(s, man);
try setWatchInputsFromManifest(s, man);
}
fn setWatchInputsFromManifest(s: *Step, man: *Build.Cache.Manifest) !void {
const arena = s.owner.allocator;
const prefixes = man.cache.prefixes();
clearWatchInputs(s);
for (man.files.keys()) |file| {
// The file path data is freed when the cache manifest is cleaned up at the end of `make`.
const sub_path = try arena.dupe(u8, file.prefixed_path.sub_path);
try addWatchInputFromPath(s, .{
.root_dir = prefixes[file.prefixed_path.prefix],
.sub_path = std.fs.path.dirname(sub_path) orelse "",
}, std.fs.path.basename(sub_path));
}
}
/// For steps that have a single input that never changes when re-running `make`.
pub fn singleUnchangingWatchInput(step: *Step, lazy_path: Build.LazyPath) Allocator.Error!void {
if (!step.inputs.populated()) try step.addWatchInput(lazy_path);
}
pub fn clearWatchInputs(step: *Step) void {
const gpa = step.owner.allocator;
step.inputs.clear(gpa);
}
/// Places a *file* dependency on the path.
pub fn addWatchInput(step: *Step, lazy_file: Build.LazyPath) Allocator.Error!void {
switch (lazy_file) {
.src_path => |src_path| try addWatchInputFromBuilder(step, src_path.owner, src_path.sub_path),
.dependency => |d| try addWatchInputFromBuilder(step, d.dependency.builder, d.sub_path),
.cwd_relative => |path_string| {
try addWatchInputFromPath(step, .{
.root_dir = .{
.path = null,
.handle = std.fs.cwd(),
},
.sub_path = std.fs.path.dirname(path_string) orelse "",
}, std.fs.path.basename(path_string));
},
// Nothing to watch because this dependency edge is modeled instead via `dependants`.
.generated => {},
}
}
/// Any changes inside the directory will trigger invalidation.
///
/// See also `addDirectoryWatchInputFromPath` which takes a `Build.Cache.Path` instead.
///
/// Paths derived from this directory should also be manually added via
/// `addDirectoryWatchInputFromPath` if and only if this function returns
/// `true`.
pub fn addDirectoryWatchInput(step: *Step, lazy_directory: Build.LazyPath) Allocator.Error!bool {
switch (lazy_directory) {
.src_path => |src_path| try addDirectoryWatchInputFromBuilder(step, src_path.owner, src_path.sub_path),
.dependency => |d| try addDirectoryWatchInputFromBuilder(step, d.dependency.builder, d.sub_path),
.cwd_relative => |path_string| {
try addDirectoryWatchInputFromPath(step, .{
.root_dir = .{
.path = null,
.handle = std.fs.cwd(),
},
.sub_path = path_string,
});
},
// Nothing to watch because this dependency edge is modeled instead via `dependants`.
.generated => return false,
}
return true;
}
/// Any changes inside the directory will trigger invalidation.
///
/// See also `addDirectoryWatchInput` which takes a `Build.LazyPath` instead.
///
/// This function should only be called when it has been verified that the
/// dependency on `path` is not already accounted for by a `Step` dependency.
/// In other words, before calling this function, first check that the
/// `Build.LazyPath` which this `path` is derived from is not `generated`.
pub fn addDirectoryWatchInputFromPath(step: *Step, path: Build.Cache.Path) !void {
return addWatchInputFromPath(step, path, ".");
}
fn addWatchInputFromBuilder(step: *Step, builder: *Build, sub_path: []const u8) !void {
return addWatchInputFromPath(step, .{
.root_dir = builder.build_root,
.sub_path = std.fs.path.dirname(sub_path) orelse "",
}, std.fs.path.basename(sub_path));
}
fn addDirectoryWatchInputFromBuilder(step: *Step, builder: *Build, sub_path: []const u8) !void {
return addDirectoryWatchInputFromPath(step, .{
.root_dir = builder.build_root,
.sub_path = sub_path,
});
}
fn addWatchInputFromPath(step: *Step, path: Build.Cache.Path, basename: []const u8) !void {
const gpa = step.owner.allocator;
const gop = try step.inputs.table.getOrPut(gpa, path);
if (!gop.found_existing) gop.value_ptr.* = .{};
try gop.value_ptr.append(gpa, basename);
}
/// Implementation detail of file watching and forced rebuilds. Prepares the step for being re-evaluated.
pub fn reset(step: *Step, gpa: Allocator) void {
assert(step.state == .precheck_done);
step.result_error_msgs.clearRetainingCapacity();
step.result_stderr = "";
step.result_cached = false;
step.result_duration_ns = null;
step.result_peak_rss = 0;
step.test_results = .{};
step.result_error_bundle.deinit(gpa);
step.result_error_bundle = std.zig.ErrorBundle.empty;
}
/// Implementation detail of file watching. Prepares the step for being re-evaluated.
pub fn recursiveReset(step: *Step, gpa: Allocator) void {
assert(step.state != .precheck_done);
step.state = .precheck_done;
step.reset(gpa);
for (step.dependants.items) |dep| {
if (dep.state == .precheck_done) continue;
dep.recursiveReset(gpa);
}
}
test {
_ = CheckFile;
_ = CheckObject;
_ = Fail;
_ = Fmt;
_ = InstallArtifact;
_ = InstallDir;
_ = InstallFile;
_ = ObjCopy;
_ = Compile;
_ = Options;
_ = RemoveDir;
_ = Run;
_ = TranslateC;
_ = WriteFile;
_ = UpdateSourceFiles;
}