zig/src/AstGen.zig
Daniel Hooper 911c839e97
add error when binary ops don't have matching whitespace on both sides
This change also moves the warning about "&&" from the AstGen into the parser so that the "&&" warning can supersede the whitespace warning.
2022-03-20 12:55:04 +02:00

11100 lines
420 KiB
Zig

//! Ingests an AST and produces ZIR code.
const AstGen = @This();
const std = @import("std");
const Ast = std.zig.Ast;
const mem = std.mem;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const ArrayListUnmanaged = std.ArrayListUnmanaged;
const StringIndexAdapter = std.hash_map.StringIndexAdapter;
const StringIndexContext = std.hash_map.StringIndexContext;
const Zir = @import("Zir.zig");
const refToIndex = Zir.refToIndex;
const indexToRef = Zir.indexToRef;
const trace = @import("tracy.zig").trace;
const BuiltinFn = @import("BuiltinFn.zig");
gpa: Allocator,
tree: *const Ast,
instructions: std.MultiArrayList(Zir.Inst) = .{},
extra: ArrayListUnmanaged(u32) = .{},
string_bytes: ArrayListUnmanaged(u8) = .{},
/// Tracks the current byte offset within the source file.
/// Used to populate line deltas in the ZIR. AstGen maintains
/// this "cursor" throughout the entire AST lowering process in order
/// to avoid starting over the line/column scan for every declaration, which
/// would be O(N^2).
source_offset: u32 = 0,
/// Tracks the corresponding line of `source_offset`.
/// This value is absolute.
source_line: u32 = 0,
/// Tracks the corresponding column of `source_offset`.
/// This value is absolute.
source_column: u32 = 0,
/// Used for temporary allocations; freed after AstGen is complete.
/// The resulting ZIR code has no references to anything in this arena.
arena: Allocator,
string_table: std.HashMapUnmanaged(u32, void, StringIndexContext, std.hash_map.default_max_load_percentage) = .{},
compile_errors: ArrayListUnmanaged(Zir.Inst.CompileErrors.Item) = .{},
/// The topmost block of the current function.
fn_block: ?*GenZir = null,
/// Maps string table indexes to the first `@import` ZIR instruction
/// that uses this string as the operand.
imports: std.AutoArrayHashMapUnmanaged(u32, Ast.TokenIndex) = .{},
/// Used for temporary storage when building payloads.
scratch: std.ArrayListUnmanaged(u32) = .{},
const InnerError = error{ OutOfMemory, AnalysisFail };
fn addExtra(astgen: *AstGen, extra: anytype) Allocator.Error!u32 {
const fields = std.meta.fields(@TypeOf(extra));
try astgen.extra.ensureUnusedCapacity(astgen.gpa, fields.len);
return addExtraAssumeCapacity(astgen, extra);
}
fn addExtraAssumeCapacity(astgen: *AstGen, extra: anytype) u32 {
const fields = std.meta.fields(@TypeOf(extra));
const result = @intCast(u32, astgen.extra.items.len);
astgen.extra.items.len += fields.len;
setExtra(astgen, result, extra);
return result;
}
fn setExtra(astgen: *AstGen, index: usize, extra: anytype) void {
const fields = std.meta.fields(@TypeOf(extra));
var i = index;
inline for (fields) |field| {
astgen.extra.items[i] = switch (field.field_type) {
u32 => @field(extra, field.name),
Zir.Inst.Ref => @enumToInt(@field(extra, field.name)),
i32 => @bitCast(u32, @field(extra, field.name)),
Zir.Inst.Call.Flags => @bitCast(u32, @field(extra, field.name)),
Zir.Inst.SwitchBlock.Bits => @bitCast(u32, @field(extra, field.name)),
else => @compileError("bad field type"),
};
i += 1;
}
}
fn reserveExtra(astgen: *AstGen, size: usize) Allocator.Error!u32 {
const result = @intCast(u32, astgen.extra.items.len);
try astgen.extra.resize(astgen.gpa, result + size);
return result;
}
fn appendRefs(astgen: *AstGen, refs: []const Zir.Inst.Ref) !void {
const coerced = @bitCast([]const u32, refs);
return astgen.extra.appendSlice(astgen.gpa, coerced);
}
fn appendRefsAssumeCapacity(astgen: *AstGen, refs: []const Zir.Inst.Ref) void {
const coerced = @bitCast([]const u32, refs);
astgen.extra.appendSliceAssumeCapacity(coerced);
}
pub fn generate(gpa: Allocator, tree: Ast) Allocator.Error!Zir {
var arena = std.heap.ArenaAllocator.init(gpa);
defer arena.deinit();
var astgen: AstGen = .{
.gpa = gpa,
.arena = arena.allocator(),
.tree = &tree,
};
defer astgen.deinit(gpa);
// String table indexes 0, 1, 2 are reserved for special meaning.
try astgen.string_bytes.appendSlice(gpa, &[_]u8{ 0, 0, 0 });
// We expect at least as many ZIR instructions and extra data items
// as AST nodes.
try astgen.instructions.ensureTotalCapacity(gpa, tree.nodes.len);
// First few indexes of extra are reserved and set at the end.
const reserved_count = @typeInfo(Zir.ExtraIndex).Enum.fields.len;
try astgen.extra.ensureTotalCapacity(gpa, tree.nodes.len + reserved_count);
astgen.extra.items.len += reserved_count;
var top_scope: Scope.Top = .{};
var gz_instructions: std.ArrayListUnmanaged(Zir.Inst.Index) = .{};
var gen_scope: GenZir = .{
.force_comptime = true,
.in_defer = false,
.parent = &top_scope.base,
.anon_name_strategy = .parent,
.decl_node_index = 0,
.decl_line = 0,
.astgen = &astgen,
.instructions = &gz_instructions,
.instructions_top = 0,
};
defer gz_instructions.deinit(gpa);
if (AstGen.structDeclInner(
&gen_scope,
&gen_scope.base,
0,
tree.containerDeclRoot(),
.Auto,
)) |struct_decl_ref| {
assert(refToIndex(struct_decl_ref).? == 0);
} else |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {}, // Handled via compile_errors below.
}
const err_index = @enumToInt(Zir.ExtraIndex.compile_errors);
if (astgen.compile_errors.items.len == 0) {
astgen.extra.items[err_index] = 0;
} else {
try astgen.extra.ensureUnusedCapacity(gpa, 1 + astgen.compile_errors.items.len *
@typeInfo(Zir.Inst.CompileErrors.Item).Struct.fields.len);
astgen.extra.items[err_index] = astgen.addExtraAssumeCapacity(Zir.Inst.CompileErrors{
.items_len = @intCast(u32, astgen.compile_errors.items.len),
});
for (astgen.compile_errors.items) |item| {
_ = astgen.addExtraAssumeCapacity(item);
}
}
const imports_index = @enumToInt(Zir.ExtraIndex.imports);
if (astgen.imports.count() == 0) {
astgen.extra.items[imports_index] = 0;
} else {
try astgen.extra.ensureUnusedCapacity(gpa, @typeInfo(Zir.Inst.Imports).Struct.fields.len +
astgen.imports.count() * @typeInfo(Zir.Inst.Imports.Item).Struct.fields.len);
astgen.extra.items[imports_index] = astgen.addExtraAssumeCapacity(Zir.Inst.Imports{
.imports_len = @intCast(u32, astgen.imports.count()),
});
var it = astgen.imports.iterator();
while (it.next()) |entry| {
_ = astgen.addExtraAssumeCapacity(Zir.Inst.Imports.Item{
.name = entry.key_ptr.*,
.token = entry.value_ptr.*,
});
}
}
return Zir{
.instructions = astgen.instructions.toOwnedSlice(),
.string_bytes = astgen.string_bytes.toOwnedSlice(gpa),
.extra = astgen.extra.toOwnedSlice(gpa),
};
}
pub fn deinit(astgen: *AstGen, gpa: Allocator) void {
astgen.instructions.deinit(gpa);
astgen.extra.deinit(gpa);
astgen.string_table.deinit(gpa);
astgen.string_bytes.deinit(gpa);
astgen.compile_errors.deinit(gpa);
astgen.imports.deinit(gpa);
astgen.scratch.deinit(gpa);
}
pub const ResultLoc = union(enum) {
/// The expression is the right-hand side of assignment to `_`. Only the side-effects of the
/// expression should be generated. The result instruction from the expression must
/// be ignored.
discard,
/// The expression has an inferred type, and it will be evaluated as an rvalue.
none,
/// The expression must generate a pointer rather than a value. For example, the left hand side
/// of an assignment uses this kind of result location.
ref,
/// The expression will be coerced into this type, but it will be evaluated as an rvalue.
ty: Zir.Inst.Ref,
/// Same as `ty` but it is guaranteed that Sema will additionally perform the coercion,
/// so no `as` instruction needs to be emitted.
coerced_ty: Zir.Inst.Ref,
/// The expression must store its result into this typed pointer. The result instruction
/// from the expression must be ignored.
ptr: Zir.Inst.Ref,
/// The expression must store its result into this allocation, which has an inferred type.
/// The result instruction from the expression must be ignored.
/// Always an instruction with tag `alloc_inferred`.
inferred_ptr: Zir.Inst.Ref,
/// There is a pointer for the expression to store its result into, however, its type
/// is inferred based on peer type resolution for a `Zir.Inst.Block`.
/// The result instruction from the expression must be ignored.
block_ptr: *GenZir,
pub const Strategy = struct {
elide_store_to_block_ptr_instructions: bool,
tag: Tag,
pub const Tag = enum {
/// Both branches will use break_void; result location is used to communicate the
/// result instruction.
break_void,
/// Use break statements to pass the block result value, and call rvalue() at
/// the end depending on rl. Also elide the store_to_block_ptr instructions
/// depending on rl.
break_operand,
};
};
fn strategy(rl: ResultLoc, block_scope: *GenZir) Strategy {
switch (rl) {
// In this branch there will not be any store_to_block_ptr instructions.
.none, .ty, .coerced_ty, .ref => return .{
.tag = .break_operand,
.elide_store_to_block_ptr_instructions = false,
},
.discard => return .{
.tag = .break_void,
.elide_store_to_block_ptr_instructions = false,
},
// The pointer got passed through to the sub-expressions, so we will use
// break_void here.
// In this branch there will not be any store_to_block_ptr instructions.
.ptr => return .{
.tag = .break_void,
.elide_store_to_block_ptr_instructions = false,
},
.inferred_ptr, .block_ptr => {
if (block_scope.rvalue_rl_count == block_scope.break_count) {
// Neither prong of the if consumed the result location, so we can
// use break instructions to create an rvalue.
return .{
.tag = .break_operand,
.elide_store_to_block_ptr_instructions = true,
};
} else {
// Allow the store_to_block_ptr instructions to remain so that
// semantic analysis can turn them into bitcasts.
return .{
.tag = .break_void,
.elide_store_to_block_ptr_instructions = false,
};
}
},
}
}
/// Turns a `coerced_ty` back into a `ty`. Should be called at branch points
/// such as if and switch expressions.
fn br(rl: ResultLoc) ResultLoc {
return switch (rl) {
.coerced_ty => |ty| .{ .ty = ty },
else => rl,
};
}
};
pub const align_rl: ResultLoc = .{ .ty = .u16_type };
pub const coerced_align_rl: ResultLoc = .{ .coerced_ty = .u16_type };
pub const bool_rl: ResultLoc = .{ .ty = .bool_type };
pub const type_rl: ResultLoc = .{ .ty = .type_type };
pub const coerced_type_rl: ResultLoc = .{ .coerced_ty = .type_type };
fn typeExpr(gz: *GenZir, scope: *Scope, type_node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const prev_force_comptime = gz.force_comptime;
gz.force_comptime = true;
defer gz.force_comptime = prev_force_comptime;
return expr(gz, scope, coerced_type_rl, type_node);
}
fn reachableTypeExpr(
gz: *GenZir,
scope: *Scope,
type_node: Ast.Node.Index,
reachable_node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const prev_force_comptime = gz.force_comptime;
gz.force_comptime = true;
defer gz.force_comptime = prev_force_comptime;
return reachableExpr(gz, scope, coerced_type_rl, type_node, reachable_node);
}
/// Same as `expr` but fails with a compile error if the result type is `noreturn`.
fn reachableExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
reachable_node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
return reachableExprComptime(gz, scope, rl, node, reachable_node, false);
}
fn reachableExprComptime(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
reachable_node: Ast.Node.Index,
force_comptime: bool,
) InnerError!Zir.Inst.Ref {
const prev_force_comptime = gz.force_comptime;
gz.force_comptime = prev_force_comptime or force_comptime;
defer gz.force_comptime = prev_force_comptime;
const result_inst = try expr(gz, scope, rl, node);
if (gz.refIsNoReturn(result_inst)) {
try gz.astgen.appendErrorNodeNotes(reachable_node, "unreachable code", .{}, &[_]u32{
try gz.astgen.errNoteNode(node, "control flow is diverted here", .{}),
});
}
return result_inst;
}
fn lvalExpr(gz: *GenZir, scope: *Scope, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
switch (node_tags[node]) {
.root => unreachable,
.@"usingnamespace" => unreachable,
.test_decl => unreachable,
.global_var_decl => unreachable,
.local_var_decl => unreachable,
.simple_var_decl => unreachable,
.aligned_var_decl => unreachable,
.switch_case => unreachable,
.switch_case_one => unreachable,
.container_field_init => unreachable,
.container_field_align => unreachable,
.container_field => unreachable,
.asm_output => unreachable,
.asm_input => unreachable,
.assign,
.assign_bit_and,
.assign_bit_or,
.assign_shl,
.assign_shl_sat,
.assign_shr,
.assign_bit_xor,
.assign_div,
.assign_sub,
.assign_sub_wrap,
.assign_sub_sat,
.assign_mod,
.assign_add,
.assign_add_wrap,
.assign_add_sat,
.assign_mul,
.assign_mul_wrap,
.assign_mul_sat,
.add,
.add_wrap,
.add_sat,
.sub,
.sub_wrap,
.sub_sat,
.mul,
.mul_wrap,
.mul_sat,
.div,
.mod,
.bit_and,
.bit_or,
.shl,
.shl_sat,
.shr,
.bit_xor,
.bang_equal,
.equal_equal,
.greater_than,
.greater_or_equal,
.less_than,
.less_or_equal,
.array_cat,
.array_mult,
.bool_and,
.bool_or,
.@"asm",
.asm_simple,
.string_literal,
.integer_literal,
.call,
.call_comma,
.async_call,
.async_call_comma,
.call_one,
.call_one_comma,
.async_call_one,
.async_call_one_comma,
.unreachable_literal,
.@"return",
.@"if",
.if_simple,
.@"while",
.while_simple,
.while_cont,
.bool_not,
.address_of,
.float_literal,
.optional_type,
.block,
.block_semicolon,
.block_two,
.block_two_semicolon,
.@"break",
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
.array_type,
.array_type_sentinel,
.enum_literal,
.multiline_string_literal,
.char_literal,
.@"defer",
.@"errdefer",
.@"catch",
.error_union,
.merge_error_sets,
.switch_range,
.@"await",
.bit_not,
.negation,
.negation_wrap,
.@"resume",
.@"try",
.slice,
.slice_open,
.slice_sentinel,
.array_init_one,
.array_init_one_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.array_init,
.array_init_comma,
.struct_init_one,
.struct_init_one_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
.struct_init,
.struct_init_comma,
.@"switch",
.switch_comma,
.@"for",
.for_simple,
.@"suspend",
.@"continue",
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
.fn_decl,
.anyframe_type,
.anyframe_literal,
.error_set_decl,
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
.@"comptime",
.@"nosuspend",
.error_value,
=> return astgen.failNode(node, "invalid left-hand side to assignment", .{}),
.builtin_call,
.builtin_call_comma,
.builtin_call_two,
.builtin_call_two_comma,
=> {
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// If the builtin is an invalid name, we don't cause an error here; instead
// let it pass, and the error will be "invalid builtin function" later.
if (BuiltinFn.list.get(builtin_name)) |info| {
if (!info.allows_lvalue) {
return astgen.failNode(node, "invalid left-hand side to assignment", .{});
}
}
},
// These can be assigned to.
.unwrap_optional,
.deref,
.field_access,
.array_access,
.identifier,
.grouped_expression,
.@"orelse",
=> {},
}
return expr(gz, scope, .ref, node);
}
/// Turn Zig AST into untyped ZIR instructions.
/// When `rl` is discard, ptr, inferred_ptr, or inferred_ptr, the
/// result instruction can be used to inspect whether it is isNoReturn() but that is it,
/// it must otherwise not be used.
fn expr(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
switch (node_tags[node]) {
.root => unreachable, // Top-level declaration.
.@"usingnamespace" => unreachable, // Top-level declaration.
.test_decl => unreachable, // Top-level declaration.
.container_field_init => unreachable, // Top-level declaration.
.container_field_align => unreachable, // Top-level declaration.
.container_field => unreachable, // Top-level declaration.
.fn_decl => unreachable, // Top-level declaration.
.global_var_decl => unreachable, // Handled in `blockExpr`.
.local_var_decl => unreachable, // Handled in `blockExpr`.
.simple_var_decl => unreachable, // Handled in `blockExpr`.
.aligned_var_decl => unreachable, // Handled in `blockExpr`.
.@"defer" => unreachable, // Handled in `blockExpr`.
.@"errdefer" => unreachable, // Handled in `blockExpr`.
.switch_case => unreachable, // Handled in `switchExpr`.
.switch_case_one => unreachable, // Handled in `switchExpr`.
.switch_range => unreachable, // Handled in `switchExpr`.
.asm_output => unreachable, // Handled in `asmExpr`.
.asm_input => unreachable, // Handled in `asmExpr`.
.assign => {
try assign(gz, scope, node);
return rvalue(gz, rl, .void_value, node);
},
.assign_shl => {
try assignShift(gz, scope, node, .shl);
return rvalue(gz, rl, .void_value, node);
},
.assign_shl_sat => {
try assignShiftSat(gz, scope, node);
return rvalue(gz, rl, .void_value, node);
},
.assign_shr => {
try assignShift(gz, scope, node, .shr);
return rvalue(gz, rl, .void_value, node);
},
.assign_bit_and => {
try assignOp(gz, scope, node, .bit_and);
return rvalue(gz, rl, .void_value, node);
},
.assign_bit_or => {
try assignOp(gz, scope, node, .bit_or);
return rvalue(gz, rl, .void_value, node);
},
.assign_bit_xor => {
try assignOp(gz, scope, node, .xor);
return rvalue(gz, rl, .void_value, node);
},
.assign_div => {
try assignOp(gz, scope, node, .div);
return rvalue(gz, rl, .void_value, node);
},
.assign_sub => {
try assignOp(gz, scope, node, .sub);
return rvalue(gz, rl, .void_value, node);
},
.assign_sub_wrap => {
try assignOp(gz, scope, node, .subwrap);
return rvalue(gz, rl, .void_value, node);
},
.assign_sub_sat => {
try assignOp(gz, scope, node, .sub_sat);
return rvalue(gz, rl, .void_value, node);
},
.assign_mod => {
try assignOp(gz, scope, node, .mod_rem);
return rvalue(gz, rl, .void_value, node);
},
.assign_add => {
try assignOp(gz, scope, node, .add);
return rvalue(gz, rl, .void_value, node);
},
.assign_add_wrap => {
try assignOp(gz, scope, node, .addwrap);
return rvalue(gz, rl, .void_value, node);
},
.assign_add_sat => {
try assignOp(gz, scope, node, .add_sat);
return rvalue(gz, rl, .void_value, node);
},
.assign_mul => {
try assignOp(gz, scope, node, .mul);
return rvalue(gz, rl, .void_value, node);
},
.assign_mul_wrap => {
try assignOp(gz, scope, node, .mulwrap);
return rvalue(gz, rl, .void_value, node);
},
.assign_mul_sat => {
try assignOp(gz, scope, node, .mul_sat);
return rvalue(gz, rl, .void_value, node);
},
// zig fmt: off
.shl => return shiftOp(gz, scope, rl, node, node_datas[node].lhs, node_datas[node].rhs, .shl),
.shr => return shiftOp(gz, scope, rl, node, node_datas[node].lhs, node_datas[node].rhs, .shr),
.add => return simpleBinOp(gz, scope, rl, node, .add),
.add_wrap => return simpleBinOp(gz, scope, rl, node, .addwrap),
.add_sat => return simpleBinOp(gz, scope, rl, node, .add_sat),
.sub => return simpleBinOp(gz, scope, rl, node, .sub),
.sub_wrap => return simpleBinOp(gz, scope, rl, node, .subwrap),
.sub_sat => return simpleBinOp(gz, scope, rl, node, .sub_sat),
.mul => return simpleBinOp(gz, scope, rl, node, .mul),
.mul_wrap => return simpleBinOp(gz, scope, rl, node, .mulwrap),
.mul_sat => return simpleBinOp(gz, scope, rl, node, .mul_sat),
.div => return simpleBinOp(gz, scope, rl, node, .div),
.mod => return simpleBinOp(gz, scope, rl, node, .mod_rem),
.shl_sat => return simpleBinOp(gz, scope, rl, node, .shl_sat),
.bit_and => return simpleBinOp(gz, scope, rl, node, .bit_and),
.bit_or => return simpleBinOp(gz, scope, rl, node, .bit_or),
.bit_xor => return simpleBinOp(gz, scope, rl, node, .xor),
.bang_equal => return simpleBinOp(gz, scope, rl, node, .cmp_neq),
.equal_equal => return simpleBinOp(gz, scope, rl, node, .cmp_eq),
.greater_than => return simpleBinOp(gz, scope, rl, node, .cmp_gt),
.greater_or_equal => return simpleBinOp(gz, scope, rl, node, .cmp_gte),
.less_than => return simpleBinOp(gz, scope, rl, node, .cmp_lt),
.less_or_equal => return simpleBinOp(gz, scope, rl, node, .cmp_lte),
.array_cat => return simpleBinOp(gz, scope, rl, node, .array_cat),
.array_mult => {
const result = try gz.addPlNode(.array_mul, node, Zir.Inst.Bin{
.lhs = try expr(gz, scope, .none, node_datas[node].lhs),
.rhs = try comptimeExpr(gz, scope, .{ .coerced_ty = .usize_type }, node_datas[node].rhs),
});
return rvalue(gz, rl, result, node);
},
.error_union => return simpleBinOp(gz, scope, rl, node, .error_union_type),
.merge_error_sets => return simpleBinOp(gz, scope, rl, node, .merge_error_sets),
.bool_and => return boolBinOp(gz, scope, rl, node, .bool_br_and),
.bool_or => return boolBinOp(gz, scope, rl, node, .bool_br_or),
.bool_not => return boolNot(gz, scope, rl, node),
.bit_not => return bitNot(gz, scope, rl, node),
.negation => return negation(gz, scope, rl, node, .negate),
.negation_wrap => return negation(gz, scope, rl, node, .negate_wrap),
.identifier => return identifier(gz, scope, rl, node),
.asm_simple => return asmExpr(gz, scope, rl, node, tree.asmSimple(node)),
.@"asm" => return asmExpr(gz, scope, rl, node, tree.asmFull(node)),
.string_literal => return stringLiteral(gz, rl, node),
.multiline_string_literal => return multilineStringLiteral(gz, rl, node),
.integer_literal => return integerLiteral(gz, rl, node),
// zig fmt: on
.builtin_call_two, .builtin_call_two_comma => {
if (node_datas[node].lhs == 0) {
const params = [_]Ast.Node.Index{};
return builtinCall(gz, scope, rl, node, &params);
} else if (node_datas[node].rhs == 0) {
const params = [_]Ast.Node.Index{node_datas[node].lhs};
return builtinCall(gz, scope, rl, node, &params);
} else {
const params = [_]Ast.Node.Index{ node_datas[node].lhs, node_datas[node].rhs };
return builtinCall(gz, scope, rl, node, &params);
}
},
.builtin_call, .builtin_call_comma => {
const params = tree.extra_data[node_datas[node].lhs..node_datas[node].rhs];
return builtinCall(gz, scope, rl, node, params);
},
.call_one, .call_one_comma, .async_call_one, .async_call_one_comma => {
var params: [1]Ast.Node.Index = undefined;
return callExpr(gz, scope, rl, node, tree.callOne(&params, node));
},
.call, .call_comma, .async_call, .async_call_comma => {
return callExpr(gz, scope, rl, node, tree.callFull(node));
},
.unreachable_literal => {
_ = try gz.addAsIndex(.{
.tag = .@"unreachable",
.data = .{ .@"unreachable" = .{
.safety = true,
.src_node = gz.nodeIndexToRelative(node),
} },
});
return Zir.Inst.Ref.unreachable_value;
},
.@"return" => return ret(gz, scope, node),
.field_access => return fieldAccess(gz, scope, rl, node),
.float_literal => return floatLiteral(gz, rl, node),
.if_simple => return ifExpr(gz, scope, rl.br(), node, tree.ifSimple(node)),
.@"if" => return ifExpr(gz, scope, rl.br(), node, tree.ifFull(node)),
.while_simple => return whileExpr(gz, scope, rl.br(), node, tree.whileSimple(node)),
.while_cont => return whileExpr(gz, scope, rl.br(), node, tree.whileCont(node)),
.@"while" => return whileExpr(gz, scope, rl.br(), node, tree.whileFull(node)),
.for_simple => return forExpr(gz, scope, rl.br(), node, tree.forSimple(node)),
.@"for" => return forExpr(gz, scope, rl.br(), node, tree.forFull(node)),
.slice_open => {
const lhs = try expr(gz, scope, .ref, node_datas[node].lhs);
const start = try expr(gz, scope, .{ .coerced_ty = .usize_type }, node_datas[node].rhs);
const result = try gz.addPlNode(.slice_start, node, Zir.Inst.SliceStart{
.lhs = lhs,
.start = start,
});
return rvalue(gz, rl, result, node);
},
.slice => {
const lhs = try expr(gz, scope, .ref, node_datas[node].lhs);
const extra = tree.extraData(node_datas[node].rhs, Ast.Node.Slice);
const start = try expr(gz, scope, .{ .coerced_ty = .usize_type }, extra.start);
const end = try expr(gz, scope, .{ .coerced_ty = .usize_type }, extra.end);
const result = try gz.addPlNode(.slice_end, node, Zir.Inst.SliceEnd{
.lhs = lhs,
.start = start,
.end = end,
});
return rvalue(gz, rl, result, node);
},
.slice_sentinel => {
const lhs = try expr(gz, scope, .ref, node_datas[node].lhs);
const extra = tree.extraData(node_datas[node].rhs, Ast.Node.SliceSentinel);
const start = try expr(gz, scope, .{ .coerced_ty = .usize_type }, extra.start);
const end = if (extra.end != 0) try expr(gz, scope, .{ .coerced_ty = .usize_type }, extra.end) else .none;
const sentinel = try expr(gz, scope, .none, extra.sentinel);
const result = try gz.addPlNode(.slice_sentinel, node, Zir.Inst.SliceSentinel{
.lhs = lhs,
.start = start,
.end = end,
.sentinel = sentinel,
});
return rvalue(gz, rl, result, node);
},
.deref => {
const lhs = try expr(gz, scope, .none, node_datas[node].lhs);
switch (rl) {
.ref => return lhs,
else => {
const result = try gz.addUnNode(.load, lhs, node);
return rvalue(gz, rl, result, node);
},
}
},
.address_of => {
const result = try expr(gz, scope, .ref, node_datas[node].lhs);
return rvalue(gz, rl, result, node);
},
.optional_type => {
const operand = try typeExpr(gz, scope, node_datas[node].lhs);
const result = try gz.addUnNode(.optional_type, operand, node);
return rvalue(gz, rl, result, node);
},
.unwrap_optional => switch (rl) {
.ref => return gz.addUnNode(
.optional_payload_safe_ptr,
try expr(gz, scope, .ref, node_datas[node].lhs),
node,
),
else => return rvalue(gz, rl, try gz.addUnNode(
.optional_payload_safe,
try expr(gz, scope, .none, node_datas[node].lhs),
node,
), node),
},
.block_two, .block_two_semicolon => {
const statements = [2]Ast.Node.Index{ node_datas[node].lhs, node_datas[node].rhs };
if (node_datas[node].lhs == 0) {
return blockExpr(gz, scope, rl, node, statements[0..0]);
} else if (node_datas[node].rhs == 0) {
return blockExpr(gz, scope, rl, node, statements[0..1]);
} else {
return blockExpr(gz, scope, rl, node, statements[0..2]);
}
},
.block, .block_semicolon => {
const statements = tree.extra_data[node_datas[node].lhs..node_datas[node].rhs];
return blockExpr(gz, scope, rl, node, statements);
},
.enum_literal => return simpleStrTok(gz, rl, main_tokens[node], node, .enum_literal),
.error_value => return simpleStrTok(gz, rl, node_datas[node].rhs, node, .error_value),
.anyframe_literal => return rvalue(gz, rl, .anyframe_type, node),
.anyframe_type => {
const return_type = try typeExpr(gz, scope, node_datas[node].rhs);
const result = try gz.addUnNode(.anyframe_type, return_type, node);
return rvalue(gz, rl, result, node);
},
.@"catch" => {
const catch_token = main_tokens[node];
const payload_token: ?Ast.TokenIndex = if (token_tags[catch_token + 1] == .pipe)
catch_token + 2
else
null;
switch (rl) {
.ref => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_non_err_ptr,
.err_union_payload_unsafe_ptr,
.err_union_code_ptr,
node_datas[node].rhs,
payload_token,
),
else => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_non_err,
.err_union_payload_unsafe,
.err_union_code,
node_datas[node].rhs,
payload_token,
),
}
},
.@"orelse" => switch (rl) {
.ref => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_non_null_ptr,
.optional_payload_unsafe_ptr,
undefined,
node_datas[node].rhs,
null,
),
else => return orelseCatchExpr(
gz,
scope,
rl,
node,
node_datas[node].lhs,
.is_non_null,
.optional_payload_unsafe,
undefined,
node_datas[node].rhs,
null,
),
},
.ptr_type_aligned => return ptrType(gz, scope, rl, node, tree.ptrTypeAligned(node)),
.ptr_type_sentinel => return ptrType(gz, scope, rl, node, tree.ptrTypeSentinel(node)),
.ptr_type => return ptrType(gz, scope, rl, node, tree.ptrType(node)),
.ptr_type_bit_range => return ptrType(gz, scope, rl, node, tree.ptrTypeBitRange(node)),
.container_decl,
.container_decl_trailing,
=> return containerDecl(gz, scope, rl, node, tree.containerDecl(node)),
.container_decl_two, .container_decl_two_trailing => {
var buffer: [2]Ast.Node.Index = undefined;
return containerDecl(gz, scope, rl, node, tree.containerDeclTwo(&buffer, node));
},
.container_decl_arg,
.container_decl_arg_trailing,
=> return containerDecl(gz, scope, rl, node, tree.containerDeclArg(node)),
.tagged_union,
.tagged_union_trailing,
=> return containerDecl(gz, scope, rl, node, tree.taggedUnion(node)),
.tagged_union_two, .tagged_union_two_trailing => {
var buffer: [2]Ast.Node.Index = undefined;
return containerDecl(gz, scope, rl, node, tree.taggedUnionTwo(&buffer, node));
},
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
=> return containerDecl(gz, scope, rl, node, tree.taggedUnionEnumTag(node)),
.@"break" => return breakExpr(gz, scope, node),
.@"continue" => return continueExpr(gz, scope, node),
.grouped_expression => return expr(gz, scope, rl, node_datas[node].lhs),
.array_type => return arrayType(gz, scope, rl, node),
.array_type_sentinel => return arrayTypeSentinel(gz, scope, rl, node),
.char_literal => return charLiteral(gz, rl, node),
.error_set_decl => return errorSetDecl(gz, rl, node),
.array_access => return arrayAccess(gz, scope, rl, node),
.@"comptime" => return comptimeExprAst(gz, scope, rl, node),
.@"switch", .switch_comma => return switchExpr(gz, scope, rl.br(), node),
.@"nosuspend" => return nosuspendExpr(gz, scope, rl, node),
.@"suspend" => return suspendExpr(gz, scope, node),
.@"await" => return awaitExpr(gz, scope, rl, node),
.@"resume" => return resumeExpr(gz, scope, rl, node),
.@"try" => return tryExpr(gz, scope, rl, node, node_datas[node].lhs),
.array_init_one, .array_init_one_comma => {
var elements: [1]Ast.Node.Index = undefined;
return arrayInitExpr(gz, scope, rl, node, tree.arrayInitOne(&elements, node));
},
.array_init_dot_two, .array_init_dot_two_comma => {
var elements: [2]Ast.Node.Index = undefined;
return arrayInitExpr(gz, scope, rl, node, tree.arrayInitDotTwo(&elements, node));
},
.array_init_dot,
.array_init_dot_comma,
=> return arrayInitExpr(gz, scope, rl, node, tree.arrayInitDot(node)),
.array_init,
.array_init_comma,
=> return arrayInitExpr(gz, scope, rl, node, tree.arrayInit(node)),
.struct_init_one, .struct_init_one_comma => {
var fields: [1]Ast.Node.Index = undefined;
return structInitExpr(gz, scope, rl, node, tree.structInitOne(&fields, node));
},
.struct_init_dot_two, .struct_init_dot_two_comma => {
var fields: [2]Ast.Node.Index = undefined;
return structInitExpr(gz, scope, rl, node, tree.structInitDotTwo(&fields, node));
},
.struct_init_dot,
.struct_init_dot_comma,
=> return structInitExpr(gz, scope, rl, node, tree.structInitDot(node)),
.struct_init,
.struct_init_comma,
=> return structInitExpr(gz, scope, rl, node, tree.structInit(node)),
.fn_proto_simple => {
var params: [1]Ast.Node.Index = undefined;
return fnProtoExpr(gz, scope, rl, node, tree.fnProtoSimple(&params, node));
},
.fn_proto_multi => {
return fnProtoExpr(gz, scope, rl, node, tree.fnProtoMulti(node));
},
.fn_proto_one => {
var params: [1]Ast.Node.Index = undefined;
return fnProtoExpr(gz, scope, rl, node, tree.fnProtoOne(&params, node));
},
.fn_proto => {
return fnProtoExpr(gz, scope, rl, node, tree.fnProto(node));
},
}
}
fn nosuspendExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const body_node = node_datas[node].lhs;
assert(body_node != 0);
if (gz.nosuspend_node != 0) {
try astgen.appendErrorNodeNotes(node, "redundant nosuspend block", .{}, &[_]u32{
try astgen.errNoteNode(gz.nosuspend_node, "other nosuspend block here", .{}),
});
}
gz.nosuspend_node = node;
defer gz.nosuspend_node = 0;
return expr(gz, scope, rl, body_node);
}
fn suspendExpr(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const body_node = node_datas[node].lhs;
if (gz.nosuspend_node != 0) {
return astgen.failNodeNotes(node, "suspend inside nosuspend block", .{}, &[_]u32{
try astgen.errNoteNode(gz.nosuspend_node, "nosuspend block here", .{}),
});
}
if (gz.suspend_node != 0) {
return astgen.failNodeNotes(node, "cannot suspend inside suspend block", .{}, &[_]u32{
try astgen.errNoteNode(gz.suspend_node, "other suspend block here", .{}),
});
}
assert(body_node != 0);
const suspend_inst = try gz.makeBlockInst(.suspend_block, node);
try gz.instructions.append(gpa, suspend_inst);
var suspend_scope = gz.makeSubBlock(scope);
suspend_scope.suspend_node = node;
defer suspend_scope.unstack();
const body_result = try expr(&suspend_scope, &suspend_scope.base, .none, body_node);
if (!gz.refIsNoReturn(body_result)) {
_ = try suspend_scope.addBreak(.break_inline, suspend_inst, .void_value);
}
try suspend_scope.setBlockBody(suspend_inst);
return indexToRef(suspend_inst);
}
fn awaitExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const rhs_node = node_datas[node].lhs;
if (gz.suspend_node != 0) {
return astgen.failNodeNotes(node, "cannot await inside suspend block", .{}, &[_]u32{
try astgen.errNoteNode(gz.suspend_node, "suspend block here", .{}),
});
}
const operand = try expr(gz, scope, .none, rhs_node);
const tag: Zir.Inst.Tag = if (gz.nosuspend_node != 0) .await_nosuspend else .@"await";
const result = try gz.addUnNode(tag, operand, node);
return rvalue(gz, rl, result, node);
}
fn resumeExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const rhs_node = node_datas[node].lhs;
const operand = try expr(gz, scope, .none, rhs_node);
const result = try gz.addUnNode(.@"resume", operand, node);
return rvalue(gz, rl, result, node);
}
fn fnProtoExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
fn_proto: Ast.full.FnProto,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
const is_extern = blk: {
const maybe_extern_token = fn_proto.extern_export_inline_token orelse break :blk false;
break :blk token_tags[maybe_extern_token] == .keyword_extern;
};
assert(!is_extern);
var block_scope = gz.makeSubBlock(scope);
defer block_scope.unstack();
const block_inst = try gz.makeBlockInst(.block_inline, node);
const is_var_args = is_var_args: {
var param_type_i: usize = 0;
var it = fn_proto.iterate(tree.*);
while (it.next()) |param| : (param_type_i += 1) {
const is_comptime = if (param.comptime_noalias) |token|
token_tags[token] == .keyword_comptime
else
false;
const is_anytype = if (param.anytype_ellipsis3) |token| blk: {
switch (token_tags[token]) {
.keyword_anytype => break :blk true,
.ellipsis3 => break :is_var_args true,
else => unreachable,
}
} else false;
const param_name: u32 = if (param.name_token) |name_token| blk: {
if (mem.eql(u8, "_", tree.tokenSlice(name_token)))
break :blk 0;
break :blk try astgen.identAsString(name_token);
} else 0;
if (is_anytype) {
const name_token = param.name_token orelse param.anytype_ellipsis3.?;
const tag: Zir.Inst.Tag = if (is_comptime)
.param_anytype_comptime
else
.param_anytype;
_ = try block_scope.addStrTok(tag, param_name, name_token);
} else {
const param_type_node = param.type_expr;
assert(param_type_node != 0);
var param_gz = block_scope.makeSubBlock(scope);
defer param_gz.unstack();
const param_type = try expr(&param_gz, scope, coerced_type_rl, param_type_node);
const param_inst_expected = @intCast(u32, astgen.instructions.len + 1);
_ = try param_gz.addBreak(.break_inline, param_inst_expected, param_type);
const main_tokens = tree.nodes.items(.main_token);
const name_token = param.name_token orelse main_tokens[param_type_node];
const tag: Zir.Inst.Tag = if (is_comptime) .param_comptime else .param;
const param_inst = try block_scope.addParam(&param_gz, tag, name_token, param_name, param.first_doc_comment);
assert(param_inst_expected == param_inst);
}
}
break :is_var_args false;
};
const align_inst: Zir.Inst.Ref = if (fn_proto.ast.align_expr == 0) .none else inst: {
break :inst try expr(&block_scope, scope, align_rl, fn_proto.ast.align_expr);
};
if (fn_proto.ast.addrspace_expr != 0) {
return astgen.failNode(fn_proto.ast.addrspace_expr, "addrspace not allowed on function prototypes", .{});
}
if (fn_proto.ast.section_expr != 0) {
return astgen.failNode(fn_proto.ast.section_expr, "linksection not allowed on function prototypes", .{});
}
const cc: Zir.Inst.Ref = if (fn_proto.ast.callconv_expr != 0)
try expr(
&block_scope,
scope,
.{ .ty = .calling_convention_type },
fn_proto.ast.callconv_expr,
)
else
Zir.Inst.Ref.none;
const maybe_bang = tree.firstToken(fn_proto.ast.return_type) - 1;
const is_inferred_error = token_tags[maybe_bang] == .bang;
if (is_inferred_error) {
return astgen.failTok(maybe_bang, "function prototype may not have inferred error set", .{});
}
var ret_gz = block_scope.makeSubBlock(scope);
defer ret_gz.unstack();
const ret_ty = try expr(&ret_gz, scope, coerced_type_rl, fn_proto.ast.return_type);
const ret_br = try ret_gz.addBreak(.break_inline, 0, ret_ty);
const result = try block_scope.addFunc(.{
.src_node = fn_proto.ast.proto_node,
.param_block = block_inst,
.ret_gz = &ret_gz,
.ret_br = ret_br,
.body_gz = null,
.cc = cc,
.align_inst = align_inst,
.lib_name = 0,
.is_var_args = is_var_args,
.is_inferred_error = false,
.is_test = false,
.is_extern = false,
});
_ = try block_scope.addBreak(.break_inline, block_inst, result);
try block_scope.setBlockBody(block_inst);
try gz.instructions.append(astgen.gpa, block_inst);
return rvalue(gz, rl, indexToRef(block_inst), fn_proto.ast.proto_node);
}
fn arrayInitExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
array_init: Ast.full.ArrayInit,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
assert(array_init.ast.elements.len != 0); // Otherwise it would be struct init.
const types: struct {
array: Zir.Inst.Ref,
elem: Zir.Inst.Ref,
sentinel: Zir.Inst.Ref,
} = inst: {
if (array_init.ast.type_expr == 0) break :inst .{
.array = .none,
.elem = .none,
.sentinel = .none,
};
infer: {
const array_type: Ast.full.ArrayType = switch (node_tags[array_init.ast.type_expr]) {
.array_type => tree.arrayType(array_init.ast.type_expr),
.array_type_sentinel => tree.arrayTypeSentinel(array_init.ast.type_expr),
else => break :infer,
};
// This intentionally does not support `@"_"` syntax.
if (node_tags[array_type.ast.elem_count] == .identifier and
mem.eql(u8, tree.tokenSlice(main_tokens[array_type.ast.elem_count]), "_"))
{
const len_inst = try gz.addInt(array_init.ast.elements.len);
const elem_type = try typeExpr(gz, scope, array_type.ast.elem_type);
if (array_type.ast.sentinel == 0) {
const array_type_inst = try gz.addBin(.array_type, len_inst, elem_type);
break :inst .{
.array = array_type_inst,
.elem = elem_type,
.sentinel = .none,
};
} else {
const sentinel = try comptimeExpr(gz, scope, .{ .ty = elem_type }, array_type.ast.sentinel);
const array_type_inst = try gz.addPlNode(
.array_type_sentinel,
array_init.ast.type_expr,
Zir.Inst.ArrayTypeSentinel{
.len = len_inst,
.elem_type = elem_type,
.sentinel = sentinel,
},
);
break :inst .{
.array = array_type_inst,
.elem = elem_type,
.sentinel = sentinel,
};
}
}
}
const array_type_inst = try typeExpr(gz, scope, array_init.ast.type_expr);
_ = try gz.addUnNode(.validate_array_init_ty, array_type_inst, node);
const elem_type = try gz.addUnNode(.elem_type, array_type_inst, array_init.ast.type_expr);
break :inst .{
.array = array_type_inst,
.elem = elem_type,
.sentinel = .none,
};
};
switch (rl) {
.discard => {
for (array_init.ast.elements) |elem_init| {
_ = try expr(gz, scope, .discard, elem_init);
}
return Zir.Inst.Ref.void_value;
},
.ref => {
if (types.array != .none) {
return arrayInitExprRlTy(gz, scope, node, array_init.ast.elements, types.elem, types.sentinel, true);
} else {
return arrayInitExprRlNone(gz, scope, node, array_init.ast.elements, .array_init_anon_ref);
}
},
.none => {
if (types.array != .none) {
return arrayInitExprRlTy(gz, scope, node, array_init.ast.elements, types.elem, types.sentinel, false);
} else {
return arrayInitExprRlNone(gz, scope, node, array_init.ast.elements, .array_init_anon);
}
},
.ty, .coerced_ty => |ty_inst| {
if (types.array != .none) {
const result = try arrayInitExprRlTy(gz, scope, node, array_init.ast.elements, types.elem, types.sentinel, false);
return rvalue(gz, rl, result, node);
} else {
const elem_type = try gz.addUnNode(.elem_type, ty_inst, node);
return arrayInitExprRlTy(gz, scope, node, array_init.ast.elements, elem_type, types.sentinel, false);
}
},
.ptr => |ptr_inst| {
return arrayInitExprRlPtr(gz, scope, rl, node, ptr_inst, array_init.ast.elements, types.array);
},
.inferred_ptr => |ptr_inst| {
if (types.array == .none) {
// We treat this case differently so that we don't get a crash when
// analyzing array_base_ptr against an alloc_inferred_mut.
// See corresponding logic in structInitExpr.
const result = try arrayInitExprRlNone(gz, scope, node, array_init.ast.elements, .array_init_anon);
return rvalue(gz, rl, result, node);
} else {
return arrayInitExprRlPtr(gz, scope, rl, node, ptr_inst, array_init.ast.elements, types.array);
}
},
.block_ptr => |block_gz| {
// This condition is here for the same reason as the above condition in `inferred_ptr`.
// See corresponding logic in structInitExpr.
if (types.array == .none and astgen.isInferred(block_gz.rl_ptr)) {
const result = try arrayInitExprRlNone(gz, scope, node, array_init.ast.elements, .array_init_anon);
return rvalue(gz, rl, result, node);
}
return arrayInitExprRlPtr(gz, scope, rl, node, block_gz.rl_ptr, array_init.ast.elements, types.array);
},
}
}
fn arrayInitExprRlNone(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
elements: []const Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const payload_index = try addExtra(astgen, Zir.Inst.MultiOp{
.operands_len = @intCast(u32, elements.len),
});
var extra_index = try reserveExtra(astgen, elements.len);
for (elements) |elem_init| {
const elem_ref = try expr(gz, scope, .none, elem_init);
astgen.extra.items[extra_index] = @enumToInt(elem_ref);
extra_index += 1;
}
return try gz.addPlNodePayloadIndex(tag, node, payload_index);
}
fn arrayInitExprRlTy(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
elements: []const Ast.Node.Index,
elem_ty_inst: Zir.Inst.Ref,
sentinel: Zir.Inst.Ref,
ref: bool,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const info: struct {
len: usize,
tag: Zir.Inst.Tag,
} = blk: {
if (sentinel != .none) {
break :blk .{
.len = elements.len + 1,
.tag = if (ref) .array_init_sent_ref else .array_init_sent,
};
} else {
break :blk .{
.len = elements.len,
.tag = if (ref) .array_init_ref else .array_init,
};
}
};
const payload_index = try addExtra(astgen, Zir.Inst.MultiOp{
.operands_len = @intCast(u32, info.len),
});
var extra_index = try reserveExtra(astgen, info.len);
const elem_rl: ResultLoc = .{ .ty = elem_ty_inst };
for (elements) |elem_init| {
const elem_ref = try expr(gz, scope, elem_rl, elem_init);
astgen.extra.items[extra_index] = @enumToInt(elem_ref);
extra_index += 1;
}
if (sentinel != .none) {
astgen.extra.items[extra_index] = @enumToInt(sentinel);
extra_index += 1;
}
return try gz.addPlNodePayloadIndex(info.tag, node, payload_index);
}
fn arrayInitExprRlPtr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
result_ptr: Zir.Inst.Ref,
elements: []const Ast.Node.Index,
array_ty: Zir.Inst.Ref,
) InnerError!Zir.Inst.Ref {
if (array_ty == .none) {
const base_ptr = try gz.addUnNode(.array_base_ptr, result_ptr, node);
return arrayInitExprRlPtrInner(gz, scope, node, base_ptr, elements);
}
var as_scope = try gz.makeCoercionScope(scope, array_ty, result_ptr);
defer as_scope.unstack();
const result = try arrayInitExprRlPtrInner(&as_scope, scope, node, as_scope.rl_ptr, elements);
return as_scope.finishCoercion(gz, rl, node, result, array_ty);
}
fn arrayInitExprRlPtrInner(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
result_ptr: Zir.Inst.Ref,
elements: []const Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const payload_index = try addExtra(astgen, Zir.Inst.Block{
.body_len = @intCast(u32, elements.len),
});
var extra_index = try reserveExtra(astgen, elements.len);
for (elements) |elem_init, i| {
const elem_ptr = try gz.addPlNode(.elem_ptr_imm, elem_init, Zir.Inst.ElemPtrImm{
.ptr = result_ptr,
.index = @intCast(u32, i),
});
astgen.extra.items[extra_index] = refToIndex(elem_ptr).?;
extra_index += 1;
_ = try expr(gz, scope, .{ .ptr = elem_ptr }, elem_init);
}
const tag: Zir.Inst.Tag = if (gz.force_comptime)
.validate_array_init_comptime
else
.validate_array_init;
_ = try gz.addPlNodePayloadIndex(tag, node, payload_index);
return .void_value;
}
fn structInitExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
struct_init: Ast.full.StructInit,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
if (struct_init.ast.type_expr == 0) {
if (struct_init.ast.fields.len == 0) {
return rvalue(gz, rl, .empty_struct, node);
}
} else array: {
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const array_type: Ast.full.ArrayType = switch (node_tags[struct_init.ast.type_expr]) {
.array_type => tree.arrayType(struct_init.ast.type_expr),
.array_type_sentinel => tree.arrayTypeSentinel(struct_init.ast.type_expr),
else => {
if (struct_init.ast.fields.len == 0) {
const ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
const result = try gz.addUnNode(.struct_init_empty, ty_inst, node);
return rvalue(gz, rl, result, node);
}
break :array;
},
};
const is_inferred_array_len = node_tags[array_type.ast.elem_count] == .identifier and
// This intentionally does not support `@"_"` syntax.
mem.eql(u8, tree.tokenSlice(main_tokens[array_type.ast.elem_count]), "_");
if (struct_init.ast.fields.len == 0) {
if (is_inferred_array_len) {
const elem_type = try typeExpr(gz, scope, array_type.ast.elem_type);
const array_type_inst = if (array_type.ast.sentinel == 0) blk: {
break :blk try gz.addBin(.array_type, .zero_usize, elem_type);
} else blk: {
const sentinel = try comptimeExpr(gz, scope, .{ .ty = elem_type }, array_type.ast.sentinel);
break :blk try gz.addPlNode(
.array_type_sentinel,
struct_init.ast.type_expr,
Zir.Inst.ArrayTypeSentinel{
.len = .zero_usize,
.elem_type = elem_type,
.sentinel = sentinel,
},
);
};
const result = try gz.addUnNode(.struct_init_empty, array_type_inst, node);
return rvalue(gz, rl, result, node);
}
const ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
const result = try gz.addUnNode(.struct_init_empty, ty_inst, node);
return rvalue(gz, rl, result, node);
} else {
return astgen.failNode(
struct_init.ast.type_expr,
"initializing array with struct syntax",
.{},
);
}
}
switch (rl) {
.discard => {
// TODO if a type expr is given the fields should be validated for that type
if (struct_init.ast.type_expr != 0) {
const ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
_ = try gz.addUnNode(.validate_struct_init_ty, ty_inst, node);
}
for (struct_init.ast.fields) |field_init| {
_ = try expr(gz, scope, .discard, field_init);
}
return Zir.Inst.Ref.void_value;
},
.ref => {
if (struct_init.ast.type_expr != 0) {
const ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
_ = try gz.addUnNode(.validate_struct_init_ty, ty_inst, node);
return structInitExprRlTy(gz, scope, node, struct_init, ty_inst, .struct_init_ref);
} else {
return structInitExprRlNone(gz, scope, node, struct_init, .struct_init_anon_ref);
}
},
.none => {
if (struct_init.ast.type_expr != 0) {
const ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
_ = try gz.addUnNode(.validate_struct_init_ty, ty_inst, node);
return structInitExprRlTy(gz, scope, node, struct_init, ty_inst, .struct_init);
} else {
return structInitExprRlNone(gz, scope, node, struct_init, .struct_init_anon);
}
},
.ty, .coerced_ty => |ty_inst| {
if (struct_init.ast.type_expr == 0) {
return structInitExprRlTy(gz, scope, node, struct_init, ty_inst, .struct_init);
}
const inner_ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
_ = try gz.addUnNode(.validate_struct_init_ty, inner_ty_inst, node);
const result = try structInitExprRlTy(gz, scope, node, struct_init, inner_ty_inst, .struct_init);
return rvalue(gz, rl, result, node);
},
.ptr => |ptr_inst| return structInitExprRlPtr(gz, scope, rl, node, struct_init, ptr_inst),
.inferred_ptr => |ptr_inst| {
if (struct_init.ast.type_expr == 0) {
// We treat this case differently so that we don't get a crash when
// analyzing field_base_ptr against an alloc_inferred_mut.
// See corresponding logic in arrayInitExpr.
const result = try structInitExprRlNone(gz, scope, node, struct_init, .struct_init_anon);
return rvalue(gz, rl, result, node);
} else {
return structInitExprRlPtr(gz, scope, rl, node, struct_init, ptr_inst);
}
},
.block_ptr => |block_gz| {
// This condition is here for the same reason as the above condition in `inferred_ptr`.
// See corresponding logic in arrayInitExpr.
if (struct_init.ast.type_expr == 0 and astgen.isInferred(block_gz.rl_ptr)) {
const result = try structInitExprRlNone(gz, scope, node, struct_init, .struct_init_anon);
return rvalue(gz, rl, result, node);
}
return structInitExprRlPtr(gz, scope, rl, node, struct_init, block_gz.rl_ptr);
},
}
}
fn structInitExprRlNone(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
struct_init: Ast.full.StructInit,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const payload_index = try addExtra(astgen, Zir.Inst.StructInitAnon{
.fields_len = @intCast(u32, struct_init.ast.fields.len),
});
const field_size = @typeInfo(Zir.Inst.StructInitAnon.Item).Struct.fields.len;
var extra_index: usize = try reserveExtra(astgen, struct_init.ast.fields.len * field_size);
for (struct_init.ast.fields) |field_init| {
const name_token = tree.firstToken(field_init) - 2;
const str_index = try astgen.identAsString(name_token);
setExtra(astgen, extra_index, Zir.Inst.StructInitAnon.Item{
.field_name = str_index,
.init = try expr(gz, scope, .none, field_init),
});
extra_index += field_size;
}
return try gz.addPlNodePayloadIndex(tag, node, payload_index);
}
fn structInitExprRlPtr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
struct_init: Ast.full.StructInit,
result_ptr: Zir.Inst.Ref,
) InnerError!Zir.Inst.Ref {
if (struct_init.ast.type_expr == 0) {
const base_ptr = try gz.addUnNode(.field_base_ptr, result_ptr, node);
return structInitExprRlPtrInner(gz, scope, node, struct_init, base_ptr);
}
const ty_inst = try typeExpr(gz, scope, struct_init.ast.type_expr);
_ = try gz.addUnNode(.validate_struct_init_ty, ty_inst, node);
var as_scope = try gz.makeCoercionScope(scope, ty_inst, result_ptr);
defer as_scope.unstack();
const result = try structInitExprRlPtrInner(&as_scope, scope, node, struct_init, as_scope.rl_ptr);
return as_scope.finishCoercion(gz, rl, node, result, ty_inst);
}
fn structInitExprRlPtrInner(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
struct_init: Ast.full.StructInit,
result_ptr: Zir.Inst.Ref,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const payload_index = try addExtra(astgen, Zir.Inst.Block{
.body_len = @intCast(u32, struct_init.ast.fields.len),
});
var extra_index = try reserveExtra(astgen, struct_init.ast.fields.len);
for (struct_init.ast.fields) |field_init| {
const name_token = tree.firstToken(field_init) - 2;
const str_index = try astgen.identAsString(name_token);
const field_ptr = try gz.addPlNode(.field_ptr, field_init, Zir.Inst.Field{
.lhs = result_ptr,
.field_name_start = str_index,
});
astgen.extra.items[extra_index] = refToIndex(field_ptr).?;
extra_index += 1;
_ = try expr(gz, scope, .{ .ptr = field_ptr }, field_init);
}
const tag: Zir.Inst.Tag = if (gz.force_comptime)
.validate_struct_init_comptime
else
.validate_struct_init;
_ = try gz.addPlNodePayloadIndex(tag, node, payload_index);
return Zir.Inst.Ref.void_value;
}
fn structInitExprRlTy(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
struct_init: Ast.full.StructInit,
ty_inst: Zir.Inst.Ref,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const payload_index = try addExtra(astgen, Zir.Inst.StructInit{
.fields_len = @intCast(u32, struct_init.ast.fields.len),
});
const field_size = @typeInfo(Zir.Inst.StructInit.Item).Struct.fields.len;
var extra_index: usize = try reserveExtra(astgen, struct_init.ast.fields.len * field_size);
for (struct_init.ast.fields) |field_init| {
const name_token = tree.firstToken(field_init) - 2;
const str_index = try astgen.identAsString(name_token);
const field_ty_inst = try gz.addPlNode(.field_type, field_init, Zir.Inst.FieldType{
.container_type = ty_inst,
.name_start = str_index,
});
setExtra(astgen, extra_index, Zir.Inst.StructInit.Item{
.field_type = refToIndex(field_ty_inst).?,
.init = try expr(gz, scope, .{ .ty = field_ty_inst }, field_init),
});
extra_index += field_size;
}
return try gz.addPlNodePayloadIndex(tag, node, payload_index);
}
/// This calls expr in a comptime scope, and is intended to be called as a helper function.
/// The one that corresponds to `comptime` expression syntax is `comptimeExprAst`.
fn comptimeExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const prev_force_comptime = gz.force_comptime;
gz.force_comptime = true;
defer gz.force_comptime = prev_force_comptime;
return expr(gz, scope, rl, node);
}
/// This one is for an actual `comptime` syntax, and will emit a compile error if
/// the scope already has `force_comptime=true`.
/// See `comptimeExpr` for the helper function for calling expr in a comptime scope.
fn comptimeExprAst(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
if (gz.force_comptime) {
return astgen.failNode(node, "redundant comptime keyword in already comptime scope", .{});
}
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const body_node = node_datas[node].lhs;
gz.force_comptime = true;
const result = try expr(gz, scope, rl, body_node);
gz.force_comptime = false;
return result;
}
fn breakExpr(parent_gz: *GenZir, parent_scope: *Scope, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const break_label = node_datas[node].lhs;
const rhs = node_datas[node].rhs;
// Look for the label in the scope.
var scope = parent_scope;
while (true) {
switch (scope.tag) {
.gen_zir => {
const block_gz = scope.cast(GenZir).?;
const block_inst = blk: {
if (break_label != 0) {
if (block_gz.label) |*label| {
if (try astgen.tokenIdentEql(label.token, break_label)) {
label.used = true;
break :blk label.block_inst;
}
}
} else if (block_gz.break_block != 0) {
break :blk block_gz.break_block;
}
scope = block_gz.parent;
continue;
};
const break_tag: Zir.Inst.Tag = if (block_gz.is_inline) .break_inline else .@"break";
if (rhs == 0) {
_ = try parent_gz.addBreak(break_tag, block_inst, .void_value);
return Zir.Inst.Ref.unreachable_value;
}
block_gz.break_count += 1;
// The loop scope has a mechanism to prevent rvalue() from emitting a
// store to the result location for the loop body (since it is continues
// rather than returning a result from the loop) but here is a `break`
// which needs to override this behavior.
const prev_rvalue_noresult = parent_gz.rvalue_noresult;
parent_gz.rvalue_noresult = .none;
const operand = try reachableExpr(parent_gz, parent_scope, block_gz.break_result_loc, rhs, node);
parent_gz.rvalue_noresult = prev_rvalue_noresult;
switch (block_gz.break_result_loc) {
.block_ptr => {
const br = try parent_gz.addBreak(break_tag, block_inst, operand);
try block_gz.labeled_breaks.append(astgen.gpa, br);
},
.ptr => {
// In this case we don't have any mechanism to intercept it;
// we assume the result location is written, and we break with void.
_ = try parent_gz.addBreak(break_tag, block_inst, .void_value);
},
.discard => {
_ = try parent_gz.addBreak(break_tag, block_inst, .void_value);
},
else => {
_ = try parent_gz.addBreak(break_tag, block_inst, operand);
},
}
return Zir.Inst.Ref.unreachable_value;
},
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
.namespace => break,
.defer_normal => {
const defer_scope = scope.cast(Scope.Defer).?;
scope = defer_scope.parent;
const expr_node = node_datas[defer_scope.defer_node].rhs;
try unusedResultDeferExpr(parent_gz, defer_scope, defer_scope.parent, expr_node);
},
.defer_error => scope = scope.cast(Scope.Defer).?.parent,
.top => unreachable,
}
}
if (break_label != 0) {
const label_name = try astgen.identifierTokenString(break_label);
return astgen.failTok(break_label, "label not found: '{s}'", .{label_name});
} else {
return astgen.failNode(node, "break expression outside loop", .{});
}
}
fn continueExpr(parent_gz: *GenZir, parent_scope: *Scope, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const break_label = node_datas[node].lhs;
// Look for the label in the scope.
var scope = parent_scope;
while (true) {
switch (scope.tag) {
.gen_zir => {
const gen_zir = scope.cast(GenZir).?;
const continue_block = gen_zir.continue_block;
if (continue_block == 0) {
scope = gen_zir.parent;
continue;
}
if (break_label != 0) blk: {
if (gen_zir.label) |*label| {
if (try astgen.tokenIdentEql(label.token, break_label)) {
label.used = true;
break :blk;
}
}
// found continue but either it has a different label, or no label
scope = gen_zir.parent;
continue;
}
// TODO emit a break_inline if the loop being continued is inline
_ = try parent_gz.addBreak(.@"break", continue_block, .void_value);
return Zir.Inst.Ref.unreachable_value;
},
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
.defer_normal => {
const defer_scope = scope.cast(Scope.Defer).?;
scope = defer_scope.parent;
const expr_node = node_datas[defer_scope.defer_node].rhs;
try unusedResultDeferExpr(parent_gz, defer_scope, defer_scope.parent, expr_node);
},
.defer_error => scope = scope.cast(Scope.Defer).?.parent,
.namespace => break,
.top => unreachable,
}
}
if (break_label != 0) {
const label_name = try astgen.identifierTokenString(break_label);
return astgen.failTok(break_label, "label not found: '{s}'", .{label_name});
} else {
return astgen.failNode(node, "continue expression outside loop", .{});
}
}
fn blockExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
block_node: Ast.Node.Index,
statements: []const Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const lbrace = main_tokens[block_node];
if (token_tags[lbrace - 1] == .colon and
token_tags[lbrace - 2] == .identifier)
{
return labeledBlockExpr(gz, scope, rl, block_node, statements);
}
try blockExprStmts(gz, scope, statements);
return rvalue(gz, rl, .void_value, block_node);
}
fn checkLabelRedefinition(astgen: *AstGen, parent_scope: *Scope, label: Ast.TokenIndex) !void {
// Look for the label in the scope.
var scope = parent_scope;
while (true) {
switch (scope.tag) {
.gen_zir => {
const gen_zir = scope.cast(GenZir).?;
if (gen_zir.label) |prev_label| {
if (try astgen.tokenIdentEql(label, prev_label.token)) {
const label_name = try astgen.identifierTokenString(label);
return astgen.failTokNotes(label, "redefinition of label '{s}'", .{
label_name,
}, &[_]u32{
try astgen.errNoteTok(
prev_label.token,
"previous definition here",
.{},
),
});
}
}
scope = gen_zir.parent;
},
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
.defer_normal, .defer_error => scope = scope.cast(Scope.Defer).?.parent,
.namespace => break,
.top => unreachable,
}
}
}
fn labeledBlockExpr(
gz: *GenZir,
parent_scope: *Scope,
rl: ResultLoc,
block_node: Ast.Node.Index,
statements: []const Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const lbrace = main_tokens[block_node];
const label_token = lbrace - 2;
assert(token_tags[label_token] == .identifier);
try astgen.checkLabelRedefinition(parent_scope, label_token);
// Reserve the Block ZIR instruction index so that we can put it into the GenZir struct
// so that break statements can reference it.
const block_inst = try gz.makeBlockInst(.block, block_node);
try gz.instructions.append(astgen.gpa, block_inst);
var block_scope = gz.makeSubBlock(parent_scope);
block_scope.label = GenZir.Label{
.token = label_token,
.block_inst = block_inst,
};
block_scope.setBreakResultLoc(rl);
defer block_scope.unstack();
defer block_scope.labeled_breaks.deinit(astgen.gpa);
try blockExprStmts(&block_scope, &block_scope.base, statements);
if (!block_scope.endsWithNoReturn()) {
_ = try block_scope.addBreak(.@"break", block_inst, .void_value);
}
if (!block_scope.label.?.used) {
try astgen.appendErrorTok(label_token, "unused block label", .{});
}
const zir_datas = gz.astgen.instructions.items(.data);
const strat = rl.strategy(&block_scope);
switch (strat.tag) {
.break_void => {
// The code took advantage of the result location as a pointer.
// Turn the break instruction operands into void.
for (block_scope.labeled_breaks.items) |br| {
zir_datas[br].@"break".operand = .void_value;
}
try block_scope.setBlockBody(block_inst);
return indexToRef(block_inst);
},
.break_operand => {
// All break operands are values that did not use the result location pointer.
try block_scope.setBlockBody(block_inst);
const block_ref = indexToRef(block_inst);
switch (rl) {
.ref => return block_ref,
else => return rvalue(gz, rl, block_ref, block_node),
}
},
}
}
fn blockExprStmts(gz: *GenZir, parent_scope: *Scope, statements: []const Ast.Node.Index) !void {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_tags = tree.nodes.items(.tag);
if (statements.len == 0) return;
try gz.addDbgBlockBegin();
var block_arena = std.heap.ArenaAllocator.init(gz.astgen.gpa);
defer block_arena.deinit();
const block_arena_allocator = block_arena.allocator();
var noreturn_src_node: Ast.Node.Index = 0;
var scope = parent_scope;
for (statements) |statement| {
if (noreturn_src_node != 0) {
try astgen.appendErrorNodeNotes(
statement,
"unreachable code",
.{},
&[_]u32{
try astgen.errNoteNode(
noreturn_src_node,
"control flow is diverted here",
.{},
),
},
);
}
switch (node_tags[statement]) {
// zig fmt: off
.global_var_decl => scope = try varDecl(gz, scope, statement, block_arena_allocator, tree.globalVarDecl(statement)),
.local_var_decl => scope = try varDecl(gz, scope, statement, block_arena_allocator, tree.localVarDecl(statement)),
.simple_var_decl => scope = try varDecl(gz, scope, statement, block_arena_allocator, tree.simpleVarDecl(statement)),
.aligned_var_decl => scope = try varDecl(gz, scope, statement, block_arena_allocator, tree.alignedVarDecl(statement)),
.@"defer" => scope = try makeDeferScope(gz.astgen, scope, statement, block_arena_allocator, .defer_normal),
.@"errdefer" => scope = try makeDeferScope(gz.astgen, scope, statement, block_arena_allocator, .defer_error),
.assign => try assign(gz, scope, statement),
.assign_shl => try assignShift(gz, scope, statement, .shl),
.assign_shr => try assignShift(gz, scope, statement, .shr),
.assign_bit_and => try assignOp(gz, scope, statement, .bit_and),
.assign_bit_or => try assignOp(gz, scope, statement, .bit_or),
.assign_bit_xor => try assignOp(gz, scope, statement, .xor),
.assign_div => try assignOp(gz, scope, statement, .div),
.assign_sub => try assignOp(gz, scope, statement, .sub),
.assign_sub_wrap => try assignOp(gz, scope, statement, .subwrap),
.assign_mod => try assignOp(gz, scope, statement, .mod_rem),
.assign_add => try assignOp(gz, scope, statement, .add),
.assign_add_wrap => try assignOp(gz, scope, statement, .addwrap),
.assign_mul => try assignOp(gz, scope, statement, .mul),
.assign_mul_wrap => try assignOp(gz, scope, statement, .mulwrap),
else => noreturn_src_node = try unusedResultExpr(gz, scope, statement),
// zig fmt: on
}
}
try gz.addDbgBlockEnd();
try genDefers(gz, parent_scope, scope, .normal_only);
try checkUsed(gz, parent_scope, scope);
}
fn unusedResultDeferExpr(gz: *GenZir, defer_scope: *Scope.Defer, expr_scope: *Scope, expr_node: Ast.Node.Index) InnerError!void {
const astgen = gz.astgen;
const prev_offset = astgen.source_offset;
const prev_line = astgen.source_line;
const prev_column = astgen.source_column;
defer {
astgen.source_offset = prev_offset;
astgen.source_line = prev_line;
astgen.source_column = prev_column;
}
astgen.source_offset = defer_scope.source_offset;
astgen.source_line = defer_scope.source_line;
astgen.source_column = defer_scope.source_column;
_ = try unusedResultExpr(gz, expr_scope, expr_node);
}
/// Returns AST source node of the thing that is noreturn if the statement is
/// definitely `noreturn`. Otherwise returns 0.
fn unusedResultExpr(gz: *GenZir, scope: *Scope, statement: Ast.Node.Index) InnerError!Ast.Node.Index {
try emitDbgNode(gz, statement);
// We need to emit an error if the result is not `noreturn` or `void`, but
// we want to avoid adding the ZIR instruction if possible for performance.
const maybe_unused_result = try expr(gz, scope, .none, statement);
var noreturn_src_node: Ast.Node.Index = 0;
const elide_check = if (refToIndex(maybe_unused_result)) |inst| b: {
// Note that this array becomes invalid after appending more items to it
// in the above while loop.
const zir_tags = gz.astgen.instructions.items(.tag);
switch (zir_tags[inst]) {
// For some instructions, modify the zir data
// so we can avoid a separate ensure_result_used instruction.
.call => {
const extra_index = gz.astgen.instructions.items(.data)[inst].pl_node.payload_index;
const slot = &gz.astgen.extra.items[extra_index];
var flags = @bitCast(Zir.Inst.Call.Flags, slot.*);
flags.ensure_result_used = true;
slot.* = @bitCast(u32, flags);
break :b true;
},
// ZIR instructions that might be a type other than `noreturn` or `void`.
.add,
.addwrap,
.add_sat,
.param,
.param_comptime,
.param_anytype,
.param_anytype_comptime,
.alloc,
.alloc_mut,
.alloc_comptime_mut,
.alloc_inferred,
.alloc_inferred_mut,
.alloc_inferred_comptime,
.alloc_inferred_comptime_mut,
.make_ptr_const,
.array_cat,
.array_mul,
.array_type,
.array_type_sentinel,
.vector_type,
.elem_type,
.indexable_ptr_len,
.anyframe_type,
.as,
.as_node,
.bit_and,
.bitcast,
.bit_or,
.block,
.block_inline,
.suspend_block,
.loop,
.bool_br_and,
.bool_br_or,
.bool_not,
.cmp_lt,
.cmp_lte,
.cmp_eq,
.cmp_gte,
.cmp_gt,
.cmp_neq,
.coerce_result_ptr,
.decl_ref,
.decl_val,
.load,
.div,
.elem_ptr,
.elem_val,
.elem_ptr_node,
.elem_ptr_imm,
.elem_val_node,
.field_ptr,
.field_val,
.field_call_bind,
.field_ptr_named,
.field_val_named,
.field_call_bind_named,
.func,
.func_inferred,
.int,
.int_big,
.float,
.float128,
.int_type,
.is_non_null,
.is_non_null_ptr,
.is_non_err,
.is_non_err_ptr,
.mod_rem,
.mul,
.mulwrap,
.mul_sat,
.ref,
.shl,
.shl_sat,
.shr,
.str,
.sub,
.subwrap,
.sub_sat,
.negate,
.negate_wrap,
.typeof,
.typeof_builtin,
.xor,
.optional_type,
.optional_payload_safe,
.optional_payload_unsafe,
.optional_payload_safe_ptr,
.optional_payload_unsafe_ptr,
.err_union_payload_safe,
.err_union_payload_unsafe,
.err_union_payload_safe_ptr,
.err_union_payload_unsafe_ptr,
.err_union_code,
.err_union_code_ptr,
.ptr_type,
.ptr_type_simple,
.enum_literal,
.merge_error_sets,
.error_union_type,
.bit_not,
.error_value,
.error_to_int,
.int_to_error,
.slice_start,
.slice_end,
.slice_sentinel,
.import,
.switch_block,
.switch_cond,
.switch_cond_ref,
.switch_capture,
.switch_capture_ref,
.switch_capture_multi,
.switch_capture_multi_ref,
.struct_init_empty,
.struct_init,
.struct_init_ref,
.struct_init_anon,
.struct_init_anon_ref,
.array_init,
.array_init_anon,
.array_init_sent,
.array_init_ref,
.array_init_anon_ref,
.array_init_sent_ref,
.union_init,
.field_type,
.field_type_ref,
.error_set_decl,
.error_set_decl_anon,
.error_set_decl_func,
.int_to_enum,
.enum_to_int,
.type_info,
.size_of,
.bit_size_of,
.log2_int_type,
.typeof_log2_int_type,
.ptr_to_int,
.align_of,
.bool_to_int,
.embed_file,
.error_name,
.sqrt,
.sin,
.cos,
.exp,
.exp2,
.log,
.log2,
.log10,
.fabs,
.floor,
.ceil,
.trunc,
.round,
.tag_name,
.reify,
.type_name,
.frame_type,
.frame_size,
.float_to_int,
.int_to_float,
.int_to_ptr,
.float_cast,
.int_cast,
.err_set_cast,
.ptr_cast,
.truncate,
.align_cast,
.has_decl,
.has_field,
.clz,
.ctz,
.pop_count,
.byte_swap,
.bit_reverse,
.div_exact,
.div_floor,
.div_trunc,
.mod,
.rem,
.shl_exact,
.shr_exact,
.bit_offset_of,
.offset_of,
.cmpxchg_strong,
.cmpxchg_weak,
.splat,
.reduce,
.shuffle,
.select,
.atomic_load,
.atomic_rmw,
.mul_add,
.builtin_call,
.field_parent_ptr,
.maximum,
.minimum,
.builtin_async_call,
.c_import,
.@"resume",
.@"await",
.await_nosuspend,
.ret_err_value_code,
.extended,
.closure_get,
.array_base_ptr,
.field_base_ptr,
=> break :b false,
// ZIR instructions that are always `noreturn`.
.@"break",
.break_inline,
.condbr,
.condbr_inline,
.compile_error,
.ret_node,
.ret_load,
.ret_tok,
.ret_err_value,
.@"unreachable",
.repeat,
.repeat_inline,
.panic,
=> {
noreturn_src_node = statement;
break :b true;
},
// ZIR instructions that are always `void`.
.breakpoint,
.fence,
.dbg_stmt,
.dbg_var_ptr,
.dbg_var_val,
.ensure_result_used,
.ensure_result_non_error,
.@"export",
.export_value,
.set_eval_branch_quota,
.ensure_err_payload_void,
.atomic_store,
.store,
.store_node,
.store_to_block_ptr,
.store_to_inferred_ptr,
.resolve_inferred_alloc,
.validate_struct_init,
.validate_struct_init_comptime,
.validate_array_init,
.validate_array_init_comptime,
.set_align_stack,
.set_cold,
.set_float_mode,
.set_runtime_safety,
.closure_capture,
.memcpy,
.memset,
.validate_array_init_ty,
.validate_struct_init_ty,
=> break :b true,
}
} else switch (maybe_unused_result) {
.none => unreachable,
.unreachable_value => b: {
noreturn_src_node = statement;
break :b true;
},
.void_value => true,
else => false,
};
if (!elide_check) {
_ = try gz.addUnNode(.ensure_result_used, maybe_unused_result, statement);
}
return noreturn_src_node;
}
fn countDefers(astgen: *AstGen, outer_scope: *Scope, inner_scope: *Scope) struct {
have_any: bool,
have_normal: bool,
have_err: bool,
need_err_code: bool,
} {
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
var have_normal = false;
var have_err = false;
var need_err_code = false;
var scope = inner_scope;
while (scope != outer_scope) {
switch (scope.tag) {
.gen_zir => scope = scope.cast(GenZir).?.parent,
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
.defer_normal => {
const defer_scope = scope.cast(Scope.Defer).?;
scope = defer_scope.parent;
have_normal = true;
},
.defer_error => {
const defer_scope = scope.cast(Scope.Defer).?;
scope = defer_scope.parent;
have_err = true;
const have_err_payload = node_datas[defer_scope.defer_node].lhs != 0;
need_err_code = need_err_code or have_err_payload;
},
.namespace => unreachable,
.top => unreachable,
}
}
return .{
.have_any = have_normal or have_err,
.have_normal = have_normal,
.have_err = have_err,
.need_err_code = need_err_code,
};
}
const DefersToEmit = union(enum) {
both: Zir.Inst.Ref, // err code
both_sans_err,
normal_only,
};
fn genDefers(
gz: *GenZir,
outer_scope: *Scope,
inner_scope: *Scope,
which_ones: DefersToEmit,
) InnerError!void {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
var scope = inner_scope;
while (scope != outer_scope) {
switch (scope.tag) {
.gen_zir => scope = scope.cast(GenZir).?.parent,
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
.defer_normal => {
const defer_scope = scope.cast(Scope.Defer).?;
scope = defer_scope.parent;
const expr_node = node_datas[defer_scope.defer_node].rhs;
const prev_in_defer = gz.in_defer;
gz.in_defer = true;
defer gz.in_defer = prev_in_defer;
try unusedResultDeferExpr(gz, defer_scope, defer_scope.parent, expr_node);
},
.defer_error => {
const defer_scope = scope.cast(Scope.Defer).?;
scope = defer_scope.parent;
switch (which_ones) {
.both_sans_err => {
const expr_node = node_datas[defer_scope.defer_node].rhs;
const prev_in_defer = gz.in_defer;
gz.in_defer = true;
defer gz.in_defer = prev_in_defer;
try unusedResultDeferExpr(gz, defer_scope, defer_scope.parent, expr_node);
},
.both => |err_code| {
const expr_node = node_datas[defer_scope.defer_node].rhs;
const payload_token = node_datas[defer_scope.defer_node].lhs;
const prev_in_defer = gz.in_defer;
gz.in_defer = true;
defer gz.in_defer = prev_in_defer;
var local_val_scope: Scope.LocalVal = undefined;
try gz.addDbgBlockBegin();
const sub_scope = if (payload_token == 0) defer_scope.parent else blk: {
const ident_name = try astgen.identAsString(payload_token);
local_val_scope = .{
.parent = defer_scope.parent,
.gen_zir = gz,
.name = ident_name,
.inst = err_code,
.token_src = payload_token,
.id_cat = .@"capture",
};
try gz.addDbgVar(.dbg_var_val, ident_name, err_code);
break :blk &local_val_scope.base;
};
try unusedResultDeferExpr(gz, defer_scope, sub_scope, expr_node);
try gz.addDbgBlockEnd();
},
.normal_only => continue,
}
},
.namespace => unreachable,
.top => unreachable,
}
}
}
fn checkUsed(
gz: *GenZir,
outer_scope: *Scope,
inner_scope: *Scope,
) InnerError!void {
const astgen = gz.astgen;
var scope = inner_scope;
while (scope != outer_scope) {
switch (scope.tag) {
.gen_zir => scope = scope.cast(GenZir).?.parent,
.local_val => {
const s = scope.cast(Scope.LocalVal).?;
if (!s.used) {
try astgen.appendErrorTok(s.token_src, "unused {s}", .{@tagName(s.id_cat)});
}
scope = s.parent;
},
.local_ptr => {
const s = scope.cast(Scope.LocalPtr).?;
if (!s.used) {
try astgen.appendErrorTok(s.token_src, "unused {s}", .{@tagName(s.id_cat)});
}
scope = s.parent;
},
.defer_normal, .defer_error => scope = scope.cast(Scope.Defer).?.parent,
.namespace => unreachable,
.top => unreachable,
}
}
}
fn makeDeferScope(
astgen: *AstGen,
scope: *Scope,
node: Ast.Node.Index,
block_arena: Allocator,
scope_tag: Scope.Tag,
) InnerError!*Scope {
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const expr_node = node_datas[node].rhs;
const token_starts = tree.tokens.items(.start);
const node_start = token_starts[tree.firstToken(expr_node)];
const defer_scope = try block_arena.create(Scope.Defer);
astgen.advanceSourceCursor(node_start);
defer_scope.* = .{
.base = .{ .tag = scope_tag },
.parent = scope,
.defer_node = node,
.source_offset = astgen.source_offset,
.source_line = astgen.source_line,
.source_column = astgen.source_column,
};
return &defer_scope.base;
}
fn varDecl(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
block_arena: Allocator,
var_decl: Ast.full.VarDecl,
) InnerError!*Scope {
try emitDbgNode(gz, node);
const astgen = gz.astgen;
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const name_token = var_decl.ast.mut_token + 1;
const ident_name_raw = tree.tokenSlice(name_token);
if (mem.eql(u8, ident_name_raw, "_")) {
return astgen.failTok(name_token, "'_' used as an identifier without @\"_\" syntax", .{});
}
const ident_name = try astgen.identAsString(name_token);
try astgen.detectLocalShadowing(scope, ident_name, name_token, ident_name_raw);
if (var_decl.ast.init_node == 0) {
return astgen.failNode(node, "variables must be initialized", .{});
}
if (var_decl.ast.addrspace_node != 0) {
return astgen.failTok(main_tokens[var_decl.ast.addrspace_node], "cannot set address space of local variable '{s}'", .{ident_name_raw});
}
if (var_decl.ast.section_node != 0) {
return astgen.failTok(main_tokens[var_decl.ast.section_node], "cannot set section of local variable '{s}'", .{ident_name_raw});
}
const align_inst: Zir.Inst.Ref = if (var_decl.ast.align_node != 0)
try expr(gz, scope, align_rl, var_decl.ast.align_node)
else
.none;
switch (token_tags[var_decl.ast.mut_token]) {
.keyword_const => {
if (var_decl.comptime_token) |comptime_token| {
try astgen.appendErrorTok(comptime_token, "'comptime const' is redundant; instead wrap the initialization expression with 'comptime'", .{});
}
// Depending on the type of AST the initialization expression is, we may need an lvalue
// or an rvalue as a result location. If it is an rvalue, we can use the instruction as
// the variable, no memory location needed.
const type_node = var_decl.ast.type_node;
if (align_inst == .none and
!nodeMayNeedMemoryLocation(tree, var_decl.ast.init_node, type_node != 0))
{
const result_loc: ResultLoc = if (type_node != 0) .{
.ty = try typeExpr(gz, scope, type_node),
} else .none;
const init_inst = try reachableExpr(gz, scope, result_loc, var_decl.ast.init_node, node);
try gz.addDbgVar(.dbg_var_val, ident_name, init_inst);
const sub_scope = try block_arena.create(Scope.LocalVal);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.inst = init_inst,
.token_src = name_token,
.id_cat = .@"local constant",
};
return &sub_scope.base;
}
// Detect whether the initialization expression actually uses the
// result location pointer.
var init_scope = gz.makeSubBlock(scope);
// we may add more instructions to gz before stacking init_scope
init_scope.instructions_top = GenZir.unstacked_top;
defer init_scope.unstack();
var resolve_inferred_alloc: Zir.Inst.Ref = .none;
var opt_type_inst: Zir.Inst.Ref = .none;
if (type_node != 0) {
const type_inst = try typeExpr(gz, &init_scope.base, type_node);
opt_type_inst = type_inst;
if (align_inst == .none) {
init_scope.instructions_top = gz.instructions.items.len;
init_scope.rl_ptr = try init_scope.addUnNode(.alloc, type_inst, node);
} else {
init_scope.rl_ptr = try gz.addAllocExtended(.{
.node = node,
.type_inst = type_inst,
.align_inst = align_inst,
.is_const = true,
.is_comptime = gz.force_comptime,
});
init_scope.instructions_top = gz.instructions.items.len;
}
init_scope.rl_ty_inst = type_inst;
} else {
const alloc = if (align_inst == .none) alloc: {
init_scope.instructions_top = gz.instructions.items.len;
const tag: Zir.Inst.Tag = if (gz.force_comptime)
.alloc_inferred_comptime
else
.alloc_inferred;
break :alloc try init_scope.addNode(tag, node);
} else alloc: {
const ref = try gz.addAllocExtended(.{
.node = node,
.type_inst = .none,
.align_inst = align_inst,
.is_const = true,
.is_comptime = gz.force_comptime,
});
init_scope.instructions_top = gz.instructions.items.len;
break :alloc ref;
};
resolve_inferred_alloc = alloc;
init_scope.rl_ptr = alloc;
}
const init_result_loc: ResultLoc = .{ .block_ptr = &init_scope };
const init_inst = try reachableExpr(&init_scope, &init_scope.base, init_result_loc, var_decl.ast.init_node, node);
const zir_tags = astgen.instructions.items(.tag);
const zir_datas = astgen.instructions.items(.data);
if (align_inst == .none and init_scope.rvalue_rl_count == 1) {
// Result location pointer not used. We don't need an alloc for this
// const local, and type inference becomes trivial.
// Implicitly move the init_scope instructions into the parent scope,
// then elide the alloc instruction and the store_to_block_ptr instruction.
var src = init_scope.instructions_top;
var dst = src;
init_scope.instructions_top = GenZir.unstacked_top;
while (src < gz.instructions.items.len) : (src += 1) {
const src_inst = gz.instructions.items[src];
if (indexToRef(src_inst) == init_scope.rl_ptr) continue;
if (zir_tags[src_inst] == .store_to_block_ptr) {
if (zir_datas[src_inst].bin.lhs == init_scope.rl_ptr) continue;
}
gz.instructions.items[dst] = src_inst;
dst += 1;
}
gz.instructions.items.len = dst;
// In case the result location did not do the coercion
// for us so we must do it here.
const coerced_init = if (opt_type_inst != .none)
try gz.addBin(.as, opt_type_inst, init_inst)
else
init_inst;
try gz.addDbgVar(.dbg_var_val, ident_name, coerced_init);
const sub_scope = try block_arena.create(Scope.LocalVal);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.inst = coerced_init,
.token_src = name_token,
.id_cat = .@"local constant",
};
return &sub_scope.base;
}
// The initialization expression took advantage of the result location
// of the const local. In this case we will create an alloc and a LocalPtr for it.
// Implicitly move the init_scope instructions into the parent scope, then swap
// store_to_block_ptr for store_to_inferred_ptr.
var src = init_scope.instructions_top;
init_scope.instructions_top = GenZir.unstacked_top;
while (src < gz.instructions.items.len) : (src += 1) {
const src_inst = gz.instructions.items[src];
if (zir_tags[src_inst] == .store_to_block_ptr) {
if (zir_datas[src_inst].bin.lhs == init_scope.rl_ptr) {
if (type_node != 0) {
zir_tags[src_inst] = .store;
} else {
zir_tags[src_inst] = .store_to_inferred_ptr;
}
}
}
}
if (resolve_inferred_alloc != .none) {
_ = try gz.addUnNode(.resolve_inferred_alloc, resolve_inferred_alloc, node);
}
const const_ptr = try gz.addUnNode(.make_ptr_const, init_scope.rl_ptr, node);
try gz.addDbgVar(.dbg_var_ptr, ident_name, const_ptr);
const sub_scope = try block_arena.create(Scope.LocalPtr);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.ptr = const_ptr,
.token_src = name_token,
.maybe_comptime = true,
.id_cat = .@"local constant",
};
return &sub_scope.base;
},
.keyword_var => {
const is_comptime = var_decl.comptime_token != null or gz.force_comptime;
var resolve_inferred_alloc: Zir.Inst.Ref = .none;
const var_data: struct {
result_loc: ResultLoc,
alloc: Zir.Inst.Ref,
} = if (var_decl.ast.type_node != 0) a: {
const type_inst = try typeExpr(gz, scope, var_decl.ast.type_node);
const alloc = alloc: {
if (align_inst == .none) {
const tag: Zir.Inst.Tag = if (is_comptime)
.alloc_comptime_mut
else
.alloc_mut;
break :alloc try gz.addUnNode(tag, type_inst, node);
} else {
break :alloc try gz.addAllocExtended(.{
.node = node,
.type_inst = type_inst,
.align_inst = align_inst,
.is_const = false,
.is_comptime = is_comptime,
});
}
};
break :a .{ .alloc = alloc, .result_loc = .{ .ptr = alloc } };
} else a: {
const alloc = alloc: {
if (align_inst == .none) {
const tag: Zir.Inst.Tag = if (is_comptime)
.alloc_inferred_comptime_mut
else
.alloc_inferred_mut;
break :alloc try gz.addNode(tag, node);
} else {
break :alloc try gz.addAllocExtended(.{
.node = node,
.type_inst = .none,
.align_inst = align_inst,
.is_const = false,
.is_comptime = is_comptime,
});
}
};
resolve_inferred_alloc = alloc;
break :a .{ .alloc = alloc, .result_loc = .{ .inferred_ptr = alloc } };
};
_ = try reachableExprComptime(gz, scope, var_data.result_loc, var_decl.ast.init_node, node, is_comptime);
if (resolve_inferred_alloc != .none) {
_ = try gz.addUnNode(.resolve_inferred_alloc, resolve_inferred_alloc, node);
}
try gz.addDbgVar(.dbg_var_ptr, ident_name, var_data.alloc);
const sub_scope = try block_arena.create(Scope.LocalPtr);
sub_scope.* = .{
.parent = scope,
.gen_zir = gz,
.name = ident_name,
.ptr = var_data.alloc,
.token_src = name_token,
.maybe_comptime = is_comptime,
.id_cat = .@"local variable",
};
return &sub_scope.base;
},
else => unreachable,
}
}
fn emitDbgNode(gz: *GenZir, node: Ast.Node.Index) !void {
// The instruction emitted here is for debugging runtime code.
// If the current block will be evaluated only during semantic analysis
// then no dbg_stmt ZIR instruction is needed.
if (gz.force_comptime) return;
const astgen = gz.astgen;
astgen.advanceSourceCursorToNode(node);
const line = astgen.source_line - gz.decl_line;
const column = astgen.source_column;
_ = try gz.add(.{ .tag = .dbg_stmt, .data = .{
.dbg_stmt = .{
.line = line,
.column = column,
},
} });
}
fn assign(gz: *GenZir, scope: *Scope, infix_node: Ast.Node.Index) InnerError!void {
try emitDbgNode(gz, infix_node);
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const node_tags = tree.nodes.items(.tag);
const lhs = node_datas[infix_node].lhs;
const rhs = node_datas[infix_node].rhs;
if (node_tags[lhs] == .identifier) {
// This intentionally does not support `@"_"` syntax.
const ident_name = tree.tokenSlice(main_tokens[lhs]);
if (mem.eql(u8, ident_name, "_")) {
_ = try expr(gz, scope, .discard, rhs);
return;
}
}
const lvalue = try lvalExpr(gz, scope, lhs);
_ = try expr(gz, scope, .{ .ptr = lvalue }, rhs);
}
fn assignOp(
gz: *GenZir,
scope: *Scope,
infix_node: Ast.Node.Index,
op_inst_tag: Zir.Inst.Tag,
) InnerError!void {
try emitDbgNode(gz, infix_node);
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const lhs_ptr = try lvalExpr(gz, scope, node_datas[infix_node].lhs);
const lhs = try gz.addUnNode(.load, lhs_ptr, infix_node);
const lhs_type = try gz.addUnNode(.typeof, lhs, infix_node);
const rhs = try expr(gz, scope, .{ .coerced_ty = lhs_type }, node_datas[infix_node].rhs);
const result = try gz.addPlNode(op_inst_tag, infix_node, Zir.Inst.Bin{
.lhs = lhs,
.rhs = rhs,
});
_ = try gz.addBin(.store, lhs_ptr, result);
}
fn assignShift(
gz: *GenZir,
scope: *Scope,
infix_node: Ast.Node.Index,
op_inst_tag: Zir.Inst.Tag,
) InnerError!void {
try emitDbgNode(gz, infix_node);
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const lhs_ptr = try lvalExpr(gz, scope, node_datas[infix_node].lhs);
const lhs = try gz.addUnNode(.load, lhs_ptr, infix_node);
const rhs_type = try gz.addUnNode(.typeof_log2_int_type, lhs, infix_node);
const rhs = try expr(gz, scope, .{ .ty = rhs_type }, node_datas[infix_node].rhs);
const result = try gz.addPlNode(op_inst_tag, infix_node, Zir.Inst.Bin{
.lhs = lhs,
.rhs = rhs,
});
_ = try gz.addBin(.store, lhs_ptr, result);
}
fn assignShiftSat(gz: *GenZir, scope: *Scope, infix_node: Ast.Node.Index) InnerError!void {
try emitDbgNode(gz, infix_node);
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const lhs_ptr = try lvalExpr(gz, scope, node_datas[infix_node].lhs);
const lhs = try gz.addUnNode(.load, lhs_ptr, infix_node);
// Saturating shift-left allows any integer type for both the LHS and RHS.
const rhs = try expr(gz, scope, .none, node_datas[infix_node].rhs);
const result = try gz.addPlNode(.shl_sat, infix_node, Zir.Inst.Bin{
.lhs = lhs,
.rhs = rhs,
});
_ = try gz.addBin(.store, lhs_ptr, result);
}
fn boolNot(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const operand = try expr(gz, scope, bool_rl, node_datas[node].lhs);
const result = try gz.addUnNode(.bool_not, operand, node);
return rvalue(gz, rl, result, node);
}
fn bitNot(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const operand = try expr(gz, scope, .none, node_datas[node].lhs);
const result = try gz.addUnNode(.bit_not, operand, node);
return rvalue(gz, rl, result, node);
}
fn negation(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const operand = try expr(gz, scope, .none, node_datas[node].lhs);
const result = try gz.addUnNode(tag, operand, node);
return rvalue(gz, rl, result, node);
}
fn ptrType(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
ptr_info: Ast.full.PtrType,
) InnerError!Zir.Inst.Ref {
const elem_type = try typeExpr(gz, scope, ptr_info.ast.child_type);
const simple = ptr_info.ast.align_node == 0 and
ptr_info.ast.addrspace_node == 0 and
ptr_info.ast.sentinel == 0 and
ptr_info.ast.bit_range_start == 0;
if (simple) {
const result = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = ptr_info.allowzero_token != null,
.is_mutable = ptr_info.const_token == null,
.is_volatile = ptr_info.volatile_token != null,
.size = ptr_info.size,
.elem_type = elem_type,
},
} });
return rvalue(gz, rl, result, node);
}
var sentinel_ref: Zir.Inst.Ref = .none;
var align_ref: Zir.Inst.Ref = .none;
var addrspace_ref: Zir.Inst.Ref = .none;
var bit_start_ref: Zir.Inst.Ref = .none;
var bit_end_ref: Zir.Inst.Ref = .none;
var trailing_count: u32 = 0;
if (ptr_info.ast.sentinel != 0) {
sentinel_ref = try expr(gz, scope, .{ .ty = elem_type }, ptr_info.ast.sentinel);
trailing_count += 1;
}
if (ptr_info.ast.align_node != 0) {
align_ref = try expr(gz, scope, coerced_align_rl, ptr_info.ast.align_node);
trailing_count += 1;
}
if (ptr_info.ast.addrspace_node != 0) {
addrspace_ref = try expr(gz, scope, .{ .ty = .address_space_type }, ptr_info.ast.addrspace_node);
trailing_count += 1;
}
if (ptr_info.ast.bit_range_start != 0) {
assert(ptr_info.ast.bit_range_end != 0);
bit_start_ref = try expr(gz, scope, .{ .coerced_ty = .u16_type }, ptr_info.ast.bit_range_start);
bit_end_ref = try expr(gz, scope, .{ .coerced_ty = .u16_type }, ptr_info.ast.bit_range_end);
trailing_count += 2;
}
const gpa = gz.astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.extra.ensureUnusedCapacity(gpa, @typeInfo(Zir.Inst.PtrType).Struct.fields.len +
trailing_count);
const payload_index = gz.astgen.addExtraAssumeCapacity(Zir.Inst.PtrType{ .elem_type = elem_type });
if (sentinel_ref != .none) {
gz.astgen.extra.appendAssumeCapacity(@enumToInt(sentinel_ref));
}
if (align_ref != .none) {
gz.astgen.extra.appendAssumeCapacity(@enumToInt(align_ref));
}
if (addrspace_ref != .none) {
gz.astgen.extra.appendAssumeCapacity(@enumToInt(addrspace_ref));
}
if (bit_start_ref != .none) {
gz.astgen.extra.appendAssumeCapacity(@enumToInt(bit_start_ref));
gz.astgen.extra.appendAssumeCapacity(@enumToInt(bit_end_ref));
}
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
const result = indexToRef(new_index);
gz.astgen.instructions.appendAssumeCapacity(.{ .tag = .ptr_type, .data = .{
.ptr_type = .{
.flags = .{
.is_allowzero = ptr_info.allowzero_token != null,
.is_mutable = ptr_info.const_token == null,
.is_volatile = ptr_info.volatile_token != null,
.has_sentinel = sentinel_ref != .none,
.has_align = align_ref != .none,
.has_addrspace = addrspace_ref != .none,
.has_bit_range = bit_start_ref != .none,
},
.size = ptr_info.size,
.payload_index = payload_index,
},
} });
gz.instructions.appendAssumeCapacity(new_index);
return rvalue(gz, rl, result, node);
}
fn arrayType(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: Ast.Node.Index) !Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const len_node = node_datas[node].lhs;
if (node_tags[len_node] == .identifier and
mem.eql(u8, tree.tokenSlice(main_tokens[len_node]), "_"))
{
return astgen.failNode(len_node, "unable to infer array size", .{});
}
const len = try expr(gz, scope, .{ .coerced_ty = .usize_type }, len_node);
const elem_type = try typeExpr(gz, scope, node_datas[node].rhs);
const result = try gz.addBin(.array_type, len, elem_type);
return rvalue(gz, rl, result, node);
}
fn arrayTypeSentinel(gz: *GenZir, scope: *Scope, rl: ResultLoc, node: Ast.Node.Index) !Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const extra = tree.extraData(node_datas[node].rhs, Ast.Node.ArrayTypeSentinel);
const len_node = node_datas[node].lhs;
if (node_tags[len_node] == .identifier and
mem.eql(u8, tree.tokenSlice(main_tokens[len_node]), "_"))
{
return astgen.failNode(len_node, "unable to infer array size", .{});
}
const len = try reachableExpr(gz, scope, .{ .coerced_ty = .usize_type }, len_node, node);
const elem_type = try typeExpr(gz, scope, extra.elem_type);
const sentinel = try reachableExpr(gz, scope, .{ .coerced_ty = elem_type }, extra.sentinel, node);
const result = try gz.addPlNode(.array_type_sentinel, node, Zir.Inst.ArrayTypeSentinel{
.len = len,
.elem_type = elem_type,
.sentinel = sentinel,
});
return rvalue(gz, rl, result, node);
}
const WipMembers = struct {
payload: *ArrayListUnmanaged(u32),
payload_top: usize,
decls_start: u32,
decls_end: u32,
field_bits_start: u32,
fields_start: u32,
fields_end: u32,
decl_index: u32 = 0,
field_index: u32 = 0,
const Self = @This();
/// struct, union, enum, and opaque decls all use same 4 bits per decl
const bits_per_decl = 4;
const decls_per_u32 = 32 / bits_per_decl;
/// struct, union, enum, and opaque decls all have maximum size of 11 u32 slots
/// (4 for src_hash + line + name + value + doc_comment + align + link_section + address_space )
const max_decl_size = 11;
pub fn init(gpa: Allocator, payload: *ArrayListUnmanaged(u32), decl_count: u32, field_count: u32, comptime bits_per_field: u32, comptime max_field_size: u32) Allocator.Error!Self {
const payload_top = @intCast(u32, payload.items.len);
const decls_start = payload_top + (decl_count + decls_per_u32 - 1) / decls_per_u32;
const field_bits_start = decls_start + decl_count * max_decl_size;
const fields_start = field_bits_start + if (bits_per_field > 0) blk: {
const fields_per_u32 = 32 / bits_per_field;
break :blk (field_count + fields_per_u32 - 1) / fields_per_u32;
} else 0;
const payload_end = fields_start + field_count * max_field_size;
try payload.resize(gpa, payload_end);
return Self{
.payload = payload,
.payload_top = payload_top,
.decls_start = decls_start,
.field_bits_start = field_bits_start,
.fields_start = fields_start,
.decls_end = decls_start,
.fields_end = fields_start,
};
}
pub fn nextDecl(self: *Self, is_pub: bool, is_export: bool, has_align: bool, has_section_or_addrspace: bool) void {
const index = self.payload_top + self.decl_index / decls_per_u32;
assert(index < self.decls_start);
const bit_bag: u32 = if (self.decl_index % decls_per_u32 == 0) 0 else self.payload.items[index];
self.payload.items[index] = (bit_bag >> bits_per_decl) |
(@as(u32, @boolToInt(is_pub)) << 28) |
(@as(u32, @boolToInt(is_export)) << 29) |
(@as(u32, @boolToInt(has_align)) << 30) |
(@as(u32, @boolToInt(has_section_or_addrspace)) << 31);
self.decl_index += 1;
}
pub fn nextField(self: *Self, comptime bits_per_field: u32, bits: [bits_per_field]bool) void {
const fields_per_u32 = 32 / bits_per_field;
const index = self.field_bits_start + self.field_index / fields_per_u32;
assert(index < self.fields_start);
var bit_bag: u32 = if (self.field_index % fields_per_u32 == 0) 0 else self.payload.items[index];
bit_bag >>= bits_per_field;
comptime var i = 0;
inline while (i < bits_per_field) : (i += 1) {
bit_bag |= @as(u32, @boolToInt(bits[i])) << (32 - bits_per_field + i);
}
self.payload.items[index] = bit_bag;
self.field_index += 1;
}
pub fn appendToDecl(self: *Self, data: u32) void {
assert(self.decls_end < self.field_bits_start);
self.payload.items[self.decls_end] = data;
self.decls_end += 1;
}
pub fn appendToDeclSlice(self: *Self, data: []const u32) void {
assert(self.decls_end + data.len <= self.field_bits_start);
mem.copy(u32, self.payload.items[self.decls_end..], data);
self.decls_end += @intCast(u32, data.len);
}
pub fn appendToField(self: *Self, data: u32) void {
assert(self.fields_end < self.payload.items.len);
self.payload.items[self.fields_end] = data;
self.fields_end += 1;
}
pub fn finishBits(self: *Self, comptime bits_per_field: u32) void {
const empty_decl_slots = decls_per_u32 - (self.decl_index % decls_per_u32);
if (self.decl_index > 0 and empty_decl_slots < decls_per_u32) {
const index = self.payload_top + self.decl_index / decls_per_u32;
self.payload.items[index] >>= @intCast(u5, empty_decl_slots * bits_per_decl);
}
if (bits_per_field > 0) {
const fields_per_u32 = 32 / bits_per_field;
const empty_field_slots = fields_per_u32 - (self.field_index % fields_per_u32);
if (self.field_index > 0 and empty_field_slots < fields_per_u32) {
const index = self.field_bits_start + self.field_index / fields_per_u32;
self.payload.items[index] >>= @intCast(u5, empty_field_slots * bits_per_field);
}
}
}
pub fn declsSlice(self: *Self) []u32 {
return self.payload.items[self.payload_top..self.decls_end];
}
pub fn fieldsSlice(self: *Self) []u32 {
return self.payload.items[self.field_bits_start..self.fields_end];
}
pub fn deinit(self: *Self) void {
self.payload.items.len = self.payload_top;
}
};
fn fnDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
wip_members: *WipMembers,
decl_node: Ast.Node.Index,
body_node: Ast.Node.Index,
fn_proto: Ast.full.FnProto,
) InnerError!void {
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
// missing function name already happened in scanDecls()
const fn_name_token = fn_proto.name_token orelse return error.AnalysisFail;
const fn_name_str_index = try astgen.identAsString(fn_name_token);
// We insert this at the beginning so that its instruction index marks the
// start of the top level declaration.
const block_inst = try gz.makeBlockInst(.block_inline, fn_proto.ast.proto_node);
astgen.advanceSourceCursorToNode(decl_node);
var decl_gz: GenZir = .{
.force_comptime = true,
.in_defer = false,
.decl_node_index = fn_proto.ast.proto_node,
.decl_line = astgen.source_line,
.parent = scope,
.astgen = astgen,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer decl_gz.unstack();
var fn_gz: GenZir = .{
.force_comptime = false,
.in_defer = false,
.decl_node_index = fn_proto.ast.proto_node,
.decl_line = decl_gz.decl_line,
.parent = &decl_gz.base,
.astgen = astgen,
.instructions = gz.instructions,
.instructions_top = GenZir.unstacked_top,
};
defer fn_gz.unstack();
// TODO: support noinline
const is_pub = fn_proto.visib_token != null;
const is_export = blk: {
const maybe_export_token = fn_proto.extern_export_inline_token orelse break :blk false;
break :blk token_tags[maybe_export_token] == .keyword_export;
};
const is_extern = blk: {
const maybe_extern_token = fn_proto.extern_export_inline_token orelse break :blk false;
break :blk token_tags[maybe_extern_token] == .keyword_extern;
};
const has_inline_keyword = blk: {
const maybe_inline_token = fn_proto.extern_export_inline_token orelse break :blk false;
break :blk token_tags[maybe_inline_token] == .keyword_inline;
};
const doc_comment_index = try astgen.docCommentAsString(fn_proto.firstToken());
const has_section_or_addrspace = fn_proto.ast.section_expr != 0 or fn_proto.ast.addrspace_expr != 0;
// Alignment is passed in the func instruction in this case.
wip_members.nextDecl(is_pub, is_export, false, has_section_or_addrspace);
var params_scope = &fn_gz.base;
const is_var_args = is_var_args: {
var param_type_i: usize = 0;
var it = fn_proto.iterate(tree.*);
while (it.next()) |param| : (param_type_i += 1) {
const is_comptime = if (param.comptime_noalias) |token|
token_tags[token] == .keyword_comptime
else
false;
const is_anytype = if (param.anytype_ellipsis3) |token| blk: {
switch (token_tags[token]) {
.keyword_anytype => break :blk true,
.ellipsis3 => break :is_var_args true,
else => unreachable,
}
} else false;
const param_name: u32 = if (param.name_token) |name_token| blk: {
const name_bytes = tree.tokenSlice(name_token);
if (mem.eql(u8, "_", name_bytes))
break :blk 0;
const param_name = try astgen.identAsString(name_token);
if (!is_extern) {
try astgen.detectLocalShadowing(params_scope, param_name, name_token, name_bytes);
}
break :blk param_name;
} else if (!is_extern) {
if (param.anytype_ellipsis3) |tok| {
return astgen.failTok(tok, "missing parameter name", .{});
} else {
return astgen.failNode(param.type_expr, "missing parameter name", .{});
}
} else 0;
const param_inst = if (is_anytype) param: {
const name_token = param.name_token orelse param.anytype_ellipsis3.?;
const tag: Zir.Inst.Tag = if (is_comptime)
.param_anytype_comptime
else
.param_anytype;
break :param try decl_gz.addStrTok(tag, param_name, name_token);
} else param: {
const param_type_node = param.type_expr;
assert(param_type_node != 0);
var param_gz = decl_gz.makeSubBlock(scope);
defer param_gz.unstack();
const param_type = try expr(&param_gz, params_scope, coerced_type_rl, param_type_node);
const param_inst_expected = @intCast(u32, astgen.instructions.len + 1);
_ = try param_gz.addBreak(.break_inline, param_inst_expected, param_type);
const main_tokens = tree.nodes.items(.main_token);
const name_token = param.name_token orelse main_tokens[param_type_node];
const tag: Zir.Inst.Tag = if (is_comptime) .param_comptime else .param;
const param_inst = try decl_gz.addParam(&param_gz, tag, name_token, param_name, param.first_doc_comment);
assert(param_inst_expected == param_inst);
break :param indexToRef(param_inst);
};
if (param_name == 0 or is_extern) continue;
const sub_scope = try astgen.arena.create(Scope.LocalVal);
sub_scope.* = .{
.parent = params_scope,
.gen_zir = &decl_gz,
.name = param_name,
.inst = param_inst,
.token_src = param.name_token.?,
.id_cat = .@"function parameter",
};
params_scope = &sub_scope.base;
}
break :is_var_args false;
};
const lib_name: u32 = if (fn_proto.lib_name) |lib_name_token| blk: {
const lib_name_str = try astgen.strLitAsString(lib_name_token);
break :blk lib_name_str.index;
} else 0;
const maybe_bang = tree.firstToken(fn_proto.ast.return_type) - 1;
const is_inferred_error = token_tags[maybe_bang] == .bang;
const align_inst: Zir.Inst.Ref = if (fn_proto.ast.align_expr == 0) .none else inst: {
break :inst try expr(&decl_gz, params_scope, align_rl, fn_proto.ast.align_expr);
};
const addrspace_inst: Zir.Inst.Ref = if (fn_proto.ast.addrspace_expr == 0) .none else inst: {
break :inst try expr(&decl_gz, params_scope, .{ .ty = .address_space_type }, fn_proto.ast.addrspace_expr);
};
const section_inst: Zir.Inst.Ref = if (fn_proto.ast.section_expr == 0) .none else inst: {
break :inst try comptimeExpr(&decl_gz, params_scope, .{ .ty = .const_slice_u8_type }, fn_proto.ast.section_expr);
};
const cc: Zir.Inst.Ref = blk: {
if (fn_proto.ast.callconv_expr != 0) {
if (has_inline_keyword) {
return astgen.failNode(
fn_proto.ast.callconv_expr,
"explicit callconv incompatible with inline keyword",
.{},
);
}
break :blk try expr(
&decl_gz,
params_scope,
.{ .ty = .calling_convention_type },
fn_proto.ast.callconv_expr,
);
} else if (is_extern) {
// note: https://github.com/ziglang/zig/issues/5269
break :blk .calling_convention_c;
} else if (has_inline_keyword) {
break :blk .calling_convention_inline;
} else {
break :blk .none;
}
};
var ret_gz = decl_gz.makeSubBlock(params_scope);
defer ret_gz.unstack();
const ret_ty = try expr(&ret_gz, params_scope, coerced_type_rl, fn_proto.ast.return_type);
const ret_br = try ret_gz.addBreak(.break_inline, 0, ret_ty);
const func_inst: Zir.Inst.Ref = if (body_node == 0) func: {
if (!is_extern) {
return astgen.failTok(fn_proto.ast.fn_token, "non-extern function has no body", .{});
}
if (is_inferred_error) {
return astgen.failTok(maybe_bang, "function prototype may not have inferred error set", .{});
}
break :func try decl_gz.addFunc(.{
.src_node = decl_node,
.ret_gz = &ret_gz,
.ret_br = ret_br,
.param_block = block_inst,
.body_gz = null,
.cc = cc,
.align_inst = align_inst,
.lib_name = lib_name,
.is_var_args = is_var_args,
.is_inferred_error = false,
.is_test = false,
.is_extern = true,
});
} else func: {
if (is_var_args) {
return astgen.failTok(fn_proto.ast.fn_token, "non-extern function is variadic", .{});
}
// as a scope, fn_gz encloses ret_gz, but for instruction list, fn_gz stacks on ret_gz
fn_gz.instructions_top = ret_gz.instructions.items.len;
const prev_fn_block = astgen.fn_block;
astgen.fn_block = &fn_gz;
defer astgen.fn_block = prev_fn_block;
astgen.advanceSourceCursorToNode(body_node);
const lbrace_line = astgen.source_line - decl_gz.decl_line;
const lbrace_column = astgen.source_column;
_ = try expr(&fn_gz, params_scope, .none, body_node);
try checkUsed(gz, &fn_gz.base, params_scope);
if (!fn_gz.endsWithNoReturn()) {
// Since we are adding the return instruction here, we must handle the coercion.
// We do this by using the `ret_tok` instruction.
_ = try fn_gz.addUnTok(.ret_tok, .void_value, tree.lastToken(body_node));
}
break :func try decl_gz.addFunc(.{
.src_node = decl_node,
.lbrace_line = lbrace_line,
.lbrace_column = lbrace_column,
.param_block = block_inst,
.ret_gz = &ret_gz,
.ret_br = ret_br,
.body_gz = &fn_gz,
.cc = cc,
.align_inst = align_inst,
.lib_name = lib_name,
.is_var_args = is_var_args,
.is_inferred_error = is_inferred_error,
.is_test = false,
.is_extern = false,
});
};
// We add this at the end so that its instruction index marks the end range
// of the top level declaration. addFunc already unstacked fn_gz and ret_gz.
_ = try decl_gz.addBreak(.break_inline, block_inst, func_inst);
try decl_gz.setBlockBody(block_inst);
{
const contents_hash = std.zig.hashSrc(tree.getNodeSource(decl_node));
const casted = @bitCast([4]u32, contents_hash);
wip_members.appendToDeclSlice(&casted);
}
{
const line_delta = decl_gz.decl_line - gz.decl_line;
wip_members.appendToDecl(line_delta);
}
wip_members.appendToDecl(fn_name_str_index);
wip_members.appendToDecl(block_inst);
wip_members.appendToDecl(doc_comment_index);
if (has_section_or_addrspace) {
wip_members.appendToDecl(@enumToInt(section_inst));
wip_members.appendToDecl(@enumToInt(addrspace_inst));
}
}
fn globalVarDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
wip_members: *WipMembers,
node: Ast.Node.Index,
var_decl: Ast.full.VarDecl,
) InnerError!void {
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
const is_mutable = token_tags[var_decl.ast.mut_token] == .keyword_var;
// We do this at the beginning so that the instruction index marks the range start
// of the top level declaration.
const block_inst = try gz.makeBlockInst(.block_inline, node);
const name_token = var_decl.ast.mut_token + 1;
const name_str_index = try astgen.identAsString(name_token);
astgen.advanceSourceCursorToNode(node);
var block_scope: GenZir = .{
.parent = scope,
.decl_node_index = node,
.decl_line = astgen.source_line,
.astgen = astgen,
.force_comptime = true,
.in_defer = false,
.anon_name_strategy = .parent,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer block_scope.unstack();
const is_pub = var_decl.visib_token != null;
const is_export = blk: {
const maybe_export_token = var_decl.extern_export_token orelse break :blk false;
break :blk token_tags[maybe_export_token] == .keyword_export;
};
const is_extern = blk: {
const maybe_extern_token = var_decl.extern_export_token orelse break :blk false;
break :blk token_tags[maybe_extern_token] == .keyword_extern;
};
const align_inst: Zir.Inst.Ref = if (var_decl.ast.align_node == 0) .none else inst: {
break :inst try expr(&block_scope, &block_scope.base, align_rl, var_decl.ast.align_node);
};
const addrspace_inst: Zir.Inst.Ref = if (var_decl.ast.addrspace_node == 0) .none else inst: {
break :inst try expr(&block_scope, &block_scope.base, .{ .ty = .address_space_type }, var_decl.ast.addrspace_node);
};
const section_inst: Zir.Inst.Ref = if (var_decl.ast.section_node == 0) .none else inst: {
break :inst try comptimeExpr(&block_scope, &block_scope.base, .{ .ty = .const_slice_u8_type }, var_decl.ast.section_node);
};
const has_section_or_addrspace = section_inst != .none or addrspace_inst != .none;
wip_members.nextDecl(is_pub, is_export, align_inst != .none, has_section_or_addrspace);
const is_threadlocal = if (var_decl.threadlocal_token) |tok| blk: {
if (!is_mutable) {
return astgen.failTok(tok, "threadlocal variable cannot be constant", .{});
}
break :blk true;
} else false;
const lib_name: u32 = if (var_decl.lib_name) |lib_name_token| blk: {
const lib_name_str = try astgen.strLitAsString(lib_name_token);
break :blk lib_name_str.index;
} else 0;
const doc_comment_index = try astgen.docCommentAsString(var_decl.firstToken());
assert(var_decl.comptime_token == null); // handled by parser
const var_inst: Zir.Inst.Ref = if (var_decl.ast.init_node != 0) vi: {
if (is_extern) {
return astgen.failNode(
var_decl.ast.init_node,
"extern variables have no initializers",
.{},
);
}
const type_inst: Zir.Inst.Ref = if (var_decl.ast.type_node != 0)
try expr(
&block_scope,
&block_scope.base,
.{ .ty = .type_type },
var_decl.ast.type_node,
)
else
.none;
const init_inst = try expr(
&block_scope,
&block_scope.base,
if (type_inst != .none) .{ .ty = type_inst } else .none,
var_decl.ast.init_node,
);
if (is_mutable) {
const var_inst = try block_scope.addVar(.{
.var_type = type_inst,
.lib_name = 0,
.align_inst = .none, // passed via the decls data
.init = init_inst,
.is_extern = false,
.is_threadlocal = is_threadlocal,
});
break :vi var_inst;
} else {
break :vi init_inst;
}
} else if (!is_extern) {
return astgen.failNode(node, "variables must be initialized", .{});
} else if (var_decl.ast.type_node != 0) vi: {
// Extern variable which has an explicit type.
const type_inst = try typeExpr(&block_scope, &block_scope.base, var_decl.ast.type_node);
const var_inst = try block_scope.addVar(.{
.var_type = type_inst,
.lib_name = lib_name,
.align_inst = .none, // passed via the decls data
.init = .none,
.is_extern = true,
.is_threadlocal = is_threadlocal,
});
break :vi var_inst;
} else {
return astgen.failNode(node, "unable to infer variable type", .{});
};
// We do this at the end so that the instruction index marks the end
// range of a top level declaration.
_ = try block_scope.addBreak(.break_inline, block_inst, var_inst);
try block_scope.setBlockBody(block_inst);
{
const contents_hash = std.zig.hashSrc(tree.getNodeSource(node));
const casted = @bitCast([4]u32, contents_hash);
wip_members.appendToDeclSlice(&casted);
}
{
const line_delta = block_scope.decl_line - gz.decl_line;
wip_members.appendToDecl(line_delta);
}
wip_members.appendToDecl(name_str_index);
wip_members.appendToDecl(block_inst);
wip_members.appendToDecl(doc_comment_index); // doc_comment wip
if (align_inst != .none) {
wip_members.appendToDecl(@enumToInt(align_inst));
}
if (has_section_or_addrspace) {
wip_members.appendToDecl(@enumToInt(section_inst));
wip_members.appendToDecl(@enumToInt(addrspace_inst));
}
}
fn comptimeDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
wip_members: *WipMembers,
node: Ast.Node.Index,
) InnerError!void {
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const body_node = node_datas[node].lhs;
// Up top so the ZIR instruction index marks the start range of this
// top-level declaration.
const block_inst = try gz.makeBlockInst(.block_inline, node);
wip_members.nextDecl(false, false, false, false);
astgen.advanceSourceCursorToNode(node);
var decl_block: GenZir = .{
.force_comptime = true,
.in_defer = false,
.decl_node_index = node,
.decl_line = astgen.source_line,
.parent = scope,
.astgen = astgen,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer decl_block.unstack();
const block_result = try expr(&decl_block, &decl_block.base, .none, body_node);
if (decl_block.isEmpty() or !decl_block.refIsNoReturn(block_result)) {
_ = try decl_block.addBreak(.break_inline, block_inst, .void_value);
}
try decl_block.setBlockBody(block_inst);
{
const contents_hash = std.zig.hashSrc(tree.getNodeSource(node));
const casted = @bitCast([4]u32, contents_hash);
wip_members.appendToDeclSlice(&casted);
}
{
const line_delta = decl_block.decl_line - gz.decl_line;
wip_members.appendToDecl(line_delta);
}
wip_members.appendToDecl(0);
wip_members.appendToDecl(block_inst);
wip_members.appendToDecl(0); // no doc comments on comptime decls
}
fn usingnamespaceDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
wip_members: *WipMembers,
node: Ast.Node.Index,
) InnerError!void {
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const type_expr = node_datas[node].lhs;
const is_pub = blk: {
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const main_token = main_tokens[node];
break :blk (main_token > 0 and token_tags[main_token - 1] == .keyword_pub);
};
// Up top so the ZIR instruction index marks the start range of this
// top-level declaration.
const block_inst = try gz.makeBlockInst(.block_inline, node);
wip_members.nextDecl(is_pub, true, false, false);
astgen.advanceSourceCursorToNode(node);
var decl_block: GenZir = .{
.force_comptime = true,
.in_defer = false,
.decl_node_index = node,
.decl_line = astgen.source_line,
.parent = scope,
.astgen = astgen,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer decl_block.unstack();
const namespace_inst = try typeExpr(&decl_block, &decl_block.base, type_expr);
_ = try decl_block.addBreak(.break_inline, block_inst, namespace_inst);
try decl_block.setBlockBody(block_inst);
{
const contents_hash = std.zig.hashSrc(tree.getNodeSource(node));
const casted = @bitCast([4]u32, contents_hash);
wip_members.appendToDeclSlice(&casted);
}
{
const line_delta = decl_block.decl_line - gz.decl_line;
wip_members.appendToDecl(line_delta);
}
wip_members.appendToDecl(0);
wip_members.appendToDecl(block_inst);
wip_members.appendToDecl(0); // no doc comments on usingnamespace decls
}
fn testDecl(
astgen: *AstGen,
gz: *GenZir,
scope: *Scope,
wip_members: *WipMembers,
node: Ast.Node.Index,
) InnerError!void {
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const body_node = node_datas[node].rhs;
// Up top so the ZIR instruction index marks the start range of this
// top-level declaration.
const block_inst = try gz.makeBlockInst(.block_inline, node);
wip_members.nextDecl(false, false, false, false);
astgen.advanceSourceCursorToNode(node);
var decl_block: GenZir = .{
.force_comptime = true,
.in_defer = false,
.decl_node_index = node,
.decl_line = astgen.source_line,
.parent = scope,
.astgen = astgen,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer decl_block.unstack();
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const test_token = main_tokens[node];
const test_name_token = test_token + 1;
const test_name_token_tag = token_tags[test_name_token];
const is_decltest = test_name_token_tag == .identifier;
const test_name: u32 = blk: {
if (test_name_token_tag == .string_literal) {
break :blk try astgen.testNameString(test_name_token);
} else if (test_name_token_tag == .identifier) {
const ident_name_raw = tree.tokenSlice(test_name_token);
if (mem.eql(u8, ident_name_raw, "_")) return astgen.failTok(test_name_token, "'_' used as an identifier without @\"_\" syntax", .{});
// if not @"" syntax, just use raw token slice
if (ident_name_raw[0] != '@') {
if (primitives.get(ident_name_raw)) |_| return astgen.failTok(test_name_token, "cannot test a primitive", .{});
if (ident_name_raw.len >= 2) integer: {
const first_c = ident_name_raw[0];
if (first_c == 'i' or first_c == 'u') {
_ = switch (first_c == 'i') {
true => .signed,
false => .unsigned,
};
_ = parseBitCount(ident_name_raw[1..]) catch |err| switch (err) {
error.Overflow => return astgen.failTok(
test_name_token,
"primitive integer type '{s}' exceeds maximum bit width of 65535",
.{ident_name_raw},
),
error.InvalidCharacter => break :integer,
};
return astgen.failTok(test_name_token, "cannot test a primitive", .{});
}
}
}
// Local variables, including function parameters.
const name_str_index = try astgen.identAsString(test_name_token);
var s = scope;
var found_already: ?Ast.Node.Index = null; // we have found a decl with the same name already
var num_namespaces_out: u32 = 0;
var capturing_namespace: ?*Scope.Namespace = null;
while (true) switch (s.tag) {
.local_val, .local_ptr => unreachable, // a test cannot be in a local scope
.gen_zir => s = s.cast(GenZir).?.parent,
.defer_normal, .defer_error => s = s.cast(Scope.Defer).?.parent,
.namespace => {
const ns = s.cast(Scope.Namespace).?;
if (ns.decls.get(name_str_index)) |i| {
if (found_already) |f| {
return astgen.failTokNotes(test_name_token, "ambiguous reference", .{}, &.{
try astgen.errNoteNode(f, "declared here", .{}),
try astgen.errNoteNode(i, "also declared here", .{}),
});
}
// We found a match but must continue looking for ambiguous references to decls.
found_already = i;
}
num_namespaces_out += 1;
capturing_namespace = ns;
s = ns.parent;
},
.top => break,
};
if (found_already == null) {
const ident_name = try astgen.identifierTokenString(test_name_token);
return astgen.failTok(test_name_token, "use of undeclared identifier '{s}'", .{ident_name});
}
break :blk name_str_index;
}
// String table index 1 has a special meaning here of test decl with no name.
break :blk 1;
};
var fn_block: GenZir = .{
.force_comptime = false,
.in_defer = false,
.decl_node_index = node,
.decl_line = decl_block.decl_line,
.parent = &decl_block.base,
.astgen = astgen,
.instructions = decl_block.instructions,
.instructions_top = decl_block.instructions.items.len,
};
defer fn_block.unstack();
const prev_fn_block = astgen.fn_block;
astgen.fn_block = &fn_block;
defer astgen.fn_block = prev_fn_block;
astgen.advanceSourceCursorToNode(body_node);
const lbrace_line = astgen.source_line - decl_block.decl_line;
const lbrace_column = astgen.source_column;
const block_result = try expr(&fn_block, &fn_block.base, .none, body_node);
if (fn_block.isEmpty() or !fn_block.refIsNoReturn(block_result)) {
// Since we are adding the return instruction here, we must handle the coercion.
// We do this by using the `ret_tok` instruction.
_ = try fn_block.addUnTok(.ret_tok, .void_value, tree.lastToken(body_node));
}
const func_inst = try decl_block.addFunc(.{
.src_node = node,
.lbrace_line = lbrace_line,
.lbrace_column = lbrace_column,
.param_block = block_inst,
.ret_gz = null,
.ret_br = 0,
.body_gz = &fn_block,
.cc = .none,
.align_inst = .none,
.lib_name = 0,
.is_var_args = false,
.is_inferred_error = true,
.is_test = true,
.is_extern = false,
});
_ = try decl_block.addBreak(.break_inline, block_inst, func_inst);
try decl_block.setBlockBody(block_inst);
{
const contents_hash = std.zig.hashSrc(tree.getNodeSource(node));
const casted = @bitCast([4]u32, contents_hash);
wip_members.appendToDeclSlice(&casted);
}
{
const line_delta = decl_block.decl_line - gz.decl_line;
wip_members.appendToDecl(line_delta);
}
if (is_decltest)
wip_members.appendToDecl(2) // 2 here means that it is a decltest, look at doc comment for name
else
wip_members.appendToDecl(test_name);
wip_members.appendToDecl(block_inst);
if (is_decltest)
wip_members.appendToDecl(test_name) // the doc comment on a decltest represents it's name
else
wip_members.appendToDecl(0); // no doc comments on test decls
}
fn structDeclInner(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
container_decl: Ast.full.ContainerDecl,
layout: std.builtin.Type.ContainerLayout,
) InnerError!Zir.Inst.Ref {
const decl_inst = try gz.reserveInstructionIndex();
if (container_decl.ast.members.len == 0) {
try gz.setStruct(decl_inst, .{
.src_node = node,
.layout = layout,
.fields_len = 0,
.body_len = 0,
.decls_len = 0,
.known_non_opv = false,
.known_comptime_only = false,
});
return indexToRef(decl_inst);
}
const astgen = gz.astgen;
const gpa = astgen.gpa;
const tree = astgen.tree;
var namespace: Scope.Namespace = .{
.parent = scope,
.node = node,
.inst = decl_inst,
.declaring_gz = gz,
};
defer namespace.deinit(gpa);
// The struct_decl instruction introduces a scope in which the decls of the struct
// are in scope, so that field types, alignments, and default value expressions
// can refer to decls within the struct itself.
astgen.advanceSourceCursorToNode(node);
var block_scope: GenZir = .{
.parent = &namespace.base,
.decl_node_index = node,
.decl_line = astgen.source_line,
.astgen = astgen,
.force_comptime = true,
.in_defer = false,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer block_scope.unstack();
const decl_count = try astgen.scanDecls(&namespace, container_decl.ast.members);
const field_count = @intCast(u32, container_decl.ast.members.len - decl_count);
const bits_per_field = 4;
const max_field_size = 5;
var wip_members = try WipMembers.init(gpa, &astgen.scratch, decl_count, field_count, bits_per_field, max_field_size);
defer wip_members.deinit();
var known_non_opv = false;
var known_comptime_only = false;
for (container_decl.ast.members) |member_node| {
const member = switch (try containerMember(gz, &namespace.base, &wip_members, member_node)) {
.decl => continue,
.field => |field| field,
};
const field_name = try astgen.identAsString(member.ast.name_token);
wip_members.appendToField(field_name);
if (member.ast.type_expr == 0) {
return astgen.failTok(member.ast.name_token, "struct field missing type", .{});
}
const field_type = try typeExpr(&block_scope, &namespace.base, member.ast.type_expr);
wip_members.appendToField(@enumToInt(field_type));
const doc_comment_index = try astgen.docCommentAsString(member.firstToken());
wip_members.appendToField(doc_comment_index);
const have_align = member.ast.align_expr != 0;
const have_value = member.ast.value_expr != 0;
const is_comptime = member.comptime_token != null;
const unused = false;
if (!is_comptime) {
known_non_opv = known_non_opv or
nodeImpliesMoreThanOnePossibleValue(tree, member.ast.type_expr);
known_comptime_only = known_comptime_only or
nodeImpliesComptimeOnly(tree, member.ast.type_expr);
}
wip_members.nextField(bits_per_field, .{ have_align, have_value, is_comptime, unused });
if (have_align) {
if (layout == .Packed) {
try astgen.appendErrorNode(member.ast.align_expr, "unable to override alignment of packed struct fields", .{});
}
const align_inst = try expr(&block_scope, &namespace.base, align_rl, member.ast.align_expr);
wip_members.appendToField(@enumToInt(align_inst));
}
if (have_value) {
const rl: ResultLoc = if (field_type == .none) .none else .{ .ty = field_type };
const default_inst = try expr(&block_scope, &namespace.base, rl, member.ast.value_expr);
wip_members.appendToField(@enumToInt(default_inst));
} else if (member.comptime_token) |comptime_token| {
return astgen.failTok(comptime_token, "comptime field without default initialization value", .{});
}
}
if (!block_scope.isEmpty()) {
_ = try block_scope.addBreak(.break_inline, decl_inst, .void_value);
}
const body = block_scope.instructionsSlice();
try gz.setStruct(decl_inst, .{
.src_node = node,
.layout = layout,
.body_len = @intCast(u32, body.len),
.fields_len = field_count,
.decls_len = decl_count,
.known_non_opv = known_non_opv,
.known_comptime_only = known_comptime_only,
});
wip_members.finishBits(bits_per_field);
const decls_slice = wip_members.declsSlice();
const fields_slice = wip_members.fieldsSlice();
try astgen.extra.ensureUnusedCapacity(gpa, decls_slice.len + body.len + fields_slice.len);
astgen.extra.appendSliceAssumeCapacity(decls_slice);
astgen.extra.appendSliceAssumeCapacity(body);
astgen.extra.appendSliceAssumeCapacity(fields_slice);
block_scope.unstack();
try gz.addNamespaceCaptures(&namespace);
return indexToRef(decl_inst);
}
fn unionDeclInner(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
members: []const Ast.Node.Index,
layout: std.builtin.Type.ContainerLayout,
arg_node: Ast.Node.Index,
have_auto_enum: bool,
) InnerError!Zir.Inst.Ref {
const decl_inst = try gz.reserveInstructionIndex();
const astgen = gz.astgen;
const gpa = astgen.gpa;
var namespace: Scope.Namespace = .{
.parent = scope,
.node = node,
.inst = decl_inst,
.declaring_gz = gz,
};
defer namespace.deinit(gpa);
// The union_decl instruction introduces a scope in which the decls of the union
// are in scope, so that field types, alignments, and default value expressions
// can refer to decls within the union itself.
astgen.advanceSourceCursorToNode(node);
var block_scope: GenZir = .{
.parent = &namespace.base,
.decl_node_index = node,
.decl_line = astgen.source_line,
.astgen = astgen,
.force_comptime = true,
.in_defer = false,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer block_scope.unstack();
const decl_count = try astgen.scanDecls(&namespace, members);
const field_count = @intCast(u32, members.len - decl_count);
const arg_inst: Zir.Inst.Ref = if (arg_node != 0)
try typeExpr(&block_scope, &namespace.base, arg_node)
else
.none;
const bits_per_field = 4;
const max_field_size = 5;
var wip_members = try WipMembers.init(gpa, &astgen.scratch, decl_count, field_count, bits_per_field, max_field_size);
defer wip_members.deinit();
for (members) |member_node| {
const member = switch (try containerMember(gz, &namespace.base, &wip_members, member_node)) {
.decl => continue,
.field => |field| field,
};
if (member.comptime_token) |comptime_token| {
return astgen.failTok(comptime_token, "union fields cannot be marked comptime", .{});
}
const field_name = try astgen.identAsString(member.ast.name_token);
wip_members.appendToField(field_name);
const doc_comment_index = try astgen.docCommentAsString(member.firstToken());
wip_members.appendToField(doc_comment_index);
const have_type = member.ast.type_expr != 0;
const have_align = member.ast.align_expr != 0;
const have_value = member.ast.value_expr != 0;
const unused = false;
wip_members.nextField(bits_per_field, .{ have_type, have_align, have_value, unused });
if (have_type) {
const field_type = try typeExpr(&block_scope, &namespace.base, member.ast.type_expr);
wip_members.appendToField(@enumToInt(field_type));
} else if (arg_inst == .none and !have_auto_enum) {
return astgen.failNode(member_node, "union field missing type", .{});
}
if (have_align) {
const align_inst = try expr(&block_scope, &block_scope.base, .{ .ty = .u32_type }, member.ast.align_expr);
wip_members.appendToField(@enumToInt(align_inst));
}
if (have_value) {
if (arg_inst == .none) {
return astgen.failNodeNotes(
node,
"explicitly valued tagged union missing integer tag type",
.{},
&[_]u32{
try astgen.errNoteNode(
member.ast.value_expr,
"tag value specified here",
.{},
),
},
);
}
if (!have_auto_enum) {
return astgen.failNodeNotes(
node,
"explicitly valued tagged union requires inferred enum tag type",
.{},
&[_]u32{
try astgen.errNoteNode(
member.ast.value_expr,
"tag value specified here",
.{},
),
},
);
}
const tag_value = try expr(&block_scope, &block_scope.base, .{ .ty = arg_inst }, member.ast.value_expr);
wip_members.appendToField(@enumToInt(tag_value));
}
}
if (field_count == 0) {
return astgen.failNode(node, "union declarations must have at least one tag", .{});
}
if (!block_scope.isEmpty()) {
_ = try block_scope.addBreak(.break_inline, decl_inst, .void_value);
}
const body = block_scope.instructionsSlice();
try gz.setUnion(decl_inst, .{
.src_node = node,
.layout = layout,
.tag_type = arg_inst,
.body_len = @intCast(u32, body.len),
.fields_len = field_count,
.decls_len = decl_count,
.auto_enum_tag = have_auto_enum,
});
wip_members.finishBits(bits_per_field);
const decls_slice = wip_members.declsSlice();
const fields_slice = wip_members.fieldsSlice();
try astgen.extra.ensureUnusedCapacity(gpa, decls_slice.len + body.len + fields_slice.len);
astgen.extra.appendSliceAssumeCapacity(decls_slice);
astgen.extra.appendSliceAssumeCapacity(body);
astgen.extra.appendSliceAssumeCapacity(fields_slice);
block_scope.unstack();
try gz.addNamespaceCaptures(&namespace);
return indexToRef(decl_inst);
}
fn containerDecl(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
container_decl: Ast.full.ContainerDecl,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
const node_tags = tree.nodes.items(.tag);
const prev_fn_block = astgen.fn_block;
astgen.fn_block = null;
defer astgen.fn_block = prev_fn_block;
// We must not create any types until Sema. Here the goal is only to generate
// ZIR for all the field types, alignments, and default value expressions.
switch (token_tags[container_decl.ast.main_token]) {
.keyword_struct => {
const layout = if (container_decl.layout_token) |t| switch (token_tags[t]) {
.keyword_packed => std.builtin.Type.ContainerLayout.Packed,
.keyword_extern => std.builtin.Type.ContainerLayout.Extern,
else => unreachable,
} else std.builtin.Type.ContainerLayout.Auto;
assert(container_decl.ast.arg == 0);
const result = try structDeclInner(gz, scope, node, container_decl, layout);
return rvalue(gz, rl, result, node);
},
.keyword_union => {
const layout = if (container_decl.layout_token) |t| switch (token_tags[t]) {
.keyword_packed => std.builtin.Type.ContainerLayout.Packed,
.keyword_extern => std.builtin.Type.ContainerLayout.Extern,
else => unreachable,
} else std.builtin.Type.ContainerLayout.Auto;
const have_auto_enum = container_decl.ast.enum_token != null;
const result = try unionDeclInner(gz, scope, node, container_decl.ast.members, layout, container_decl.ast.arg, have_auto_enum);
return rvalue(gz, rl, result, node);
},
.keyword_enum => {
if (container_decl.layout_token) |t| {
return astgen.failTok(t, "enums do not support 'packed' or 'extern'; instead provide an explicit integer tag type", .{});
}
// Count total fields as well as how many have explicitly provided tag values.
const counts = blk: {
var values: usize = 0;
var total_fields: usize = 0;
var decls: usize = 0;
var nonexhaustive_node: Ast.Node.Index = 0;
for (container_decl.ast.members) |member_node| {
const member = switch (node_tags[member_node]) {
.container_field_init => tree.containerFieldInit(member_node),
.container_field_align => tree.containerFieldAlign(member_node),
.container_field => tree.containerField(member_node),
else => {
decls += 1;
continue;
},
};
if (member.comptime_token) |comptime_token| {
return astgen.failTok(comptime_token, "enum fields cannot be marked comptime", .{});
}
if (member.ast.type_expr != 0) {
return astgen.failNodeNotes(
member.ast.type_expr,
"enum fields do not have types",
.{},
&[_]u32{
try astgen.errNoteNode(
node,
"consider 'union(enum)' here to make it a tagged union",
.{},
),
},
);
}
// Alignment expressions in enums are caught by the parser.
assert(member.ast.align_expr == 0);
const name_token = member.ast.name_token;
if (mem.eql(u8, tree.tokenSlice(name_token), "_")) {
if (nonexhaustive_node != 0) {
return astgen.failNodeNotes(
member_node,
"redundant non-exhaustive enum mark",
.{},
&[_]u32{
try astgen.errNoteNode(
nonexhaustive_node,
"other mark here",
.{},
),
},
);
}
nonexhaustive_node = member_node;
if (member.ast.value_expr != 0) {
return astgen.failNode(member.ast.value_expr, "'_' is used to mark an enum as non-exhaustive and cannot be assigned a value", .{});
}
continue;
}
total_fields += 1;
if (member.ast.value_expr != 0) {
if (container_decl.ast.arg == 0) {
return astgen.failNode(member.ast.value_expr, "value assigned to enum tag with inferred tag type", .{});
}
values += 1;
}
}
break :blk .{
.total_fields = total_fields,
.values = values,
.decls = decls,
.nonexhaustive_node = nonexhaustive_node,
};
};
if (counts.total_fields == 0 and counts.nonexhaustive_node == 0) {
// One can construct an enum with no tags, and it functions the same as `noreturn`. But
// this is only useful for generic code; when explicitly using `enum {}` syntax, there
// must be at least one tag.
try astgen.appendErrorNode(node, "enum declarations must have at least one tag", .{});
}
if (counts.nonexhaustive_node != 0 and container_decl.ast.arg == 0) {
try astgen.appendErrorNodeNotes(
node,
"non-exhaustive enum missing integer tag type",
.{},
&[_]u32{
try astgen.errNoteNode(
counts.nonexhaustive_node,
"marked non-exhaustive here",
.{},
),
},
);
}
// In this case we must generate ZIR code for the tag values, similar to
// how structs are handled above.
const nonexhaustive = counts.nonexhaustive_node != 0;
const decl_inst = try gz.reserveInstructionIndex();
var namespace: Scope.Namespace = .{
.parent = scope,
.node = node,
.inst = decl_inst,
.declaring_gz = gz,
};
defer namespace.deinit(gpa);
// The enum_decl instruction introduces a scope in which the decls of the enum
// are in scope, so that tag values can refer to decls within the enum itself.
astgen.advanceSourceCursorToNode(node);
var block_scope: GenZir = .{
.parent = &namespace.base,
.decl_node_index = node,
.decl_line = astgen.source_line,
.astgen = astgen,
.force_comptime = true,
.in_defer = false,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
defer block_scope.unstack();
_ = try astgen.scanDecls(&namespace, container_decl.ast.members);
const arg_inst: Zir.Inst.Ref = if (container_decl.ast.arg != 0)
try comptimeExpr(&block_scope, &namespace.base, .{ .ty = .type_type }, container_decl.ast.arg)
else
.none;
const bits_per_field = 1;
const max_field_size = 3;
var wip_members = try WipMembers.init(gpa, &astgen.scratch, @intCast(u32, counts.decls), @intCast(u32, counts.total_fields), bits_per_field, max_field_size);
defer wip_members.deinit();
for (container_decl.ast.members) |member_node| {
if (member_node == counts.nonexhaustive_node)
continue;
const member = switch (try containerMember(gz, &namespace.base, &wip_members, member_node)) {
.decl => continue,
.field => |field| field,
};
assert(member.comptime_token == null);
assert(member.ast.type_expr == 0);
assert(member.ast.align_expr == 0);
const field_name = try astgen.identAsString(member.ast.name_token);
wip_members.appendToField(field_name);
const doc_comment_index = try astgen.docCommentAsString(member.firstToken());
wip_members.appendToField(doc_comment_index);
const have_value = member.ast.value_expr != 0;
wip_members.nextField(bits_per_field, .{have_value});
if (have_value) {
if (arg_inst == .none) {
return astgen.failNodeNotes(
node,
"explicitly valued enum missing integer tag type",
.{},
&[_]u32{
try astgen.errNoteNode(
member.ast.value_expr,
"tag value specified here",
.{},
),
},
);
}
const tag_value_inst = try expr(&block_scope, &namespace.base, .{ .ty = arg_inst }, member.ast.value_expr);
wip_members.appendToField(@enumToInt(tag_value_inst));
}
}
if (!block_scope.isEmpty()) {
_ = try block_scope.addBreak(.break_inline, decl_inst, .void_value);
}
const body = block_scope.instructionsSlice();
try gz.setEnum(decl_inst, .{
.src_node = node,
.nonexhaustive = nonexhaustive,
.tag_type = arg_inst,
.body_len = @intCast(u32, body.len),
.fields_len = @intCast(u32, counts.total_fields),
.decls_len = @intCast(u32, counts.decls),
});
wip_members.finishBits(bits_per_field);
const decls_slice = wip_members.declsSlice();
const fields_slice = wip_members.fieldsSlice();
try astgen.extra.ensureUnusedCapacity(gpa, decls_slice.len + body.len + fields_slice.len);
astgen.extra.appendSliceAssumeCapacity(decls_slice);
astgen.extra.appendSliceAssumeCapacity(body);
astgen.extra.appendSliceAssumeCapacity(fields_slice);
block_scope.unstack();
try gz.addNamespaceCaptures(&namespace);
return rvalue(gz, rl, indexToRef(decl_inst), node);
},
.keyword_opaque => {
assert(container_decl.ast.arg == 0);
const decl_inst = try gz.reserveInstructionIndex();
var namespace: Scope.Namespace = .{
.parent = scope,
.node = node,
.inst = decl_inst,
.declaring_gz = gz,
};
defer namespace.deinit(gpa);
const decl_count = try astgen.scanDecls(&namespace, container_decl.ast.members);
var wip_members = try WipMembers.init(gpa, &astgen.scratch, decl_count, 0, 0, 0);
defer wip_members.deinit();
for (container_decl.ast.members) |member_node| {
_ = try containerMember(gz, &namespace.base, &wip_members, member_node);
}
try gz.setOpaque(decl_inst, .{
.src_node = node,
.decls_len = decl_count,
});
wip_members.finishBits(0);
const decls_slice = wip_members.declsSlice();
try astgen.extra.ensureUnusedCapacity(gpa, decls_slice.len);
astgen.extra.appendSliceAssumeCapacity(decls_slice);
try gz.addNamespaceCaptures(&namespace);
return rvalue(gz, rl, indexToRef(decl_inst), node);
},
else => unreachable,
}
}
const ContainerMemberResult = union(enum) { decl, field: Ast.full.ContainerField };
fn containerMember(
gz: *GenZir,
scope: *Scope,
wip_members: *WipMembers,
member_node: Ast.Node.Index,
) InnerError!ContainerMemberResult {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
switch (node_tags[member_node]) {
.container_field_init => return ContainerMemberResult{ .field = tree.containerFieldInit(member_node) },
.container_field_align => return ContainerMemberResult{ .field = tree.containerFieldAlign(member_node) },
.container_field => return ContainerMemberResult{ .field = tree.containerField(member_node) },
.fn_decl => {
const fn_proto = node_datas[member_node].lhs;
const body = node_datas[member_node].rhs;
switch (node_tags[fn_proto]) {
.fn_proto_simple => {
var params: [1]Ast.Node.Index = undefined;
astgen.fnDecl(gz, scope, wip_members, member_node, body, tree.fnProtoSimple(&params, fn_proto)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.fn_proto_multi => {
astgen.fnDecl(gz, scope, wip_members, member_node, body, tree.fnProtoMulti(fn_proto)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.fn_proto_one => {
var params: [1]Ast.Node.Index = undefined;
astgen.fnDecl(gz, scope, wip_members, member_node, body, tree.fnProtoOne(&params, fn_proto)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.fn_proto => {
astgen.fnDecl(gz, scope, wip_members, member_node, body, tree.fnProto(fn_proto)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
else => unreachable,
}
},
.fn_proto_simple => {
var params: [1]Ast.Node.Index = undefined;
astgen.fnDecl(gz, scope, wip_members, member_node, 0, tree.fnProtoSimple(&params, member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.fn_proto_multi => {
astgen.fnDecl(gz, scope, wip_members, member_node, 0, tree.fnProtoMulti(member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.fn_proto_one => {
var params: [1]Ast.Node.Index = undefined;
astgen.fnDecl(gz, scope, wip_members, member_node, 0, tree.fnProtoOne(&params, member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.fn_proto => {
astgen.fnDecl(gz, scope, wip_members, member_node, 0, tree.fnProto(member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.global_var_decl => {
astgen.globalVarDecl(gz, scope, wip_members, member_node, tree.globalVarDecl(member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.local_var_decl => {
astgen.globalVarDecl(gz, scope, wip_members, member_node, tree.localVarDecl(member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.simple_var_decl => {
astgen.globalVarDecl(gz, scope, wip_members, member_node, tree.simpleVarDecl(member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.aligned_var_decl => {
astgen.globalVarDecl(gz, scope, wip_members, member_node, tree.alignedVarDecl(member_node)) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.@"comptime" => {
astgen.comptimeDecl(gz, scope, wip_members, member_node) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.@"usingnamespace" => {
astgen.usingnamespaceDecl(gz, scope, wip_members, member_node) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
.test_decl => {
astgen.testDecl(gz, scope, wip_members, member_node) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.AnalysisFail => {},
};
},
else => unreachable,
}
return .decl;
}
fn errorSetDecl(gz: *GenZir, rl: ResultLoc, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const payload_index = try reserveExtra(astgen, @typeInfo(Zir.Inst.ErrorSetDecl).Struct.fields.len);
var fields_len: usize = 0;
{
var idents: std.AutoHashMapUnmanaged(u32, Ast.TokenIndex) = .{};
defer idents.deinit(gpa);
const error_token = main_tokens[node];
var tok_i = error_token + 2;
while (true) : (tok_i += 1) {
switch (token_tags[tok_i]) {
.doc_comment, .comma => {},
.identifier => {
const str_index = try astgen.identAsString(tok_i);
const gop = try idents.getOrPut(gpa, str_index);
if (gop.found_existing) {
const name = try gpa.dupe(u8, mem.span(astgen.nullTerminatedString(str_index)));
defer gpa.free(name);
return astgen.failTokNotes(
tok_i,
"duplicate error set field '{s}'",
.{name},
&[_]u32{
try astgen.errNoteTok(
gop.value_ptr.*,
"previous declaration here",
.{},
),
},
);
}
gop.value_ptr.* = tok_i;
try astgen.extra.ensureUnusedCapacity(gpa, 2);
astgen.extra.appendAssumeCapacity(str_index);
const doc_comment_index = try astgen.docCommentAsString(tok_i);
astgen.extra.appendAssumeCapacity(doc_comment_index);
fields_len += 1;
},
.r_brace => break,
else => unreachable,
}
}
}
setExtra(astgen, payload_index, Zir.Inst.ErrorSetDecl{
.fields_len = @intCast(u32, fields_len),
});
const result = try gz.addPlNodePayloadIndex(.error_set_decl, node, payload_index);
return rvalue(gz, rl, result, node);
}
fn tryExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
operand_node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const fn_block = astgen.fn_block orelse {
return astgen.failNode(node, "'try' outside function scope", .{});
};
if (parent_gz.in_defer) return astgen.failNode(node, "'try' not allowed inside defer expression", .{});
var block_scope = parent_gz.makeSubBlock(scope);
block_scope.setBreakResultLoc(rl);
defer block_scope.unstack();
const operand_rl: ResultLoc = switch (block_scope.break_result_loc) {
.ref => .ref,
else => .none,
};
const err_ops = switch (operand_rl) {
// zig fmt: off
.ref => [3]Zir.Inst.Tag{ .is_non_err_ptr, .err_union_code_ptr, .err_union_payload_unsafe_ptr },
else => [3]Zir.Inst.Tag{ .is_non_err, .err_union_code, .err_union_payload_unsafe },
// zig fmt: on
};
// This could be a pointer or value depending on the `operand_rl` parameter.
// We cannot use `block_scope.break_result_loc` because that has the bare
// type, whereas this expression has the optional type. Later we make
// up for this fact by calling rvalue on the else branch.
const operand = try expr(&block_scope, &block_scope.base, operand_rl, operand_node);
const cond = try block_scope.addUnNode(err_ops[0], operand, node);
const condbr = try block_scope.addCondBr(.condbr, node);
const block = try parent_gz.makeBlockInst(.block, node);
try block_scope.setBlockBody(block);
// block_scope unstacked now, can add new instructions to parent_gz
try parent_gz.instructions.append(astgen.gpa, block);
var then_scope = parent_gz.makeSubBlock(scope);
defer then_scope.unstack();
block_scope.break_count += 1;
// This could be a pointer or value depending on `err_ops[2]`.
const unwrapped_payload = try then_scope.addUnNode(err_ops[2], operand, node);
const then_result = switch (rl) {
.ref => unwrapped_payload,
else => try rvalue(&then_scope, block_scope.break_result_loc, unwrapped_payload, node),
};
// else_scope will be stacked on then_scope as both are stacked on parent_gz
var else_scope = parent_gz.makeSubBlock(scope);
defer else_scope.unstack();
const err_code = try else_scope.addUnNode(err_ops[1], operand, node);
try genDefers(&else_scope, &fn_block.base, scope, .{ .both = err_code });
const else_result = try else_scope.addUnNode(.ret_node, err_code, node);
return finishThenElseBlock(
parent_gz,
rl,
node,
&block_scope,
&then_scope,
&else_scope,
condbr,
cond,
then_result,
else_result,
block,
block,
.@"break",
);
}
fn orelseCatchExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs: Ast.Node.Index,
cond_op: Zir.Inst.Tag,
unwrap_op: Zir.Inst.Tag,
unwrap_code_op: Zir.Inst.Tag,
rhs: Ast.Node.Index,
payload_token: ?Ast.TokenIndex,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = astgen.tree;
var block_scope = parent_gz.makeSubBlock(scope);
block_scope.setBreakResultLoc(rl);
defer block_scope.unstack();
const operand_rl: ResultLoc = switch (block_scope.break_result_loc) {
.ref => .ref,
else => .none,
};
block_scope.break_count += 1;
// This could be a pointer or value depending on the `operand_rl` parameter.
// We cannot use `block_scope.break_result_loc` because that has the bare
// type, whereas this expression has the optional type. Later we make
// up for this fact by calling rvalue on the else branch.
const operand = try reachableExpr(&block_scope, &block_scope.base, operand_rl, lhs, rhs);
const cond = try block_scope.addUnNode(cond_op, operand, node);
const condbr = try block_scope.addCondBr(.condbr, node);
const block = try parent_gz.makeBlockInst(.block, node);
try block_scope.setBlockBody(block);
// block_scope unstacked now, can add new instructions to parent_gz
try parent_gz.instructions.append(astgen.gpa, block);
var then_scope = parent_gz.makeSubBlock(scope);
defer then_scope.unstack();
// This could be a pointer or value depending on `unwrap_op`.
const unwrapped_payload = try then_scope.addUnNode(unwrap_op, operand, node);
const then_result = switch (rl) {
.ref => unwrapped_payload,
else => try rvalue(&then_scope, block_scope.break_result_loc, unwrapped_payload, node),
};
var else_scope = parent_gz.makeSubBlock(scope);
defer else_scope.unstack();
var err_val_scope: Scope.LocalVal = undefined;
const else_sub_scope = blk: {
const payload = payload_token orelse break :blk &else_scope.base;
if (mem.eql(u8, tree.tokenSlice(payload), "_")) {
return astgen.failTok(payload, "discard of error capture; omit it instead", .{});
}
const err_name = try astgen.identAsString(payload);
err_val_scope = .{
.parent = &else_scope.base,
.gen_zir = &else_scope,
.name = err_name,
.inst = try else_scope.addUnNode(unwrap_code_op, operand, node),
.token_src = payload,
.id_cat = .@"capture",
};
break :blk &err_val_scope.base;
};
const else_result = try expr(&else_scope, else_sub_scope, block_scope.break_result_loc, rhs);
if (!else_scope.endsWithNoReturn()) {
block_scope.break_count += 1;
}
try checkUsed(parent_gz, &else_scope.base, else_sub_scope);
// We hold off on the break instructions as well as copying the then/else
// instructions into place until we know whether to keep store_to_block_ptr
// instructions or not.
return finishThenElseBlock(
parent_gz,
rl,
node,
&block_scope,
&then_scope,
&else_scope,
condbr,
cond,
then_result,
else_result,
block,
block,
.@"break",
);
}
/// Supports `else_scope` stacked on `then_scope` stacked on `block_scope`. Unstacks `else_scope` then `then_scope`.
fn finishThenElseBlock(
parent_gz: *GenZir,
rl: ResultLoc,
node: Ast.Node.Index,
block_scope: *GenZir,
then_scope: *GenZir,
else_scope: *GenZir,
condbr: Zir.Inst.Index,
cond: Zir.Inst.Ref,
then_result: Zir.Inst.Ref,
else_result: Zir.Inst.Ref,
main_block: Zir.Inst.Index,
then_break_block: Zir.Inst.Index,
break_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
// We now have enough information to decide whether the result instruction should
// be communicated via result location pointer or break instructions.
const strat = rl.strategy(block_scope);
// else_scope may be stacked on then_scope, so check for no-return on then_scope manually
const tags = parent_gz.astgen.instructions.items(.tag);
const then_slice = then_scope.instructionsSliceUpto(else_scope);
const then_no_return = then_slice.len > 0 and tags[then_slice[then_slice.len - 1]].isNoReturn();
const else_no_return = else_scope.endsWithNoReturn();
switch (strat.tag) {
.break_void => {
const then_break = if (!then_no_return) try then_scope.makeBreak(break_tag, then_break_block, .void_value) else 0;
const else_break = if (!else_no_return) try else_scope.makeBreak(break_tag, main_block, .void_value) else 0;
assert(!strat.elide_store_to_block_ptr_instructions);
try setCondBrPayload(condbr, cond, then_scope, then_break, else_scope, else_break);
return indexToRef(main_block);
},
.break_operand => {
const then_break = if (!then_no_return) try then_scope.makeBreak(break_tag, then_break_block, then_result) else 0;
const else_break = if (else_result == .none)
try else_scope.makeBreak(break_tag, main_block, .void_value)
else if (!else_no_return)
try else_scope.makeBreak(break_tag, main_block, else_result)
else
0;
if (strat.elide_store_to_block_ptr_instructions) {
try setCondBrPayloadElideBlockStorePtr(condbr, cond, then_scope, then_break, else_scope, else_break, block_scope.rl_ptr);
} else {
try setCondBrPayload(condbr, cond, then_scope, then_break, else_scope, else_break);
}
const block_ref = indexToRef(main_block);
switch (rl) {
.ref => return block_ref,
else => return rvalue(parent_gz, rl, block_ref, node),
}
},
}
}
/// Return whether the identifier names of two tokens are equal. Resolves @""
/// tokens without allocating.
/// OK in theory it could do it without allocating. This implementation
/// allocates when the @"" form is used.
fn tokenIdentEql(astgen: *AstGen, token1: Ast.TokenIndex, token2: Ast.TokenIndex) !bool {
const ident_name_1 = try astgen.identifierTokenString(token1);
const ident_name_2 = try astgen.identifierTokenString(token2);
return mem.eql(u8, ident_name_1, ident_name_2);
}
fn fieldAccess(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
switch (rl) {
.ref => return addFieldAccess(.field_ptr, gz, scope, .ref, node),
else => {
const access = try addFieldAccess(.field_val, gz, scope, .none, node);
return rvalue(gz, rl, access, node);
},
}
}
fn addFieldAccess(
tag: Zir.Inst.Tag,
gz: *GenZir,
scope: *Scope,
lhs_rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const node_datas = tree.nodes.items(.data);
const object_node = node_datas[node].lhs;
const dot_token = main_tokens[node];
const field_ident = dot_token + 1;
const str_index = try astgen.identAsString(field_ident);
return gz.addPlNode(tag, node, Zir.Inst.Field{
.lhs = try expr(gz, scope, lhs_rl, object_node),
.field_name_start = str_index,
});
}
fn arrayAccess(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
switch (rl) {
.ref => return gz.addBin(
.elem_ptr,
try expr(gz, scope, .ref, node_datas[node].lhs),
try expr(gz, scope, .{ .ty = .usize_type }, node_datas[node].rhs),
),
else => return rvalue(gz, rl, try gz.addBin(
.elem_val,
try expr(gz, scope, .none, node_datas[node].lhs),
try expr(gz, scope, .{ .coerced_ty = .usize_type }, node_datas[node].rhs),
), node),
}
}
fn simpleBinOp(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
op_inst_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const result = try gz.addPlNode(op_inst_tag, node, Zir.Inst.Bin{
.lhs = try reachableExpr(gz, scope, .none, node_datas[node].lhs, node),
.rhs = try reachableExpr(gz, scope, .none, node_datas[node].rhs, node),
});
return rvalue(gz, rl, result, node);
}
fn simpleStrTok(
gz: *GenZir,
rl: ResultLoc,
ident_token: Ast.TokenIndex,
node: Ast.Node.Index,
op_inst_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const str_index = try astgen.identAsString(ident_token);
const result = try gz.addStrTok(op_inst_tag, str_index, ident_token);
return rvalue(gz, rl, result, node);
}
fn boolBinOp(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
zir_tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const lhs = try expr(gz, scope, bool_rl, node_datas[node].lhs);
const bool_br = try gz.addBoolBr(zir_tag, lhs);
var rhs_scope = gz.makeSubBlock(scope);
defer rhs_scope.unstack();
const rhs = try expr(&rhs_scope, &rhs_scope.base, bool_rl, node_datas[node].rhs);
if (!gz.refIsNoReturn(rhs)) {
_ = try rhs_scope.addBreak(.break_inline, bool_br, rhs);
}
try rhs_scope.setBoolBrBody(bool_br);
const block_ref = indexToRef(bool_br);
return rvalue(gz, rl, block_ref, node);
}
fn ifExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
if_full: Ast.full.If,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
var block_scope = parent_gz.makeSubBlock(scope);
block_scope.setBreakResultLoc(rl);
defer block_scope.unstack();
const payload_is_ref = if (if_full.payload_token) |payload_token|
token_tags[payload_token] == .asterisk
else
false;
try emitDbgNode(parent_gz, if_full.ast.cond_expr);
const cond: struct {
inst: Zir.Inst.Ref,
bool_bit: Zir.Inst.Ref,
} = c: {
if (if_full.error_token) |_| {
const cond_rl: ResultLoc = if (payload_is_ref) .ref else .none;
const err_union = try expr(&block_scope, &block_scope.base, cond_rl, if_full.ast.cond_expr);
const tag: Zir.Inst.Tag = if (payload_is_ref) .is_non_err_ptr else .is_non_err;
break :c .{
.inst = err_union,
.bool_bit = try block_scope.addUnNode(tag, err_union, node),
};
} else if (if_full.payload_token) |_| {
const cond_rl: ResultLoc = if (payload_is_ref) .ref else .none;
const optional = try expr(&block_scope, &block_scope.base, cond_rl, if_full.ast.cond_expr);
const tag: Zir.Inst.Tag = if (payload_is_ref) .is_non_null_ptr else .is_non_null;
break :c .{
.inst = optional,
.bool_bit = try block_scope.addUnNode(tag, optional, node),
};
} else {
const cond = try expr(&block_scope, &block_scope.base, bool_rl, if_full.ast.cond_expr);
break :c .{
.inst = cond,
.bool_bit = cond,
};
}
};
const condbr = try block_scope.addCondBr(.condbr, node);
const block = try parent_gz.makeBlockInst(.block, node);
try block_scope.setBlockBody(block);
// block_scope unstacked now, can add new instructions to parent_gz
try parent_gz.instructions.append(astgen.gpa, block);
var then_scope = parent_gz.makeSubBlock(scope);
defer then_scope.unstack();
var payload_val_scope: Scope.LocalVal = undefined;
try then_scope.addDbgBlockBegin();
const then_sub_scope = s: {
if (if_full.error_token != null) {
if (if_full.payload_token) |payload_token| {
const tag: Zir.Inst.Tag = if (payload_is_ref)
.err_union_payload_unsafe_ptr
else
.err_union_payload_unsafe;
const payload_inst = try then_scope.addUnNode(tag, cond.inst, node);
const token_name_index = payload_token + @boolToInt(payload_is_ref);
const ident_name = try astgen.identAsString(token_name_index);
const token_name_str = tree.tokenSlice(token_name_index);
if (mem.eql(u8, "_", token_name_str))
break :s &then_scope.base;
try astgen.detectLocalShadowing(&then_scope.base, ident_name, token_name_index, token_name_str);
payload_val_scope = .{
.parent = &then_scope.base,
.gen_zir = &then_scope,
.name = ident_name,
.inst = payload_inst,
.token_src = payload_token,
.id_cat = .@"capture",
};
try then_scope.addDbgVar(.dbg_var_val, ident_name, payload_inst);
break :s &payload_val_scope.base;
} else {
break :s &then_scope.base;
}
} else if (if_full.payload_token) |payload_token| {
const ident_token = if (payload_is_ref) payload_token + 1 else payload_token;
const tag: Zir.Inst.Tag = if (payload_is_ref)
.optional_payload_unsafe_ptr
else
.optional_payload_unsafe;
const ident_bytes = tree.tokenSlice(ident_token);
if (mem.eql(u8, "_", ident_bytes))
break :s &then_scope.base;
const payload_inst = try then_scope.addUnNode(tag, cond.inst, node);
const ident_name = try astgen.identAsString(ident_token);
try astgen.detectLocalShadowing(&then_scope.base, ident_name, ident_token, ident_bytes);
payload_val_scope = .{
.parent = &then_scope.base,
.gen_zir = &then_scope,
.name = ident_name,
.inst = payload_inst,
.token_src = ident_token,
.id_cat = .@"capture",
};
try then_scope.addDbgVar(.dbg_var_val, ident_name, payload_inst);
break :s &payload_val_scope.base;
} else {
break :s &then_scope.base;
}
};
const then_result = try expr(&then_scope, then_sub_scope, block_scope.break_result_loc, if_full.ast.then_expr);
if (!then_scope.endsWithNoReturn()) {
block_scope.break_count += 1;
}
try checkUsed(parent_gz, &then_scope.base, then_sub_scope);
try then_scope.addDbgBlockEnd();
// We hold off on the break instructions as well as copying the then/else
// instructions into place until we know whether to keep store_to_block_ptr
// instructions or not.
var else_scope = parent_gz.makeSubBlock(scope);
defer else_scope.unstack();
const else_node = if_full.ast.else_expr;
const else_info: struct {
src: Ast.Node.Index,
result: Zir.Inst.Ref,
} = if (else_node != 0) blk: {
try else_scope.addDbgBlockBegin();
const sub_scope = s: {
if (if_full.error_token) |error_token| {
const tag: Zir.Inst.Tag = if (payload_is_ref)
.err_union_code_ptr
else
.err_union_code;
const payload_inst = try else_scope.addUnNode(tag, cond.inst, node);
const ident_name = try astgen.identAsString(error_token);
const error_token_str = tree.tokenSlice(error_token);
if (mem.eql(u8, "_", error_token_str))
break :s &else_scope.base;
try astgen.detectLocalShadowing(&else_scope.base, ident_name, error_token, error_token_str);
payload_val_scope = .{
.parent = &else_scope.base,
.gen_zir = &else_scope,
.name = ident_name,
.inst = payload_inst,
.token_src = error_token,
.id_cat = .@"capture",
};
try else_scope.addDbgVar(.dbg_var_val, ident_name, payload_inst);
break :s &payload_val_scope.base;
} else {
break :s &else_scope.base;
}
};
const e = try expr(&else_scope, sub_scope, block_scope.break_result_loc, else_node);
if (!else_scope.endsWithNoReturn()) {
block_scope.break_count += 1;
}
try checkUsed(parent_gz, &else_scope.base, sub_scope);
try else_scope.addDbgBlockEnd();
break :blk .{
.src = else_node,
.result = e,
};
} else .{
.src = if_full.ast.then_expr,
.result = .none,
};
return finishThenElseBlock(
parent_gz,
rl,
node,
&block_scope,
&then_scope,
&else_scope,
condbr,
cond.bool_bit,
then_result,
else_info.result,
block,
block,
.@"break",
);
}
/// Supports `else_scope` stacked on `then_scope`. Unstacks `else_scope` then `then_scope`.
fn setCondBrPayload(
condbr: Zir.Inst.Index,
cond: Zir.Inst.Ref,
then_scope: *GenZir,
then_break: Zir.Inst.Index,
else_scope: *GenZir,
else_break: Zir.Inst.Index,
) !void {
defer then_scope.unstack();
defer else_scope.unstack();
const astgen = then_scope.astgen;
const then_body = then_scope.instructionsSliceUpto(else_scope);
const else_body = else_scope.instructionsSlice();
const then_body_len = @intCast(u32, then_body.len + @boolToInt(then_break != 0));
const else_body_len = @intCast(u32, else_body.len + @boolToInt(else_break != 0));
try astgen.extra.ensureUnusedCapacity(astgen.gpa, @typeInfo(Zir.Inst.CondBr).Struct.fields.len +
then_body_len + else_body_len);
const zir_datas = astgen.instructions.items(.data);
zir_datas[condbr].pl_node.payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.CondBr{
.condition = cond,
.then_body_len = then_body_len,
.else_body_len = else_body_len,
});
astgen.extra.appendSliceAssumeCapacity(then_body);
if (then_break != 0) astgen.extra.appendAssumeCapacity(then_break);
astgen.extra.appendSliceAssumeCapacity(else_body);
if (else_break != 0) astgen.extra.appendAssumeCapacity(else_break);
}
/// Supports `else_scope` stacked on `then_scope`. Unstacks `else_scope` then `then_scope`.
fn setCondBrPayloadElideBlockStorePtr(
condbr: Zir.Inst.Index,
cond: Zir.Inst.Ref,
then_scope: *GenZir,
then_break: Zir.Inst.Index,
else_scope: *GenZir,
else_break: Zir.Inst.Index,
block_ptr: Zir.Inst.Ref,
) !void {
defer then_scope.unstack();
defer else_scope.unstack();
const astgen = then_scope.astgen;
const then_body = then_scope.instructionsSliceUpto(else_scope);
const else_body = else_scope.instructionsSlice();
const has_then_break = then_break != 0;
const has_else_break = else_break != 0;
const then_body_len = @intCast(u32, then_body.len + @boolToInt(has_then_break));
const else_body_len = @intCast(u32, else_body.len + @boolToInt(has_else_break));
try astgen.extra.ensureUnusedCapacity(astgen.gpa, @typeInfo(Zir.Inst.CondBr).Struct.fields.len +
then_body_len + else_body_len);
const zir_tags = astgen.instructions.items(.tag);
const zir_datas = astgen.instructions.items(.data);
const condbr_pl = astgen.addExtraAssumeCapacity(Zir.Inst.CondBr{
.condition = cond,
.then_body_len = then_body_len,
.else_body_len = else_body_len,
});
zir_datas[condbr].pl_node.payload_index = condbr_pl;
const then_body_len_index = condbr_pl + 1;
const else_body_len_index = condbr_pl + 2;
// The break instructions need to have their operands coerced if the
// switch's result location is a `ty`. In this case we overwrite the
// `store_to_block_ptr` instruction with an `as` instruction and repurpose
// it as the break operand.
for (then_body) |src_inst| {
if (zir_tags[src_inst] == .store_to_block_ptr and
zir_datas[src_inst].bin.lhs == block_ptr)
{
if (then_scope.rl_ty_inst != .none and has_then_break) {
zir_tags[src_inst] = .as;
zir_datas[src_inst].bin = .{
.lhs = then_scope.rl_ty_inst,
.rhs = zir_datas[then_break].@"break".operand,
};
zir_datas[then_break].@"break".operand = indexToRef(src_inst);
} else {
astgen.extra.items[then_body_len_index] -= 1;
continue;
}
}
astgen.extra.appendAssumeCapacity(src_inst);
}
if (has_then_break) astgen.extra.appendAssumeCapacity(then_break);
for (else_body) |src_inst| {
if (zir_tags[src_inst] == .store_to_block_ptr and
zir_datas[src_inst].bin.lhs == block_ptr)
{
if (else_scope.rl_ty_inst != .none and has_else_break) {
zir_tags[src_inst] = .as;
zir_datas[src_inst].bin = .{
.lhs = else_scope.rl_ty_inst,
.rhs = zir_datas[else_break].@"break".operand,
};
zir_datas[else_break].@"break".operand = indexToRef(src_inst);
} else {
astgen.extra.items[else_body_len_index] -= 1;
continue;
}
}
astgen.extra.appendAssumeCapacity(src_inst);
}
if (has_else_break) astgen.extra.appendAssumeCapacity(else_break);
}
fn whileExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
while_full: Ast.full.While,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
if (while_full.label_token) |label_token| {
try astgen.checkLabelRedefinition(scope, label_token);
}
const is_inline = parent_gz.force_comptime or while_full.inline_token != null;
const loop_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .loop;
const loop_block = try parent_gz.makeBlockInst(loop_tag, node);
try parent_gz.instructions.append(astgen.gpa, loop_block);
var loop_scope = parent_gz.makeSubBlock(scope);
loop_scope.is_inline = is_inline;
loop_scope.setBreakResultLoc(rl);
defer loop_scope.unstack();
defer loop_scope.labeled_breaks.deinit(astgen.gpa);
var continue_scope = parent_gz.makeSubBlock(&loop_scope.base);
defer continue_scope.unstack();
const payload_is_ref = if (while_full.payload_token) |payload_token|
token_tags[payload_token] == .asterisk
else
false;
try emitDbgNode(parent_gz, while_full.ast.cond_expr);
const cond: struct {
inst: Zir.Inst.Ref,
bool_bit: Zir.Inst.Ref,
} = c: {
if (while_full.error_token) |_| {
const cond_rl: ResultLoc = if (payload_is_ref) .ref else .none;
const err_union = try expr(&continue_scope, &continue_scope.base, cond_rl, while_full.ast.cond_expr);
const tag: Zir.Inst.Tag = if (payload_is_ref) .is_non_err_ptr else .is_non_err;
break :c .{
.inst = err_union,
.bool_bit = try continue_scope.addUnNode(tag, err_union, node),
};
} else if (while_full.payload_token) |_| {
const cond_rl: ResultLoc = if (payload_is_ref) .ref else .none;
const optional = try expr(&continue_scope, &continue_scope.base, cond_rl, while_full.ast.cond_expr);
const tag: Zir.Inst.Tag = if (payload_is_ref) .is_non_null_ptr else .is_non_null;
break :c .{
.inst = optional,
.bool_bit = try continue_scope.addUnNode(tag, optional, node),
};
} else {
const cond = try expr(&continue_scope, &continue_scope.base, bool_rl, while_full.ast.cond_expr);
break :c .{
.inst = cond,
.bool_bit = cond,
};
}
};
const condbr_tag: Zir.Inst.Tag = if (is_inline) .condbr_inline else .condbr;
const condbr = try continue_scope.addCondBr(condbr_tag, node);
const block_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .block;
const cond_block = try loop_scope.makeBlockInst(block_tag, node);
try continue_scope.setBlockBody(cond_block);
// continue_scope unstacked now, can add new instructions to loop_scope
try loop_scope.instructions.append(astgen.gpa, cond_block);
// make scope now but don't stack on parent_gz until loop_scope
// gets unstacked after cont_expr is emitted and added below
var then_scope = parent_gz.makeSubBlock(&continue_scope.base);
then_scope.markAsLoopBody(loop_scope);
then_scope.instructions_top = GenZir.unstacked_top;
defer then_scope.unstack();
var dbg_var_name: ?u32 = null;
var dbg_var_inst: Zir.Inst.Ref = undefined;
var payload_inst: Zir.Inst.Index = 0;
var payload_val_scope: Scope.LocalVal = undefined;
const then_sub_scope = s: {
if (while_full.error_token != null) {
if (while_full.payload_token) |payload_token| {
const tag: Zir.Inst.Tag = if (payload_is_ref)
.err_union_payload_unsafe_ptr
else
.err_union_payload_unsafe;
// will add this instruction to then_scope.instructions below
payload_inst = try then_scope.makeUnNode(tag, cond.inst, node);
const ident_token = if (payload_is_ref) payload_token + 1 else payload_token;
const ident_bytes = tree.tokenSlice(ident_token);
if (mem.eql(u8, "_", ident_bytes))
break :s &then_scope.base;
const payload_name_loc = payload_token + @boolToInt(payload_is_ref);
const ident_name = try astgen.identAsString(payload_name_loc);
try astgen.detectLocalShadowing(&then_scope.base, ident_name, payload_name_loc, ident_bytes);
payload_val_scope = .{
.parent = &then_scope.base,
.gen_zir = &then_scope,
.name = ident_name,
.inst = indexToRef(payload_inst),
.token_src = payload_token,
.id_cat = .@"capture",
};
dbg_var_name = ident_name;
dbg_var_inst = indexToRef(payload_inst);
break :s &payload_val_scope.base;
} else {
break :s &then_scope.base;
}
} else if (while_full.payload_token) |payload_token| {
const ident_token = if (payload_is_ref) payload_token + 1 else payload_token;
const tag: Zir.Inst.Tag = if (payload_is_ref)
.optional_payload_unsafe_ptr
else
.optional_payload_unsafe;
// will add this instruction to then_scope.instructions below
payload_inst = try then_scope.makeUnNode(tag, cond.inst, node);
const ident_name = try astgen.identAsString(ident_token);
const ident_bytes = tree.tokenSlice(ident_token);
if (mem.eql(u8, "_", ident_bytes))
break :s &then_scope.base;
try astgen.detectLocalShadowing(&then_scope.base, ident_name, ident_token, ident_bytes);
payload_val_scope = .{
.parent = &then_scope.base,
.gen_zir = &then_scope,
.name = ident_name,
.inst = indexToRef(payload_inst),
.token_src = ident_token,
.id_cat = .@"capture",
};
dbg_var_name = ident_name;
dbg_var_inst = indexToRef(payload_inst);
break :s &payload_val_scope.base;
} else {
break :s &then_scope.base;
}
};
// This code could be improved to avoid emitting the continue expr when there
// are no jumps to it. This happens when the last statement of a while body is noreturn
// and there are no `continue` statements.
// Tracking issue: https://github.com/ziglang/zig/issues/9185
try then_scope.addDbgBlockBegin();
if (dbg_var_name) |some| {
try then_scope.addDbgVar(.dbg_var_val, some, dbg_var_inst);
}
if (while_full.ast.cont_expr != 0) {
_ = try expr(&loop_scope, then_sub_scope, .{ .ty = .void_type }, while_full.ast.cont_expr);
}
try then_scope.addDbgBlockEnd();
const repeat_tag: Zir.Inst.Tag = if (is_inline) .repeat_inline else .repeat;
_ = try loop_scope.addNode(repeat_tag, node);
try loop_scope.setBlockBody(loop_block);
loop_scope.break_block = loop_block;
loop_scope.continue_block = cond_block;
if (while_full.label_token) |label_token| {
loop_scope.label = @as(?GenZir.Label, GenZir.Label{
.token = label_token,
.block_inst = loop_block,
});
}
// done adding instructions to loop_scope, can now stack then_scope
then_scope.instructions_top = then_scope.instructions.items.len;
if (payload_inst != 0) try then_scope.instructions.append(astgen.gpa, payload_inst);
try then_scope.addDbgBlockBegin();
if (dbg_var_name) |some| {
try then_scope.addDbgVar(.dbg_var_val, some, dbg_var_inst);
}
const then_result = try expr(&then_scope, then_sub_scope, loop_scope.break_result_loc, while_full.ast.then_expr);
try checkUsed(parent_gz, &then_scope.base, then_sub_scope);
try then_scope.addDbgBlockEnd();
var else_scope = parent_gz.makeSubBlock(&continue_scope.base);
defer else_scope.unstack();
const else_node = while_full.ast.else_expr;
const else_info: struct {
src: Ast.Node.Index,
result: Zir.Inst.Ref,
} = if (else_node != 0) blk: {
try else_scope.addDbgBlockBegin();
const sub_scope = s: {
if (while_full.error_token) |error_token| {
const tag: Zir.Inst.Tag = if (payload_is_ref)
.err_union_code_ptr
else
.err_union_code;
const else_payload_inst = try else_scope.addUnNode(tag, cond.inst, node);
const ident_name = try astgen.identAsString(error_token);
const ident_bytes = tree.tokenSlice(error_token);
if (mem.eql(u8, ident_bytes, "_"))
break :s &else_scope.base;
try astgen.detectLocalShadowing(&else_scope.base, ident_name, error_token, ident_bytes);
payload_val_scope = .{
.parent = &else_scope.base,
.gen_zir = &else_scope,
.name = ident_name,
.inst = else_payload_inst,
.token_src = error_token,
.id_cat = .@"capture",
};
try else_scope.addDbgVar(.dbg_var_val, ident_name, else_payload_inst);
break :s &payload_val_scope.base;
} else {
break :s &else_scope.base;
}
};
const e = try expr(&else_scope, sub_scope, loop_scope.break_result_loc, else_node);
if (!else_scope.endsWithNoReturn()) {
loop_scope.break_count += 1;
}
try checkUsed(parent_gz, &else_scope.base, sub_scope);
try else_scope.addDbgBlockEnd();
break :blk .{
.src = else_node,
.result = e,
};
} else .{
.src = while_full.ast.then_expr,
.result = .none,
};
if (loop_scope.label) |some| {
if (!some.used) {
try astgen.appendErrorTok(some.token, "unused while loop label", .{});
}
}
const break_tag: Zir.Inst.Tag = if (is_inline) .break_inline else .@"break";
return finishThenElseBlock(
parent_gz,
rl,
node,
&loop_scope,
&then_scope,
&else_scope,
condbr,
cond.bool_bit,
then_result,
else_info.result,
loop_block,
cond_block,
break_tag,
);
}
fn forExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
for_full: Ast.full.While,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
if (for_full.label_token) |label_token| {
try astgen.checkLabelRedefinition(scope, label_token);
}
// Set up variables and constants.
const is_inline = parent_gz.force_comptime or for_full.inline_token != null;
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
const payload_is_ref = if (for_full.payload_token) |payload_token|
token_tags[payload_token] == .asterisk
else
false;
try emitDbgNode(parent_gz, for_full.ast.cond_expr);
const cond_rl: ResultLoc = if (payload_is_ref) .ref else .none;
const array_ptr = try expr(parent_gz, scope, cond_rl, for_full.ast.cond_expr);
const len = try parent_gz.addUnNode(.indexable_ptr_len, array_ptr, for_full.ast.cond_expr);
const index_ptr = blk: {
const alloc_tag: Zir.Inst.Tag = if (is_inline) .alloc_comptime_mut else .alloc;
const index_ptr = try parent_gz.addUnNode(alloc_tag, .usize_type, node);
// initialize to zero
_ = try parent_gz.addBin(.store, index_ptr, .zero_usize);
break :blk index_ptr;
};
const loop_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .loop;
const loop_block = try parent_gz.makeBlockInst(loop_tag, node);
try parent_gz.instructions.append(astgen.gpa, loop_block);
var loop_scope = parent_gz.makeSubBlock(scope);
loop_scope.is_inline = is_inline;
loop_scope.setBreakResultLoc(rl);
defer loop_scope.unstack();
defer loop_scope.labeled_breaks.deinit(astgen.gpa);
var cond_scope = parent_gz.makeSubBlock(&loop_scope.base);
defer cond_scope.unstack();
// check condition i < array_expr.len
const index = try cond_scope.addUnNode(.load, index_ptr, for_full.ast.cond_expr);
const cond = try cond_scope.addPlNode(.cmp_lt, for_full.ast.cond_expr, Zir.Inst.Bin{
.lhs = index,
.rhs = len,
});
const condbr_tag: Zir.Inst.Tag = if (is_inline) .condbr_inline else .condbr;
const condbr = try cond_scope.addCondBr(condbr_tag, node);
const block_tag: Zir.Inst.Tag = if (is_inline) .block_inline else .block;
const cond_block = try loop_scope.makeBlockInst(block_tag, node);
try cond_scope.setBlockBody(cond_block);
// cond_block unstacked now, can add new instructions to loop_scope
try loop_scope.instructions.append(astgen.gpa, cond_block);
// Increment the index variable.
const index_2 = try loop_scope.addUnNode(.load, index_ptr, for_full.ast.cond_expr);
const index_plus_one = try loop_scope.addPlNode(.add, node, Zir.Inst.Bin{
.lhs = index_2,
.rhs = .one_usize,
});
_ = try loop_scope.addBin(.store, index_ptr, index_plus_one);
const repeat_tag: Zir.Inst.Tag = if (is_inline) .repeat_inline else .repeat;
_ = try loop_scope.addNode(repeat_tag, node);
try loop_scope.setBlockBody(loop_block);
loop_scope.break_block = loop_block;
loop_scope.continue_block = cond_block;
if (for_full.label_token) |label_token| {
loop_scope.label = @as(?GenZir.Label, GenZir.Label{
.token = label_token,
.block_inst = loop_block,
});
}
var then_scope = parent_gz.makeSubBlock(&cond_scope.base);
then_scope.markAsLoopBody(loop_scope);
defer then_scope.unstack();
try then_scope.addDbgBlockBegin();
var payload_val_scope: Scope.LocalVal = undefined;
var index_scope: Scope.LocalPtr = undefined;
const then_sub_scope = blk: {
const payload_token = for_full.payload_token.?;
const ident = if (token_tags[payload_token] == .asterisk)
payload_token + 1
else
payload_token;
const is_ptr = ident != payload_token;
const value_name = tree.tokenSlice(ident);
var payload_sub_scope: *Scope = undefined;
if (!mem.eql(u8, value_name, "_")) {
const name_str_index = try astgen.identAsString(ident);
const tag: Zir.Inst.Tag = if (is_ptr) .elem_ptr else .elem_val;
const payload_inst = try then_scope.addBin(tag, array_ptr, index);
try astgen.detectLocalShadowing(&then_scope.base, name_str_index, ident, value_name);
payload_val_scope = .{
.parent = &then_scope.base,
.gen_zir = &then_scope,
.name = name_str_index,
.inst = payload_inst,
.token_src = ident,
.id_cat = .@"capture",
};
try then_scope.addDbgVar(.dbg_var_val, name_str_index, payload_inst);
payload_sub_scope = &payload_val_scope.base;
} else if (is_ptr) {
return astgen.failTok(payload_token, "pointer modifier invalid on discard", .{});
} else {
payload_sub_scope = &then_scope.base;
}
const index_token = if (token_tags[ident + 1] == .comma)
ident + 2
else
break :blk payload_sub_scope;
const token_bytes = tree.tokenSlice(index_token);
if (mem.eql(u8, token_bytes, "_")) {
return astgen.failTok(index_token, "discard of index capture; omit it instead", .{});
}
const index_name = try astgen.identAsString(index_token);
try astgen.detectLocalShadowing(payload_sub_scope, index_name, index_token, token_bytes);
index_scope = .{
.parent = payload_sub_scope,
.gen_zir = &then_scope,
.name = index_name,
.ptr = index_ptr,
.token_src = index_token,
.maybe_comptime = is_inline,
.id_cat = .@"loop index capture",
};
try then_scope.addDbgVar(.dbg_var_val, index_name, index_ptr);
break :blk &index_scope.base;
};
const then_result = try expr(&then_scope, then_sub_scope, loop_scope.break_result_loc, for_full.ast.then_expr);
try checkUsed(parent_gz, &then_scope.base, then_sub_scope);
try then_scope.addDbgBlockEnd();
var else_scope = parent_gz.makeSubBlock(&cond_scope.base);
defer else_scope.unstack();
const else_node = for_full.ast.else_expr;
const else_info: struct {
src: Ast.Node.Index,
result: Zir.Inst.Ref,
} = if (else_node != 0) blk: {
const sub_scope = &else_scope.base;
const else_result = try expr(&else_scope, sub_scope, loop_scope.break_result_loc, else_node);
if (!else_scope.endsWithNoReturn()) {
loop_scope.break_count += 1;
}
break :blk .{
.src = else_node,
.result = else_result,
};
} else .{
.src = for_full.ast.then_expr,
.result = .none,
};
if (loop_scope.label) |some| {
if (!some.used) {
try astgen.appendErrorTok(some.token, "unused for loop label", .{});
}
}
const break_tag: Zir.Inst.Tag = if (is_inline) .break_inline else .@"break";
return finishThenElseBlock(
parent_gz,
rl,
node,
&loop_scope,
&then_scope,
&else_scope,
condbr,
cond,
then_result,
else_info.result,
loop_block,
cond_block,
break_tag,
);
}
fn switchExpr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
switch_node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const gpa = astgen.gpa;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const operand_node = node_datas[switch_node].lhs;
const extra = tree.extraData(node_datas[switch_node].rhs, Ast.Node.SubRange);
const case_nodes = tree.extra_data[extra.start..extra.end];
// We perform two passes over the AST. This first pass is to collect information
// for the following variables, make note of the special prong AST node index,
// and bail out with a compile error if there are multiple special prongs present.
var any_payload_is_ref = false;
var scalar_cases_len: u32 = 0;
var multi_cases_len: u32 = 0;
var special_prong: Zir.SpecialProng = .none;
var special_node: Ast.Node.Index = 0;
var else_src: ?Ast.TokenIndex = null;
var underscore_src: ?Ast.TokenIndex = null;
for (case_nodes) |case_node| {
const case = switch (node_tags[case_node]) {
.switch_case_one => tree.switchCaseOne(case_node),
.switch_case => tree.switchCase(case_node),
else => unreachable,
};
if (case.payload_token) |payload_token| {
if (token_tags[payload_token] == .asterisk) {
any_payload_is_ref = true;
}
}
// Check for else/`_` prong.
if (case.ast.values.len == 0) {
const case_src = case.ast.arrow_token - 1;
if (else_src) |src| {
return astgen.failTokNotes(
case_src,
"multiple else prongs in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
src,
"previous else prong here",
.{},
),
},
);
} else if (underscore_src) |some_underscore| {
return astgen.failNodeNotes(
switch_node,
"else and '_' prong in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
case_src,
"else prong here",
.{},
),
try astgen.errNoteTok(
some_underscore,
"'_' prong here",
.{},
),
},
);
}
special_node = case_node;
special_prong = .@"else";
else_src = case_src;
continue;
} else if (case.ast.values.len == 1 and
node_tags[case.ast.values[0]] == .identifier and
mem.eql(u8, tree.tokenSlice(main_tokens[case.ast.values[0]]), "_"))
{
const case_src = case.ast.arrow_token - 1;
if (underscore_src) |src| {
return astgen.failTokNotes(
case_src,
"multiple '_' prongs in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
src,
"previous '_' prong here",
.{},
),
},
);
} else if (else_src) |some_else| {
return astgen.failNodeNotes(
switch_node,
"else and '_' prong in switch expression",
.{},
&[_]u32{
try astgen.errNoteTok(
some_else,
"else prong here",
.{},
),
try astgen.errNoteTok(
case_src,
"'_' prong here",
.{},
),
},
);
}
special_node = case_node;
special_prong = .under;
underscore_src = case_src;
continue;
}
if (case.ast.values.len == 1 and node_tags[case.ast.values[0]] != .switch_range) {
scalar_cases_len += 1;
} else {
multi_cases_len += 1;
}
}
const operand_rl: ResultLoc = if (any_payload_is_ref) .ref else .none;
const raw_operand = try expr(parent_gz, scope, operand_rl, operand_node);
const cond_tag: Zir.Inst.Tag = if (any_payload_is_ref) .switch_cond_ref else .switch_cond;
const cond = try parent_gz.addUnNode(cond_tag, raw_operand, operand_node);
// We need the type of the operand to use as the result location for all the prong items.
const cond_ty_inst = try parent_gz.addUnNode(.typeof, cond, operand_node);
const item_rl: ResultLoc = .{ .ty = cond_ty_inst };
// This contains the data that goes into the `extra` array for the SwitchBlock/SwitchBlockMulti,
// except the first cases_nodes.len slots are a table that indexes payloads later in the array, with
// the special case index coming first, then scalar_case_len indexes, then multi_cases_len indexes
const payloads = &astgen.scratch;
const scratch_top = astgen.scratch.items.len;
const case_table_start = scratch_top;
const scalar_case_table = case_table_start + @boolToInt(special_prong != .none);
const multi_case_table = scalar_case_table + scalar_cases_len;
const case_table_end = multi_case_table + multi_cases_len;
try astgen.scratch.resize(gpa, case_table_end);
defer astgen.scratch.items.len = scratch_top;
var block_scope = parent_gz.makeSubBlock(scope);
// block_scope not used for collecting instructions
block_scope.instructions_top = GenZir.unstacked_top;
block_scope.setBreakResultLoc(rl);
// This gets added to the parent block later, after the item expressions.
const switch_block = try parent_gz.makeBlockInst(.switch_block, switch_node);
// We re-use this same scope for all cases, including the special prong, if any.
var case_scope = parent_gz.makeSubBlock(&block_scope.base);
case_scope.instructions_top = GenZir.unstacked_top;
// In this pass we generate all the item and prong expressions.
var multi_case_index: u32 = 0;
var scalar_case_index: u32 = 0;
for (case_nodes) |case_node| {
const case = switch (node_tags[case_node]) {
.switch_case_one => tree.switchCaseOne(case_node),
.switch_case => tree.switchCase(case_node),
else => unreachable,
};
const is_multi_case = case.ast.values.len > 1 or
(case.ast.values.len == 1 and node_tags[case.ast.values[0]] == .switch_range);
var dbg_var_name: ?u32 = null;
var dbg_var_inst: Zir.Inst.Ref = undefined;
var capture_inst: Zir.Inst.Index = 0;
var capture_val_scope: Scope.LocalVal = undefined;
const sub_scope = blk: {
const payload_token = case.payload_token orelse break :blk &case_scope.base;
const ident = if (token_tags[payload_token] == .asterisk)
payload_token + 1
else
payload_token;
const is_ptr = ident != payload_token;
if (mem.eql(u8, tree.tokenSlice(ident), "_")) {
if (is_ptr) {
return astgen.failTok(payload_token, "pointer modifier invalid on discard", .{});
}
break :blk &case_scope.base;
}
if (case_node == special_node) {
const capture_tag: Zir.Inst.Tag = if (is_ptr)
.switch_capture_ref
else
.switch_capture;
capture_inst = @intCast(Zir.Inst.Index, astgen.instructions.len);
try astgen.instructions.append(gpa, .{
.tag = capture_tag,
.data = .{
.switch_capture = .{
.switch_inst = switch_block,
// Max int communicates that this is the else/underscore prong.
.prong_index = std.math.maxInt(u32),
},
},
});
} else {
const is_multi_case_bits: u2 = @boolToInt(is_multi_case);
const is_ptr_bits: u2 = @boolToInt(is_ptr);
const capture_tag: Zir.Inst.Tag = switch ((is_multi_case_bits << 1) | is_ptr_bits) {
0b00 => .switch_capture,
0b01 => .switch_capture_ref,
0b10 => .switch_capture_multi,
0b11 => .switch_capture_multi_ref,
};
const capture_index = if (is_multi_case) multi_case_index else scalar_case_index;
capture_inst = @intCast(Zir.Inst.Index, astgen.instructions.len);
try astgen.instructions.append(gpa, .{
.tag = capture_tag,
.data = .{ .switch_capture = .{
.switch_inst = switch_block,
.prong_index = capture_index,
} },
});
}
const capture_name = try astgen.identAsString(ident);
capture_val_scope = .{
.parent = &case_scope.base,
.gen_zir = &case_scope,
.name = capture_name,
.inst = indexToRef(capture_inst),
.token_src = payload_token,
.id_cat = .@"capture",
};
dbg_var_name = capture_name;
dbg_var_inst = indexToRef(capture_inst);
break :blk &capture_val_scope.base;
};
const header_index = @intCast(u32, payloads.items.len);
const body_len_index = if (is_multi_case) blk: {
payloads.items[multi_case_table + multi_case_index] = header_index;
multi_case_index += 1;
try payloads.resize(gpa, header_index + 3); // items_len, ranges_len, body_len
// items
var items_len: u32 = 0;
for (case.ast.values) |item_node| {
if (node_tags[item_node] == .switch_range) continue;
items_len += 1;
const item_inst = try comptimeExpr(parent_gz, scope, item_rl, item_node);
try payloads.append(gpa, @enumToInt(item_inst));
}
// ranges
var ranges_len: u32 = 0;
for (case.ast.values) |range| {
if (node_tags[range] != .switch_range) continue;
ranges_len += 1;
const first = try comptimeExpr(parent_gz, scope, item_rl, node_datas[range].lhs);
const last = try comptimeExpr(parent_gz, scope, item_rl, node_datas[range].rhs);
try payloads.appendSlice(gpa, &[_]u32{
@enumToInt(first), @enumToInt(last),
});
}
payloads.items[header_index] = items_len;
payloads.items[header_index + 1] = ranges_len;
break :blk header_index + 2;
} else if (case_node == special_node) blk: {
payloads.items[case_table_start] = header_index;
try payloads.resize(gpa, header_index + 1); // body_len
break :blk header_index;
} else blk: {
payloads.items[scalar_case_table + scalar_case_index] = header_index;
scalar_case_index += 1;
try payloads.resize(gpa, header_index + 2); // item, body_len
const item_node = case.ast.values[0];
const item_inst = try comptimeExpr(parent_gz, scope, item_rl, item_node);
payloads.items[header_index] = @enumToInt(item_inst);
break :blk header_index + 1;
};
{
// temporarily stack case_scope on parent_gz
case_scope.instructions_top = parent_gz.instructions.items.len;
defer case_scope.unstack();
if (capture_inst != 0) try case_scope.instructions.append(gpa, capture_inst);
try case_scope.addDbgBlockBegin();
if (dbg_var_name) |some| {
try case_scope.addDbgVar(.dbg_var_val, some, dbg_var_inst);
}
const case_result = try expr(&case_scope, sub_scope, block_scope.break_result_loc, case.ast.target_expr);
try checkUsed(parent_gz, &case_scope.base, sub_scope);
try case_scope.addDbgBlockEnd();
if (!parent_gz.refIsNoReturn(case_result)) {
block_scope.break_count += 1;
_ = try case_scope.addBreak(.@"break", switch_block, case_result);
}
const case_slice = case_scope.instructionsSlice();
payloads.items[body_len_index] = @intCast(u32, case_slice.len);
try payloads.appendSlice(gpa, case_slice);
}
}
// Now that the item expressions are generated we can add this.
try parent_gz.instructions.append(gpa, switch_block);
try astgen.extra.ensureUnusedCapacity(gpa, @typeInfo(Zir.Inst.SwitchBlock).Struct.fields.len +
@boolToInt(multi_cases_len != 0) +
payloads.items.len - case_table_end);
const payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.SwitchBlock{
.operand = cond,
.bits = Zir.Inst.SwitchBlock.Bits{
.is_ref = any_payload_is_ref,
.has_multi_cases = multi_cases_len != 0,
.has_else = special_prong == .@"else",
.has_under = special_prong == .under,
.scalar_cases_len = @intCast(Zir.Inst.SwitchBlock.Bits.ScalarCasesLen, scalar_cases_len),
},
});
if (multi_cases_len != 0) {
astgen.extra.appendAssumeCapacity(multi_cases_len);
}
const zir_datas = astgen.instructions.items(.data);
const zir_tags = astgen.instructions.items(.tag);
zir_datas[switch_block].pl_node.payload_index = payload_index;
const strat = rl.strategy(&block_scope);
for (payloads.items[case_table_start..case_table_end]) |start_index, i| {
var body_len_index = start_index;
var end_index = start_index;
const table_index = case_table_start + i;
if (table_index < scalar_case_table) {
end_index += 1;
} else if (table_index < multi_case_table) {
body_len_index += 1;
end_index += 2;
} else {
body_len_index += 2;
const items_len = payloads.items[start_index];
const ranges_len = payloads.items[start_index + 1];
end_index += 3 + items_len + 2 * ranges_len;
}
const body_len = payloads.items[body_len_index];
end_index += body_len;
switch (strat.tag) {
.break_operand => blk: {
// Switch expressions return `true` for `nodeMayNeedMemoryLocation` thus
// `elide_store_to_block_ptr_instructions` will either be true,
// or all prongs are noreturn.
if (!strat.elide_store_to_block_ptr_instructions)
break :blk;
// There will necessarily be a store_to_block_ptr for
// all prongs, except for prongs that ended with a noreturn instruction.
// Elide all the `store_to_block_ptr` instructions.
// The break instructions need to have their operands coerced if the
// switch's result location is a `ty`. In this case we overwrite the
// `store_to_block_ptr` instruction with an `as` instruction and repurpose
// it as the break operand.
if (body_len < 2)
break :blk;
const store_inst = payloads.items[end_index - 2];
if (zir_tags[store_inst] != .store_to_block_ptr or
zir_datas[store_inst].bin.lhs != block_scope.rl_ptr)
break :blk;
const break_inst = payloads.items[end_index - 1];
if (block_scope.rl_ty_inst != .none) {
zir_tags[store_inst] = .as;
zir_datas[store_inst].bin = .{
.lhs = block_scope.rl_ty_inst,
.rhs = zir_datas[break_inst].@"break".operand,
};
zir_datas[break_inst].@"break".operand = indexToRef(store_inst);
} else {
payloads.items[body_len_index] -= 1;
astgen.extra.appendSliceAssumeCapacity(payloads.items[start_index .. end_index - 2]);
astgen.extra.appendAssumeCapacity(break_inst);
continue;
}
},
.break_void => {
assert(!strat.elide_store_to_block_ptr_instructions);
const last_inst = payloads.items[end_index - 1];
if (zir_tags[last_inst] == .@"break" and
zir_datas[last_inst].@"break".block_inst == switch_block)
{
zir_datas[last_inst].@"break".operand = .void_value;
}
},
}
astgen.extra.appendSliceAssumeCapacity(payloads.items[start_index..end_index]);
}
const block_ref = indexToRef(switch_block);
if (strat.tag == .break_operand and strat.elide_store_to_block_ptr_instructions and rl != .ref)
return rvalue(parent_gz, rl, block_ref, switch_node);
return block_ref;
}
fn ret(gz: *GenZir, scope: *Scope, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
if (astgen.fn_block == null) {
return astgen.failNode(node, "'return' outside function scope", .{});
}
if (gz.in_defer) return astgen.failNode(node, "cannot return from defer expression", .{});
const defer_outer = &astgen.fn_block.?.base;
const operand_node = node_datas[node].lhs;
if (operand_node == 0) {
// Returning a void value; skip error defers.
try genDefers(gz, defer_outer, scope, .normal_only);
_ = try gz.addUnNode(.ret_node, .void_value, node);
return Zir.Inst.Ref.unreachable_value;
}
if (node_tags[operand_node] == .error_value) {
// Hot path for `return error.Foo`. This bypasses result location logic as well as logic
// for detecting whether to add something to the function's inferred error set.
const ident_token = node_datas[operand_node].rhs;
const err_name_str_index = try astgen.identAsString(ident_token);
const defer_counts = countDefers(astgen, defer_outer, scope);
if (!defer_counts.need_err_code) {
try genDefers(gz, defer_outer, scope, .both_sans_err);
_ = try gz.addStrTok(.ret_err_value, err_name_str_index, ident_token);
return Zir.Inst.Ref.unreachable_value;
}
const err_code = try gz.addStrTok(.ret_err_value_code, err_name_str_index, ident_token);
try genDefers(gz, defer_outer, scope, .{ .both = err_code });
_ = try gz.addUnNode(.ret_node, err_code, node);
return Zir.Inst.Ref.unreachable_value;
}
const rl: ResultLoc = if (nodeMayNeedMemoryLocation(tree, operand_node, true)) .{
.ptr = try gz.addNodeExtended(.ret_ptr, node),
} else .{
.ty = try gz.addNodeExtended(.ret_type, node),
};
const prev_anon_name_strategy = gz.anon_name_strategy;
gz.anon_name_strategy = .func;
const operand = try reachableExpr(gz, scope, rl, operand_node, node);
gz.anon_name_strategy = prev_anon_name_strategy;
switch (nodeMayEvalToError(tree, operand_node)) {
.never => {
// Returning a value that cannot be an error; skip error defers.
try genDefers(gz, defer_outer, scope, .normal_only);
try gz.addRet(rl, operand, node);
return Zir.Inst.Ref.unreachable_value;
},
.always => {
// Value is always an error. Emit both error defers and regular defers.
const result = if (rl == .ptr) try gz.addUnNode(.load, rl.ptr, node) else operand;
const err_code = try gz.addUnNode(.err_union_code, result, node);
try genDefers(gz, defer_outer, scope, .{ .both = err_code });
try gz.addRet(rl, operand, node);
return Zir.Inst.Ref.unreachable_value;
},
.maybe => {
const defer_counts = countDefers(astgen, defer_outer, scope);
if (!defer_counts.have_err) {
// Only regular defers; no branch needed.
try genDefers(gz, defer_outer, scope, .normal_only);
try gz.addRet(rl, operand, node);
return Zir.Inst.Ref.unreachable_value;
}
// Emit conditional branch for generating errdefers.
const result = if (rl == .ptr) try gz.addUnNode(.load, rl.ptr, node) else operand;
const is_non_err = try gz.addUnNode(.is_non_err, result, node);
const condbr = try gz.addCondBr(.condbr, node);
var then_scope = gz.makeSubBlock(scope);
defer then_scope.unstack();
try genDefers(&then_scope, defer_outer, scope, .normal_only);
try then_scope.addRet(rl, operand, node);
var else_scope = gz.makeSubBlock(scope);
defer else_scope.unstack();
const which_ones: DefersToEmit = if (!defer_counts.need_err_code) .both_sans_err else .{
.both = try else_scope.addUnNode(.err_union_code, result, node),
};
try genDefers(&else_scope, defer_outer, scope, which_ones);
try else_scope.addRet(rl, operand, node);
try setCondBrPayload(condbr, is_non_err, &then_scope, 0, &else_scope, 0);
return Zir.Inst.Ref.unreachable_value;
},
}
}
/// Parses the string `buf` as a base 10 integer of type `u16`.
///
/// Unlike std.fmt.parseInt, does not allow the '_' character in `buf`.
fn parseBitCount(buf: []const u8) std.fmt.ParseIntError!u16 {
if (buf.len == 0) return error.InvalidCharacter;
var x: u16 = 0;
for (buf) |c| {
const digit = switch (c) {
'0'...'9' => c - '0',
else => return error.InvalidCharacter,
};
if (x != 0) x = try std.math.mul(u16, x, 10);
x = try std.math.add(u16, x, @as(u16, digit));
}
return x;
}
fn identifier(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
ident: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const astgen = gz.astgen;
const tree = astgen.tree;
const gpa = astgen.gpa;
const main_tokens = tree.nodes.items(.main_token);
const ident_token = main_tokens[ident];
const ident_name_raw = tree.tokenSlice(ident_token);
if (mem.eql(u8, ident_name_raw, "_")) {
return astgen.failNode(ident, "'_' used as an identifier without @\"_\" syntax", .{});
}
// if not @"" syntax, just use raw token slice
if (ident_name_raw[0] != '@') {
if (primitives.get(ident_name_raw)) |zir_const_ref| {
return rvalue(gz, rl, zir_const_ref, ident);
}
if (ident_name_raw.len >= 2) integer: {
const first_c = ident_name_raw[0];
if (first_c == 'i' or first_c == 'u') {
const signedness: std.builtin.Signedness = switch (first_c == 'i') {
true => .signed,
false => .unsigned,
};
const bit_count = parseBitCount(ident_name_raw[1..]) catch |err| switch (err) {
error.Overflow => return astgen.failNode(
ident,
"primitive integer type '{s}' exceeds maximum bit width of 65535",
.{ident_name_raw},
),
error.InvalidCharacter => break :integer,
};
const result = try gz.add(.{
.tag = .int_type,
.data = .{ .int_type = .{
.src_node = gz.nodeIndexToRelative(ident),
.signedness = signedness,
.bit_count = bit_count,
} },
});
return rvalue(gz, rl, result, ident);
}
}
}
// Local variables, including function parameters.
const name_str_index = try astgen.identAsString(ident_token);
var s = scope;
var found_already: ?Ast.Node.Index = null; // we have found a decl with the same name already
var num_namespaces_out: u32 = 0;
var capturing_namespace: ?*Scope.Namespace = null;
while (true) switch (s.tag) {
.local_val => {
const local_val = s.cast(Scope.LocalVal).?;
if (local_val.name == name_str_index) {
// Locals cannot shadow anything, so we do not need to look for ambiguous
// references in this case.
local_val.used = true;
const value_inst = try tunnelThroughClosure(
gz,
ident,
num_namespaces_out,
capturing_namespace,
local_val.inst,
local_val.token_src,
gpa,
);
return rvalue(gz, rl, value_inst, ident);
}
s = local_val.parent;
},
.local_ptr => {
const local_ptr = s.cast(Scope.LocalPtr).?;
if (local_ptr.name == name_str_index) {
local_ptr.used = true;
// Can't close over a runtime variable
if (num_namespaces_out != 0 and !local_ptr.maybe_comptime) {
const ident_name = try astgen.identifierTokenString(ident_token);
return astgen.failNodeNotes(ident, "mutable '{s}' not accessible from here", .{ident_name}, &.{
try astgen.errNoteTok(local_ptr.token_src, "declared mutable here", .{}),
try astgen.errNoteNode(capturing_namespace.?.node, "crosses namespace boundary here", .{}),
});
}
const ptr_inst = try tunnelThroughClosure(
gz,
ident,
num_namespaces_out,
capturing_namespace,
local_ptr.ptr,
local_ptr.token_src,
gpa,
);
switch (rl) {
.ref => return ptr_inst,
else => {
const loaded = try gz.addUnNode(.load, ptr_inst, ident);
return rvalue(gz, rl, loaded, ident);
},
}
}
s = local_ptr.parent;
},
.gen_zir => s = s.cast(GenZir).?.parent,
.defer_normal, .defer_error => s = s.cast(Scope.Defer).?.parent,
.namespace => {
const ns = s.cast(Scope.Namespace).?;
if (ns.decls.get(name_str_index)) |i| {
if (found_already) |f| {
return astgen.failNodeNotes(ident, "ambiguous reference", .{}, &.{
try astgen.errNoteNode(f, "declared here", .{}),
try astgen.errNoteNode(i, "also declared here", .{}),
});
}
// We found a match but must continue looking for ambiguous references to decls.
found_already = i;
}
num_namespaces_out += 1;
capturing_namespace = ns;
s = ns.parent;
},
.top => break,
};
if (found_already == null) {
const ident_name = try astgen.identifierTokenString(ident_token);
return astgen.failNode(ident, "use of undeclared identifier '{s}'", .{ident_name});
}
// Decl references happen by name rather than ZIR index so that when unrelated
// decls are modified, ZIR code containing references to them can be unmodified.
switch (rl) {
.ref => return gz.addStrTok(.decl_ref, name_str_index, ident_token),
else => {
const result = try gz.addStrTok(.decl_val, name_str_index, ident_token);
return rvalue(gz, rl, result, ident);
},
}
}
/// Adds a capture to a namespace, if needed.
/// Returns the index of the closure_capture instruction.
fn tunnelThroughClosure(
gz: *GenZir,
inner_ref_node: Ast.Node.Index,
num_tunnels: u32,
ns: ?*Scope.Namespace,
value: Zir.Inst.Ref,
token: Ast.TokenIndex,
gpa: Allocator,
) !Zir.Inst.Ref {
// For trivial values, we don't need a tunnel.
// Just return the ref.
if (num_tunnels == 0 or refToIndex(value) == null) {
return value;
}
// Otherwise we need a tunnel. Check if this namespace
// already has one for this value.
const gop = try ns.?.captures.getOrPut(gpa, refToIndex(value).?);
if (!gop.found_existing) {
// Make a new capture for this value but don't add it to the declaring_gz yet
try gz.astgen.instructions.append(gz.astgen.gpa, .{
.tag = .closure_capture,
.data = .{ .un_tok = .{
.operand = value,
.src_tok = ns.?.declaring_gz.?.tokenIndexToRelative(token),
} },
});
gop.value_ptr.* = @intCast(Zir.Inst.Index, gz.astgen.instructions.len - 1);
}
// Add an instruction to get the value from the closure into
// our current context
return try gz.addInstNode(.closure_get, gop.value_ptr.*, inner_ref_node);
}
fn stringLiteral(
gz: *GenZir,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const str_lit_token = main_tokens[node];
const str = try astgen.strLitAsString(str_lit_token);
const result = try gz.add(.{
.tag = .str,
.data = .{ .str = .{
.start = str.index,
.len = str.len,
} },
});
return rvalue(gz, rl, result, node);
}
fn multilineStringLiteral(
gz: *GenZir,
rl: ResultLoc,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const str = try astgen.strLitNodeAsString(node);
const result = try gz.add(.{
.tag = .str,
.data = .{ .str = .{
.start = str.index,
.len = str.len,
} },
});
return rvalue(gz, rl, result, node);
}
fn charLiteral(gz: *GenZir, rl: ResultLoc, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const main_token = main_tokens[node];
const slice = tree.tokenSlice(main_token);
switch (std.zig.parseCharLiteral(slice)) {
.success => |codepoint| {
const result = try gz.addInt(codepoint);
return rvalue(gz, rl, result, node);
},
.failure => |err| return astgen.failWithStrLitError(err, main_token, slice, 0),
}
}
fn integerLiteral(gz: *GenZir, rl: ResultLoc, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const int_token = main_tokens[node];
const prefixed_bytes = tree.tokenSlice(int_token);
if (std.fmt.parseInt(u64, prefixed_bytes, 0)) |small_int| {
const result: Zir.Inst.Ref = switch (small_int) {
0 => .zero,
1 => .one,
else => try gz.addInt(small_int),
};
return rvalue(gz, rl, result, node);
} else |err| switch (err) {
error.InvalidCharacter => unreachable, // Caught by the parser.
error.Overflow => {},
}
var base: u8 = 10;
var non_prefixed: []const u8 = prefixed_bytes;
if (mem.startsWith(u8, prefixed_bytes, "0x")) {
base = 16;
non_prefixed = prefixed_bytes[2..];
} else if (mem.startsWith(u8, prefixed_bytes, "0o")) {
base = 8;
non_prefixed = prefixed_bytes[2..];
} else if (mem.startsWith(u8, prefixed_bytes, "0b")) {
base = 2;
non_prefixed = prefixed_bytes[2..];
}
const gpa = astgen.gpa;
var big_int = try std.math.big.int.Managed.init(gpa);
defer big_int.deinit();
big_int.setString(base, non_prefixed) catch |err| switch (err) {
error.InvalidCharacter => unreachable, // caught by parser
error.InvalidBase => unreachable, // we only pass 16, 8, 2, see above
error.OutOfMemory => return error.OutOfMemory,
};
const limbs = big_int.limbs[0..big_int.len()];
assert(big_int.isPositive());
const result = try gz.addIntBig(limbs);
return rvalue(gz, rl, result, node);
}
fn floatLiteral(gz: *GenZir, rl: ResultLoc, node: Ast.Node.Index) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const main_token = main_tokens[node];
const bytes = tree.tokenSlice(main_token);
const float_number: f128 = if (bytes.len > 2 and bytes[1] == 'x') hex: {
assert(bytes[0] == '0'); // validated by tokenizer
break :hex std.fmt.parseHexFloat(f128, bytes) catch |err| switch (err) {
error.InvalidCharacter => unreachable, // validated by tokenizer
error.Overflow => return astgen.failNode(node, "number literal cannot be represented in a 128-bit floating point", .{}),
};
} else std.fmt.parseFloat(f128, bytes) catch |err| switch (err) {
error.InvalidCharacter => unreachable, // validated by tokenizer
};
// If the value fits into a f64 without losing any precision, store it that way.
@setFloatMode(.Strict);
const smaller_float = @floatCast(f64, float_number);
const bigger_again: f128 = smaller_float;
if (bigger_again == float_number) {
const result = try gz.addFloat(smaller_float);
return rvalue(gz, rl, result, node);
}
// We need to use 128 bits. Break the float into 4 u32 values so we can
// put it into the `extra` array.
const int_bits = @bitCast(u128, float_number);
const result = try gz.addPlNode(.float128, node, Zir.Inst.Float128{
.piece0 = @truncate(u32, int_bits),
.piece1 = @truncate(u32, int_bits >> 32),
.piece2 = @truncate(u32, int_bits >> 64),
.piece3 = @truncate(u32, int_bits >> 96),
});
return rvalue(gz, rl, result, node);
}
fn asmExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
full: Ast.full.Asm,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const node_datas = tree.nodes.items(.data);
const node_tags = tree.nodes.items(.tag);
const token_tags = tree.tokens.items(.tag);
const asm_source = switch (node_tags[full.ast.template]) {
.string_literal => try astgen.strLitAsString(main_tokens[full.ast.template]),
.multiline_string_literal => try astgen.strLitNodeAsString(full.ast.template),
else => blk: {
// stage1 allows this, and until we do another design iteration on inline assembly
// in stage2 to improve support for the various needed use cases, we allow inline
// assembly templates to be an expression. Once stage2 addresses the real world needs
// of people using inline assembly (primarily OS developers) then we can re-institute
// the rule into AstGen that assembly code must use string literal syntax.
//return astgen.failNode(full.ast.template, "assembly code must use string literal syntax", .{}),
// We still need to trigger all the expr() calls here to avoid errors for unused things.
// So we pass 0 as the asm source and stage2 Sema will notice this and
// report the error.
_ = try comptimeExpr(gz, scope, .none, full.ast.template);
break :blk IndexSlice{ .index = 0, .len = 0 };
},
};
// See https://github.com/ziglang/zig/issues/215 and related issues discussing
// possible inline assembly improvements. Until then here is status quo AstGen
// for assembly syntax. It's used by std lib crypto aesni.zig.
const is_container_asm = astgen.fn_block == null;
if (is_container_asm) {
if (full.volatile_token) |t|
return astgen.failTok(t, "volatile is meaningless on global assembly", .{});
if (full.outputs.len != 0 or full.inputs.len != 0 or full.first_clobber != null)
return astgen.failNode(node, "global assembly cannot have inputs, outputs, or clobbers", .{});
} else {
if (full.outputs.len == 0 and full.volatile_token == null) {
return astgen.failNode(node, "assembly expression with no output must be marked volatile", .{});
}
}
if (full.outputs.len > 32) {
return astgen.failNode(full.outputs[32], "too many asm outputs", .{});
}
var outputs_buffer: [32]Zir.Inst.Asm.Output = undefined;
const outputs = outputs_buffer[0..full.outputs.len];
var output_type_bits: u32 = 0;
for (full.outputs) |output_node, i| {
const symbolic_name = main_tokens[output_node];
const name = try astgen.identAsString(symbolic_name);
const constraint_token = symbolic_name + 2;
const constraint = (try astgen.strLitAsString(constraint_token)).index;
const has_arrow = token_tags[symbolic_name + 4] == .arrow;
if (has_arrow) {
output_type_bits |= @as(u32, 1) << @intCast(u5, i);
const out_type_node = node_datas[output_node].lhs;
const out_type_inst = try typeExpr(gz, scope, out_type_node);
outputs[i] = .{
.name = name,
.constraint = constraint,
.operand = out_type_inst,
};
} else {
const ident_token = symbolic_name + 4;
const str_index = try astgen.identAsString(ident_token);
// TODO this needs extra code for local variables. Have a look at #215 and related
// issues and decide how to handle outputs. Do we want this to be identifiers?
// Or maybe we want to force this to be expressions with a pointer type.
// Until that is figured out this is only hooked up for referencing Decls.
// TODO we have put this as an identifier lookup just so that we don't get
// unused vars for outputs. We need to check if this is correct in the future ^^
// so we just put in this simple lookup. This is a workaround.
{
var s = scope;
while (true) switch (s.tag) {
.local_val => {
const local_val = s.cast(Scope.LocalVal).?;
if (local_val.name == str_index) {
local_val.used = true;
break;
}
s = local_val.parent;
},
.local_ptr => {
const local_ptr = s.cast(Scope.LocalPtr).?;
if (local_ptr.name == str_index) {
local_ptr.used = true;
break;
}
s = local_ptr.parent;
},
.gen_zir => s = s.cast(GenZir).?.parent,
.defer_normal, .defer_error => s = s.cast(Scope.Defer).?.parent,
.namespace, .top => break,
};
}
const operand = try gz.addStrTok(.decl_ref, str_index, ident_token);
outputs[i] = .{
.name = name,
.constraint = constraint,
.operand = operand,
};
}
}
if (full.inputs.len > 32) {
return astgen.failNode(full.inputs[32], "too many asm inputs", .{});
}
var inputs_buffer: [32]Zir.Inst.Asm.Input = undefined;
const inputs = inputs_buffer[0..full.inputs.len];
for (full.inputs) |input_node, i| {
const symbolic_name = main_tokens[input_node];
const name = try astgen.identAsString(symbolic_name);
const constraint_token = symbolic_name + 2;
const constraint = (try astgen.strLitAsString(constraint_token)).index;
const operand = try expr(gz, scope, .{ .ty = .usize_type }, node_datas[input_node].lhs);
inputs[i] = .{
.name = name,
.constraint = constraint,
.operand = operand,
};
}
var clobbers_buffer: [32]u32 = undefined;
var clobber_i: usize = 0;
if (full.first_clobber) |first_clobber| clobbers: {
// asm ("foo" ::: "a", "b")
// asm ("foo" ::: "a", "b",)
var tok_i = first_clobber;
while (true) : (tok_i += 1) {
if (clobber_i >= clobbers_buffer.len) {
return astgen.failTok(tok_i, "too many asm clobbers", .{});
}
clobbers_buffer[clobber_i] = (try astgen.strLitAsString(tok_i)).index;
clobber_i += 1;
tok_i += 1;
switch (token_tags[tok_i]) {
.r_paren => break :clobbers,
.comma => {
if (token_tags[tok_i + 1] == .r_paren) {
break :clobbers;
} else {
continue;
}
},
else => unreachable,
}
}
}
const result = try gz.addAsm(.{
.node = node,
.asm_source = asm_source.index,
.is_volatile = full.volatile_token != null,
.output_type_bits = output_type_bits,
.outputs = outputs,
.inputs = inputs,
.clobbers = clobbers_buffer[0..clobber_i],
});
return rvalue(gz, rl, result, node);
}
fn as(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs: Ast.Node.Index,
rhs: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const dest_type = try typeExpr(gz, scope, lhs);
switch (rl) {
.none, .discard, .ref, .ty, .coerced_ty => {
const result = try reachableExpr(gz, scope, .{ .ty = dest_type }, rhs, node);
return rvalue(gz, rl, result, node);
},
.ptr, .inferred_ptr => |result_ptr| {
return asRlPtr(gz, scope, rl, node, result_ptr, rhs, dest_type);
},
.block_ptr => |block_scope| {
return asRlPtr(gz, scope, rl, node, block_scope.rl_ptr, rhs, dest_type);
},
}
}
fn unionInit(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
params: []const Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const union_type = try typeExpr(gz, scope, params[0]);
const field_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]);
const field_type = try gz.addPlNode(.field_type_ref, params[1], Zir.Inst.FieldTypeRef{
.container_type = union_type,
.field_name = field_name,
});
const init = try reachableExpr(gz, scope, .{ .ty = field_type }, params[2], node);
const result = try gz.addPlNode(.union_init, node, Zir.Inst.UnionInit{
.union_type = union_type,
.init = init,
.field_name = field_name,
});
return rvalue(gz, rl, result, node);
}
fn asRlPtr(
parent_gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
src_node: Ast.Node.Index,
result_ptr: Zir.Inst.Ref,
operand_node: Ast.Node.Index,
dest_type: Zir.Inst.Ref,
) InnerError!Zir.Inst.Ref {
var as_scope = try parent_gz.makeCoercionScope(scope, dest_type, result_ptr);
defer as_scope.unstack();
const result = try reachableExpr(&as_scope, &as_scope.base, .{ .block_ptr = &as_scope }, operand_node, src_node);
return as_scope.finishCoercion(parent_gz, rl, operand_node, result, dest_type);
}
fn bitCast(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs: Ast.Node.Index,
rhs: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const dest_type = try reachableTypeExpr(gz, scope, lhs, node);
const operand = try reachableExpr(gz, scope, .none, rhs, node);
const result = try gz.addPlNode(.bitcast, node, Zir.Inst.Bin{
.lhs = dest_type,
.rhs = operand,
});
return rvalue(gz, rl, result, node);
}
fn typeOf(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
args: []const Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
if (args.len < 1) {
return gz.astgen.failNode(node, "expected at least 1 argument, found 0", .{});
}
const gpa = gz.astgen.gpa;
if (args.len == 1) {
const typeof_inst = try gz.makeBlockInst(.typeof_builtin, node);
var typeof_scope = gz.makeSubBlock(scope);
typeof_scope.force_comptime = false;
defer typeof_scope.unstack();
const ty_expr = try reachableExpr(&typeof_scope, &typeof_scope.base, .none, args[0], node);
if (!gz.refIsNoReturn(ty_expr)) {
_ = try typeof_scope.addBreak(.break_inline, typeof_inst, ty_expr);
}
try typeof_scope.setBlockBody(typeof_inst);
// typeof_scope unstacked now, can add new instructions to gz
try gz.instructions.append(gpa, typeof_inst);
return rvalue(gz, rl, indexToRef(typeof_inst), node);
}
const payload_size: u32 = std.meta.fields(Zir.Inst.TypeOfPeer).len;
const payload_index = try reserveExtra(gz.astgen, payload_size + args.len);
var args_index = payload_index + payload_size;
const typeof_inst = try gz.addExtendedMultiOpPayloadIndex(.typeof_peer, payload_index, args.len);
var typeof_scope = gz.makeSubBlock(scope);
typeof_scope.force_comptime = false;
for (args) |arg, i| {
const param_ref = try reachableExpr(&typeof_scope, &typeof_scope.base, .none, arg, node);
gz.astgen.extra.items[args_index + i] = @enumToInt(param_ref);
}
_ = try typeof_scope.addBreak(.break_inline, refToIndex(typeof_inst).?, .void_value);
const body = typeof_scope.instructionsSlice();
gz.astgen.setExtra(payload_index, Zir.Inst.TypeOfPeer{
.body_len = @intCast(u32, body.len),
.body_index = @intCast(u32, gz.astgen.extra.items.len),
.src_node = gz.nodeIndexToRelative(node),
});
try gz.astgen.extra.appendSlice(gpa, body);
typeof_scope.unstack();
return rvalue(gz, rl, typeof_inst, node);
}
fn builtinCall(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
params: []const Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const main_tokens = tree.nodes.items(.main_token);
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// We handle the different builtins manually because they have different semantics depending
// on the function. For example, `@as` and others participate in result location semantics,
// and `@cImport` creates a special scope that collects a .c source code text buffer.
// Also, some builtins have a variable number of parameters.
const info = BuiltinFn.list.get(builtin_name) orelse {
return astgen.failNode(node, "invalid builtin function: '{s}'", .{
builtin_name,
});
};
if (info.param_count) |expected| {
if (expected != params.len) {
const s = if (expected == 1) "" else "s";
return astgen.failNode(node, "expected {d} argument{s}, found {d}", .{
expected, s, params.len,
});
}
}
switch (info.tag) {
.import => {
const node_tags = tree.nodes.items(.tag);
const operand_node = params[0];
if (node_tags[operand_node] != .string_literal) {
// Spec reference: https://github.com/ziglang/zig/issues/2206
return astgen.failNode(operand_node, "@import operand must be a string literal", .{});
}
const str_lit_token = main_tokens[operand_node];
const str = try astgen.strLitAsString(str_lit_token);
const result = try gz.addStrTok(.import, str.index, str_lit_token);
const gop = try astgen.imports.getOrPut(astgen.gpa, str.index);
if (!gop.found_existing) {
gop.value_ptr.* = str_lit_token;
}
return rvalue(gz, rl, result, node);
},
.compile_log => {
const payload_index = try addExtra(gz.astgen, Zir.Inst.NodeMultiOp{
.src_node = gz.nodeIndexToRelative(node),
});
var extra_index = try reserveExtra(gz.astgen, params.len);
for (params) |param| {
const param_ref = try expr(gz, scope, .none, param);
astgen.extra.items[extra_index] = @enumToInt(param_ref);
extra_index += 1;
}
const result = try gz.addExtendedMultiOpPayloadIndex(.compile_log, payload_index, params.len);
return rvalue(gz, rl, result, node);
},
.field => {
if (rl == .ref) {
return gz.addPlNode(.field_ptr_named, node, Zir.Inst.FieldNamed{
.lhs = try expr(gz, scope, .ref, params[0]),
.field_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]),
});
}
const result = try gz.addPlNode(.field_val_named, node, Zir.Inst.FieldNamed{
.lhs = try expr(gz, scope, .none, params[0]),
.field_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]),
});
return rvalue(gz, rl, result, node);
},
// zig fmt: off
.as => return as( gz, scope, rl, node, params[0], params[1]),
.bit_cast => return bitCast( gz, scope, rl, node, params[0], params[1]),
.TypeOf => return typeOf( gz, scope, rl, node, params),
.union_init => return unionInit(gz, scope, rl, node, params),
.c_import => return cImport( gz, scope, node, params[0]),
// zig fmt: on
.@"export" => {
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
// This function causes a Decl to be exported. The first parameter is not an expression,
// but an identifier of the Decl to be exported.
var namespace: Zir.Inst.Ref = .none;
var decl_name: u32 = 0;
switch (node_tags[params[0]]) {
.identifier => {
const ident_token = main_tokens[params[0]];
decl_name = try astgen.identAsString(ident_token);
var s = scope;
var found_already: ?Ast.Node.Index = null; // we have found a decl with the same name already
while (true) switch (s.tag) {
.local_val => {
const local_val = s.cast(Scope.LocalVal).?;
if (local_val.name == decl_name) {
local_val.used = true;
_ = try gz.addPlNode(.export_value, node, Zir.Inst.ExportValue{
.operand = local_val.inst,
.options = try comptimeExpr(gz, scope, .{ .coerced_ty = .export_options_type }, params[1]),
});
return rvalue(gz, rl, .void_value, node);
}
s = local_val.parent;
},
.local_ptr => {
const local_ptr = s.cast(Scope.LocalPtr).?;
if (local_ptr.name == decl_name) {
if (!local_ptr.maybe_comptime)
return astgen.failNode(params[0], "unable to export runtime-known value", .{});
local_ptr.used = true;
const loaded = try gz.addUnNode(.load, local_ptr.ptr, node);
_ = try gz.addPlNode(.export_value, node, Zir.Inst.ExportValue{
.operand = loaded,
.options = try comptimeExpr(gz, scope, .{ .coerced_ty = .export_options_type }, params[1]),
});
return rvalue(gz, rl, .void_value, node);
}
s = local_ptr.parent;
},
.gen_zir => s = s.cast(GenZir).?.parent,
.defer_normal, .defer_error => s = s.cast(Scope.Defer).?.parent,
.namespace => {
const ns = s.cast(Scope.Namespace).?;
if (ns.decls.get(decl_name)) |i| {
if (found_already) |f| {
return astgen.failNodeNotes(node, "ambiguous reference", .{}, &.{
try astgen.errNoteNode(f, "declared here", .{}),
try astgen.errNoteNode(i, "also declared here", .{}),
});
}
// We found a match but must continue looking for ambiguous references to decls.
found_already = i;
}
s = ns.parent;
},
.top => break,
};
},
.field_access => {
const namespace_node = node_datas[params[0]].lhs;
namespace = try typeExpr(gz, scope, namespace_node);
const dot_token = main_tokens[params[0]];
const field_ident = dot_token + 1;
decl_name = try astgen.identAsString(field_ident);
},
else => return astgen.failNode(params[0], "symbol to export must identify a declaration", .{}),
}
const options = try comptimeExpr(gz, scope, .{ .ty = .export_options_type }, params[1]);
_ = try gz.addPlNode(.@"export", node, Zir.Inst.Export{
.namespace = namespace,
.decl_name = decl_name,
.options = options,
});
return rvalue(gz, rl, .void_value, node);
},
.@"extern" => {
const type_inst = try typeExpr(gz, scope, params[0]);
const options = try comptimeExpr(gz, scope, .{ .ty = .extern_options_type }, params[1]);
const result = try gz.addExtendedPayload(.builtin_extern, Zir.Inst.BinNode{
.node = gz.nodeIndexToRelative(node),
.lhs = type_inst,
.rhs = options,
});
return rvalue(gz, rl, result, node);
},
.fence => {
const order = try expr(gz, scope, .{ .coerced_ty = .atomic_order_type }, params[0]);
const result = try gz.addUnNode(.fence, order, node);
return rvalue(gz, rl, result, node);
},
.src => {
const token_starts = tree.tokens.items(.start);
const node_start = token_starts[tree.firstToken(node)];
astgen.advanceSourceCursor(node_start);
const result = try gz.addExtendedPayload(.builtin_src, Zir.Inst.LineColumn{
.line = @intCast(u32, astgen.source_line),
.column = @intCast(u32, astgen.source_column),
});
return rvalue(gz, rl, result, node);
},
.breakpoint => return simpleNoOpVoid(gz, rl, node, .breakpoint),
// zig fmt: off
.This => return rvalue(gz, rl, try gz.addNodeExtended(.this, node), node),
.return_address => return rvalue(gz, rl, try gz.addNodeExtended(.ret_addr, node), node),
.error_return_trace => return rvalue(gz, rl, try gz.addNodeExtended(.error_return_trace, node), node),
.frame => return rvalue(gz, rl, try gz.addNodeExtended(.frame, node), node),
.frame_address => return rvalue(gz, rl, try gz.addNodeExtended(.frame_address, node), node),
.type_info => return simpleUnOpType(gz, scope, rl, node, params[0], .type_info),
.size_of => return simpleUnOpType(gz, scope, rl, node, params[0], .size_of),
.bit_size_of => return simpleUnOpType(gz, scope, rl, node, params[0], .bit_size_of),
.align_of => return simpleUnOpType(gz, scope, rl, node, params[0], .align_of),
.ptr_to_int => return simpleUnOp(gz, scope, rl, node, .none, params[0], .ptr_to_int),
.error_to_int => return simpleUnOp(gz, scope, rl, node, .none, params[0], .error_to_int),
.int_to_error => return simpleUnOp(gz, scope, rl, node, .{ .ty = .u16_type }, params[0], .int_to_error),
.compile_error => return simpleUnOp(gz, scope, rl, node, .{ .ty = .const_slice_u8_type }, params[0], .compile_error),
.set_eval_branch_quota => return simpleUnOp(gz, scope, rl, node, .{ .coerced_ty = .u32_type }, params[0], .set_eval_branch_quota),
.enum_to_int => return simpleUnOp(gz, scope, rl, node, .none, params[0], .enum_to_int),
.bool_to_int => return simpleUnOp(gz, scope, rl, node, bool_rl, params[0], .bool_to_int),
.embed_file => return simpleUnOp(gz, scope, rl, node, .{ .ty = .const_slice_u8_type }, params[0], .embed_file),
.error_name => return simpleUnOp(gz, scope, rl, node, .{ .ty = .anyerror_type }, params[0], .error_name),
.panic => return simpleUnOp(gz, scope, rl, node, .{ .ty = .const_slice_u8_type }, params[0], .panic),
.set_align_stack => return simpleUnOp(gz, scope, rl, node, align_rl, params[0], .set_align_stack),
.set_cold => return simpleUnOp(gz, scope, rl, node, bool_rl, params[0], .set_cold),
.set_float_mode => return simpleUnOp(gz, scope, rl, node, .{ .coerced_ty = .float_mode_type }, params[0], .set_float_mode),
.set_runtime_safety => return simpleUnOp(gz, scope, rl, node, bool_rl, params[0], .set_runtime_safety),
.sqrt => return simpleUnOp(gz, scope, rl, node, .none, params[0], .sqrt),
.sin => return simpleUnOp(gz, scope, rl, node, .none, params[0], .sin),
.cos => return simpleUnOp(gz, scope, rl, node, .none, params[0], .cos),
.exp => return simpleUnOp(gz, scope, rl, node, .none, params[0], .exp),
.exp2 => return simpleUnOp(gz, scope, rl, node, .none, params[0], .exp2),
.log => return simpleUnOp(gz, scope, rl, node, .none, params[0], .log),
.log2 => return simpleUnOp(gz, scope, rl, node, .none, params[0], .log2),
.log10 => return simpleUnOp(gz, scope, rl, node, .none, params[0], .log10),
.fabs => return simpleUnOp(gz, scope, rl, node, .none, params[0], .fabs),
.floor => return simpleUnOp(gz, scope, rl, node, .none, params[0], .floor),
.ceil => return simpleUnOp(gz, scope, rl, node, .none, params[0], .ceil),
.trunc => return simpleUnOp(gz, scope, rl, node, .none, params[0], .trunc),
.round => return simpleUnOp(gz, scope, rl, node, .none, params[0], .round),
.tag_name => return simpleUnOp(gz, scope, rl, node, .none, params[0], .tag_name),
.Type => return simpleUnOp(gz, scope, rl, node, .{ .coerced_ty = .type_info_type }, params[0], .reify),
.type_name => return simpleUnOp(gz, scope, rl, node, .none, params[0], .type_name),
.Frame => return simpleUnOp(gz, scope, rl, node, .none, params[0], .frame_type),
.frame_size => return simpleUnOp(gz, scope, rl, node, .none, params[0], .frame_size),
.float_to_int => return typeCast(gz, scope, rl, node, params[0], params[1], .float_to_int),
.int_to_float => return typeCast(gz, scope, rl, node, params[0], params[1], .int_to_float),
.int_to_ptr => return typeCast(gz, scope, rl, node, params[0], params[1], .int_to_ptr),
.int_to_enum => return typeCast(gz, scope, rl, node, params[0], params[1], .int_to_enum),
.float_cast => return typeCast(gz, scope, rl, node, params[0], params[1], .float_cast),
.int_cast => return typeCast(gz, scope, rl, node, params[0], params[1], .int_cast),
.err_set_cast => return typeCast(gz, scope, rl, node, params[0], params[1], .err_set_cast),
.ptr_cast => return typeCast(gz, scope, rl, node, params[0], params[1], .ptr_cast),
.truncate => return typeCast(gz, scope, rl, node, params[0], params[1], .truncate),
// zig fmt: on
.align_cast => {
const dest_align = try comptimeExpr(gz, scope, align_rl, params[0]);
const rhs = try expr(gz, scope, .none, params[1]);
const result = try gz.addPlNode(.align_cast, node, Zir.Inst.Bin{
.lhs = dest_align,
.rhs = rhs,
});
return rvalue(gz, rl, result, node);
},
// zig fmt: off
.has_decl => return hasDeclOrField(gz, scope, rl, node, params[0], params[1], .has_decl),
.has_field => return hasDeclOrField(gz, scope, rl, node, params[0], params[1], .has_field),
.clz => return bitBuiltin(gz, scope, rl, node, params[0], params[1], .clz),
.ctz => return bitBuiltin(gz, scope, rl, node, params[0], params[1], .ctz),
.pop_count => return bitBuiltin(gz, scope, rl, node, params[0], params[1], .pop_count),
.byte_swap => return bitBuiltin(gz, scope, rl, node, params[0], params[1], .byte_swap),
.bit_reverse => return bitBuiltin(gz, scope, rl, node, params[0], params[1], .bit_reverse),
.div_exact => return divBuiltin(gz, scope, rl, node, params[0], params[1], .div_exact),
.div_floor => return divBuiltin(gz, scope, rl, node, params[0], params[1], .div_floor),
.div_trunc => return divBuiltin(gz, scope, rl, node, params[0], params[1], .div_trunc),
.mod => return divBuiltin(gz, scope, rl, node, params[0], params[1], .mod),
.rem => return divBuiltin(gz, scope, rl, node, params[0], params[1], .rem),
.shl_exact => return shiftOp(gz, scope, rl, node, params[0], params[1], .shl_exact),
.shr_exact => return shiftOp(gz, scope, rl, node, params[0], params[1], .shr_exact),
.bit_offset_of => return offsetOf(gz, scope, rl, node, params[0], params[1], .bit_offset_of),
.offset_of => return offsetOf(gz, scope, rl, node, params[0], params[1], .offset_of),
.c_undef => return simpleCBuiltin(gz, scope, rl, node, params[0], .c_undef),
.c_include => return simpleCBuiltin(gz, scope, rl, node, params[0], .c_include),
.cmpxchg_strong => return cmpxchg(gz, scope, rl, node, params, .cmpxchg_strong),
.cmpxchg_weak => return cmpxchg(gz, scope, rl, node, params, .cmpxchg_weak),
// zig fmt: on
.wasm_memory_size => {
const operand = try comptimeExpr(gz, scope, .{ .coerced_ty = .u32_type }, params[0]);
const result = try gz.addExtendedPayload(.wasm_memory_size, Zir.Inst.UnNode{
.node = gz.nodeIndexToRelative(node),
.operand = operand,
});
return rvalue(gz, rl, result, node);
},
.wasm_memory_grow => {
const index_arg = try comptimeExpr(gz, scope, .{ .coerced_ty = .u32_type }, params[0]);
const delta_arg = try expr(gz, scope, .{ .coerced_ty = .u32_type }, params[1]);
const result = try gz.addExtendedPayload(.wasm_memory_grow, Zir.Inst.BinNode{
.node = gz.nodeIndexToRelative(node),
.lhs = index_arg,
.rhs = delta_arg,
});
return rvalue(gz, rl, result, node);
},
.c_define => {
if (!gz.c_import) return gz.astgen.failNode(node, "C define valid only inside C import block", .{});
const name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[0]);
const value = try comptimeExpr(gz, scope, .none, params[1]);
const result = try gz.addExtendedPayload(.c_define, Zir.Inst.BinNode{
.node = gz.nodeIndexToRelative(node),
.lhs = name,
.rhs = value,
});
return rvalue(gz, rl, result, node);
},
.splat => {
const len = try expr(gz, scope, .{ .coerced_ty = .u32_type }, params[0]);
const scalar = try expr(gz, scope, .none, params[1]);
const result = try gz.addPlNode(.splat, node, Zir.Inst.Bin{
.lhs = len,
.rhs = scalar,
});
return rvalue(gz, rl, result, node);
},
.reduce => {
const op = try expr(gz, scope, .{ .ty = .reduce_op_type }, params[0]);
const scalar = try expr(gz, scope, .none, params[1]);
const result = try gz.addPlNode(.reduce, node, Zir.Inst.Bin{
.lhs = op,
.rhs = scalar,
});
return rvalue(gz, rl, result, node);
},
.maximum => {
const a = try expr(gz, scope, .none, params[0]);
const b = try expr(gz, scope, .none, params[1]);
const result = try gz.addPlNode(.maximum, node, Zir.Inst.Bin{
.lhs = a,
.rhs = b,
});
return rvalue(gz, rl, result, node);
},
.minimum => {
const a = try expr(gz, scope, .none, params[0]);
const b = try expr(gz, scope, .none, params[1]);
const result = try gz.addPlNode(.minimum, node, Zir.Inst.Bin{
.lhs = a,
.rhs = b,
});
return rvalue(gz, rl, result, node);
},
.add_with_overflow => return overflowArithmetic(gz, scope, rl, node, params, .add_with_overflow),
.sub_with_overflow => return overflowArithmetic(gz, scope, rl, node, params, .sub_with_overflow),
.mul_with_overflow => return overflowArithmetic(gz, scope, rl, node, params, .mul_with_overflow),
.shl_with_overflow => {
const int_type = try typeExpr(gz, scope, params[0]);
const log2_int_type = try gz.addUnNode(.log2_int_type, int_type, params[0]);
const ptr_type = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = false,
.is_mutable = true,
.is_volatile = false,
.size = .One,
.elem_type = int_type,
},
} });
const lhs = try expr(gz, scope, .{ .ty = int_type }, params[1]);
const rhs = try expr(gz, scope, .{ .ty = log2_int_type }, params[2]);
const ptr = try expr(gz, scope, .{ .ty = ptr_type }, params[3]);
const result = try gz.addExtendedPayload(.shl_with_overflow, Zir.Inst.OverflowArithmetic{
.node = gz.nodeIndexToRelative(node),
.lhs = lhs,
.rhs = rhs,
.ptr = ptr,
});
return rvalue(gz, rl, result, node);
},
.atomic_load => {
const int_type = try typeExpr(gz, scope, params[0]);
// TODO allow this pointer type to be volatile
const ptr_type = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = false,
.is_mutable = false,
.is_volatile = false,
.size = .One,
.elem_type = int_type,
},
} });
const result = try gz.addPlNode(.atomic_load, node, Zir.Inst.Bin{
// zig fmt: off
.lhs = try expr(gz, scope, .{ .coerced_ty = ptr_type }, params[1]),
.rhs = try expr(gz, scope, .{ .coerced_ty = .atomic_order_type }, params[2]),
// zig fmt: on
});
return rvalue(gz, rl, result, node);
},
.atomic_rmw => {
const int_type = try typeExpr(gz, scope, params[0]);
// TODO allow this pointer type to be volatile
const ptr_type = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = false,
.is_mutable = true,
.is_volatile = false,
.size = .One,
.elem_type = int_type,
},
} });
const result = try gz.addPlNode(.atomic_rmw, node, Zir.Inst.AtomicRmw{
// zig fmt: off
.ptr = try expr(gz, scope, .{ .coerced_ty = ptr_type }, params[1]),
.operation = try expr(gz, scope, .{ .coerced_ty = .atomic_rmw_op_type }, params[2]),
.operand = try expr(gz, scope, .{ .coerced_ty = int_type }, params[3]),
.ordering = try expr(gz, scope, .{ .coerced_ty = .atomic_order_type }, params[4]),
// zig fmt: on
});
return rvalue(gz, rl, result, node);
},
.atomic_store => {
const int_type = try typeExpr(gz, scope, params[0]);
// TODO allow this pointer type to be volatile
const ptr_type = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = false,
.is_mutable = true,
.is_volatile = false,
.size = .One,
.elem_type = int_type,
},
} });
const result = try gz.addPlNode(.atomic_store, node, Zir.Inst.AtomicStore{
// zig fmt: off
.ptr = try expr(gz, scope, .{ .coerced_ty = ptr_type }, params[1]),
.operand = try expr(gz, scope, .{ .coerced_ty = int_type }, params[2]),
.ordering = try expr(gz, scope, .{ .coerced_ty = .atomic_order_type }, params[3]),
// zig fmt: on
});
return rvalue(gz, rl, result, node);
},
.mul_add => {
const float_type = try typeExpr(gz, scope, params[0]);
const mulend1 = try expr(gz, scope, .{ .coerced_ty = float_type }, params[1]);
const mulend2 = try expr(gz, scope, .{ .coerced_ty = float_type }, params[2]);
const addend = try expr(gz, scope, .{ .ty = float_type }, params[3]);
const result = try gz.addPlNode(.mul_add, node, Zir.Inst.MulAdd{
.mulend1 = mulend1,
.mulend2 = mulend2,
.addend = addend,
});
return rvalue(gz, rl, result, node);
},
.call => {
const options = try comptimeExpr(gz, scope, .{ .ty = .call_options_type }, params[0]);
const callee = try calleeExpr(gz, scope, params[1]);
const args = try expr(gz, scope, .none, params[2]);
const result = try gz.addPlNode(.builtin_call, node, Zir.Inst.BuiltinCall{
.options = options,
.callee = callee,
.args = args,
});
return rvalue(gz, rl, result, node);
},
.field_parent_ptr => {
const parent_type = try typeExpr(gz, scope, params[0]);
const field_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]);
const result = try gz.addPlNode(.field_parent_ptr, node, Zir.Inst.FieldParentPtr{
.parent_type = parent_type,
.field_name = field_name,
.field_ptr = try expr(gz, scope, .none, params[2]),
});
return rvalue(gz, rl, result, node);
},
.memcpy => {
const result = try gz.addPlNode(.memcpy, node, Zir.Inst.Memcpy{
.dest = try expr(gz, scope, .{ .coerced_ty = .manyptr_u8_type }, params[0]),
.source = try expr(gz, scope, .{ .coerced_ty = .manyptr_const_u8_type }, params[1]),
.byte_count = try expr(gz, scope, .{ .coerced_ty = .usize_type }, params[2]),
});
return rvalue(gz, rl, result, node);
},
.memset => {
const result = try gz.addPlNode(.memset, node, Zir.Inst.Memset{
.dest = try expr(gz, scope, .{ .coerced_ty = .manyptr_u8_type }, params[0]),
.byte = try expr(gz, scope, .{ .coerced_ty = .u8_type }, params[1]),
.byte_count = try expr(gz, scope, .{ .coerced_ty = .usize_type }, params[2]),
});
return rvalue(gz, rl, result, node);
},
.shuffle => {
const result = try gz.addPlNode(.shuffle, node, Zir.Inst.Shuffle{
.elem_type = try typeExpr(gz, scope, params[0]),
.a = try expr(gz, scope, .none, params[1]),
.b = try expr(gz, scope, .none, params[2]),
.mask = try comptimeExpr(gz, scope, .none, params[3]),
});
return rvalue(gz, rl, result, node);
},
.select => {
const result = try gz.addPlNode(.select, node, Zir.Inst.Select{
.elem_type = try typeExpr(gz, scope, params[0]),
.pred = try expr(gz, scope, .none, params[1]),
.a = try expr(gz, scope, .none, params[2]),
.b = try expr(gz, scope, .none, params[3]),
});
return rvalue(gz, rl, result, node);
},
.async_call => {
const result = try gz.addPlNode(.builtin_async_call, node, Zir.Inst.AsyncCall{
.frame_buffer = try expr(gz, scope, .none, params[0]),
.result_ptr = try expr(gz, scope, .none, params[1]),
.fn_ptr = try expr(gz, scope, .none, params[2]),
.args = try expr(gz, scope, .none, params[3]),
});
return rvalue(gz, rl, result, node);
},
.Vector => {
const result = try gz.addPlNode(.vector_type, node, Zir.Inst.Bin{
.lhs = try comptimeExpr(gz, scope, .{ .coerced_ty = .u32_type }, params[0]),
.rhs = try typeExpr(gz, scope, params[1]),
});
return rvalue(gz, rl, result, node);
},
.prefetch => {
const ptr = try expr(gz, scope, .none, params[0]);
const options = try comptimeExpr(gz, scope, .{ .ty = .prefetch_options_type }, params[1]);
const result = try gz.addExtendedPayload(.prefetch, Zir.Inst.BinNode{
.node = gz.nodeIndexToRelative(node),
.lhs = ptr,
.rhs = options,
});
return rvalue(gz, rl, result, node);
},
}
}
fn simpleNoOpVoid(
gz: *GenZir,
rl: ResultLoc,
node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
_ = try gz.addNode(tag, node);
return rvalue(gz, rl, .void_value, node);
}
fn hasDeclOrField(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs_node: Ast.Node.Index,
rhs_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const container_type = try typeExpr(gz, scope, lhs_node);
const name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, rhs_node);
const result = try gz.addPlNode(tag, node, Zir.Inst.Bin{
.lhs = container_type,
.rhs = name,
});
return rvalue(gz, rl, result, node);
}
fn typeCast(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs_node: Ast.Node.Index,
rhs_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const result = try gz.addPlNode(tag, node, Zir.Inst.Bin{
.lhs = try typeExpr(gz, scope, lhs_node),
.rhs = try expr(gz, scope, .none, rhs_node),
});
return rvalue(gz, rl, result, node);
}
fn simpleUnOpType(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
operand_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const operand = try typeExpr(gz, scope, operand_node);
const result = try gz.addUnNode(tag, operand, node);
return rvalue(gz, rl, result, node);
}
fn simpleUnOp(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
operand_rl: ResultLoc,
operand_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const operand = try expr(gz, scope, operand_rl, operand_node);
const result = try gz.addUnNode(tag, operand, node);
return rvalue(gz, rl, result, node);
}
fn cmpxchg(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
params: []const Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const int_type = try typeExpr(gz, scope, params[0]);
// TODO: allow this to be volatile
const ptr_type = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = false,
.is_mutable = true,
.is_volatile = false,
.size = .One,
.elem_type = int_type,
},
} });
const result = try gz.addPlNode(tag, node, Zir.Inst.Cmpxchg{
// zig fmt: off
.ptr = try expr(gz, scope, .{ .coerced_ty = ptr_type }, params[1]),
.expected_value = try expr(gz, scope, .{ .coerced_ty = int_type }, params[2]),
.new_value = try expr(gz, scope, .{ .coerced_ty = int_type }, params[3]),
.success_order = try expr(gz, scope, .{ .coerced_ty = .atomic_order_type }, params[4]),
.failure_order = try expr(gz, scope, .{ .coerced_ty = .atomic_order_type }, params[5]),
// zig fmt: on
});
return rvalue(gz, rl, result, node);
}
fn bitBuiltin(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
int_type_node: Ast.Node.Index,
operand_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
// The accepted proposal https://github.com/ziglang/zig/issues/6835
// tells us to remove the type parameter from these builtins. To stay
// source-compatible with stage1, we still observe the parameter here,
// but we do not encode it into the ZIR. To implement this proposal in
// stage2, only AstGen code will need to be changed.
_ = try typeExpr(gz, scope, int_type_node);
const operand = try expr(gz, scope, .none, operand_node);
const result = try gz.addUnNode(tag, operand, node);
return rvalue(gz, rl, result, node);
}
fn divBuiltin(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs_node: Ast.Node.Index,
rhs_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const result = try gz.addPlNode(tag, node, Zir.Inst.Bin{
.lhs = try expr(gz, scope, .none, lhs_node),
.rhs = try expr(gz, scope, .none, rhs_node),
});
return rvalue(gz, rl, result, node);
}
fn simpleCBuiltin(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
operand_node: Ast.Node.Index,
tag: Zir.Inst.Extended,
) InnerError!Zir.Inst.Ref {
const name: []const u8 = if (tag == .c_undef) "C undef" else "C include";
if (!gz.c_import) return gz.astgen.failNode(node, "{s} valid only inside C import block", .{name});
const operand = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, operand_node);
_ = try gz.addExtendedPayload(tag, Zir.Inst.UnNode{
.node = gz.nodeIndexToRelative(node),
.operand = operand,
});
return rvalue(gz, rl, .void_value, node);
}
fn offsetOf(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs_node: Ast.Node.Index,
rhs_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const type_inst = try typeExpr(gz, scope, lhs_node);
const field_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, rhs_node);
const result = try gz.addPlNode(tag, node, Zir.Inst.Bin{
.lhs = type_inst,
.rhs = field_name,
});
return rvalue(gz, rl, result, node);
}
fn shiftOp(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
lhs_node: Ast.Node.Index,
rhs_node: Ast.Node.Index,
tag: Zir.Inst.Tag,
) InnerError!Zir.Inst.Ref {
const lhs = try expr(gz, scope, .none, lhs_node);
const log2_int_type = try gz.addUnNode(.typeof_log2_int_type, lhs, lhs_node);
const rhs = try expr(gz, scope, .{ .ty = log2_int_type }, rhs_node);
const result = try gz.addPlNode(tag, node, Zir.Inst.Bin{
.lhs = lhs,
.rhs = rhs,
});
return rvalue(gz, rl, result, node);
}
fn cImport(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
body_node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
var block_scope = gz.makeSubBlock(scope);
block_scope.force_comptime = true;
block_scope.c_import = true;
defer block_scope.unstack();
const block_inst = try gz.makeBlockInst(.c_import, node);
const block_result = try expr(&block_scope, &block_scope.base, .none, body_node);
_ = try gz.addUnNode(.ensure_result_used, block_result, node);
if (!gz.refIsNoReturn(block_result)) {
_ = try block_scope.addBreak(.break_inline, block_inst, .void_value);
}
try block_scope.setBlockBody(block_inst);
// block_scope unstacked now, can add new instructions to gz
try gz.instructions.append(gpa, block_inst);
return indexToRef(block_inst);
}
fn overflowArithmetic(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
params: []const Ast.Node.Index,
tag: Zir.Inst.Extended,
) InnerError!Zir.Inst.Ref {
const int_type = try typeExpr(gz, scope, params[0]);
const ptr_type = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
.ptr_type_simple = .{
.is_allowzero = false,
.is_mutable = true,
.is_volatile = false,
.size = .One,
.elem_type = int_type,
},
} });
const lhs = try expr(gz, scope, .{ .ty = int_type }, params[1]);
const rhs = try expr(gz, scope, .{ .ty = int_type }, params[2]);
const ptr = try expr(gz, scope, .{ .ty = ptr_type }, params[3]);
const result = try gz.addExtendedPayload(tag, Zir.Inst.OverflowArithmetic{
.node = gz.nodeIndexToRelative(node),
.lhs = lhs,
.rhs = rhs,
.ptr = ptr,
});
return rvalue(gz, rl, result, node);
}
fn callExpr(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: Ast.Node.Index,
call: Ast.full.Call,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const callee = try calleeExpr(gz, scope, call.ast.fn_expr);
const modifier: std.builtin.CallOptions.Modifier = blk: {
if (gz.force_comptime) {
break :blk .compile_time;
}
if (call.async_token != null) {
break :blk .async_kw;
}
if (gz.nosuspend_node != 0) {
break :blk .no_async;
}
break :blk .auto;
};
{
astgen.advanceSourceCursor(astgen.tree.tokens.items(.start)[call.ast.lparen]);
const line = astgen.source_line - gz.decl_line;
const column = astgen.source_column;
_ = try gz.add(.{ .tag = .dbg_stmt, .data = .{
.dbg_stmt = .{
.line = line,
.column = column,
},
} });
}
assert(callee != .none);
assert(node != 0);
const payload_index = try addExtra(astgen, Zir.Inst.Call{
.callee = callee,
.flags = .{
.packed_modifier = @intCast(Zir.Inst.Call.Flags.PackedModifier, @enumToInt(modifier)),
.args_len = @intCast(Zir.Inst.Call.Flags.PackedArgsLen, call.ast.params.len),
},
});
var extra_index = try reserveExtra(astgen, call.ast.params.len);
for (call.ast.params) |param_node| {
// Parameters are always temporary values, they have no
// meaningful result location. Sema will coerce them.
const arg_ref = try expr(gz, scope, .none, param_node);
astgen.extra.items[extra_index] = @enumToInt(arg_ref);
extra_index += 1;
}
const call_inst = try gz.addPlNodePayloadIndex(.call, node, payload_index);
return rvalue(gz, rl, call_inst, node); // TODO function call with result location
}
/// calleeExpr generates the function part of a call expression (f in f(x)), or the
/// callee argument to the @call() builtin. If the lhs is a field access or the
/// @field() builtin, we need to generate a special field_call_bind instruction
/// instead of the normal field_val or field_ptr. If this is a inst.func() call,
/// this instruction will capture the value of the first argument before evaluating
/// the other arguments. We need to use .ref here to guarantee we will be able to
/// promote an lvalue to an address if the first parameter requires it. This
/// unfortunately also means we need to take a reference to any types on the lhs.
fn calleeExpr(
gz: *GenZir,
scope: *Scope,
node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
const astgen = gz.astgen;
const tree = astgen.tree;
const tag = tree.nodes.items(.tag)[node];
switch (tag) {
.field_access => return addFieldAccess(.field_call_bind, gz, scope, .ref, node),
.builtin_call_two,
.builtin_call_two_comma,
.builtin_call,
.builtin_call_comma,
=> {
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
var inline_params: [2]Ast.Node.Index = undefined;
var params: []Ast.Node.Index = switch (tag) {
.builtin_call,
.builtin_call_comma,
=> tree.extra_data[node_datas[node].lhs..node_datas[node].rhs],
.builtin_call_two,
.builtin_call_two_comma,
=> blk: {
inline_params = .{ node_datas[node].lhs, node_datas[node].rhs };
const len: usize = if (inline_params[0] == 0) @as(usize, 0) else if (inline_params[1] == 0) @as(usize, 1) else @as(usize, 2);
break :blk inline_params[0..len];
},
else => unreachable,
};
// If anything is wrong, fall back to builtinCall.
// It will emit any necessary compile errors and notes.
if (std.mem.eql(u8, builtin_name, "@field") and params.len == 2) {
const lhs = try expr(gz, scope, .ref, params[0]);
const field_name = try comptimeExpr(gz, scope, .{ .ty = .const_slice_u8_type }, params[1]);
return gz.addPlNode(.field_call_bind_named, node, Zir.Inst.FieldNamed{
.lhs = lhs,
.field_name = field_name,
});
}
return builtinCall(gz, scope, .none, node, params);
},
else => return expr(gz, scope, .none, node),
}
}
const primitives = std.ComptimeStringMap(Zir.Inst.Ref, .{
.{ "anyerror", .anyerror_type },
.{ "anyframe", .anyframe_type },
.{ "anyopaque", .anyopaque_type },
.{ "bool", .bool_type },
.{ "c_int", .c_int_type },
.{ "c_long", .c_long_type },
.{ "c_longdouble", .c_longdouble_type },
.{ "c_longlong", .c_longlong_type },
.{ "c_short", .c_short_type },
.{ "c_uint", .c_uint_type },
.{ "c_ulong", .c_ulong_type },
.{ "c_ulonglong", .c_ulonglong_type },
.{ "c_ushort", .c_ushort_type },
.{ "comptime_float", .comptime_float_type },
.{ "comptime_int", .comptime_int_type },
.{ "f128", .f128_type },
.{ "f16", .f16_type },
.{ "f32", .f32_type },
.{ "f64", .f64_type },
.{ "f80", .f80_type },
.{ "false", .bool_false },
.{ "i16", .i16_type },
.{ "i32", .i32_type },
.{ "i64", .i64_type },
.{ "i128", .i128_type },
.{ "i8", .i8_type },
.{ "isize", .isize_type },
.{ "noreturn", .noreturn_type },
.{ "null", .null_value },
.{ "true", .bool_true },
.{ "type", .type_type },
.{ "u16", .u16_type },
.{ "u32", .u32_type },
.{ "u64", .u64_type },
.{ "u128", .u128_type },
.{ "u1", .u1_type },
.{ "u8", .u8_type },
.{ "undefined", .undef },
.{ "usize", .usize_type },
.{ "void", .void_type },
});
fn nodeMayNeedMemoryLocation(tree: *const Ast, start_node: Ast.Node.Index, have_res_ty: bool) bool {
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
var node = start_node;
while (true) {
switch (node_tags[node]) {
.root,
.@"usingnamespace",
.test_decl,
.switch_case,
.switch_case_one,
.container_field_init,
.container_field_align,
.container_field,
.asm_output,
.asm_input,
=> unreachable,
.@"return",
.@"break",
.@"continue",
.bit_not,
.bool_not,
.global_var_decl,
.local_var_decl,
.simple_var_decl,
.aligned_var_decl,
.@"defer",
.@"errdefer",
.address_of,
.optional_type,
.negation,
.negation_wrap,
.@"resume",
.array_type,
.array_type_sentinel,
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
.@"suspend",
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
.fn_decl,
.anyframe_type,
.anyframe_literal,
.integer_literal,
.float_literal,
.enum_literal,
.string_literal,
.multiline_string_literal,
.char_literal,
.unreachable_literal,
.identifier,
.error_set_decl,
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
.@"asm",
.asm_simple,
.add,
.add_wrap,
.add_sat,
.array_cat,
.array_mult,
.assign,
.assign_bit_and,
.assign_bit_or,
.assign_shl,
.assign_shl_sat,
.assign_shr,
.assign_bit_xor,
.assign_div,
.assign_sub,
.assign_sub_wrap,
.assign_sub_sat,
.assign_mod,
.assign_add,
.assign_add_wrap,
.assign_add_sat,
.assign_mul,
.assign_mul_wrap,
.assign_mul_sat,
.bang_equal,
.bit_and,
.bit_or,
.shl,
.shl_sat,
.shr,
.bit_xor,
.bool_and,
.bool_or,
.div,
.equal_equal,
.error_union,
.greater_or_equal,
.greater_than,
.less_or_equal,
.less_than,
.merge_error_sets,
.mod,
.mul,
.mul_wrap,
.mul_sat,
.switch_range,
.field_access,
.sub,
.sub_wrap,
.sub_sat,
.slice,
.slice_open,
.slice_sentinel,
.deref,
.array_access,
.error_value,
.while_simple, // This variant cannot have an else expression.
.while_cont, // This variant cannot have an else expression.
.for_simple, // This variant cannot have an else expression.
.if_simple, // This variant cannot have an else expression.
=> return false,
// Forward the question to the LHS sub-expression.
.grouped_expression,
.@"try",
.@"await",
.@"comptime",
.@"nosuspend",
.unwrap_optional,
=> node = node_datas[node].lhs,
// Forward the question to the RHS sub-expression.
.@"catch",
.@"orelse",
=> node = node_datas[node].rhs,
// Array and struct init exprs write to result locs, but anon literals do not.
.array_init_one,
.array_init_one_comma,
.struct_init_one,
.struct_init_one_comma,
.array_init,
.array_init_comma,
.struct_init,
.struct_init_comma,
=> return have_res_ty or node_datas[node].lhs != 0,
// Anon literals do not need result location.
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
=> return have_res_ty,
// True because depending on comptime conditions, sub-expressions
// may be the kind that need memory locations.
.@"while", // This variant always has an else expression.
.@"if", // This variant always has an else expression.
.@"for", // This variant always has an else expression.
.@"switch",
.switch_comma,
.call_one,
.call_one_comma,
.async_call_one,
.async_call_one_comma,
.call,
.call_comma,
.async_call,
.async_call_comma,
=> return true,
.block_two,
.block_two_semicolon,
.block,
.block_semicolon,
=> {
const lbrace = main_tokens[node];
if (token_tags[lbrace - 1] == .colon) {
// Labeled blocks may need a memory location to forward
// to their break statements.
return true;
} else {
return false;
}
},
.builtin_call_two, .builtin_call_two_comma => {
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// If the builtin is an invalid name, we don't cause an error here; instead
// let it pass, and the error will be "invalid builtin function" later.
const builtin_info = BuiltinFn.list.get(builtin_name) orelse return false;
switch (builtin_info.needs_mem_loc) {
.never => return false,
.always => return true,
.forward1 => node = node_datas[node].rhs,
}
},
.builtin_call, .builtin_call_comma => {
const params = tree.extra_data[node_datas[node].lhs..node_datas[node].rhs];
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// If the builtin is an invalid name, we don't cause an error here; instead
// let it pass, and the error will be "invalid builtin function" later.
const builtin_info = BuiltinFn.list.get(builtin_name) orelse return false;
switch (builtin_info.needs_mem_loc) {
.never => return false,
.always => return true,
.forward1 => node = params[1],
}
},
}
}
}
fn nodeMayEvalToError(tree: *const Ast, start_node: Ast.Node.Index) BuiltinFn.EvalToError {
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
var node = start_node;
while (true) {
switch (node_tags[node]) {
.root,
.@"usingnamespace",
.test_decl,
.switch_case,
.switch_case_one,
.container_field_init,
.container_field_align,
.container_field,
.asm_output,
.asm_input,
=> unreachable,
.error_value => return .always,
.@"asm",
.asm_simple,
.identifier,
.field_access,
.deref,
.array_access,
.while_simple,
.while_cont,
.for_simple,
.if_simple,
.@"while",
.@"if",
.@"for",
.@"switch",
.switch_comma,
.call_one,
.call_one_comma,
.async_call_one,
.async_call_one_comma,
.call,
.call_comma,
.async_call,
.async_call_comma,
=> return .maybe,
.@"return",
.@"break",
.@"continue",
.bit_not,
.bool_not,
.global_var_decl,
.local_var_decl,
.simple_var_decl,
.aligned_var_decl,
.@"defer",
.@"errdefer",
.address_of,
.optional_type,
.negation,
.negation_wrap,
.@"resume",
.array_type,
.array_type_sentinel,
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
.@"suspend",
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
.fn_decl,
.anyframe_type,
.anyframe_literal,
.integer_literal,
.float_literal,
.enum_literal,
.string_literal,
.multiline_string_literal,
.char_literal,
.unreachable_literal,
.error_set_decl,
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
.add,
.add_wrap,
.add_sat,
.array_cat,
.array_mult,
.assign,
.assign_bit_and,
.assign_bit_or,
.assign_shl,
.assign_shl_sat,
.assign_shr,
.assign_bit_xor,
.assign_div,
.assign_sub,
.assign_sub_wrap,
.assign_sub_sat,
.assign_mod,
.assign_add,
.assign_add_wrap,
.assign_add_sat,
.assign_mul,
.assign_mul_wrap,
.assign_mul_sat,
.bang_equal,
.bit_and,
.bit_or,
.shl,
.shl_sat,
.shr,
.bit_xor,
.bool_and,
.bool_or,
.div,
.equal_equal,
.error_union,
.greater_or_equal,
.greater_than,
.less_or_equal,
.less_than,
.merge_error_sets,
.mod,
.mul,
.mul_wrap,
.mul_sat,
.switch_range,
.sub,
.sub_wrap,
.sub_sat,
.slice,
.slice_open,
.slice_sentinel,
.array_init_one,
.array_init_one_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.array_init,
.array_init_comma,
.struct_init_one,
.struct_init_one_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
.struct_init,
.struct_init_comma,
=> return .never,
// Forward the question to the LHS sub-expression.
.grouped_expression,
.@"try",
.@"await",
.@"comptime",
.@"nosuspend",
.unwrap_optional,
=> node = node_datas[node].lhs,
// LHS sub-expression may still be an error under the outer optional or error union
.@"catch",
.@"orelse",
=> return .maybe,
.block_two,
.block_two_semicolon,
.block,
.block_semicolon,
=> {
const lbrace = main_tokens[node];
if (token_tags[lbrace - 1] == .colon) {
// Labeled blocks may need a memory location to forward
// to their break statements.
return .maybe;
} else {
return .never;
}
},
.builtin_call,
.builtin_call_comma,
.builtin_call_two,
.builtin_call_two_comma,
=> {
const builtin_token = main_tokens[node];
const builtin_name = tree.tokenSlice(builtin_token);
// If the builtin is an invalid name, we don't cause an error here; instead
// let it pass, and the error will be "invalid builtin function" later.
const builtin_info = BuiltinFn.list.get(builtin_name) orelse return .maybe;
return builtin_info.eval_to_error;
},
}
}
}
/// Returns `true` if it is known the type expression has more than one possible value;
/// `false` otherwise.
fn nodeImpliesMoreThanOnePossibleValue(tree: *const Ast, start_node: Ast.Node.Index) bool {
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
var node = start_node;
while (true) {
switch (node_tags[node]) {
.root,
.@"usingnamespace",
.test_decl,
.switch_case,
.switch_case_one,
.container_field_init,
.container_field_align,
.container_field,
.asm_output,
.asm_input,
.global_var_decl,
.local_var_decl,
.simple_var_decl,
.aligned_var_decl,
=> unreachable,
.@"return",
.@"break",
.@"continue",
.bit_not,
.bool_not,
.@"defer",
.@"errdefer",
.address_of,
.negation,
.negation_wrap,
.@"resume",
.array_type,
.@"suspend",
.fn_decl,
.anyframe_literal,
.integer_literal,
.float_literal,
.enum_literal,
.string_literal,
.multiline_string_literal,
.char_literal,
.unreachable_literal,
.error_set_decl,
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
.@"asm",
.asm_simple,
.add,
.add_wrap,
.add_sat,
.array_cat,
.array_mult,
.assign,
.assign_bit_and,
.assign_bit_or,
.assign_shl,
.assign_shl_sat,
.assign_shr,
.assign_bit_xor,
.assign_div,
.assign_sub,
.assign_sub_wrap,
.assign_sub_sat,
.assign_mod,
.assign_add,
.assign_add_wrap,
.assign_add_sat,
.assign_mul,
.assign_mul_wrap,
.assign_mul_sat,
.bang_equal,
.bit_and,
.bit_or,
.shl,
.shl_sat,
.shr,
.bit_xor,
.bool_and,
.bool_or,
.div,
.equal_equal,
.error_union,
.greater_or_equal,
.greater_than,
.less_or_equal,
.less_than,
.merge_error_sets,
.mod,
.mul,
.mul_wrap,
.mul_sat,
.switch_range,
.field_access,
.sub,
.sub_wrap,
.sub_sat,
.slice,
.slice_open,
.slice_sentinel,
.deref,
.array_access,
.error_value,
.while_simple,
.while_cont,
.for_simple,
.if_simple,
.@"catch",
.@"orelse",
.array_init_one,
.array_init_one_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.array_init,
.array_init_comma,
.struct_init_one,
.struct_init_one_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
.struct_init,
.struct_init_comma,
.@"while",
.@"if",
.@"for",
.@"switch",
.switch_comma,
.call_one,
.call_one_comma,
.async_call_one,
.async_call_one_comma,
.call,
.call_comma,
.async_call,
.async_call_comma,
.block_two,
.block_two_semicolon,
.block,
.block_semicolon,
.builtin_call,
.builtin_call_comma,
.builtin_call_two,
.builtin_call_two_comma,
// these are function bodies, not pointers
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
=> return false,
// Forward the question to the LHS sub-expression.
.grouped_expression,
.@"try",
.@"await",
.@"comptime",
.@"nosuspend",
.unwrap_optional,
=> node = node_datas[node].lhs,
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
.optional_type,
.anyframe_type,
.array_type_sentinel,
=> return true,
.identifier => {
const main_tokens = tree.nodes.items(.main_token);
const ident_bytes = tree.tokenSlice(main_tokens[node]);
if (primitives.get(ident_bytes)) |primitive| switch (primitive) {
.anyerror_type,
.anyframe_type,
.anyopaque_type,
.bool_type,
.c_int_type,
.c_long_type,
.c_longdouble_type,
.c_longlong_type,
.c_short_type,
.c_uint_type,
.c_ulong_type,
.c_ulonglong_type,
.c_ushort_type,
.comptime_float_type,
.comptime_int_type,
.f16_type,
.f32_type,
.f64_type,
.f80_type,
.f128_type,
.i16_type,
.i32_type,
.i64_type,
.i128_type,
.i8_type,
.isize_type,
.type_type,
.u16_type,
.u32_type,
.u64_type,
.u128_type,
.u1_type,
.u8_type,
.usize_type,
=> return true,
.void_type,
.bool_false,
.bool_true,
.null_value,
.undef,
.noreturn_type,
=> return false,
else => unreachable, // that's all the values from `primitives`.
} else {
return false;
}
},
}
}
}
/// Returns `true` if it is known the expression is a type that cannot be used at runtime;
/// `false` otherwise.
fn nodeImpliesComptimeOnly(tree: *const Ast, start_node: Ast.Node.Index) bool {
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
var node = start_node;
while (true) {
switch (node_tags[node]) {
.root,
.@"usingnamespace",
.test_decl,
.switch_case,
.switch_case_one,
.container_field_init,
.container_field_align,
.container_field,
.asm_output,
.asm_input,
.global_var_decl,
.local_var_decl,
.simple_var_decl,
.aligned_var_decl,
=> unreachable,
.@"return",
.@"break",
.@"continue",
.bit_not,
.bool_not,
.@"defer",
.@"errdefer",
.address_of,
.negation,
.negation_wrap,
.@"resume",
.array_type,
.@"suspend",
.fn_decl,
.anyframe_literal,
.integer_literal,
.float_literal,
.enum_literal,
.string_literal,
.multiline_string_literal,
.char_literal,
.unreachable_literal,
.error_set_decl,
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
.@"asm",
.asm_simple,
.add,
.add_wrap,
.add_sat,
.array_cat,
.array_mult,
.assign,
.assign_bit_and,
.assign_bit_or,
.assign_shl,
.assign_shl_sat,
.assign_shr,
.assign_bit_xor,
.assign_div,
.assign_sub,
.assign_sub_wrap,
.assign_sub_sat,
.assign_mod,
.assign_add,
.assign_add_wrap,
.assign_add_sat,
.assign_mul,
.assign_mul_wrap,
.assign_mul_sat,
.bang_equal,
.bit_and,
.bit_or,
.shl,
.shl_sat,
.shr,
.bit_xor,
.bool_and,
.bool_or,
.div,
.equal_equal,
.error_union,
.greater_or_equal,
.greater_than,
.less_or_equal,
.less_than,
.merge_error_sets,
.mod,
.mul,
.mul_wrap,
.mul_sat,
.switch_range,
.field_access,
.sub,
.sub_wrap,
.sub_sat,
.slice,
.slice_open,
.slice_sentinel,
.deref,
.array_access,
.error_value,
.while_simple,
.while_cont,
.for_simple,
.if_simple,
.@"catch",
.@"orelse",
.array_init_one,
.array_init_one_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.array_init_dot,
.array_init_dot_comma,
.array_init,
.array_init_comma,
.struct_init_one,
.struct_init_one_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
.struct_init,
.struct_init_comma,
.@"while",
.@"if",
.@"for",
.@"switch",
.switch_comma,
.call_one,
.call_one_comma,
.async_call_one,
.async_call_one_comma,
.call,
.call_comma,
.async_call,
.async_call_comma,
.block_two,
.block_two_semicolon,
.block,
.block_semicolon,
.builtin_call,
.builtin_call_comma,
.builtin_call_two,
.builtin_call_two_comma,
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
.optional_type,
.anyframe_type,
.array_type_sentinel,
=> return false,
// these are function bodies, not pointers
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
=> return true,
// Forward the question to the LHS sub-expression.
.grouped_expression,
.@"try",
.@"await",
.@"comptime",
.@"nosuspend",
.unwrap_optional,
=> node = node_datas[node].lhs,
.identifier => {
const main_tokens = tree.nodes.items(.main_token);
const ident_bytes = tree.tokenSlice(main_tokens[node]);
if (primitives.get(ident_bytes)) |primitive| switch (primitive) {
.anyerror_type,
.anyframe_type,
.anyopaque_type,
.bool_type,
.c_int_type,
.c_long_type,
.c_longdouble_type,
.c_longlong_type,
.c_short_type,
.c_uint_type,
.c_ulong_type,
.c_ulonglong_type,
.c_ushort_type,
.f16_type,
.f32_type,
.f64_type,
.f80_type,
.f128_type,
.i16_type,
.i32_type,
.i64_type,
.i128_type,
.i8_type,
.isize_type,
.u16_type,
.u32_type,
.u64_type,
.u128_type,
.u1_type,
.u8_type,
.usize_type,
.void_type,
.bool_false,
.bool_true,
.null_value,
.undef,
.noreturn_type,
=> return false,
.comptime_float_type,
.comptime_int_type,
.type_type,
=> return true,
else => unreachable, // that's all the values from `primitives`.
} else {
return false;
}
},
}
}
}
/// Applies `rl` semantics to `result`. Expressions which do not do their own handling of
/// result locations must call this function on their result.
/// As an example, if the `ResultLoc` is `ptr`, it will write the result to the pointer.
/// If the `ResultLoc` is `ty`, it will coerce the result to the type.
/// Assumes nothing stacked on `gz`.
fn rvalue(
gz: *GenZir,
rl: ResultLoc,
result: Zir.Inst.Ref,
src_node: Ast.Node.Index,
) InnerError!Zir.Inst.Ref {
if (gz.endsWithNoReturn()) return result;
switch (rl) {
.none, .coerced_ty => return result,
.discard => {
// Emit a compile error for discarding error values.
_ = try gz.addUnNode(.ensure_result_non_error, result, src_node);
return result;
},
.ref => {
// We need a pointer but we have a value.
const tree = gz.astgen.tree;
const src_token = tree.firstToken(src_node);
return gz.addUnTok(.ref, result, src_token);
},
.ty => |ty_inst| {
// Quickly eliminate some common, unnecessary type coercion.
const as_ty = @as(u64, @enumToInt(Zir.Inst.Ref.type_type)) << 32;
const as_comptime_int = @as(u64, @enumToInt(Zir.Inst.Ref.comptime_int_type)) << 32;
const as_bool = @as(u64, @enumToInt(Zir.Inst.Ref.bool_type)) << 32;
const as_usize = @as(u64, @enumToInt(Zir.Inst.Ref.usize_type)) << 32;
const as_void = @as(u64, @enumToInt(Zir.Inst.Ref.void_type)) << 32;
switch ((@as(u64, @enumToInt(ty_inst)) << 32) | @as(u64, @enumToInt(result))) {
as_ty | @enumToInt(Zir.Inst.Ref.u1_type),
as_ty | @enumToInt(Zir.Inst.Ref.u8_type),
as_ty | @enumToInt(Zir.Inst.Ref.i8_type),
as_ty | @enumToInt(Zir.Inst.Ref.u16_type),
as_ty | @enumToInt(Zir.Inst.Ref.i16_type),
as_ty | @enumToInt(Zir.Inst.Ref.u32_type),
as_ty | @enumToInt(Zir.Inst.Ref.i32_type),
as_ty | @enumToInt(Zir.Inst.Ref.u64_type),
as_ty | @enumToInt(Zir.Inst.Ref.i64_type),
as_ty | @enumToInt(Zir.Inst.Ref.usize_type),
as_ty | @enumToInt(Zir.Inst.Ref.isize_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_short_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_ushort_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_int_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_uint_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_long_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_ulong_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_longlong_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_ulonglong_type),
as_ty | @enumToInt(Zir.Inst.Ref.c_longdouble_type),
as_ty | @enumToInt(Zir.Inst.Ref.f16_type),
as_ty | @enumToInt(Zir.Inst.Ref.f32_type),
as_ty | @enumToInt(Zir.Inst.Ref.f64_type),
as_ty | @enumToInt(Zir.Inst.Ref.f80_type),
as_ty | @enumToInt(Zir.Inst.Ref.f128_type),
as_ty | @enumToInt(Zir.Inst.Ref.anyopaque_type),
as_ty | @enumToInt(Zir.Inst.Ref.bool_type),
as_ty | @enumToInt(Zir.Inst.Ref.void_type),
as_ty | @enumToInt(Zir.Inst.Ref.type_type),
as_ty | @enumToInt(Zir.Inst.Ref.anyerror_type),
as_ty | @enumToInt(Zir.Inst.Ref.comptime_int_type),
as_ty | @enumToInt(Zir.Inst.Ref.comptime_float_type),
as_ty | @enumToInt(Zir.Inst.Ref.noreturn_type),
as_ty | @enumToInt(Zir.Inst.Ref.null_type),
as_ty | @enumToInt(Zir.Inst.Ref.undefined_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_noreturn_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_void_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_naked_noreturn_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.fn_ccc_void_no_args_type),
as_ty | @enumToInt(Zir.Inst.Ref.single_const_pointer_to_comptime_int_type),
as_ty | @enumToInt(Zir.Inst.Ref.const_slice_u8_type),
as_ty | @enumToInt(Zir.Inst.Ref.enum_literal_type),
as_comptime_int | @enumToInt(Zir.Inst.Ref.zero),
as_comptime_int | @enumToInt(Zir.Inst.Ref.one),
as_bool | @enumToInt(Zir.Inst.Ref.bool_true),
as_bool | @enumToInt(Zir.Inst.Ref.bool_false),
as_usize | @enumToInt(Zir.Inst.Ref.zero_usize),
as_usize | @enumToInt(Zir.Inst.Ref.one_usize),
as_void | @enumToInt(Zir.Inst.Ref.void_value),
=> return result, // type of result is already correct
// Need an explicit type coercion instruction.
else => return gz.addPlNode(.as_node, src_node, Zir.Inst.As{
.dest_type = ty_inst,
.operand = result,
}),
}
},
.ptr => |ptr_inst| {
if (gz.rvalue_noresult != ptr_inst) {
_ = try gz.addPlNode(.store_node, src_node, Zir.Inst.Bin{
.lhs = ptr_inst,
.rhs = result,
});
}
return result;
},
.inferred_ptr => |alloc| {
if (gz.rvalue_noresult != alloc) {
_ = try gz.addBin(.store_to_inferred_ptr, alloc, result);
}
return result;
},
.block_ptr => |block_scope| {
if (gz.rvalue_noresult != block_scope.rl_ptr) {
block_scope.rvalue_rl_count += 1;
_ = try gz.addBin(.store_to_block_ptr, block_scope.rl_ptr, result);
}
return result;
},
}
}
/// Given an identifier token, obtain the string for it.
/// If the token uses @"" syntax, parses as a string, reports errors if applicable,
/// and allocates the result within `astgen.arena`.
/// Otherwise, returns a reference to the source code bytes directly.
/// See also `appendIdentStr` and `parseStrLit`.
fn identifierTokenString(astgen: *AstGen, token: Ast.TokenIndex) InnerError![]const u8 {
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
assert(token_tags[token] == .identifier);
const ident_name = tree.tokenSlice(token);
if (!mem.startsWith(u8, ident_name, "@")) {
return ident_name;
}
var buf: ArrayListUnmanaged(u8) = .{};
defer buf.deinit(astgen.gpa);
try astgen.parseStrLit(token, &buf, ident_name, 1);
const duped = try astgen.arena.dupe(u8, buf.items);
return duped;
}
/// Given an identifier token, obtain the string for it (possibly parsing as a string
/// literal if it is @"" syntax), and append the string to `buf`.
/// See also `identifierTokenString` and `parseStrLit`.
fn appendIdentStr(
astgen: *AstGen,
token: Ast.TokenIndex,
buf: *ArrayListUnmanaged(u8),
) InnerError!void {
const tree = astgen.tree;
const token_tags = tree.tokens.items(.tag);
assert(token_tags[token] == .identifier);
const ident_name = tree.tokenSlice(token);
if (!mem.startsWith(u8, ident_name, "@")) {
return buf.appendSlice(astgen.gpa, ident_name);
} else {
return astgen.parseStrLit(token, buf, ident_name, 1);
}
}
/// Appends the result to `buf`.
fn parseStrLit(
astgen: *AstGen,
token: Ast.TokenIndex,
buf: *ArrayListUnmanaged(u8),
bytes: []const u8,
offset: u32,
) InnerError!void {
const raw_string = bytes[offset..];
var buf_managed = buf.toManaged(astgen.gpa);
const result = std.zig.string_literal.parseAppend(&buf_managed, raw_string);
buf.* = buf_managed.moveToUnmanaged();
switch (try result) {
.success => return,
.failure => |err| return astgen.failWithStrLitError(err, token, bytes, offset),
}
}
fn failWithStrLitError(astgen: *AstGen, err: std.zig.string_literal.Error, token: Ast.TokenIndex, bytes: []const u8, offset: u32) InnerError {
const raw_string = bytes[offset..];
switch (err) {
.invalid_escape_character => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"invalid escape character: '{c}'",
.{raw_string[bad_index]},
);
},
.expected_hex_digit => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"expected hex digit, found '{c}'",
.{raw_string[bad_index]},
);
},
.empty_unicode_escape_sequence => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"empty unicode escape sequence",
.{},
);
},
.expected_hex_digit_or_rbrace => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"expected hex digit or '}}', found '{c}'",
.{raw_string[bad_index]},
);
},
.invalid_unicode_codepoint => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"unicode escape does not correspond to a valid codepoint",
.{},
);
},
.expected_lbrace => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"expected '{{', found '{c}",
.{raw_string[bad_index]},
);
},
.expected_rbrace => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"expected '}}', found '{c}",
.{raw_string[bad_index]},
);
},
.expected_single_quote => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"expected single quote ('), found '{c}",
.{raw_string[bad_index]},
);
},
.invalid_character => |bad_index| {
return astgen.failOff(
token,
offset + @intCast(u32, bad_index),
"invalid byte in string or character literal: '{c}'",
.{raw_string[bad_index]},
);
},
}
}
fn failNode(
astgen: *AstGen,
node: Ast.Node.Index,
comptime format: []const u8,
args: anytype,
) InnerError {
return astgen.failNodeNotes(node, format, args, &[0]u32{});
}
fn appendErrorNode(
astgen: *AstGen,
node: Ast.Node.Index,
comptime format: []const u8,
args: anytype,
) Allocator.Error!void {
try astgen.appendErrorNodeNotes(node, format, args, &[0]u32{});
}
fn appendErrorNodeNotes(
astgen: *AstGen,
node: Ast.Node.Index,
comptime format: []const u8,
args: anytype,
notes: []const u32,
) Allocator.Error!void {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
try string_bytes.writer(astgen.gpa).print(format ++ "\x00", args);
const notes_index: u32 = if (notes.len != 0) blk: {
const notes_start = astgen.extra.items.len;
try astgen.extra.ensureTotalCapacity(astgen.gpa, notes_start + 1 + notes.len);
astgen.extra.appendAssumeCapacity(@intCast(u32, notes.len));
astgen.extra.appendSliceAssumeCapacity(notes);
break :blk @intCast(u32, notes_start);
} else 0;
try astgen.compile_errors.append(astgen.gpa, .{
.msg = msg,
.node = node,
.token = 0,
.byte_offset = 0,
.notes = notes_index,
});
}
fn failNodeNotes(
astgen: *AstGen,
node: Ast.Node.Index,
comptime format: []const u8,
args: anytype,
notes: []const u32,
) InnerError {
try appendErrorNodeNotes(astgen, node, format, args, notes);
return error.AnalysisFail;
}
fn failTok(
astgen: *AstGen,
token: Ast.TokenIndex,
comptime format: []const u8,
args: anytype,
) InnerError {
return astgen.failTokNotes(token, format, args, &[0]u32{});
}
fn appendErrorTok(
astgen: *AstGen,
token: Ast.TokenIndex,
comptime format: []const u8,
args: anytype,
) !void {
try astgen.appendErrorTokNotes(token, format, args, &[0]u32{});
}
fn failTokNotes(
astgen: *AstGen,
token: Ast.TokenIndex,
comptime format: []const u8,
args: anytype,
notes: []const u32,
) InnerError {
try appendErrorTokNotes(astgen, token, format, args, notes);
return error.AnalysisFail;
}
fn appendErrorTokNotes(
astgen: *AstGen,
token: Ast.TokenIndex,
comptime format: []const u8,
args: anytype,
notes: []const u32,
) !void {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
try string_bytes.writer(astgen.gpa).print(format ++ "\x00", args);
const notes_index: u32 = if (notes.len != 0) blk: {
const notes_start = astgen.extra.items.len;
try astgen.extra.ensureTotalCapacity(astgen.gpa, notes_start + 1 + notes.len);
astgen.extra.appendAssumeCapacity(@intCast(u32, notes.len));
astgen.extra.appendSliceAssumeCapacity(notes);
break :blk @intCast(u32, notes_start);
} else 0;
try astgen.compile_errors.append(astgen.gpa, .{
.msg = msg,
.node = 0,
.token = token,
.byte_offset = 0,
.notes = notes_index,
});
}
/// Same as `fail`, except given an absolute byte offset.
fn failOff(
astgen: *AstGen,
token: Ast.TokenIndex,
byte_offset: u32,
comptime format: []const u8,
args: anytype,
) InnerError {
try appendErrorOff(astgen, token, byte_offset, format, args);
return error.AnalysisFail;
}
fn appendErrorOff(
astgen: *AstGen,
token: Ast.TokenIndex,
byte_offset: u32,
comptime format: []const u8,
args: anytype,
) Allocator.Error!void {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
try string_bytes.writer(astgen.gpa).print(format ++ "\x00", args);
try astgen.compile_errors.append(astgen.gpa, .{
.msg = msg,
.node = 0,
.token = token,
.byte_offset = byte_offset,
.notes = 0,
});
}
fn errNoteTok(
astgen: *AstGen,
token: Ast.TokenIndex,
comptime format: []const u8,
args: anytype,
) Allocator.Error!u32 {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
try string_bytes.writer(astgen.gpa).print(format ++ "\x00", args);
return astgen.addExtra(Zir.Inst.CompileErrors.Item{
.msg = msg,
.node = 0,
.token = token,
.byte_offset = 0,
.notes = 0,
});
}
fn errNoteNode(
astgen: *AstGen,
node: Ast.Node.Index,
comptime format: []const u8,
args: anytype,
) Allocator.Error!u32 {
@setCold(true);
const string_bytes = &astgen.string_bytes;
const msg = @intCast(u32, string_bytes.items.len);
try string_bytes.writer(astgen.gpa).print(format ++ "\x00", args);
return astgen.addExtra(Zir.Inst.CompileErrors.Item{
.msg = msg,
.node = node,
.token = 0,
.byte_offset = 0,
.notes = 0,
});
}
fn identAsString(astgen: *AstGen, ident_token: Ast.TokenIndex) !u32 {
const gpa = astgen.gpa;
const string_bytes = &astgen.string_bytes;
const str_index = @intCast(u32, string_bytes.items.len);
try astgen.appendIdentStr(ident_token, string_bytes);
const key = string_bytes.items[str_index..];
const gop = try astgen.string_table.getOrPutContextAdapted(gpa, @as([]const u8, key), StringIndexAdapter{
.bytes = string_bytes,
}, StringIndexContext{
.bytes = string_bytes,
});
if (gop.found_existing) {
string_bytes.shrinkRetainingCapacity(str_index);
return gop.key_ptr.*;
} else {
gop.key_ptr.* = str_index;
try string_bytes.append(gpa, 0);
return str_index;
}
}
/// Adds a doc comment block to `string_bytes` by walking backwards from `end_token`.
/// `end_token` must point at the first token after the last doc coment line.
/// Returns 0 if no doc comment is present.
fn docCommentAsString(astgen: *AstGen, end_token: Ast.TokenIndex) !u32 {
if (end_token == 0) return @as(u32, 0);
const token_tags = astgen.tree.tokens.items(.tag);
var tok = end_token - 1;
while (token_tags[tok] == .doc_comment) {
if (tok == 0) break;
tok -= 1;
} else {
tok += 1;
}
return docCommentAsStringFromFirst(astgen, end_token, tok);
}
/// end_token must be > the index of the last doc comment.
fn docCommentAsStringFromFirst(
astgen: *AstGen,
end_token: Ast.TokenIndex,
start_token: Ast.TokenIndex,
) !u32 {
if (start_token == end_token) return 0;
const gpa = astgen.gpa;
const string_bytes = &astgen.string_bytes;
const str_index = @intCast(u32, string_bytes.items.len);
const token_starts = astgen.tree.tokens.items(.start);
const token_tags = astgen.tree.tokens.items(.tag);
const total_bytes = token_starts[end_token] - token_starts[start_token];
try string_bytes.ensureUnusedCapacity(gpa, total_bytes);
var current_token = start_token;
while (current_token < end_token) : (current_token += 1) {
switch (token_tags[current_token]) {
.doc_comment => {
const tok_bytes = astgen.tree.tokenSlice(current_token)[3..];
string_bytes.appendSliceAssumeCapacity(tok_bytes);
if (current_token != end_token - 1) {
string_bytes.appendAssumeCapacity('\n');
}
},
else => break,
}
}
const key = string_bytes.items[str_index..];
const gop = try astgen.string_table.getOrPutContextAdapted(gpa, @as([]const u8, key), StringIndexAdapter{
.bytes = string_bytes,
}, StringIndexContext{
.bytes = string_bytes,
});
if (gop.found_existing) {
string_bytes.shrinkRetainingCapacity(str_index);
return gop.key_ptr.*;
} else {
gop.key_ptr.* = str_index;
try string_bytes.append(gpa, 0);
return str_index;
}
}
const IndexSlice = struct { index: u32, len: u32 };
fn strLitAsString(astgen: *AstGen, str_lit_token: Ast.TokenIndex) !IndexSlice {
const gpa = astgen.gpa;
const string_bytes = &astgen.string_bytes;
const str_index = @intCast(u32, string_bytes.items.len);
const token_bytes = astgen.tree.tokenSlice(str_lit_token);
try astgen.parseStrLit(str_lit_token, string_bytes, token_bytes, 0);
const key = string_bytes.items[str_index..];
const gop = try astgen.string_table.getOrPutContextAdapted(gpa, @as([]const u8, key), StringIndexAdapter{
.bytes = string_bytes,
}, StringIndexContext{
.bytes = string_bytes,
});
if (gop.found_existing) {
string_bytes.shrinkRetainingCapacity(str_index);
return IndexSlice{
.index = gop.key_ptr.*,
.len = @intCast(u32, key.len),
};
} else {
gop.key_ptr.* = str_index;
// Still need a null byte because we are using the same table
// to lookup null terminated strings, so if we get a match, it has to
// be null terminated for that to work.
try string_bytes.append(gpa, 0);
return IndexSlice{
.index = str_index,
.len = @intCast(u32, key.len),
};
}
}
fn strLitNodeAsString(astgen: *AstGen, node: Ast.Node.Index) !IndexSlice {
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const start = node_datas[node].lhs;
const end = node_datas[node].rhs;
const gpa = astgen.gpa;
const string_bytes = &astgen.string_bytes;
const str_index = string_bytes.items.len;
// First line: do not append a newline.
var tok_i = start;
{
const slice = tree.tokenSlice(tok_i);
const line_bytes = slice[2 .. slice.len - 1];
try string_bytes.appendSlice(gpa, line_bytes);
tok_i += 1;
}
// Following lines: each line prepends a newline.
while (tok_i <= end) : (tok_i += 1) {
const slice = tree.tokenSlice(tok_i);
const line_bytes = slice[2 .. slice.len - 1];
try string_bytes.ensureUnusedCapacity(gpa, line_bytes.len + 1);
string_bytes.appendAssumeCapacity('\n');
string_bytes.appendSliceAssumeCapacity(line_bytes);
}
const len = string_bytes.items.len - str_index;
try string_bytes.append(gpa, 0);
return IndexSlice{
.index = @intCast(u32, str_index),
.len = @intCast(u32, len),
};
}
fn testNameString(astgen: *AstGen, str_lit_token: Ast.TokenIndex) !u32 {
const gpa = astgen.gpa;
const string_bytes = &astgen.string_bytes;
const str_index = @intCast(u32, string_bytes.items.len);
const token_bytes = astgen.tree.tokenSlice(str_lit_token);
try string_bytes.append(gpa, 0); // Indicates this is a test.
try astgen.parseStrLit(str_lit_token, string_bytes, token_bytes, 0);
try string_bytes.append(gpa, 0);
return str_index;
}
const Scope = struct {
tag: Tag,
fn cast(base: *Scope, comptime T: type) ?*T {
if (T == Defer) {
switch (base.tag) {
.defer_normal, .defer_error => return @fieldParentPtr(T, "base", base),
else => return null,
}
}
if (base.tag != T.base_tag)
return null;
return @fieldParentPtr(T, "base", base);
}
fn parent(base: *Scope) ?*Scope {
return switch (base.tag) {
.gen_zir => base.cast(GenZir).?.parent,
.local_val => base.cast(LocalVal).?.parent,
.local_ptr => base.cast(LocalPtr).?.parent,
.defer_normal, .defer_error => base.cast(Defer).?.parent,
.namespace => base.cast(Namespace).?.parent,
.top => null,
};
}
const Tag = enum {
gen_zir,
local_val,
local_ptr,
defer_normal,
defer_error,
namespace,
top,
};
/// The category of identifier. These tag names are user-visible in compile errors.
const IdCat = enum {
@"function parameter",
@"local constant",
@"local variable",
@"loop index capture",
@"capture",
};
/// This is always a `const` local and importantly the `inst` is a value type, not a pointer.
/// This structure lives as long as the AST generation of the Block
/// node that contains the variable.
const LocalVal = struct {
const base_tag: Tag = .local_val;
base: Scope = Scope{ .tag = base_tag },
/// Parents can be: `LocalVal`, `LocalPtr`, `GenZir`, `Defer`, `Namespace`.
parent: *Scope,
gen_zir: *GenZir,
inst: Zir.Inst.Ref,
/// Source location of the corresponding variable declaration.
token_src: Ast.TokenIndex,
/// String table index.
name: u32,
id_cat: IdCat,
/// Track whether the name has been referenced.
used: bool = false,
};
/// This could be a `const` or `var` local. It has a pointer instead of a value.
/// This structure lives as long as the AST generation of the Block
/// node that contains the variable.
const LocalPtr = struct {
const base_tag: Tag = .local_ptr;
base: Scope = Scope{ .tag = base_tag },
/// Parents can be: `LocalVal`, `LocalPtr`, `GenZir`, `Defer`, `Namespace`.
parent: *Scope,
gen_zir: *GenZir,
ptr: Zir.Inst.Ref,
/// Source location of the corresponding variable declaration.
token_src: Ast.TokenIndex,
/// String table index.
name: u32,
id_cat: IdCat,
/// true means we find out during Sema whether the value is comptime.
/// false means it is already known at AstGen the value is runtime-known.
maybe_comptime: bool,
/// Track whether the name has been referenced.
used: bool = false,
};
const Defer = struct {
base: Scope,
/// Parents can be: `LocalVal`, `LocalPtr`, `GenZir`, `Defer`, `Namespace`.
parent: *Scope,
defer_node: Ast.Node.Index,
source_offset: u32,
source_line: u32,
source_column: u32,
};
/// Represents a global scope that has any number of declarations in it.
/// Each declaration has this as the parent scope.
const Namespace = struct {
const base_tag: Tag = .namespace;
base: Scope = Scope{ .tag = base_tag },
/// Parents can be: `LocalVal`, `LocalPtr`, `GenZir`, `Defer`, `Namespace`.
parent: *Scope,
/// Maps string table index to the source location of declaration,
/// for the purposes of reporting name shadowing compile errors.
decls: std.AutoHashMapUnmanaged(u32, Ast.Node.Index) = .{},
node: Ast.Node.Index,
inst: Zir.Inst.Index,
/// The astgen scope containing this namespace.
/// Only valid during astgen.
declaring_gz: ?*GenZir,
/// Map from the raw captured value to the instruction
/// ref of the capture for decls in this namespace
captures: std.AutoArrayHashMapUnmanaged(Zir.Inst.Index, Zir.Inst.Index) = .{},
pub fn deinit(self: *Namespace, gpa: Allocator) void {
self.decls.deinit(gpa);
self.captures.deinit(gpa);
self.* = undefined;
}
};
const Top = struct {
const base_tag: Scope.Tag = .top;
base: Scope = Scope{ .tag = base_tag },
};
};
/// This is a temporary structure; references to it are valid only
/// while constructing a `Zir`.
const GenZir = struct {
const base_tag: Scope.Tag = .gen_zir;
base: Scope = Scope{ .tag = base_tag },
force_comptime: bool,
/// This is set to true for inline loops; false otherwise.
is_inline: bool = false,
in_defer: bool,
c_import: bool = false,
/// How decls created in this scope should be named.
anon_name_strategy: Zir.Inst.NameStrategy = .anon,
/// The containing decl AST node.
decl_node_index: Ast.Node.Index,
/// The containing decl line index, absolute.
decl_line: u32,
/// Parents can be: `LocalVal`, `LocalPtr`, `GenZir`, `Defer`, `Namespace`.
parent: *Scope,
/// All `GenZir` scopes for the same ZIR share this.
astgen: *AstGen,
/// Keeps track of the list of instructions in this scope. Possibly shared.
/// Indexes to instructions in `astgen`.
instructions: *ArrayListUnmanaged(Zir.Inst.Index),
/// A sub-block may share its instructions ArrayList with containing GenZir,
/// if use is strictly nested. This saves prior size of list for unstacking.
instructions_top: usize,
label: ?Label = null,
break_block: Zir.Inst.Index = 0,
continue_block: Zir.Inst.Index = 0,
/// Only valid when setBreakResultLoc is called.
break_result_loc: AstGen.ResultLoc = undefined,
/// When a block has a pointer result location, here it is.
rl_ptr: Zir.Inst.Ref = .none,
/// When a block has a type result location, here it is.
rl_ty_inst: Zir.Inst.Ref = .none,
rvalue_noresult: Zir.Inst.Ref = .none,
/// Keeps track of how many branches of a block did not actually
/// consume the result location. astgen uses this to figure out
/// whether to rely on break instructions or writing to the result
/// pointer for the result instruction.
rvalue_rl_count: usize = 0,
/// Keeps track of how many break instructions there are. When astgen is finished
/// with a block, it can check this against rvalue_rl_count to find out whether
/// the break instructions should be downgraded to break_void.
break_count: usize = 0,
/// Tracks `break :foo bar` instructions so they can possibly be elided later if
/// the labeled block ends up not needing a result location pointer.
labeled_breaks: ArrayListUnmanaged(Zir.Inst.Index) = .{},
suspend_node: Ast.Node.Index = 0,
nosuspend_node: Ast.Node.Index = 0,
/// Namespace members are lazy. When executing a decl within a namespace,
/// any references to external instructions need to be treated specially.
/// This list tracks those references. See also .closure_capture and .closure_get.
/// Keys are the raw instruction index, values are the closure_capture instruction.
captures: std.AutoHashMapUnmanaged(Zir.Inst.Index, Zir.Inst.Index) = .{},
const unstacked_top = std.math.maxInt(usize);
/// Call unstack before adding any new instructions to containing GenZir.
fn unstack(self: *GenZir) void {
if (self.instructions_top != unstacked_top) {
self.instructions.items.len = self.instructions_top;
self.instructions_top = unstacked_top;
}
}
fn isEmpty(self: *const GenZir) bool {
return (self.instructions_top == unstacked_top) or
(self.instructions.items.len == self.instructions_top);
}
fn instructionsSlice(self: *const GenZir) []Zir.Inst.Index {
return if (self.instructions_top == unstacked_top)
&[0]Zir.Inst.Index{}
else
self.instructions.items[self.instructions_top..];
}
fn instructionsSliceUpto(self: *const GenZir, stacked_gz: *GenZir) []Zir.Inst.Index {
return if (self.instructions_top == unstacked_top)
&[0]Zir.Inst.Index{}
else if (self.instructions == stacked_gz.instructions and stacked_gz.instructions_top != unstacked_top)
self.instructions.items[self.instructions_top..stacked_gz.instructions_top]
else
self.instructions.items[self.instructions_top..];
}
fn makeSubBlock(gz: *GenZir, scope: *Scope) GenZir {
return .{
.force_comptime = gz.force_comptime,
.in_defer = gz.in_defer,
.c_import = gz.c_import,
.decl_node_index = gz.decl_node_index,
.decl_line = gz.decl_line,
.parent = scope,
.rl_ty_inst = gz.rl_ty_inst,
.astgen = gz.astgen,
.suspend_node = gz.suspend_node,
.nosuspend_node = gz.nosuspend_node,
.instructions = gz.instructions,
.instructions_top = gz.instructions.items.len,
};
}
fn makeCoercionScope(
parent_gz: *GenZir,
scope: *Scope,
dest_type: Zir.Inst.Ref,
result_ptr: Zir.Inst.Ref,
) !GenZir {
// Detect whether this expr() call goes into rvalue() to store the result into the
// result location. If it does, elide the coerce_result_ptr instruction
// as well as the store instruction, instead passing the result as an rvalue.
var as_scope = parent_gz.makeSubBlock(scope);
errdefer as_scope.unstack();
as_scope.rl_ptr = try as_scope.addBin(.coerce_result_ptr, dest_type, result_ptr);
return as_scope;
}
/// Assumes `as_scope` is stacked immediately on top of `parent_gz`. Unstacks `as_scope`.
fn finishCoercion(
as_scope: *GenZir,
parent_gz: *GenZir,
rl: ResultLoc,
src_node: Ast.Node.Index,
result: Zir.Inst.Ref,
dest_type: Zir.Inst.Ref,
) InnerError!Zir.Inst.Ref {
assert(as_scope.instructions == parent_gz.instructions);
const astgen = as_scope.astgen;
if (as_scope.rvalue_rl_count == 1) {
// Busted! This expression didn't actually need a pointer.
const zir_tags = astgen.instructions.items(.tag);
const zir_datas = astgen.instructions.items(.data);
var src: usize = as_scope.instructions_top;
var dst: usize = src;
while (src < as_scope.instructions.items.len) : (src += 1) {
const src_inst = as_scope.instructions.items[src];
if (indexToRef(src_inst) == as_scope.rl_ptr) continue;
if (zir_tags[src_inst] == .store_to_block_ptr) {
if (zir_datas[src_inst].bin.lhs == as_scope.rl_ptr) continue;
}
as_scope.instructions.items[dst] = src_inst;
dst += 1;
}
parent_gz.instructions.items.len -= src - dst;
as_scope.instructions_top = GenZir.unstacked_top;
// as_scope now unstacked, can add new instructions to parent_gz
const casted_result = try parent_gz.addBin(.as, dest_type, result);
return rvalue(parent_gz, rl, casted_result, src_node);
} else {
// implicitly move all as_scope instructions to parent_gz
as_scope.instructions_top = GenZir.unstacked_top;
return result;
}
}
const Label = struct {
token: Ast.TokenIndex,
block_inst: Zir.Inst.Index,
used: bool = false,
};
/// Assumes nothing stacked on `gz`.
fn endsWithNoReturn(gz: GenZir) bool {
if (gz.isEmpty()) return false;
const tags = gz.astgen.instructions.items(.tag);
const last_inst = gz.instructions.items[gz.instructions.items.len - 1];
return tags[last_inst].isNoReturn();
}
/// TODO all uses of this should be replaced with uses of `endsWithNoReturn`.
fn refIsNoReturn(gz: GenZir, inst_ref: Zir.Inst.Ref) bool {
if (inst_ref == .unreachable_value) return true;
if (refToIndex(inst_ref)) |inst_index| {
return gz.astgen.instructions.items(.tag)[inst_index].isNoReturn();
}
return false;
}
fn nodeIndexToRelative(gz: GenZir, node_index: Ast.Node.Index) i32 {
return @bitCast(i32, node_index) - @bitCast(i32, gz.decl_node_index);
}
fn tokenIndexToRelative(gz: GenZir, token: Ast.TokenIndex) u32 {
return token - gz.srcToken();
}
fn srcToken(gz: GenZir) Ast.TokenIndex {
return gz.astgen.tree.firstToken(gz.decl_node_index);
}
fn setBreakResultLoc(gz: *GenZir, parent_rl: AstGen.ResultLoc) void {
// Depending on whether the result location is a pointer or value, different
// ZIR needs to be generated. In the former case we rely on storing to the
// pointer to communicate the result, and use breakvoid; in the latter case
// the block break instructions will have the result values.
// One more complication: when the result location is a pointer, we detect
// the scenario where the result location is not consumed. In this case
// we emit ZIR for the block break instructions to have the result values,
// and then rvalue() on that to pass the value to the result location.
switch (parent_rl) {
.ty, .coerced_ty => |ty_inst| {
gz.rl_ty_inst = ty_inst;
gz.break_result_loc = parent_rl;
},
.discard, .none, .ptr, .ref => {
gz.break_result_loc = parent_rl;
},
.inferred_ptr => |ptr| {
gz.rl_ptr = ptr;
gz.break_result_loc = .{ .block_ptr = gz };
},
.block_ptr => |parent_block_scope| {
gz.rl_ty_inst = parent_block_scope.rl_ty_inst;
gz.rl_ptr = parent_block_scope.rl_ptr;
gz.break_result_loc = .{ .block_ptr = gz };
},
}
}
/// Assumes nothing stacked on `gz`. Unstacks `gz`.
fn setBoolBrBody(gz: *GenZir, inst: Zir.Inst.Index) !void {
const gpa = gz.astgen.gpa;
const body = gz.instructionsSlice();
try gz.astgen.extra.ensureUnusedCapacity(gpa, @typeInfo(Zir.Inst.Block).Struct.fields.len + body.len);
const zir_datas = gz.astgen.instructions.items(.data);
zir_datas[inst].bool_br.payload_index = gz.astgen.addExtraAssumeCapacity(
Zir.Inst.Block{ .body_len = @intCast(u32, body.len) },
);
gz.astgen.extra.appendSliceAssumeCapacity(body);
gz.unstack();
}
/// Assumes nothing stacked on `gz`. Unstacks `gz`.
fn setBlockBody(gz: *GenZir, inst: Zir.Inst.Index) !void {
const gpa = gz.astgen.gpa;
const body = gz.instructionsSlice();
try gz.astgen.extra.ensureUnusedCapacity(gpa, @typeInfo(Zir.Inst.Block).Struct.fields.len + body.len);
const zir_datas = gz.astgen.instructions.items(.data);
zir_datas[inst].pl_node.payload_index = gz.astgen.addExtraAssumeCapacity(
Zir.Inst.Block{ .body_len = @intCast(u32, body.len) },
);
gz.astgen.extra.appendSliceAssumeCapacity(body);
gz.unstack();
}
/// Supports `body_gz` stacked on `ret_gz` stacked on `gz`. Unstacks `body_gz` and `ret_gz`.
fn addFunc(gz: *GenZir, args: struct {
src_node: Ast.Node.Index,
lbrace_line: u32 = 0,
lbrace_column: u32 = 0,
body_gz: ?*GenZir,
param_block: Zir.Inst.Index,
ret_gz: ?*GenZir,
ret_br: Zir.Inst.Index,
cc: Zir.Inst.Ref,
align_inst: Zir.Inst.Ref,
lib_name: u32,
is_var_args: bool,
is_inferred_error: bool,
is_test: bool,
is_extern: bool,
}) !Zir.Inst.Ref {
assert(args.src_node != 0);
const astgen = gz.astgen;
const gpa = astgen.gpa;
try astgen.instructions.ensureUnusedCapacity(gpa, 1);
var body: []Zir.Inst.Index = &[0]Zir.Inst.Index{};
var ret_ty: []Zir.Inst.Index = &[0]Zir.Inst.Index{};
var src_locs_buffer: [3]u32 = undefined;
var src_locs: []u32 = src_locs_buffer[0..0];
if (args.body_gz) |body_gz| {
const tree = astgen.tree;
const node_tags = tree.nodes.items(.tag);
const node_datas = tree.nodes.items(.data);
const token_starts = tree.tokens.items(.start);
const fn_decl = args.src_node;
assert(node_tags[fn_decl] == .fn_decl or node_tags[fn_decl] == .test_decl);
const block = node_datas[fn_decl].rhs;
const rbrace_start = token_starts[tree.lastToken(block)];
astgen.advanceSourceCursor(rbrace_start);
const rbrace_line = @intCast(u32, astgen.source_line - gz.decl_line);
const rbrace_column = @intCast(u32, astgen.source_column);
const columns = args.lbrace_column | (rbrace_column << 16);
src_locs_buffer[0] = args.lbrace_line;
src_locs_buffer[1] = rbrace_line;
src_locs_buffer[2] = columns;
src_locs = &src_locs_buffer;
body = body_gz.instructionsSlice();
if (args.ret_gz) |ret_gz|
ret_ty = ret_gz.instructionsSliceUpto(body_gz);
} else {
if (args.ret_gz) |ret_gz|
ret_ty = ret_gz.instructionsSlice();
}
if (args.cc != .none or args.lib_name != 0 or
args.is_var_args or args.is_test or args.align_inst != .none or
args.is_extern)
{
try astgen.extra.ensureUnusedCapacity(
gpa,
@typeInfo(Zir.Inst.ExtendedFunc).Struct.fields.len +
ret_ty.len + body.len + src_locs.len +
@boolToInt(args.lib_name != 0) +
@boolToInt(args.align_inst != .none) +
@boolToInt(args.cc != .none),
);
const payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.ExtendedFunc{
.src_node = gz.nodeIndexToRelative(args.src_node),
.param_block = args.param_block,
.ret_body_len = @intCast(u32, ret_ty.len),
.body_len = @intCast(u32, body.len),
});
if (args.lib_name != 0) {
astgen.extra.appendAssumeCapacity(args.lib_name);
}
if (args.cc != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.cc));
}
if (args.align_inst != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.align_inst));
}
astgen.extra.appendSliceAssumeCapacity(ret_ty);
astgen.extra.appendSliceAssumeCapacity(body);
astgen.extra.appendSliceAssumeCapacity(src_locs);
// order is important when unstacking
if (args.body_gz) |body_gz| body_gz.unstack();
if (args.ret_gz) |ret_gz| ret_gz.unstack();
try gz.instructions.ensureUnusedCapacity(gpa, 1);
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
if (args.ret_br != 0) {
astgen.instructions.items(.data)[args.ret_br].@"break".block_inst = new_index;
}
astgen.instructions.appendAssumeCapacity(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .func,
.small = @bitCast(u16, Zir.Inst.ExtendedFunc.Small{
.is_var_args = args.is_var_args,
.is_inferred_error = args.is_inferred_error,
.has_lib_name = args.lib_name != 0,
.has_cc = args.cc != .none,
.has_align = args.align_inst != .none,
.is_test = args.is_test,
.is_extern = args.is_extern,
}),
.operand = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
} else {
try astgen.extra.ensureUnusedCapacity(
gpa,
@typeInfo(Zir.Inst.Func).Struct.fields.len +
ret_ty.len + body.len + src_locs.len,
);
const payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.Func{
.param_block = args.param_block,
.ret_body_len = @intCast(u32, ret_ty.len),
.body_len = @intCast(u32, body.len),
});
astgen.extra.appendSliceAssumeCapacity(ret_ty);
astgen.extra.appendSliceAssumeCapacity(body);
astgen.extra.appendSliceAssumeCapacity(src_locs);
// order is important when unstacking
if (args.body_gz) |body_gz| body_gz.unstack();
if (args.ret_gz) |ret_gz| ret_gz.unstack();
try gz.instructions.ensureUnusedCapacity(gpa, 1);
const tag: Zir.Inst.Tag = if (args.is_inferred_error) .func_inferred else .func;
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
if (args.ret_br != 0) {
astgen.instructions.items(.data)[args.ret_br].@"break".block_inst = new_index;
}
astgen.instructions.appendAssumeCapacity(.{
.tag = tag,
.data = .{ .pl_node = .{
.src_node = gz.nodeIndexToRelative(args.src_node),
.payload_index = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
}
}
fn addVar(gz: *GenZir, args: struct {
align_inst: Zir.Inst.Ref,
lib_name: u32,
var_type: Zir.Inst.Ref,
init: Zir.Inst.Ref,
is_extern: bool,
is_threadlocal: bool,
}) !Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.extra.ensureUnusedCapacity(
gpa,
@typeInfo(Zir.Inst.ExtendedVar).Struct.fields.len +
@boolToInt(args.lib_name != 0) +
@boolToInt(args.align_inst != .none) +
@boolToInt(args.init != .none),
);
const payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.ExtendedVar{
.var_type = args.var_type,
});
if (args.lib_name != 0) {
astgen.extra.appendAssumeCapacity(args.lib_name);
}
if (args.align_inst != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.align_inst));
}
if (args.init != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.init));
}
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
astgen.instructions.appendAssumeCapacity(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .variable,
.small = @bitCast(u16, Zir.Inst.ExtendedVar.Small{
.has_lib_name = args.lib_name != 0,
.has_align = args.align_inst != .none,
.has_init = args.init != .none,
.is_extern = args.is_extern,
.is_threadlocal = args.is_threadlocal,
}),
.operand = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
}
/// Note that this returns a `Zir.Inst.Index` not a ref.
/// Leaves the `payload_index` field undefined.
fn addBoolBr(
gz: *GenZir,
tag: Zir.Inst.Tag,
lhs: Zir.Inst.Ref,
) !Zir.Inst.Index {
assert(lhs != .none);
const gpa = gz.astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.instructions.ensureUnusedCapacity(gpa, 1);
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
gz.astgen.instructions.appendAssumeCapacity(.{
.tag = tag,
.data = .{ .bool_br = .{
.lhs = lhs,
.payload_index = undefined,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return new_index;
}
fn addInt(gz: *GenZir, integer: u64) !Zir.Inst.Ref {
return gz.add(.{
.tag = .int,
.data = .{ .int = integer },
});
}
fn addIntBig(gz: *GenZir, limbs: []const std.math.big.Limb) !Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.string_bytes.ensureUnusedCapacity(gpa, @sizeOf(std.math.big.Limb) * limbs.len);
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
astgen.instructions.appendAssumeCapacity(.{
.tag = .int_big,
.data = .{ .str = .{
.start = @intCast(u32, astgen.string_bytes.items.len),
.len = @intCast(u32, limbs.len),
} },
});
gz.instructions.appendAssumeCapacity(new_index);
astgen.string_bytes.appendSliceAssumeCapacity(mem.sliceAsBytes(limbs));
return indexToRef(new_index);
}
fn addFloat(gz: *GenZir, number: f64) !Zir.Inst.Ref {
return gz.add(.{
.tag = .float,
.data = .{ .float = number },
});
}
fn addUnNode(
gz: *GenZir,
tag: Zir.Inst.Tag,
operand: Zir.Inst.Ref,
/// Absolute node index. This function does the conversion to offset from Decl.
src_node: Ast.Node.Index,
) !Zir.Inst.Ref {
assert(operand != .none);
return gz.add(.{
.tag = tag,
.data = .{ .un_node = .{
.operand = operand,
.src_node = gz.nodeIndexToRelative(src_node),
} },
});
}
fn makeUnNode(
gz: *GenZir,
tag: Zir.Inst.Tag,
operand: Zir.Inst.Ref,
/// Absolute node index. This function does the conversion to offset from Decl.
src_node: Ast.Node.Index,
) !Zir.Inst.Index {
assert(operand != .none);
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
try gz.astgen.instructions.append(gz.astgen.gpa, .{
.tag = tag,
.data = .{ .un_node = .{
.operand = operand,
.src_node = gz.nodeIndexToRelative(src_node),
} },
});
return new_index;
}
fn addPlNode(
gz: *GenZir,
tag: Zir.Inst.Tag,
/// Absolute node index. This function does the conversion to offset from Decl.
src_node: Ast.Node.Index,
extra: anytype,
) !Zir.Inst.Ref {
const gpa = gz.astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.instructions.ensureUnusedCapacity(gpa, 1);
const payload_index = try gz.astgen.addExtra(extra);
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
gz.astgen.instructions.appendAssumeCapacity(.{
.tag = tag,
.data = .{ .pl_node = .{
.src_node = gz.nodeIndexToRelative(src_node),
.payload_index = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
}
fn addPlNodePayloadIndex(
gz: *GenZir,
tag: Zir.Inst.Tag,
/// Absolute node index. This function does the conversion to offset from Decl.
src_node: Ast.Node.Index,
payload_index: u32,
) !Zir.Inst.Ref {
return try gz.add(.{
.tag = tag,
.data = .{ .pl_node = .{
.src_node = gz.nodeIndexToRelative(src_node),
.payload_index = payload_index,
} },
});
}
/// Supports `param_gz` stacked on `gz`. Assumes nothing stacked on `param_gz`. Unstacks `param_gz`.
fn addParam(
gz: *GenZir,
param_gz: *GenZir,
tag: Zir.Inst.Tag,
/// Absolute token index. This function does the conversion to Decl offset.
abs_tok_index: Ast.TokenIndex,
name: u32,
first_doc_comment: ?Ast.TokenIndex,
) !Zir.Inst.Index {
const gpa = gz.astgen.gpa;
const param_body = param_gz.instructionsSlice();
try gz.astgen.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.extra.ensureUnusedCapacity(gpa, @typeInfo(Zir.Inst.Param).Struct.fields.len +
param_body.len);
const doc_comment_index = if (first_doc_comment) |first|
try gz.astgen.docCommentAsStringFromFirst(abs_tok_index, first)
else
0;
const payload_index = gz.astgen.addExtraAssumeCapacity(Zir.Inst.Param{
.name = name,
.doc_comment = doc_comment_index,
.body_len = @intCast(u32, param_body.len),
});
gz.astgen.extra.appendSliceAssumeCapacity(param_body);
param_gz.unstack();
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
gz.astgen.instructions.appendAssumeCapacity(.{
.tag = tag,
.data = .{ .pl_tok = .{
.src_tok = gz.tokenIndexToRelative(abs_tok_index),
.payload_index = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return new_index;
}
fn addExtendedPayload(
gz: *GenZir,
opcode: Zir.Inst.Extended,
extra: anytype,
) !Zir.Inst.Ref {
const gpa = gz.astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.instructions.ensureUnusedCapacity(gpa, 1);
const payload_index = try gz.astgen.addExtra(extra);
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
gz.astgen.instructions.appendAssumeCapacity(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = opcode,
.small = undefined,
.operand = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
}
fn addExtendedMultiOp(
gz: *GenZir,
opcode: Zir.Inst.Extended,
node: Ast.Node.Index,
operands: []const Zir.Inst.Ref,
) !Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.extra.ensureUnusedCapacity(
gpa,
@typeInfo(Zir.Inst.NodeMultiOp).Struct.fields.len + operands.len,
);
const payload_index = astgen.addExtraAssumeCapacity(Zir.Inst.NodeMultiOp{
.src_node = gz.nodeIndexToRelative(node),
});
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
astgen.instructions.appendAssumeCapacity(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = opcode,
.small = @intCast(u16, operands.len),
.operand = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
astgen.appendRefsAssumeCapacity(operands);
return indexToRef(new_index);
}
fn addExtendedMultiOpPayloadIndex(
gz: *GenZir,
opcode: Zir.Inst.Extended,
payload_index: u32,
trailing_len: usize,
) !Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.instructions.ensureUnusedCapacity(gpa, 1);
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
astgen.instructions.appendAssumeCapacity(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = opcode,
.small = @intCast(u16, trailing_len),
.operand = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
}
fn addUnTok(
gz: *GenZir,
tag: Zir.Inst.Tag,
operand: Zir.Inst.Ref,
/// Absolute token index. This function does the conversion to Decl offset.
abs_tok_index: Ast.TokenIndex,
) !Zir.Inst.Ref {
assert(operand != .none);
return gz.add(.{
.tag = tag,
.data = .{ .un_tok = .{
.operand = operand,
.src_tok = gz.tokenIndexToRelative(abs_tok_index),
} },
});
}
fn addStrTok(
gz: *GenZir,
tag: Zir.Inst.Tag,
str_index: u32,
/// Absolute token index. This function does the conversion to Decl offset.
abs_tok_index: Ast.TokenIndex,
) !Zir.Inst.Ref {
return gz.add(.{
.tag = tag,
.data = .{ .str_tok = .{
.start = str_index,
.src_tok = gz.tokenIndexToRelative(abs_tok_index),
} },
});
}
fn addBreak(
gz: *GenZir,
tag: Zir.Inst.Tag,
break_block: Zir.Inst.Index,
operand: Zir.Inst.Ref,
) !Zir.Inst.Index {
return gz.addAsIndex(.{
.tag = tag,
.data = .{ .@"break" = .{
.block_inst = break_block,
.operand = operand,
} },
});
}
fn makeBreak(
gz: *GenZir,
tag: Zir.Inst.Tag,
break_block: Zir.Inst.Index,
operand: Zir.Inst.Ref,
) !Zir.Inst.Index {
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
try gz.astgen.instructions.append(gz.astgen.gpa, .{
.tag = tag,
.data = .{ .@"break" = .{
.block_inst = break_block,
.operand = operand,
} },
});
return new_index;
}
fn addBin(
gz: *GenZir,
tag: Zir.Inst.Tag,
lhs: Zir.Inst.Ref,
rhs: Zir.Inst.Ref,
) !Zir.Inst.Ref {
assert(lhs != .none);
assert(rhs != .none);
return gz.add(.{
.tag = tag,
.data = .{ .bin = .{
.lhs = lhs,
.rhs = rhs,
} },
});
}
fn addDecl(
gz: *GenZir,
tag: Zir.Inst.Tag,
decl_index: u32,
src_node: Ast.Node.Index,
) !Zir.Inst.Ref {
return gz.add(.{
.tag = tag,
.data = .{ .pl_node = .{
.src_node = gz.nodeIndexToRelative(src_node),
.payload_index = decl_index,
} },
});
}
fn addNode(
gz: *GenZir,
tag: Zir.Inst.Tag,
/// Absolute node index. This function does the conversion to offset from Decl.
src_node: Ast.Node.Index,
) !Zir.Inst.Ref {
return gz.add(.{
.tag = tag,
.data = .{ .node = gz.nodeIndexToRelative(src_node) },
});
}
fn addInstNode(
gz: *GenZir,
tag: Zir.Inst.Tag,
inst: Zir.Inst.Index,
/// Absolute node index. This function does the conversion to offset from Decl.
src_node: Ast.Node.Index,
) !Zir.Inst.Ref {
return gz.add(.{
.tag = tag,
.data = .{ .inst_node = .{
.inst = inst,
.src_node = gz.nodeIndexToRelative(src_node),
} },
});
}
fn addNodeExtended(
gz: *GenZir,
opcode: Zir.Inst.Extended,
/// Absolute node index. This function does the conversion to offset from Decl.
src_node: Ast.Node.Index,
) !Zir.Inst.Ref {
return gz.add(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = opcode,
.small = undefined,
.operand = @bitCast(u32, gz.nodeIndexToRelative(src_node)),
} },
});
}
fn addAllocExtended(
gz: *GenZir,
args: struct {
/// Absolute node index. This function does the conversion to offset from Decl.
node: Ast.Node.Index,
type_inst: Zir.Inst.Ref,
align_inst: Zir.Inst.Ref,
is_const: bool,
is_comptime: bool,
},
) !Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.extra.ensureUnusedCapacity(
gpa,
@typeInfo(Zir.Inst.AllocExtended).Struct.fields.len +
@as(usize, @boolToInt(args.type_inst != .none)) +
@as(usize, @boolToInt(args.align_inst != .none)),
);
const payload_index = gz.astgen.addExtraAssumeCapacity(Zir.Inst.AllocExtended{
.src_node = gz.nodeIndexToRelative(args.node),
});
if (args.type_inst != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.type_inst));
}
if (args.align_inst != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.align_inst));
}
const has_type: u4 = @boolToInt(args.type_inst != .none);
const has_align: u4 = @boolToInt(args.align_inst != .none);
const is_const: u4 = @boolToInt(args.is_const);
const is_comptime: u4 = @boolToInt(args.is_comptime);
const small: u16 = has_type | (has_align << 1) | (is_const << 2) | (is_comptime << 3);
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
astgen.instructions.appendAssumeCapacity(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .alloc,
.small = small,
.operand = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
}
fn addAsm(
gz: *GenZir,
args: struct {
/// Absolute node index. This function does the conversion to offset from Decl.
node: Ast.Node.Index,
asm_source: u32,
output_type_bits: u32,
is_volatile: bool,
outputs: []const Zir.Inst.Asm.Output,
inputs: []const Zir.Inst.Asm.Input,
clobbers: []const u32,
},
) !Zir.Inst.Ref {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.instructions.ensureUnusedCapacity(gpa, 1);
try astgen.extra.ensureUnusedCapacity(gpa, @typeInfo(Zir.Inst.Asm).Struct.fields.len +
args.outputs.len * @typeInfo(Zir.Inst.Asm.Output).Struct.fields.len +
args.inputs.len * @typeInfo(Zir.Inst.Asm.Input).Struct.fields.len +
args.clobbers.len);
const payload_index = gz.astgen.addExtraAssumeCapacity(Zir.Inst.Asm{
.src_node = gz.nodeIndexToRelative(args.node),
.asm_source = args.asm_source,
.output_type_bits = args.output_type_bits,
});
for (args.outputs) |output| {
_ = gz.astgen.addExtraAssumeCapacity(output);
}
for (args.inputs) |input| {
_ = gz.astgen.addExtraAssumeCapacity(input);
}
gz.astgen.extra.appendSliceAssumeCapacity(args.clobbers);
// * 0b00000000_000XXXXX - `outputs_len`.
// * 0b000000XX_XXX00000 - `inputs_len`.
// * 0b0XXXXX00_00000000 - `clobbers_len`.
// * 0bX0000000_00000000 - is volatile
const small: u16 = @intCast(u16, args.outputs.len) |
@intCast(u16, args.inputs.len << 5) |
@intCast(u16, args.clobbers.len << 10) |
(@as(u16, @boolToInt(args.is_volatile)) << 15);
const new_index = @intCast(Zir.Inst.Index, astgen.instructions.len);
astgen.instructions.appendAssumeCapacity(.{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .@"asm",
.small = small,
.operand = payload_index,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return indexToRef(new_index);
}
/// Note that this returns a `Zir.Inst.Index` not a ref.
/// Does *not* append the block instruction to the scope.
/// Leaves the `payload_index` field undefined.
fn makeBlockInst(gz: *GenZir, tag: Zir.Inst.Tag, node: Ast.Node.Index) !Zir.Inst.Index {
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
const gpa = gz.astgen.gpa;
try gz.astgen.instructions.append(gpa, .{
.tag = tag,
.data = .{ .pl_node = .{
.src_node = gz.nodeIndexToRelative(node),
.payload_index = undefined,
} },
});
return new_index;
}
/// Note that this returns a `Zir.Inst.Index` not a ref.
/// Leaves the `payload_index` field undefined.
fn addCondBr(gz: *GenZir, tag: Zir.Inst.Tag, node: Ast.Node.Index) !Zir.Inst.Index {
const gpa = gz.astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
try gz.astgen.instructions.append(gpa, .{
.tag = tag,
.data = .{ .pl_node = .{
.src_node = gz.nodeIndexToRelative(node),
.payload_index = undefined,
} },
});
gz.instructions.appendAssumeCapacity(new_index);
return new_index;
}
fn setStruct(gz: *GenZir, inst: Zir.Inst.Index, args: struct {
src_node: Ast.Node.Index,
body_len: u32,
fields_len: u32,
decls_len: u32,
layout: std.builtin.Type.ContainerLayout,
known_non_opv: bool,
known_comptime_only: bool,
}) !void {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try astgen.extra.ensureUnusedCapacity(gpa, 4);
const payload_index = @intCast(u32, astgen.extra.items.len);
if (args.src_node != 0) {
const node_offset = gz.nodeIndexToRelative(args.src_node);
astgen.extra.appendAssumeCapacity(@bitCast(u32, node_offset));
}
if (args.body_len != 0) {
astgen.extra.appendAssumeCapacity(args.body_len);
}
if (args.fields_len != 0) {
astgen.extra.appendAssumeCapacity(args.fields_len);
}
if (args.decls_len != 0) {
astgen.extra.appendAssumeCapacity(args.decls_len);
}
astgen.instructions.set(inst, .{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .struct_decl,
.small = @bitCast(u16, Zir.Inst.StructDecl.Small{
.has_src_node = args.src_node != 0,
.has_body_len = args.body_len != 0,
.has_fields_len = args.fields_len != 0,
.has_decls_len = args.decls_len != 0,
.known_non_opv = args.known_non_opv,
.known_comptime_only = args.known_comptime_only,
.name_strategy = gz.anon_name_strategy,
.layout = args.layout,
}),
.operand = payload_index,
} },
});
}
fn setUnion(gz: *GenZir, inst: Zir.Inst.Index, args: struct {
src_node: Ast.Node.Index,
tag_type: Zir.Inst.Ref,
body_len: u32,
fields_len: u32,
decls_len: u32,
layout: std.builtin.Type.ContainerLayout,
auto_enum_tag: bool,
}) !void {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try astgen.extra.ensureUnusedCapacity(gpa, 5);
const payload_index = @intCast(u32, astgen.extra.items.len);
if (args.src_node != 0) {
const node_offset = gz.nodeIndexToRelative(args.src_node);
astgen.extra.appendAssumeCapacity(@bitCast(u32, node_offset));
}
if (args.tag_type != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.tag_type));
}
if (args.body_len != 0) {
astgen.extra.appendAssumeCapacity(args.body_len);
}
if (args.fields_len != 0) {
astgen.extra.appendAssumeCapacity(args.fields_len);
}
if (args.decls_len != 0) {
astgen.extra.appendAssumeCapacity(args.decls_len);
}
astgen.instructions.set(inst, .{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .union_decl,
.small = @bitCast(u16, Zir.Inst.UnionDecl.Small{
.has_src_node = args.src_node != 0,
.has_tag_type = args.tag_type != .none,
.has_body_len = args.body_len != 0,
.has_fields_len = args.fields_len != 0,
.has_decls_len = args.decls_len != 0,
.name_strategy = gz.anon_name_strategy,
.layout = args.layout,
.auto_enum_tag = args.auto_enum_tag,
}),
.operand = payload_index,
} },
});
}
fn setEnum(gz: *GenZir, inst: Zir.Inst.Index, args: struct {
src_node: Ast.Node.Index,
tag_type: Zir.Inst.Ref,
body_len: u32,
fields_len: u32,
decls_len: u32,
nonexhaustive: bool,
}) !void {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try astgen.extra.ensureUnusedCapacity(gpa, 5);
const payload_index = @intCast(u32, astgen.extra.items.len);
if (args.src_node != 0) {
const node_offset = gz.nodeIndexToRelative(args.src_node);
astgen.extra.appendAssumeCapacity(@bitCast(u32, node_offset));
}
if (args.tag_type != .none) {
astgen.extra.appendAssumeCapacity(@enumToInt(args.tag_type));
}
if (args.body_len != 0) {
astgen.extra.appendAssumeCapacity(args.body_len);
}
if (args.fields_len != 0) {
astgen.extra.appendAssumeCapacity(args.fields_len);
}
if (args.decls_len != 0) {
astgen.extra.appendAssumeCapacity(args.decls_len);
}
astgen.instructions.set(inst, .{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .enum_decl,
.small = @bitCast(u16, Zir.Inst.EnumDecl.Small{
.has_src_node = args.src_node != 0,
.has_tag_type = args.tag_type != .none,
.has_body_len = args.body_len != 0,
.has_fields_len = args.fields_len != 0,
.has_decls_len = args.decls_len != 0,
.name_strategy = gz.anon_name_strategy,
.nonexhaustive = args.nonexhaustive,
}),
.operand = payload_index,
} },
});
}
fn setOpaque(gz: *GenZir, inst: Zir.Inst.Index, args: struct {
src_node: Ast.Node.Index,
decls_len: u32,
}) !void {
const astgen = gz.astgen;
const gpa = astgen.gpa;
try astgen.extra.ensureUnusedCapacity(gpa, 2);
const payload_index = @intCast(u32, astgen.extra.items.len);
if (args.src_node != 0) {
const node_offset = gz.nodeIndexToRelative(args.src_node);
astgen.extra.appendAssumeCapacity(@bitCast(u32, node_offset));
}
if (args.decls_len != 0) {
astgen.extra.appendAssumeCapacity(args.decls_len);
}
astgen.instructions.set(inst, .{
.tag = .extended,
.data = .{ .extended = .{
.opcode = .opaque_decl,
.small = @bitCast(u16, Zir.Inst.OpaqueDecl.Small{
.has_src_node = args.src_node != 0,
.has_decls_len = args.decls_len != 0,
.name_strategy = gz.anon_name_strategy,
}),
.operand = payload_index,
} },
});
}
fn add(gz: *GenZir, inst: Zir.Inst) !Zir.Inst.Ref {
return indexToRef(try gz.addAsIndex(inst));
}
fn addAsIndex(gz: *GenZir, inst: Zir.Inst) !Zir.Inst.Index {
const gpa = gz.astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.instructions.ensureUnusedCapacity(gpa, 1);
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
gz.astgen.instructions.appendAssumeCapacity(inst);
gz.instructions.appendAssumeCapacity(new_index);
return new_index;
}
fn reserveInstructionIndex(gz: *GenZir) !Zir.Inst.Index {
const gpa = gz.astgen.gpa;
try gz.instructions.ensureUnusedCapacity(gpa, 1);
try gz.astgen.instructions.ensureUnusedCapacity(gpa, 1);
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
gz.astgen.instructions.len += 1;
gz.instructions.appendAssumeCapacity(new_index);
return new_index;
}
fn addRet(gz: *GenZir, rl: ResultLoc, operand: Zir.Inst.Ref, node: Ast.Node.Index) !void {
switch (rl) {
.ptr => |ret_ptr| _ = try gz.addUnNode(.ret_load, ret_ptr, node),
.ty => _ = try gz.addUnNode(.ret_node, operand, node),
else => unreachable,
}
}
fn addNamespaceCaptures(gz: *GenZir, namespace: *Scope.Namespace) !void {
if (namespace.captures.count() > 0) {
try gz.instructions.ensureUnusedCapacity(gz.astgen.gpa, namespace.captures.count());
for (namespace.captures.values()) |capture| {
gz.instructions.appendAssumeCapacity(capture);
}
}
}
fn addDbgVar(gz: *GenZir, tag: Zir.Inst.Tag, name: u32, inst: Zir.Inst.Ref) !void {
if (gz.force_comptime) return;
_ = try gz.add(.{ .tag = tag, .data = .{
.str_op = .{
.str = name,
.operand = inst,
},
} });
}
fn addDbgBlockBegin(gz: *GenZir) !void {
if (gz.force_comptime) return;
_ = try gz.add(.{ .tag = .extended, .data = .{
.extended = .{ .opcode = .dbg_block_begin, .small = undefined, .operand = undefined },
} });
}
fn addDbgBlockEnd(gz: *GenZir) !void {
if (gz.force_comptime) return;
const gpa = gz.astgen.gpa;
const tags = gz.astgen.instructions.items(.tag);
const data = gz.astgen.instructions.items(.data);
const last_inst = gz.instructions.items[gz.instructions.items.len - 1];
// remove dbg_block_begin immediately followed by dbg_block_end
if (tags[last_inst] == .extended and data[last_inst].extended.opcode == .dbg_block_begin) {
_ = gz.instructions.pop();
return;
}
const new_index = @intCast(Zir.Inst.Index, gz.astgen.instructions.len);
try gz.astgen.instructions.append(gpa, .{ .tag = .extended, .data = .{
.extended = .{ .opcode = .dbg_block_end, .small = undefined, .operand = undefined },
} });
try gz.instructions.insert(gpa, gz.instructions.items.len - 1, new_index);
}
/// Control flow does not fall through the "then" block of a loop; it continues
/// back to the while condition. This prevents `rvalue` from
/// adding an invalid store to the result location of `then_scope`.
fn markAsLoopBody(gz: *GenZir, loop_scope: GenZir) void {
gz.rvalue_noresult = switch (loop_scope.break_result_loc) {
.ptr, .inferred_ptr => |ptr| ptr,
.block_ptr => |block| block.rl_ptr,
else => .none,
};
}
};
/// This can only be for short-lived references; the memory becomes invalidated
/// when another string is added.
fn nullTerminatedString(astgen: AstGen, index: usize) [*:0]const u8 {
return @ptrCast([*:0]const u8, astgen.string_bytes.items.ptr) + index;
}
pub fn isPrimitive(name: []const u8) bool {
if (primitives.get(name) != null) return true;
if (name.len < 2) return false;
const first_c = name[0];
if (first_c != 'i' and first_c != 'u') return false;
if (parseBitCount(name[1..])) |_| {
return true;
} else |err| switch (err) {
error.Overflow => return true,
error.InvalidCharacter => return false,
}
}
/// Local variables shadowing detection, including function parameters.
fn detectLocalShadowing(
astgen: *AstGen,
scope: *Scope,
ident_name: u32,
name_token: Ast.TokenIndex,
token_bytes: []const u8,
) !void {
const gpa = astgen.gpa;
if (token_bytes[0] != '@' and isPrimitive(token_bytes)) {
return astgen.failTokNotes(name_token, "name shadows primitive '{s}'", .{
token_bytes,
}, &[_]u32{
try astgen.errNoteTok(name_token, "consider using @\"{s}\" to disambiguate", .{
token_bytes,
}),
});
}
var s = scope;
while (true) switch (s.tag) {
.local_val => {
const local_val = s.cast(Scope.LocalVal).?;
if (local_val.name == ident_name) {
const name_slice = mem.span(astgen.nullTerminatedString(ident_name));
const name = try gpa.dupe(u8, name_slice);
defer gpa.free(name);
return astgen.failTokNotes(name_token, "redeclaration of {s} '{s}'", .{
@tagName(local_val.id_cat), name,
}, &[_]u32{
try astgen.errNoteTok(
local_val.token_src,
"previous declaration here",
.{},
),
});
}
s = local_val.parent;
},
.local_ptr => {
const local_ptr = s.cast(Scope.LocalPtr).?;
if (local_ptr.name == ident_name) {
const name_slice = mem.span(astgen.nullTerminatedString(ident_name));
const name = try gpa.dupe(u8, name_slice);
defer gpa.free(name);
return astgen.failTokNotes(name_token, "redeclaration of {s} '{s}'", .{
@tagName(local_ptr.id_cat), name,
}, &[_]u32{
try astgen.errNoteTok(
local_ptr.token_src,
"previous declaration here",
.{},
),
});
}
s = local_ptr.parent;
},
.namespace => {
const ns = s.cast(Scope.Namespace).?;
const decl_node = ns.decls.get(ident_name) orelse {
s = ns.parent;
continue;
};
const name_slice = mem.span(astgen.nullTerminatedString(ident_name));
const name = try gpa.dupe(u8, name_slice);
defer gpa.free(name);
return astgen.failTokNotes(name_token, "local shadows declaration of '{s}'", .{
name,
}, &[_]u32{
try astgen.errNoteNode(decl_node, "declared here", .{}),
});
},
.gen_zir => s = s.cast(GenZir).?.parent,
.defer_normal, .defer_error => s = s.cast(Scope.Defer).?.parent,
.top => break,
};
}
/// Advances the source cursor to the beginning of `node`.
fn advanceSourceCursorToNode(astgen: *AstGen, node: Ast.Node.Index) void {
const tree = astgen.tree;
const token_starts = tree.tokens.items(.start);
const node_start = token_starts[tree.firstToken(node)];
astgen.advanceSourceCursor(node_start);
}
/// Advances the source cursor to an absolute byte offset `end` in the file.
fn advanceSourceCursor(astgen: *AstGen, end: usize) void {
const source = astgen.tree.source;
var i = astgen.source_offset;
var line = astgen.source_line;
var column = astgen.source_column;
assert(i <= end);
while (i < end) : (i += 1) {
if (source[i] == '\n') {
line += 1;
column = 0;
} else {
column += 1;
}
}
astgen.source_offset = i;
astgen.source_line = line;
astgen.source_column = column;
}
fn scanDecls(astgen: *AstGen, namespace: *Scope.Namespace, members: []const Ast.Node.Index) !u32 {
const gpa = astgen.gpa;
const tree = astgen.tree;
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
var decl_count: u32 = 0;
for (members) |member_node| {
const name_token = switch (node_tags[member_node]) {
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
.global_var_decl,
.local_var_decl,
.simple_var_decl,
.aligned_var_decl,
=> blk: {
decl_count += 1;
break :blk main_tokens[member_node] + 1;
},
.fn_decl => blk: {
decl_count += 1;
const ident = main_tokens[member_node] + 1;
if (token_tags[ident] != .identifier) {
switch (astgen.failNode(member_node, "missing function name", .{})) {
error.AnalysisFail => continue,
error.OutOfMemory => return error.OutOfMemory,
}
}
break :blk ident;
},
.@"comptime", .@"usingnamespace", .test_decl => {
decl_count += 1;
continue;
},
else => continue,
};
const token_bytes = astgen.tree.tokenSlice(name_token);
if (token_bytes[0] != '@' and isPrimitive(token_bytes)) {
switch (astgen.failTokNotes(name_token, "name shadows primitive '{s}'", .{
token_bytes,
}, &[_]u32{
try astgen.errNoteTok(name_token, "consider using @\"{s}\" to disambiguate", .{
token_bytes,
}),
})) {
error.AnalysisFail => continue,
error.OutOfMemory => return error.OutOfMemory,
}
}
const name_str_index = try astgen.identAsString(name_token);
const gop = try namespace.decls.getOrPut(gpa, name_str_index);
if (gop.found_existing) {
const name = try gpa.dupe(u8, mem.span(astgen.nullTerminatedString(name_str_index)));
defer gpa.free(name);
switch (astgen.failNodeNotes(member_node, "redeclaration of '{s}'", .{
name,
}, &[_]u32{
try astgen.errNoteNode(gop.value_ptr.*, "other declaration here", .{}),
})) {
error.AnalysisFail => continue,
error.OutOfMemory => return error.OutOfMemory,
}
}
gop.value_ptr.* = member_node;
}
return decl_count;
}
fn isInferred(astgen: *AstGen, ref: Zir.Inst.Ref) bool {
const inst = refToIndex(ref) orelse return false;
const zir_tags = astgen.instructions.items(.tag);
return switch (zir_tags[inst]) {
.alloc_inferred,
.alloc_inferred_mut,
.alloc_inferred_comptime,
.alloc_inferred_comptime_mut,
=> true,
else => false,
};
}