zig/lib/std/tar.zig
Igor Anić 4381241237 tar: refactor Buffer
Move reader into Buffer and make it BufferedReader. This doesn't
introduce any new functionality just grouping similar things.
2024-01-13 19:37:33 -07:00

476 lines
18 KiB
Zig

pub const Options = struct {
/// Number of directory levels to skip when extracting files.
strip_components: u32 = 0,
/// How to handle the "mode" property of files from within the tar file.
mode_mode: ModeMode = .executable_bit_only,
/// Prevents creation of empty directories.
exclude_empty_directories: bool = false,
/// Provide this to receive detailed error messages.
/// When this is provided, some errors which would otherwise be returned immediately
/// will instead be added to this structure. The API user must check the errors
/// in diagnostics to know whether the operation succeeded or failed.
diagnostics: ?*Diagnostics = null,
pub const ModeMode = enum {
/// The mode from the tar file is completely ignored. Files are created
/// with the default mode when creating files.
ignore,
/// The mode from the tar file is inspected for the owner executable bit
/// only. This bit is copied to the group and other executable bits.
/// Other bits of the mode are left as the default when creating files.
executable_bit_only,
};
pub const Diagnostics = struct {
allocator: std.mem.Allocator,
errors: std.ArrayListUnmanaged(Error) = .{},
pub const Error = union(enum) {
unable_to_create_sym_link: struct {
code: anyerror,
file_name: []const u8,
link_name: []const u8,
},
unable_to_create_file: struct {
code: anyerror,
file_name: []const u8,
},
unsupported_file_type: struct {
file_name: []const u8,
file_type: Header.FileType,
},
};
pub fn deinit(d: *Diagnostics) void {
for (d.errors.items) |item| {
switch (item) {
.unable_to_create_sym_link => |info| {
d.allocator.free(info.file_name);
d.allocator.free(info.link_name);
},
.unable_to_create_file => |info| {
d.allocator.free(info.file_name);
},
.unsupported_file_type => |info| {
d.allocator.free(info.file_name);
},
}
}
d.errors.deinit(d.allocator);
d.* = undefined;
}
};
};
pub const Header = struct {
bytes: *const [512]u8,
pub const FileType = enum(u8) {
normal_alias = 0,
normal = '0',
hard_link = '1',
symbolic_link = '2',
character_special = '3',
block_special = '4',
directory = '5',
fifo = '6',
contiguous = '7',
global_extended_header = 'g',
extended_header = 'x',
_,
};
pub fn fileSize(header: Header) !u64 {
const raw = header.bytes[124..][0..12];
const ltrimmed = std.mem.trimLeft(u8, raw, "0 ");
const rtrimmed = std.mem.trimRight(u8, ltrimmed, " \x00");
if (rtrimmed.len == 0) return 0;
return std.fmt.parseInt(u64, rtrimmed, 8);
}
pub fn is_ustar(header: Header) bool {
return std.mem.eql(u8, header.bytes[257..][0..6], "ustar\x00");
}
/// Includes prefix concatenated, if any.
/// Return value may point into Header buffer, or might point into the
/// argument buffer.
/// TODO: check against "../" and other nefarious things
pub fn fullFileName(header: Header, buffer: *[std.fs.MAX_PATH_BYTES]u8) ![]const u8 {
const n = name(header);
if (!is_ustar(header))
return n;
const p = prefix(header);
if (p.len == 0)
return n;
@memcpy(buffer[0..p.len], p);
buffer[p.len] = '/';
@memcpy(buffer[p.len + 1 ..][0..n.len], n);
return buffer[0 .. p.len + 1 + n.len];
}
pub fn name(header: Header) []const u8 {
return str(header, 0, 0 + 100);
}
pub fn linkName(header: Header) []const u8 {
return str(header, 157, 157 + 100);
}
pub fn prefix(header: Header) []const u8 {
return str(header, 345, 345 + 155);
}
pub fn fileType(header: Header) FileType {
const result: FileType = @enumFromInt(header.bytes[156]);
if (result == .normal_alias) return .normal;
return result;
}
fn str(header: Header, start: usize, end: usize) []const u8 {
var i: usize = start;
while (i < end) : (i += 1) {
if (header.bytes[i] == 0) break;
}
return header.bytes[start..i];
}
};
fn BufferedReader(comptime ReaderType: type) type {
return struct {
unbuffered_reader: ReaderType,
buffer: [512 * 8]u8 = undefined,
start: usize = 0,
end: usize = 0,
const Self = @This();
pub fn readChunk(self: *Self, count: usize) ![]const u8 {
self.ensureCapacity(1024);
const ask = @min(self.buffer.len - self.end, count -| (self.end - self.start));
self.end += try self.unbuffered_reader.readAtLeast(self.buffer[self.end..], ask);
return self.buffer[self.start..self.end];
}
pub fn advance(self: *Self, count: usize) void {
self.start += count;
assert(self.start <= self.end);
}
pub fn skip(self: *Self, count: usize) !void {
if (self.start + count > self.end) {
try self.unbuffered_reader.skipBytes(self.start + count - self.end, .{});
self.start = self.end;
} else {
self.advance(count);
}
}
inline fn ensureCapacity(self: *Self, count: usize) void {
if (self.buffer.len - self.start < count) {
const dest_end = self.end - self.start;
@memcpy(self.buffer[0..dest_end], self.buffer[self.start..self.end]);
self.end = dest_end;
self.start = 0;
}
}
pub fn write(self: *Self, writer: anytype, size: usize) !void {
const rounded_file_size = std.mem.alignForward(usize, size, 512);
const chunk_size = rounded_file_size + 512;
const pad_len: usize = rounded_file_size - size;
var file_off: usize = 0;
while (true) {
const temp = try self.readChunk(chunk_size - file_off);
if (temp.len == 0) return error.UnexpectedEndOfStream;
const slice = temp[0..@min(size - file_off, temp.len)];
try writer.writeAll(slice);
file_off += slice.len;
self.advance(slice.len);
if (file_off >= size) {
self.advance(pad_len);
return;
}
}
}
pub fn copy(self: *Self, dst_buffer: []u8, size: usize) !void {
const rounded_file_size = std.mem.alignForward(usize, size, 512);
const chunk_size = rounded_file_size + 512;
var i: usize = 0;
while (i < size) {
const slice = try self.readChunk(chunk_size - i);
if (slice.len == 0) return error.UnexpectedEndOfStream;
const copy_size: usize = @min(size - i, slice.len);
@memcpy(dst_buffer[i .. i + copy_size], slice[0..copy_size]);
self.advance(copy_size);
i += copy_size;
}
}
};
}
fn Iterator(comptime ReaderType: type) type {
return struct {
file_name_buffer: [std.fs.MAX_PATH_BYTES]u8 = undefined,
file_name_len: usize = 0,
reader: BufferedReader(ReaderType),
diagnostics: ?*Options.Diagnostics,
const Self = @This();
const File = struct {
file_name: []const u8,
link_name: []const u8,
size: usize,
file_type: Header.FileType,
iter: *Self,
pub fn write(self: File, writer: anytype) !void {
try self.iter.reader.write(writer, self.size);
}
pub fn skip(self: File) !void {
const rounded_file_size = std.mem.alignForward(usize, self.size, 512);
try self.iter.reader.skip(rounded_file_size);
}
};
pub fn next(self: *Self) !?File {
self.file_name_len = 0;
while (true) {
const chunk = try self.reader.readChunk(1024);
switch (chunk.len) {
0 => return null,
1...511 => return error.UnexpectedEndOfStream,
else => {},
}
self.reader.advance(512);
const header: Header = .{ .bytes = chunk[0..512] };
const file_size = try header.fileSize();
const file_type = header.fileType();
const link_name = header.linkName();
const rounded_file_size: usize = std.mem.alignForward(usize, file_size, 512);
const file_name = if (self.file_name_len == 0)
try header.fullFileName(&self.file_name_buffer)
else
self.file_name_buffer[0..self.file_name_len];
switch (file_type) {
.directory, .normal, .symbolic_link => {
return File{
.file_name = file_name,
.link_name = link_name,
.size = file_size,
.file_type = file_type,
.iter = self,
};
},
.global_extended_header => {
self.reader.skip(rounded_file_size) catch return error.TarHeadersTooBig;
},
.extended_header => {
if (file_size == 0) continue;
const chunk_size: usize = rounded_file_size + 512;
var data_off: usize = 0;
const file_name_override_len = while (data_off < file_size) {
const slice = try self.reader.readChunk(chunk_size - data_off);
if (slice.len == 0) return error.UnexpectedEndOfStream;
const remaining_size: usize = file_size - data_off;
const attr_info = try parsePaxAttribute(slice[0..@min(remaining_size, slice.len)], remaining_size);
if (std.mem.eql(u8, attr_info.key, "path")) {
if (attr_info.value_len > self.file_name_buffer.len) return error.NameTooLong;
self.reader.advance(attr_info.value_off);
data_off += attr_info.value_off;
break attr_info.value_len;
}
try self.reader.skip(attr_info.size);
data_off += attr_info.size;
} else 0;
try self.reader.copy(&self.file_name_buffer, file_name_override_len);
try self.reader.skip(rounded_file_size - data_off - file_name_override_len);
self.file_name_len = file_name_override_len;
continue;
},
.hard_link => return error.TarUnsupportedFileType,
else => {
const d = self.diagnostics orelse return error.TarUnsupportedFileType;
try d.errors.append(d.allocator, .{ .unsupported_file_type = .{
.file_name = try d.allocator.dupe(u8, file_name),
.file_type = file_type,
} });
},
}
}
}
};
}
pub fn iterator(reader: anytype, diagnostics: ?*Options.Diagnostics) Iterator(@TypeOf(reader)) {
const ReaderType = @TypeOf(reader);
return .{
.reader = BufferedReader(ReaderType){ .unbuffered_reader = reader },
.diagnostics = diagnostics,
};
}
pub fn pipeToFileSystem(dir: std.fs.Dir, reader: anytype, options: Options) !void {
switch (options.mode_mode) {
.ignore => {},
.executable_bit_only => {
// This code does not look at the mode bits yet. To implement this feature,
// the implementation must be adjusted to look at the mode, and check the
// user executable bit, then call fchmod on newly created files when
// the executable bit is supposed to be set.
// It also needs to properly deal with ACLs on Windows.
@panic("TODO: unimplemented: tar ModeMode.executable_bit_only");
},
}
var iter = iterator(reader, options.diagnostics);
while (try iter.next()) |iter_file| {
switch (iter_file.file_type) {
.directory => {
const file_name = try stripComponents(iter_file.file_name, options.strip_components);
if (file_name.len != 0 and !options.exclude_empty_directories) {
try dir.makePath(file_name);
}
},
.normal => {
if (iter_file.size == 0 and iter_file.file_name.len == 0) return;
const file_name = try stripComponents(iter_file.file_name, options.strip_components);
const file = dir.createFile(file_name, .{}) catch |err| switch (err) {
error.FileNotFound => again: {
const code = code: {
if (std.fs.path.dirname(file_name)) |dir_name| {
dir.makePath(dir_name) catch |code| break :code code;
break :again dir.createFile(file_name, .{}) catch |code| {
break :code code;
};
}
break :code err;
};
const d = options.diagnostics orelse return error.UnableToCreateFile;
try d.errors.append(d.allocator, .{ .unable_to_create_file = .{
.code = code,
.file_name = try d.allocator.dupe(u8, file_name),
} });
break :again null;
},
else => |e| return e,
};
defer if (file) |f| f.close();
if (file) |f| {
try iter_file.write(f);
} else {
try iter_file.skip();
}
},
.symbolic_link => {
// The file system path of the symbolic link.
const file_name = try stripComponents(iter_file.file_name, options.strip_components);
// The data inside the symbolic link.
const link_name = iter_file.link_name;
dir.symLink(link_name, file_name, .{}) catch |err| again: {
const code = code: {
if (err == error.FileNotFound) {
if (std.fs.path.dirname(file_name)) |dir_name| {
dir.makePath(dir_name) catch |code| break :code code;
break :again dir.symLink(link_name, file_name, .{}) catch |code| {
break :code code;
};
}
}
break :code err;
};
const d = options.diagnostics orelse return error.UnableToCreateSymLink;
try d.errors.append(d.allocator, .{ .unable_to_create_sym_link = .{
.code = code,
.file_name = try d.allocator.dupe(u8, file_name),
.link_name = try d.allocator.dupe(u8, link_name),
} });
};
},
else => unreachable,
}
}
}
fn stripComponents(path: []const u8, count: u32) ![]const u8 {
var i: usize = 0;
var c = count;
while (c > 0) : (c -= 1) {
if (std.mem.indexOfScalarPos(u8, path, i, '/')) |pos| {
i = pos + 1;
} else {
return error.TarComponentsOutsideStrippedPrefix;
}
}
return path[i..];
}
test stripComponents {
const expectEqualStrings = std.testing.expectEqualStrings;
try expectEqualStrings("a/b/c", try stripComponents("a/b/c", 0));
try expectEqualStrings("b/c", try stripComponents("a/b/c", 1));
try expectEqualStrings("c", try stripComponents("a/b/c", 2));
}
const PaxAttributeInfo = struct {
size: usize,
key: []const u8,
value_off: usize,
value_len: usize,
};
fn parsePaxAttribute(data: []const u8, max_size: usize) !PaxAttributeInfo {
const pos_space = std.mem.indexOfScalar(u8, data, ' ') orelse return error.InvalidPaxAttribute;
const pos_equals = std.mem.indexOfScalarPos(u8, data, pos_space, '=') orelse return error.InvalidPaxAttribute;
const kv_size = try std.fmt.parseInt(usize, data[0..pos_space], 10);
if (kv_size > max_size) {
return error.InvalidPaxAttribute;
}
return .{
.size = kv_size,
.key = data[pos_space + 1 .. pos_equals],
.value_off = pos_equals + 1,
.value_len = kv_size - pos_equals - 2,
};
}
test parsePaxAttribute {
const expectEqual = std.testing.expectEqual;
const expectEqualStrings = std.testing.expectEqualStrings;
const expectError = std.testing.expectError;
const prefix = "1011 path=";
const file_name = "0123456789" ** 100;
const header = prefix ++ file_name ++ "\n";
const attr_info = try parsePaxAttribute(header, 1011);
try expectEqual(@as(usize, 1011), attr_info.size);
try expectEqualStrings("path", attr_info.key);
try expectEqual(prefix.len, attr_info.value_off);
try expectEqual(file_name.len, attr_info.value_len);
try expectEqual(attr_info, try parsePaxAttribute(header, 1012));
try expectError(error.InvalidPaxAttribute, parsePaxAttribute(header, 1010));
try expectError(error.InvalidPaxAttribute, parsePaxAttribute("", 0));
}
const std = @import("std.zig");
const assert = std.debug.assert;