zig/lib/std/os/linux/tls.zig
2025-10-23 09:27:17 +02:00

571 lines
18 KiB
Zig

//! This file implements the two TLS variants [1] used by ELF-based systems. Note that, in reality,
//! Variant I has two sub-variants.
//!
//! It is important to understand that the term TCB (Thread Control Block) is overloaded here.
//! Official ABI documentation uses it simply to mean the ABI TCB, i.e. a small area of ABI-defined
//! data, usually one or two words (see the `AbiTcb` type below). People will also often use TCB to
//! refer to the libc TCB, which can be any size and contain anything. (One could even omit it!) We
//! refer to the latter as the Zig TCB; see the `ZigTcb` type below.
//!
//! [1] https://www.akkadia.org/drepper/tls.pdf
const std = @import("std");
const mem = std.mem;
const elf = std.elf;
const math = std.math;
const assert = std.debug.assert;
const native_arch = @import("builtin").cpu.arch;
const linux = std.os.linux;
const page_size_min = std.heap.page_size_min;
/// Represents an ELF TLS variant.
///
/// In all variants, the TP and the TLS blocks must be aligned to the `p_align` value in the
/// `PT_TLS` ELF program header. Everything else has natural alignment.
///
/// The location of the DTV does not actually matter. For simplicity, we put it in the TLS area, but
/// there is no actual ABI requirement that it reside there.
const Variant = enum {
/// The original Variant I:
///
/// ----------------------------------------
/// | DTV | Zig TCB | ABI TCB | TLS Blocks |
/// ----------------^-----------------------
/// `-- The TP register points here.
///
/// The layout in this variant necessitates separate alignment of both the TP and the TLS
/// blocks.
///
/// The first word in the ABI TCB points to the DTV. For some architectures, there may be a
/// second word with an unspecified meaning.
I_original,
/// The modified Variant I:
///
/// ---------------------------------------------------
/// | DTV | Zig TCB | ABI TCB | [Offset] | TLS Blocks |
/// -------------------------------------^-------------
/// `-- The TP register points here.
///
/// The offset (which can be zero) is applied to the TP only; there is never physical gap
/// between the ABI TCB and the TLS blocks. This implies that we only need to align the TP.
///
/// The first (and only) word in the ABI TCB points to the DTV.
I_modified,
/// Variant II:
///
/// ----------------------------------------
/// | TLS Blocks | ABI TCB | Zig TCB | DTV |
/// -------------^--------------------------
/// `-- The TP register points here.
///
/// The first (and only) word in the ABI TCB points to the ABI TCB itself.
II,
};
const current_variant: Variant = switch (native_arch) {
.arc,
.arceb,
.arm,
.armeb,
.aarch64,
.aarch64_be,
.csky,
.thumb,
.thumbeb,
=> .I_original,
.loongarch32,
.loongarch64,
.m68k,
.mips,
.mipsel,
.mips64,
.mips64el,
.or1k,
.powerpc,
.powerpcle,
.powerpc64,
.powerpc64le,
.riscv32,
.riscv64,
=> .I_modified,
.hexagon,
.s390x,
.sparc,
.sparc64,
.x86,
.x86_64,
=> .II,
else => @compileError("undefined TLS variant for this architecture"),
};
/// The Offset value for the modified Variant I.
const current_tp_offset = switch (native_arch) {
.m68k,
.mips,
.mipsel,
.mips64,
.mips64el,
.powerpc,
.powerpcle,
.powerpc64,
.powerpc64le,
=> 0x7000,
else => 0,
};
/// Usually only used by the modified Variant I.
const current_dtv_offset = switch (native_arch) {
.m68k,
.mips,
.mipsel,
.mips64,
.mips64el,
.powerpc,
.powerpcle,
.powerpc64,
.powerpc64le,
=> 0x8000,
.riscv32,
.riscv64,
=> 0x800,
else => 0,
};
/// Per-thread storage for the ELF TLS ABI.
const AbiTcb = switch (current_variant) {
.I_original, .I_modified => switch (native_arch) {
// ARM EABI mandates enough space for two pointers: the first one points to the DTV as
// usual, while the second one is unspecified.
.aarch64,
.aarch64_be,
.arm,
.armeb,
.thumb,
.thumbeb,
=> extern struct {
/// This is offset by `current_dtv_offset`.
dtv: usize,
reserved: ?*anyopaque,
},
else => extern struct {
/// This is offset by `current_dtv_offset`.
dtv: usize,
},
},
.II => extern struct {
/// This is self-referential.
self: *AbiTcb,
},
};
/// Per-thread storage for Zig's use. Currently unused.
const ZigTcb = struct {
dummy: usize,
};
/// Dynamic Thread Vector as specified in the ELF TLS ABI. Ordinarily, there is a block pointer per
/// dynamically-loaded module, but since we only support static TLS, we only need one block pointer.
const Dtv = extern struct {
len: usize = 1,
tls_block: [*]u8,
};
/// Describes a process's TLS area. The area encompasses the DTV, both TCBs, and the TLS block, with
/// the exact layout of these being dependent primarily on `current_variant`.
const AreaDesc = struct {
size: usize,
alignment: usize,
dtv: struct {
/// Offset into the TLS area.
offset: usize,
},
abi_tcb: struct {
/// Offset into the TLS area.
offset: usize,
},
block: struct {
/// The initial data to be copied into the TLS block. Note that this may be smaller than
/// `size`, in which case any remaining data in the TLS block is simply left uninitialized.
init: []const u8,
/// Offset into the TLS area.
offset: usize,
/// This is the effective size of the TLS block, which may be greater than `init.len`.
size: usize,
},
/// Only used on the 32-bit x86 architecture (not x86_64, nor x32).
gdt_entry_number: usize,
};
pub var area_desc: AreaDesc = undefined;
pub fn setThreadPointer(addr: usize) void {
@setRuntimeSafety(false);
@disableInstrumentation();
switch (native_arch) {
.x86 => {
var user_desc: linux.user_desc = .{
.entry_number = area_desc.gdt_entry_number,
.base_addr = addr,
.limit = 0xfffff,
.flags = .{
.seg_32bit = 1,
.contents = 0, // Data
.read_exec_only = 0,
.limit_in_pages = 1,
.seg_not_present = 0,
.useable = 1,
},
};
const rc = @call(.always_inline, linux.syscall1, .{ .set_thread_area, @intFromPtr(&user_desc) });
assert(rc == 0);
const gdt_entry_number = user_desc.entry_number;
// We have to keep track of our slot as it's also needed for clone()
area_desc.gdt_entry_number = gdt_entry_number;
// Update the %gs selector
asm volatile ("movl %[gs_val], %%gs"
:
: [gs_val] "r" (gdt_entry_number << 3 | 3),
);
},
.x86_64 => {
const rc = @call(.always_inline, linux.syscall2, .{ .arch_prctl, linux.ARCH.SET_FS, addr });
assert(rc == 0);
},
.aarch64, .aarch64_be => {
asm volatile (
\\ msr tpidr_el0, %[addr]
:
: [addr] "r" (addr),
);
},
.arc, .arceb => {
// We apparently need to both set r25 (TP) *and* inform the kernel...
asm volatile (
\\ mov r25, %[addr]
:
: [addr] "r" (addr),
);
const rc = @call(.always_inline, linux.syscall1, .{ .arc_settls, addr });
assert(rc == 0);
},
.arm, .armeb, .thumb, .thumbeb => {
const rc = @call(.always_inline, linux.syscall1, .{ .set_tls, addr });
assert(rc == 0);
},
.m68k => {
const rc = linux.syscall1(.set_thread_area, addr);
assert(rc == 0);
},
.hexagon => {
asm volatile (
\\ ugp = %[addr]
:
: [addr] "r" (addr),
);
},
.loongarch32, .loongarch64 => {
asm volatile (
\\ move $tp, %[addr]
:
: [addr] "r" (addr),
);
},
.riscv32, .riscv64 => {
asm volatile (
\\ mv tp, %[addr]
:
: [addr] "r" (addr),
);
},
.csky, .mips, .mipsel, .mips64, .mips64el => {
const rc = @call(.always_inline, linux.syscall1, .{ .set_thread_area, addr });
assert(rc == 0);
},
.or1k => {
asm volatile (
\\ l.ori r10, %[addr], 0
:
: [addr] "r" (addr),
);
},
.powerpc, .powerpcle => {
asm volatile (
\\ mr 2, %[addr]
:
: [addr] "r" (addr),
);
},
.powerpc64, .powerpc64le => {
asm volatile (
\\ mr 13, %[addr]
:
: [addr] "r" (addr),
);
},
.s390x => {
asm volatile (
\\ lgr %%r0, %[addr]
\\ sar %%a1, %%r0
\\ srlg %%r0, %%r0, 32
\\ sar %%a0, %%r0
:
: [addr] "r" (addr),
: .{ .r0 = true });
},
.sparc, .sparc64 => {
asm volatile (
\\ mov %[addr], %%g7
:
: [addr] "r" (addr),
);
},
else => @compileError("Unsupported architecture"),
}
}
fn computeAreaDesc(phdrs: []elf.Phdr) void {
@setRuntimeSafety(false);
@disableInstrumentation();
var tls_phdr: ?*elf.Phdr = null;
var img_base: usize = 0;
for (phdrs) |*phdr| {
switch (phdr.p_type) {
elf.PT_PHDR => img_base = @intFromPtr(phdrs.ptr) - phdr.p_vaddr,
elf.PT_TLS => tls_phdr = phdr,
else => {},
}
}
var align_factor: usize = undefined;
var block_init: []const u8 = undefined;
var block_size: usize = undefined;
if (tls_phdr) |phdr| {
align_factor = phdr.p_align;
// The effective size in memory is represented by `p_memsz`; the length of the data stored
// in the `PT_TLS` segment is `p_filesz` and may be less than the former.
block_init = @as([*]u8, @ptrFromInt(img_base + phdr.p_vaddr))[0..phdr.p_filesz];
block_size = phdr.p_memsz;
} else {
align_factor = @alignOf(usize);
block_init = &[_]u8{};
block_size = 0;
}
// Offsets into the allocated TLS area.
var dtv_offset: usize = undefined;
var abi_tcb_offset: usize = undefined;
var block_offset: usize = undefined;
// Compute the total size of the ABI-specific data plus our own `ZigTcb` structure. All the
// offsets calculated here assume a well-aligned base address.
const area_size = switch (current_variant) {
.I_original => blk: {
var l: usize = 0;
dtv_offset = l;
l += @sizeOf(Dtv);
// Add some padding here so that the TP (`abi_tcb_offset`) is aligned to `align_factor`
// and the `ZigTcb` structure can be found by simply subtracting `@sizeOf(ZigTcb)` from
// the TP.
const delta = (l + @sizeOf(ZigTcb)) & (align_factor - 1);
if (delta > 0)
l += align_factor - delta;
l += @sizeOf(ZigTcb);
abi_tcb_offset = l;
l += alignForward(@sizeOf(AbiTcb), align_factor);
block_offset = l;
l += block_size;
break :blk l;
},
.I_modified => blk: {
var l: usize = 0;
dtv_offset = l;
l += @sizeOf(Dtv);
// In this variant, the TLS blocks must begin immediately after the end of the ABI TCB,
// with the TP pointing to the beginning of the TLS blocks. Add padding so that the TP
// (`abi_tcb_offset`) is aligned to `align_factor` and the `ZigTcb` structure can be
// found by subtracting `@sizeOf(AbiTcb) + @sizeOf(ZigTcb)` from the TP.
const delta = (l + @sizeOf(ZigTcb) + @sizeOf(AbiTcb)) & (align_factor - 1);
if (delta > 0)
l += align_factor - delta;
l += @sizeOf(ZigTcb);
abi_tcb_offset = l;
l += @sizeOf(AbiTcb);
block_offset = l;
l += block_size;
break :blk l;
},
.II => blk: {
var l: usize = 0;
block_offset = l;
l += alignForward(block_size, align_factor);
// The TP is aligned to `align_factor`.
abi_tcb_offset = l;
l += @sizeOf(AbiTcb);
// The `ZigTcb` structure is right after the `AbiTcb` with no padding in between so it
// can be easily found.
l += @sizeOf(ZigTcb);
// It doesn't really matter where we put the DTV, so give it natural alignment.
l = alignForward(l, @alignOf(Dtv));
dtv_offset = l;
l += @sizeOf(Dtv);
break :blk l;
},
};
area_desc = .{
.size = area_size,
.alignment = align_factor,
.dtv = .{
.offset = dtv_offset,
},
.abi_tcb = .{
.offset = abi_tcb_offset,
},
.block = .{
.init = block_init,
.offset = block_offset,
.size = block_size,
},
.gdt_entry_number = @as(usize, @bitCast(@as(isize, -1))),
};
}
/// Inline because TLS is not set up yet.
inline fn alignForward(addr: usize, alignment: usize) usize {
return alignBackward(addr + (alignment - 1), alignment);
}
/// Inline because TLS is not set up yet.
inline fn alignBackward(addr: usize, alignment: usize) usize {
return addr & ~(alignment - 1);
}
/// Inline because TLS is not set up yet.
inline fn alignPtrCast(comptime T: type, ptr: [*]u8) *T {
return @ptrCast(@alignCast(ptr));
}
/// Initializes all the fields of the static TLS area and returns the computed architecture-specific
/// value of the TP register.
pub fn prepareArea(area: []u8) usize {
@setRuntimeSafety(false);
@disableInstrumentation();
// Clear the area we're going to use, just to be safe.
@memset(area, 0);
// Prepare the ABI TCB.
const abi_tcb = alignPtrCast(AbiTcb, area.ptr + area_desc.abi_tcb.offset);
switch (current_variant) {
.I_original, .I_modified => abi_tcb.dtv = @intFromPtr(area.ptr + area_desc.dtv.offset),
.II => abi_tcb.self = abi_tcb,
}
// Prepare the DTV.
const dtv = alignPtrCast(Dtv, area.ptr + area_desc.dtv.offset);
dtv.len = 1;
dtv.tls_block = area.ptr + current_dtv_offset + area_desc.block.offset;
// Copy the initial data.
@memcpy(area[area_desc.block.offset..][0..area_desc.block.init.len], area_desc.block.init);
// Return the corrected value (if needed) for the TP register. Overflow here is not a problem;
// the pointer arithmetic involving the TP is done with wrapping semantics.
return @intFromPtr(area.ptr) +% switch (current_variant) {
.I_original, .II => area_desc.abi_tcb.offset,
.I_modified => area_desc.block.offset +% current_tp_offset,
};
}
/// The main motivation for the size chosen here is that this is how much ends up being requested for
/// the thread-local variables of the `std.crypto.random` implementation. I'm not sure why it ends up
/// being so much; the struct itself is only 64 bytes. I think it has to do with being page-aligned
/// and LLVM or LLD is not smart enough to lay out the TLS data in a space-conserving way. Anyway, I
/// think it's fine because it's less than 3 pages of memory, and putting it in the ELF like this is
/// equivalent to moving the `mmap` call below into the kernel, avoiding syscall overhead.
var main_thread_area_buffer: [0x2100]u8 align(page_size_min) = undefined;
/// Computes the layout of the static TLS area, allocates the area, initializes all of its fields,
/// and assigns the architecture-specific value to the TP register.
pub fn initStatic(phdrs: []elf.Phdr) void {
@setRuntimeSafety(false);
@disableInstrumentation();
computeAreaDesc(phdrs);
const area = blk: {
// Fast path for the common case where the TLS data is really small, avoid an allocation and
// use our local buffer.
if (area_desc.alignment <= page_size_min and area_desc.size <= main_thread_area_buffer.len) {
break :blk main_thread_area_buffer[0..area_desc.size];
}
const begin_addr = mmap_tls(area_desc.size + area_desc.alignment - 1);
if (@call(.always_inline, linux.E.init, .{begin_addr}) != .SUCCESS) @trap();
const area_ptr: [*]align(page_size_min) u8 = @ptrFromInt(begin_addr);
// Make sure the slice is correctly aligned.
const begin_aligned_addr = alignForward(begin_addr, area_desc.alignment);
const start = begin_aligned_addr - begin_addr;
break :blk area_ptr[start..][0..area_desc.size];
};
const tp_value = prepareArea(area);
setThreadPointer(tp_value);
}
inline fn mmap_tls(length: usize) usize {
const prot = linux.PROT.READ | linux.PROT.WRITE;
const flags: linux.MAP = .{ .TYPE = .PRIVATE, .ANONYMOUS = true };
if (@hasField(linux.SYS, "mmap2")) {
return @call(.always_inline, linux.syscall6, .{
.mmap2,
0,
length,
prot,
@as(u32, @bitCast(flags)),
@as(usize, @bitCast(@as(isize, -1))),
0,
});
} else {
// The s390x mmap() syscall existed before Linux supported syscalls with 5+ parameters, so
// it takes a single pointer to an array of arguments instead.
return if (native_arch == .s390x) @call(.always_inline, linux.syscall1, .{
.mmap,
@intFromPtr(&[_]usize{
0,
length,
prot,
@as(u32, @bitCast(flags)),
@as(usize, @bitCast(@as(isize, -1))),
0,
}),
}) else @call(.always_inline, linux.syscall6, .{
.mmap,
0,
length,
prot,
@as(u32, @bitCast(flags)),
@as(usize, @bitCast(@as(isize, -1))),
0,
});
}
}