zig/lib/std/heap.zig
Andrew Kelley 3deda15e21 std.os reorganization, avoiding usingnamespace
The main purpose of this branch is to explore avoiding the
`usingnamespace` feature of the zig language, specifically with regards
to `std.os` and related functionality.

If this experiment is successful, it will provide a data point on
whether or not it would be practical to entirely remove `usingnamespace`
from the language.

In this commit, `usingnamespace` has been completely eliminated from
the Linux x86_64 compilation path, aside from io_uring.

The behavior tests pass, however that's as far as this branch goes. It is
very breaking, and a lot more work is needed before it could be
considered mergeable. I wanted to put a pull requset up early so that
zig programmers have time to provide feedback.

This is progress towards closing #6600 since it clarifies where the
actual "owner" of each declaration is, and reduces the number of
different ways to import the same declarations.

One of the main organizational strategies used here is to do namespacing
with real namespaces (e.g. structs) rather than by having declarations
share a common prefix (the C strategy). It's no coincidence that
`usingnamespace` has similar semantics to `#include` and becomes much
less necessary when using proper namespaces.
2021-09-01 17:54:06 -07:00

1195 lines
44 KiB
Zig

const std = @import("std.zig");
const root = @import("root");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const os = std.os;
const builtin = std.builtin;
const c = std.c;
const maxInt = std.math.maxInt;
pub const LoggingAllocator = @import("heap/logging_allocator.zig").LoggingAllocator;
pub const loggingAllocator = @import("heap/logging_allocator.zig").loggingAllocator;
pub const ScopedLoggingAllocator = @import("heap/logging_allocator.zig").ScopedLoggingAllocator;
pub const LogToWriterAllocator = @import("heap/log_to_writer_allocator.zig").LogToWriterAllocator;
pub const logToWriterAllocator = @import("heap/log_to_writer_allocator.zig").logToWriterAllocator;
pub const ArenaAllocator = @import("heap/arena_allocator.zig").ArenaAllocator;
pub const GeneralPurposeAllocator = @import("heap/general_purpose_allocator.zig").GeneralPurposeAllocator;
const Allocator = mem.Allocator;
const CAllocator = struct {
comptime {
if (!builtin.link_libc) {
@compileError("C allocator is only available when linking against libc");
}
}
usingnamespace if (@hasDecl(c, "malloc_size"))
struct {
pub const supports_malloc_size = true;
pub const malloc_size = c.malloc_size;
}
else if (@hasDecl(c, "malloc_usable_size"))
struct {
pub const supports_malloc_size = true;
pub const malloc_size = c.malloc_usable_size;
}
else if (@hasDecl(c, "_msize"))
struct {
pub const supports_malloc_size = true;
pub const malloc_size = c._msize;
}
else
struct {
pub const supports_malloc_size = false;
};
pub const supports_posix_memalign = @hasDecl(c, "posix_memalign");
fn getHeader(ptr: [*]u8) *[*]u8 {
return @intToPtr(*[*]u8, @ptrToInt(ptr) - @sizeOf(usize));
}
fn alignedAlloc(len: usize, alignment: usize) ?[*]u8 {
if (supports_posix_memalign) {
// The posix_memalign only accepts alignment values that are a
// multiple of the pointer size
const eff_alignment = std.math.max(alignment, @sizeOf(usize));
var aligned_ptr: ?*c_void = undefined;
if (c.posix_memalign(&aligned_ptr, eff_alignment, len) != 0)
return null;
return @ptrCast([*]u8, aligned_ptr);
}
// Thin wrapper around regular malloc, overallocate to account for
// alignment padding and store the orignal malloc()'ed pointer before
// the aligned address.
var unaligned_ptr = @ptrCast([*]u8, c.malloc(len + alignment - 1 + @sizeOf(usize)) orelse return null);
const unaligned_addr = @ptrToInt(unaligned_ptr);
const aligned_addr = mem.alignForward(unaligned_addr + @sizeOf(usize), alignment);
var aligned_ptr = unaligned_ptr + (aligned_addr - unaligned_addr);
getHeader(aligned_ptr).* = unaligned_ptr;
return aligned_ptr;
}
fn alignedFree(ptr: [*]u8) void {
if (supports_posix_memalign) {
return c.free(ptr);
}
const unaligned_ptr = getHeader(ptr).*;
c.free(unaligned_ptr);
}
fn alignedAllocSize(ptr: [*]u8) usize {
if (supports_posix_memalign) {
return malloc_size(ptr);
}
const unaligned_ptr = getHeader(ptr).*;
const delta = @ptrToInt(ptr) - @ptrToInt(unaligned_ptr);
return malloc_size(unaligned_ptr) - delta;
}
fn alloc(
allocator: *Allocator,
len: usize,
alignment: u29,
len_align: u29,
return_address: usize,
) error{OutOfMemory}![]u8 {
_ = allocator;
_ = return_address;
assert(len > 0);
assert(std.math.isPowerOfTwo(alignment));
var ptr = alignedAlloc(len, alignment) orelse return error.OutOfMemory;
if (len_align == 0) {
return ptr[0..len];
}
const full_len = init: {
if (supports_malloc_size) {
const s = alignedAllocSize(ptr);
assert(s >= len);
break :init s;
}
break :init len;
};
return ptr[0..mem.alignBackwardAnyAlign(full_len, len_align)];
}
fn resize(
allocator: *Allocator,
buf: []u8,
buf_align: u29,
new_len: usize,
len_align: u29,
return_address: usize,
) Allocator.Error!usize {
_ = allocator;
_ = buf_align;
_ = return_address;
if (new_len == 0) {
alignedFree(buf.ptr);
return 0;
}
if (new_len <= buf.len) {
return mem.alignAllocLen(buf.len, new_len, len_align);
}
if (supports_malloc_size) {
const full_len = alignedAllocSize(buf.ptr);
if (new_len <= full_len) {
return mem.alignAllocLen(full_len, new_len, len_align);
}
}
return error.OutOfMemory;
}
};
/// Supports the full Allocator interface, including alignment, and exploiting
/// `malloc_usable_size` if available. For an allocator that directly calls
/// `malloc`/`free`, see `raw_c_allocator`.
pub const c_allocator = &c_allocator_state;
var c_allocator_state = Allocator{
.allocFn = CAllocator.alloc,
.resizeFn = CAllocator.resize,
};
/// Asserts allocations are within `@alignOf(std.c.max_align_t)` and directly calls
/// `malloc`/`free`. Does not attempt to utilize `malloc_usable_size`.
/// This allocator is safe to use as the backing allocator with
/// `ArenaAllocator` for example and is more optimal in such a case
/// than `c_allocator`.
pub const raw_c_allocator = &raw_c_allocator_state;
var raw_c_allocator_state = Allocator{
.allocFn = rawCAlloc,
.resizeFn = rawCResize,
};
fn rawCAlloc(
self: *Allocator,
len: usize,
ptr_align: u29,
len_align: u29,
ret_addr: usize,
) Allocator.Error![]u8 {
_ = self;
_ = len_align;
_ = ret_addr;
assert(ptr_align <= @alignOf(std.c.max_align_t));
const ptr = @ptrCast([*]u8, c.malloc(len) orelse return error.OutOfMemory);
return ptr[0..len];
}
fn rawCResize(
self: *Allocator,
buf: []u8,
old_align: u29,
new_len: usize,
len_align: u29,
ret_addr: usize,
) Allocator.Error!usize {
_ = self;
_ = old_align;
_ = ret_addr;
if (new_len == 0) {
c.free(buf.ptr);
return 0;
}
if (new_len <= buf.len) {
return mem.alignAllocLen(buf.len, new_len, len_align);
}
return error.OutOfMemory;
}
/// This allocator makes a syscall directly for every allocation and free.
/// Thread-safe and lock-free.
pub const page_allocator = if (std.Target.current.isWasm())
&wasm_page_allocator_state
else if (std.Target.current.os.tag == .freestanding)
root.os.heap.page_allocator
else
&page_allocator_state;
var page_allocator_state = Allocator{
.allocFn = PageAllocator.alloc,
.resizeFn = PageAllocator.resize,
};
var wasm_page_allocator_state = Allocator{
.allocFn = WasmPageAllocator.alloc,
.resizeFn = WasmPageAllocator.resize,
};
/// Verifies that the adjusted length will still map to the full length
pub fn alignPageAllocLen(full_len: usize, len: usize, len_align: u29) usize {
const aligned_len = mem.alignAllocLen(full_len, len, len_align);
assert(mem.alignForward(aligned_len, mem.page_size) == full_len);
return aligned_len;
}
/// TODO Utilize this on Windows.
pub var next_mmap_addr_hint: ?[*]align(mem.page_size) u8 = null;
const PageAllocator = struct {
fn alloc(allocator: *Allocator, n: usize, alignment: u29, len_align: u29, ra: usize) error{OutOfMemory}![]u8 {
_ = allocator;
_ = ra;
assert(n > 0);
const aligned_len = mem.alignForward(n, mem.page_size);
if (builtin.os.tag == .windows) {
const w = os.windows;
// Although officially it's at least aligned to page boundary,
// Windows is known to reserve pages on a 64K boundary. It's
// even more likely that the requested alignment is <= 64K than
// 4K, so we're just allocating blindly and hoping for the best.
// see https://devblogs.microsoft.com/oldnewthing/?p=42223
const addr = w.VirtualAlloc(
null,
aligned_len,
w.MEM_COMMIT | w.MEM_RESERVE,
w.PAGE_READWRITE,
) catch return error.OutOfMemory;
// If the allocation is sufficiently aligned, use it.
if (mem.isAligned(@ptrToInt(addr), alignment)) {
return @ptrCast([*]u8, addr)[0..alignPageAllocLen(aligned_len, n, len_align)];
}
// If it wasn't, actually do an explicitely aligned allocation.
w.VirtualFree(addr, 0, w.MEM_RELEASE);
const alloc_size = n + alignment - mem.page_size;
while (true) {
// Reserve a range of memory large enough to find a sufficiently
// aligned address.
const reserved_addr = w.VirtualAlloc(
null,
alloc_size,
w.MEM_RESERVE,
w.PAGE_NOACCESS,
) catch return error.OutOfMemory;
const aligned_addr = mem.alignForward(@ptrToInt(reserved_addr), alignment);
// Release the reserved pages (not actually used).
w.VirtualFree(reserved_addr, 0, w.MEM_RELEASE);
// At this point, it is possible that another thread has
// obtained some memory space that will cause the next
// VirtualAlloc call to fail. To handle this, we will retry
// until it succeeds.
const ptr = w.VirtualAlloc(
@intToPtr(*c_void, aligned_addr),
aligned_len,
w.MEM_COMMIT | w.MEM_RESERVE,
w.PAGE_READWRITE,
) catch continue;
return @ptrCast([*]u8, ptr)[0..alignPageAllocLen(aligned_len, n, len_align)];
}
}
const max_drop_len = alignment - std.math.min(alignment, mem.page_size);
const alloc_len = if (max_drop_len <= aligned_len - n)
aligned_len
else
mem.alignForward(aligned_len + max_drop_len, mem.page_size);
const hint = @atomicLoad(@TypeOf(next_mmap_addr_hint), &next_mmap_addr_hint, .Unordered);
const slice = os.mmap(
hint,
alloc_len,
os.PROT.READ | os.PROT.WRITE,
os.MAP.PRIVATE | os.MAP.ANONYMOUS,
-1,
0,
) catch return error.OutOfMemory;
assert(mem.isAligned(@ptrToInt(slice.ptr), mem.page_size));
const result_ptr = mem.alignPointer(slice.ptr, alignment) orelse
return error.OutOfMemory;
// Unmap the extra bytes that were only requested in order to guarantee
// that the range of memory we were provided had a proper alignment in
// it somewhere. The extra bytes could be at the beginning, or end, or both.
const drop_len = @ptrToInt(result_ptr) - @ptrToInt(slice.ptr);
if (drop_len != 0) {
os.munmap(slice[0..drop_len]);
}
// Unmap extra pages
const aligned_buffer_len = alloc_len - drop_len;
if (aligned_buffer_len > aligned_len) {
os.munmap(result_ptr[aligned_len..aligned_buffer_len]);
}
const new_hint = @alignCast(mem.page_size, result_ptr + aligned_len);
_ = @cmpxchgStrong(@TypeOf(next_mmap_addr_hint), &next_mmap_addr_hint, hint, new_hint, .Monotonic, .Monotonic);
return result_ptr[0..alignPageAllocLen(aligned_len, n, len_align)];
}
fn resize(
allocator: *Allocator,
buf_unaligned: []u8,
buf_align: u29,
new_size: usize,
len_align: u29,
return_address: usize,
) Allocator.Error!usize {
_ = allocator;
_ = buf_align;
_ = return_address;
const new_size_aligned = mem.alignForward(new_size, mem.page_size);
if (builtin.os.tag == .windows) {
const w = os.windows;
if (new_size == 0) {
// From the docs:
// "If the dwFreeType parameter is MEM_RELEASE, this parameter
// must be 0 (zero). The function frees the entire region that
// is reserved in the initial allocation call to VirtualAlloc."
// So we can only use MEM_RELEASE when actually releasing the
// whole allocation.
w.VirtualFree(buf_unaligned.ptr, 0, w.MEM_RELEASE);
return 0;
}
if (new_size <= buf_unaligned.len) {
const base_addr = @ptrToInt(buf_unaligned.ptr);
const old_addr_end = base_addr + buf_unaligned.len;
const new_addr_end = mem.alignForward(base_addr + new_size, mem.page_size);
if (old_addr_end > new_addr_end) {
// For shrinking that is not releasing, we will only
// decommit the pages not needed anymore.
w.VirtualFree(
@intToPtr(*c_void, new_addr_end),
old_addr_end - new_addr_end,
w.MEM_DECOMMIT,
);
}
return alignPageAllocLen(new_size_aligned, new_size, len_align);
}
const old_size_aligned = mem.alignForward(buf_unaligned.len, mem.page_size);
if (new_size_aligned <= old_size_aligned) {
return alignPageAllocLen(new_size_aligned, new_size, len_align);
}
return error.OutOfMemory;
}
const buf_aligned_len = mem.alignForward(buf_unaligned.len, mem.page_size);
if (new_size_aligned == buf_aligned_len)
return alignPageAllocLen(new_size_aligned, new_size, len_align);
if (new_size_aligned < buf_aligned_len) {
const ptr = @alignCast(mem.page_size, buf_unaligned.ptr + new_size_aligned);
// TODO: if the next_mmap_addr_hint is within the unmapped range, update it
os.munmap(ptr[0 .. buf_aligned_len - new_size_aligned]);
if (new_size_aligned == 0)
return 0;
return alignPageAllocLen(new_size_aligned, new_size, len_align);
}
// TODO: call mremap
// TODO: if the next_mmap_addr_hint is within the remapped range, update it
return error.OutOfMemory;
}
};
const WasmPageAllocator = struct {
comptime {
if (!std.Target.current.isWasm()) {
@compileError("WasmPageAllocator is only available for wasm32 arch");
}
}
const PageStatus = enum(u1) {
used = 0,
free = 1,
pub const none_free: u8 = 0;
};
const FreeBlock = struct {
data: []u128,
const Io = std.packed_int_array.PackedIntIo(u1, .Little);
fn totalPages(self: FreeBlock) usize {
return self.data.len * 128;
}
fn isInitialized(self: FreeBlock) bool {
return self.data.len > 0;
}
fn getBit(self: FreeBlock, idx: usize) PageStatus {
const bit_offset = 0;
return @intToEnum(PageStatus, Io.get(mem.sliceAsBytes(self.data), idx, bit_offset));
}
fn setBits(self: FreeBlock, start_idx: usize, len: usize, val: PageStatus) void {
const bit_offset = 0;
var i: usize = 0;
while (i < len) : (i += 1) {
Io.set(mem.sliceAsBytes(self.data), start_idx + i, bit_offset, @enumToInt(val));
}
}
// Use '0xFFFFFFFF' as a _missing_ sentinel
// This saves ~50 bytes compared to returning a nullable
// We can guarantee that conventional memory never gets this big,
// and wasm32 would not be able to address this memory (32 GB > usize).
// Revisit if this is settled: https://github.com/ziglang/zig/issues/3806
const not_found = std.math.maxInt(usize);
fn useRecycled(self: FreeBlock, num_pages: usize, alignment: u29) usize {
@setCold(true);
for (self.data) |segment, i| {
const spills_into_next = @bitCast(i128, segment) < 0;
const has_enough_bits = @popCount(u128, segment) >= num_pages;
if (!spills_into_next and !has_enough_bits) continue;
var j: usize = i * 128;
while (j < (i + 1) * 128) : (j += 1) {
var count: usize = 0;
while (j + count < self.totalPages() and self.getBit(j + count) == .free) {
count += 1;
const addr = j * mem.page_size;
if (count >= num_pages and mem.isAligned(addr, alignment)) {
self.setBits(j, num_pages, .used);
return j;
}
}
j += count;
}
}
return not_found;
}
fn recycle(self: FreeBlock, start_idx: usize, len: usize) void {
self.setBits(start_idx, len, .free);
}
};
var _conventional_data = [_]u128{0} ** 16;
// Marking `conventional` as const saves ~40 bytes
const conventional = FreeBlock{ .data = &_conventional_data };
var extended = FreeBlock{ .data = &[_]u128{} };
fn extendedOffset() usize {
return conventional.totalPages();
}
fn nPages(memsize: usize) usize {
return mem.alignForward(memsize, mem.page_size) / mem.page_size;
}
fn alloc(allocator: *Allocator, len: usize, alignment: u29, len_align: u29, ra: usize) error{OutOfMemory}![]u8 {
_ = allocator;
_ = ra;
const page_count = nPages(len);
const page_idx = try allocPages(page_count, alignment);
return @intToPtr([*]u8, page_idx * mem.page_size)[0..alignPageAllocLen(page_count * mem.page_size, len, len_align)];
}
fn allocPages(page_count: usize, alignment: u29) !usize {
{
const idx = conventional.useRecycled(page_count, alignment);
if (idx != FreeBlock.not_found) {
return idx;
}
}
const idx = extended.useRecycled(page_count, alignment);
if (idx != FreeBlock.not_found) {
return idx + extendedOffset();
}
const next_page_idx = @wasmMemorySize(0);
const next_page_addr = next_page_idx * mem.page_size;
const aligned_addr = mem.alignForward(next_page_addr, alignment);
const drop_page_count = @divExact(aligned_addr - next_page_addr, mem.page_size);
const result = @wasmMemoryGrow(0, @intCast(u32, drop_page_count + page_count));
if (result <= 0)
return error.OutOfMemory;
assert(result == next_page_idx);
const aligned_page_idx = next_page_idx + drop_page_count;
if (drop_page_count > 0) {
freePages(next_page_idx, aligned_page_idx);
}
return @intCast(usize, aligned_page_idx);
}
fn freePages(start: usize, end: usize) void {
if (start < extendedOffset()) {
conventional.recycle(start, std.math.min(extendedOffset(), end) - start);
}
if (end > extendedOffset()) {
var new_end = end;
if (!extended.isInitialized()) {
// Steal the last page from the memory currently being recycled
// TODO: would it be better if we use the first page instead?
new_end -= 1;
extended.data = @intToPtr([*]u128, new_end * mem.page_size)[0 .. mem.page_size / @sizeOf(u128)];
// Since this is the first page being freed and we consume it, assume *nothing* is free.
mem.set(u128, extended.data, PageStatus.none_free);
}
const clamped_start = std.math.max(extendedOffset(), start);
extended.recycle(clamped_start - extendedOffset(), new_end - clamped_start);
}
}
fn resize(
allocator: *Allocator,
buf: []u8,
buf_align: u29,
new_len: usize,
len_align: u29,
return_address: usize,
) error{OutOfMemory}!usize {
_ = allocator;
_ = buf_align;
_ = return_address;
const aligned_len = mem.alignForward(buf.len, mem.page_size);
if (new_len > aligned_len) return error.OutOfMemory;
const current_n = nPages(aligned_len);
const new_n = nPages(new_len);
if (new_n != current_n) {
const base = nPages(@ptrToInt(buf.ptr));
freePages(base + new_n, base + current_n);
}
return if (new_len == 0) 0 else alignPageAllocLen(new_n * mem.page_size, new_len, len_align);
}
};
pub const HeapAllocator = switch (builtin.os.tag) {
.windows => struct {
allocator: Allocator,
heap_handle: ?HeapHandle,
const HeapHandle = os.windows.HANDLE;
pub fn init() HeapAllocator {
return HeapAllocator{
.allocator = Allocator{
.allocFn = alloc,
.resizeFn = resize,
},
.heap_handle = null,
};
}
pub fn deinit(self: *HeapAllocator) void {
if (self.heap_handle) |heap_handle| {
os.windows.HeapDestroy(heap_handle);
}
}
fn getRecordPtr(buf: []u8) *align(1) usize {
return @intToPtr(*align(1) usize, @ptrToInt(buf.ptr) + buf.len);
}
fn alloc(
allocator: *Allocator,
n: usize,
ptr_align: u29,
len_align: u29,
return_address: usize,
) error{OutOfMemory}![]u8 {
_ = return_address;
const self = @fieldParentPtr(HeapAllocator, "allocator", allocator);
const amt = n + ptr_align - 1 + @sizeOf(usize);
const optional_heap_handle = @atomicLoad(?HeapHandle, &self.heap_handle, builtin.AtomicOrder.SeqCst);
const heap_handle = optional_heap_handle orelse blk: {
const options = if (builtin.single_threaded) os.windows.HEAP_NO_SERIALIZE else 0;
const hh = os.windows.kernel32.HeapCreate(options, amt, 0) orelse return error.OutOfMemory;
const other_hh = @cmpxchgStrong(?HeapHandle, &self.heap_handle, null, hh, builtin.AtomicOrder.SeqCst, builtin.AtomicOrder.SeqCst) orelse break :blk hh;
os.windows.HeapDestroy(hh);
break :blk other_hh.?; // can't be null because of the cmpxchg
};
const ptr = os.windows.kernel32.HeapAlloc(heap_handle, 0, amt) orelse return error.OutOfMemory;
const root_addr = @ptrToInt(ptr);
const aligned_addr = mem.alignForward(root_addr, ptr_align);
const return_len = init: {
if (len_align == 0) break :init n;
const full_len = os.windows.kernel32.HeapSize(heap_handle, 0, ptr);
assert(full_len != std.math.maxInt(usize));
assert(full_len >= amt);
break :init mem.alignBackwardAnyAlign(full_len - (aligned_addr - root_addr) - @sizeOf(usize), len_align);
};
const buf = @intToPtr([*]u8, aligned_addr)[0..return_len];
getRecordPtr(buf).* = root_addr;
return buf;
}
fn resize(
allocator: *Allocator,
buf: []u8,
buf_align: u29,
new_size: usize,
len_align: u29,
return_address: usize,
) error{OutOfMemory}!usize {
_ = buf_align;
_ = return_address;
const self = @fieldParentPtr(HeapAllocator, "allocator", allocator);
if (new_size == 0) {
os.windows.HeapFree(self.heap_handle.?, 0, @intToPtr(*c_void, getRecordPtr(buf).*));
return 0;
}
const root_addr = getRecordPtr(buf).*;
const align_offset = @ptrToInt(buf.ptr) - root_addr;
const amt = align_offset + new_size + @sizeOf(usize);
const new_ptr = os.windows.kernel32.HeapReAlloc(
self.heap_handle.?,
os.windows.HEAP_REALLOC_IN_PLACE_ONLY,
@intToPtr(*c_void, root_addr),
amt,
) orelse return error.OutOfMemory;
assert(new_ptr == @intToPtr(*c_void, root_addr));
const return_len = init: {
if (len_align == 0) break :init new_size;
const full_len = os.windows.kernel32.HeapSize(self.heap_handle.?, 0, new_ptr);
assert(full_len != std.math.maxInt(usize));
assert(full_len >= amt);
break :init mem.alignBackwardAnyAlign(full_len - align_offset, len_align);
};
getRecordPtr(buf.ptr[0..return_len]).* = root_addr;
return return_len;
}
},
else => @compileError("Unsupported OS"),
};
fn sliceContainsPtr(container: []u8, ptr: [*]u8) bool {
return @ptrToInt(ptr) >= @ptrToInt(container.ptr) and
@ptrToInt(ptr) < (@ptrToInt(container.ptr) + container.len);
}
fn sliceContainsSlice(container: []u8, slice: []u8) bool {
return @ptrToInt(slice.ptr) >= @ptrToInt(container.ptr) and
(@ptrToInt(slice.ptr) + slice.len) <= (@ptrToInt(container.ptr) + container.len);
}
pub const FixedBufferAllocator = struct {
allocator: Allocator,
end_index: usize,
buffer: []u8,
pub fn init(buffer: []u8) FixedBufferAllocator {
return FixedBufferAllocator{
.allocator = Allocator{
.allocFn = alloc,
.resizeFn = resize,
},
.buffer = buffer,
.end_index = 0,
};
}
pub fn ownsPtr(self: *FixedBufferAllocator, ptr: [*]u8) bool {
return sliceContainsPtr(self.buffer, ptr);
}
pub fn ownsSlice(self: *FixedBufferAllocator, slice: []u8) bool {
return sliceContainsSlice(self.buffer, slice);
}
/// NOTE: this will not work in all cases, if the last allocation had an adjusted_index
/// then we won't be able to determine what the last allocation was. This is because
/// the alignForward operation done in alloc is not reverisible.
pub fn isLastAllocation(self: *FixedBufferAllocator, buf: []u8) bool {
return buf.ptr + buf.len == self.buffer.ptr + self.end_index;
}
fn alloc(allocator: *Allocator, n: usize, ptr_align: u29, len_align: u29, ra: usize) ![]u8 {
_ = len_align;
_ = ra;
const self = @fieldParentPtr(FixedBufferAllocator, "allocator", allocator);
const adjust_off = mem.alignPointerOffset(self.buffer.ptr + self.end_index, ptr_align) orelse
return error.OutOfMemory;
const adjusted_index = self.end_index + adjust_off;
const new_end_index = adjusted_index + n;
if (new_end_index > self.buffer.len) {
return error.OutOfMemory;
}
const result = self.buffer[adjusted_index..new_end_index];
self.end_index = new_end_index;
return result;
}
fn resize(
allocator: *Allocator,
buf: []u8,
buf_align: u29,
new_size: usize,
len_align: u29,
return_address: usize,
) Allocator.Error!usize {
_ = buf_align;
_ = return_address;
const self = @fieldParentPtr(FixedBufferAllocator, "allocator", allocator);
assert(self.ownsSlice(buf)); // sanity check
if (!self.isLastAllocation(buf)) {
if (new_size > buf.len)
return error.OutOfMemory;
return if (new_size == 0) 0 else mem.alignAllocLen(buf.len, new_size, len_align);
}
if (new_size <= buf.len) {
const sub = buf.len - new_size;
self.end_index -= sub;
return if (new_size == 0) 0 else mem.alignAllocLen(buf.len - sub, new_size, len_align);
}
const add = new_size - buf.len;
if (add + self.end_index > self.buffer.len) {
return error.OutOfMemory;
}
self.end_index += add;
return new_size;
}
pub fn reset(self: *FixedBufferAllocator) void {
self.end_index = 0;
}
};
pub const ThreadSafeFixedBufferAllocator = blk: {
if (builtin.single_threaded) {
break :blk FixedBufferAllocator;
} else {
// lock free
break :blk struct {
allocator: Allocator,
end_index: usize,
buffer: []u8,
pub fn init(buffer: []u8) ThreadSafeFixedBufferAllocator {
return ThreadSafeFixedBufferAllocator{
.allocator = Allocator{
.allocFn = alloc,
.resizeFn = Allocator.noResize,
},
.buffer = buffer,
.end_index = 0,
};
}
fn alloc(allocator: *Allocator, n: usize, ptr_align: u29, len_align: u29, ra: usize) ![]u8 {
_ = len_align;
_ = ra;
const self = @fieldParentPtr(ThreadSafeFixedBufferAllocator, "allocator", allocator);
var end_index = @atomicLoad(usize, &self.end_index, builtin.AtomicOrder.SeqCst);
while (true) {
const adjust_off = mem.alignPointerOffset(self.buffer.ptr + end_index, ptr_align) orelse
return error.OutOfMemory;
const adjusted_index = end_index + adjust_off;
const new_end_index = adjusted_index + n;
if (new_end_index > self.buffer.len) {
return error.OutOfMemory;
}
end_index = @cmpxchgWeak(usize, &self.end_index, end_index, new_end_index, builtin.AtomicOrder.SeqCst, builtin.AtomicOrder.SeqCst) orelse return self.buffer[adjusted_index..new_end_index];
}
}
pub fn reset(self: *ThreadSafeFixedBufferAllocator) void {
self.end_index = 0;
}
};
}
};
pub fn stackFallback(comptime size: usize, fallback_allocator: *Allocator) StackFallbackAllocator(size) {
return StackFallbackAllocator(size){
.buffer = undefined,
.fallback_allocator = fallback_allocator,
.fixed_buffer_allocator = undefined,
.allocator = Allocator{
.allocFn = StackFallbackAllocator(size).alloc,
.resizeFn = StackFallbackAllocator(size).resize,
},
};
}
pub fn StackFallbackAllocator(comptime size: usize) type {
return struct {
const Self = @This();
buffer: [size]u8,
allocator: Allocator,
fallback_allocator: *Allocator,
fixed_buffer_allocator: FixedBufferAllocator,
pub fn get(self: *Self) *Allocator {
self.fixed_buffer_allocator = FixedBufferAllocator.init(self.buffer[0..]);
return &self.allocator;
}
fn alloc(
allocator: *Allocator,
len: usize,
ptr_align: u29,
len_align: u29,
return_address: usize,
) error{OutOfMemory}![]u8 {
const self = @fieldParentPtr(Self, "allocator", allocator);
return FixedBufferAllocator.alloc(&self.fixed_buffer_allocator.allocator, len, ptr_align, len_align, return_address) catch
return self.fallback_allocator.allocFn(self.fallback_allocator, len, ptr_align, len_align, return_address);
}
fn resize(
allocator: *Allocator,
buf: []u8,
buf_align: u29,
new_len: usize,
len_align: u29,
return_address: usize,
) error{OutOfMemory}!usize {
const self = @fieldParentPtr(Self, "allocator", allocator);
if (self.fixed_buffer_allocator.ownsPtr(buf.ptr)) {
return FixedBufferAllocator.resize(&self.fixed_buffer_allocator.allocator, buf, buf_align, new_len, len_align, return_address);
} else {
return self.fallback_allocator.resizeFn(self.fallback_allocator, buf, buf_align, new_len, len_align, return_address);
}
}
};
}
test "c_allocator" {
if (builtin.link_libc) {
try testAllocator(c_allocator);
try testAllocatorAligned(c_allocator);
try testAllocatorLargeAlignment(c_allocator);
try testAllocatorAlignedShrink(c_allocator);
}
}
test "raw_c_allocator" {
if (builtin.link_libc) {
try testAllocator(raw_c_allocator);
}
}
test "WasmPageAllocator internals" {
if (comptime std.Target.current.isWasm()) {
const conventional_memsize = WasmPageAllocator.conventional.totalPages() * mem.page_size;
const initial = try page_allocator.alloc(u8, mem.page_size);
try testing.expect(@ptrToInt(initial.ptr) < conventional_memsize); // If this isn't conventional, the rest of these tests don't make sense. Also we have a serious memory leak in the test suite.
var inplace = try page_allocator.realloc(initial, 1);
try testing.expectEqual(initial.ptr, inplace.ptr);
inplace = try page_allocator.realloc(inplace, 4);
try testing.expectEqual(initial.ptr, inplace.ptr);
page_allocator.free(inplace);
const reuse = try page_allocator.alloc(u8, 1);
try testing.expectEqual(initial.ptr, reuse.ptr);
page_allocator.free(reuse);
// This segment may span conventional and extended which has really complex rules so we're just ignoring it for now.
const padding = try page_allocator.alloc(u8, conventional_memsize);
page_allocator.free(padding);
const extended = try page_allocator.alloc(u8, conventional_memsize);
try testing.expect(@ptrToInt(extended.ptr) >= conventional_memsize);
const use_small = try page_allocator.alloc(u8, 1);
try testing.expectEqual(initial.ptr, use_small.ptr);
page_allocator.free(use_small);
inplace = try page_allocator.realloc(extended, 1);
try testing.expectEqual(extended.ptr, inplace.ptr);
page_allocator.free(inplace);
const reuse_extended = try page_allocator.alloc(u8, conventional_memsize);
try testing.expectEqual(extended.ptr, reuse_extended.ptr);
page_allocator.free(reuse_extended);
}
}
test "PageAllocator" {
const allocator = page_allocator;
try testAllocator(allocator);
try testAllocatorAligned(allocator);
if (!std.Target.current.isWasm()) {
try testAllocatorLargeAlignment(allocator);
try testAllocatorAlignedShrink(allocator);
}
if (builtin.os.tag == .windows) {
// Trying really large alignment. As mentionned in the implementation,
// VirtualAlloc returns 64K aligned addresses. We want to make sure
// PageAllocator works beyond that, as it's not tested by
// `testAllocatorLargeAlignment`.
const slice = try allocator.alignedAlloc(u8, 1 << 20, 128);
slice[0] = 0x12;
slice[127] = 0x34;
allocator.free(slice);
}
{
var buf = try allocator.alloc(u8, mem.page_size + 1);
defer allocator.free(buf);
buf = try allocator.realloc(buf, 1); // shrink past the page boundary
}
}
test "HeapAllocator" {
if (builtin.os.tag == .windows) {
var heap_allocator = HeapAllocator.init();
defer heap_allocator.deinit();
const allocator = &heap_allocator.allocator;
try testAllocator(allocator);
try testAllocatorAligned(allocator);
try testAllocatorLargeAlignment(allocator);
try testAllocatorAlignedShrink(allocator);
}
}
test "ArenaAllocator" {
var arena_allocator = ArenaAllocator.init(page_allocator);
defer arena_allocator.deinit();
try testAllocator(&arena_allocator.allocator);
try testAllocatorAligned(&arena_allocator.allocator);
try testAllocatorLargeAlignment(&arena_allocator.allocator);
try testAllocatorAlignedShrink(&arena_allocator.allocator);
}
var test_fixed_buffer_allocator_memory: [800000 * @sizeOf(u64)]u8 = undefined;
test "FixedBufferAllocator" {
var fixed_buffer_allocator = mem.validationWrap(FixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]));
try testAllocator(&fixed_buffer_allocator.allocator);
try testAllocatorAligned(&fixed_buffer_allocator.allocator);
try testAllocatorLargeAlignment(&fixed_buffer_allocator.allocator);
try testAllocatorAlignedShrink(&fixed_buffer_allocator.allocator);
}
test "FixedBufferAllocator.reset" {
var buf: [8]u8 align(@alignOf(u64)) = undefined;
var fba = FixedBufferAllocator.init(buf[0..]);
const X = 0xeeeeeeeeeeeeeeee;
const Y = 0xffffffffffffffff;
var x = try fba.allocator.create(u64);
x.* = X;
try testing.expectError(error.OutOfMemory, fba.allocator.create(u64));
fba.reset();
var y = try fba.allocator.create(u64);
y.* = Y;
// we expect Y to have overwritten X.
try testing.expect(x.* == y.*);
try testing.expect(y.* == Y);
}
test "StackFallbackAllocator" {
const fallback_allocator = page_allocator;
var stack_allocator = stackFallback(4096, fallback_allocator);
try testAllocator(stack_allocator.get());
try testAllocatorAligned(stack_allocator.get());
try testAllocatorLargeAlignment(stack_allocator.get());
try testAllocatorAlignedShrink(stack_allocator.get());
}
test "FixedBufferAllocator Reuse memory on realloc" {
var small_fixed_buffer: [10]u8 = undefined;
// check if we re-use the memory
{
var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
var slice0 = try fixed_buffer_allocator.allocator.alloc(u8, 5);
try testing.expect(slice0.len == 5);
var slice1 = try fixed_buffer_allocator.allocator.realloc(slice0, 10);
try testing.expect(slice1.ptr == slice0.ptr);
try testing.expect(slice1.len == 10);
try testing.expectError(error.OutOfMemory, fixed_buffer_allocator.allocator.realloc(slice1, 11));
}
// check that we don't re-use the memory if it's not the most recent block
{
var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
var slice0 = try fixed_buffer_allocator.allocator.alloc(u8, 2);
slice0[0] = 1;
slice0[1] = 2;
var slice1 = try fixed_buffer_allocator.allocator.alloc(u8, 2);
var slice2 = try fixed_buffer_allocator.allocator.realloc(slice0, 4);
try testing.expect(slice0.ptr != slice2.ptr);
try testing.expect(slice1.ptr != slice2.ptr);
try testing.expect(slice2[0] == 1);
try testing.expect(slice2[1] == 2);
}
}
test "ThreadSafeFixedBufferAllocator" {
var fixed_buffer_allocator = ThreadSafeFixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]);
try testAllocator(&fixed_buffer_allocator.allocator);
try testAllocatorAligned(&fixed_buffer_allocator.allocator);
try testAllocatorLargeAlignment(&fixed_buffer_allocator.allocator);
try testAllocatorAlignedShrink(&fixed_buffer_allocator.allocator);
}
/// This one should not try alignments that exceed what C malloc can handle.
pub fn testAllocator(base_allocator: *mem.Allocator) !void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
var slice = try allocator.alloc(*i32, 100);
try testing.expect(slice.len == 100);
for (slice) |*item, i| {
item.* = try allocator.create(i32);
item.*.* = @intCast(i32, i);
}
slice = try allocator.realloc(slice, 20000);
try testing.expect(slice.len == 20000);
for (slice[0..100]) |item, i| {
try testing.expect(item.* == @intCast(i32, i));
allocator.destroy(item);
}
slice = allocator.shrink(slice, 50);
try testing.expect(slice.len == 50);
slice = allocator.shrink(slice, 25);
try testing.expect(slice.len == 25);
slice = allocator.shrink(slice, 0);
try testing.expect(slice.len == 0);
slice = try allocator.realloc(slice, 10);
try testing.expect(slice.len == 10);
allocator.free(slice);
// Zero-length allocation
var empty = try allocator.alloc(u8, 0);
allocator.free(empty);
// Allocation with zero-sized types
const zero_bit_ptr = try allocator.create(u0);
zero_bit_ptr.* = 0;
allocator.destroy(zero_bit_ptr);
const oversize = try allocator.allocAdvanced(u32, null, 5, .at_least);
try testing.expect(oversize.len >= 5);
for (oversize) |*item| {
item.* = 0xDEADBEEF;
}
allocator.free(oversize);
}
pub fn testAllocatorAligned(base_allocator: *mem.Allocator) !void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
// Test a few alignment values, smaller and bigger than the type's one
inline for ([_]u29{ 1, 2, 4, 8, 16, 32, 64 }) |alignment| {
// initial
var slice = try allocator.alignedAlloc(u8, alignment, 10);
try testing.expect(slice.len == 10);
// grow
slice = try allocator.realloc(slice, 100);
try testing.expect(slice.len == 100);
// shrink
slice = allocator.shrink(slice, 10);
try testing.expect(slice.len == 10);
// go to zero
slice = allocator.shrink(slice, 0);
try testing.expect(slice.len == 0);
// realloc from zero
slice = try allocator.realloc(slice, 100);
try testing.expect(slice.len == 100);
// shrink with shrink
slice = allocator.shrink(slice, 10);
try testing.expect(slice.len == 10);
// shrink to zero
slice = allocator.shrink(slice, 0);
try testing.expect(slice.len == 0);
}
}
pub fn testAllocatorLargeAlignment(base_allocator: *mem.Allocator) !void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
//Maybe a platform's page_size is actually the same as or
// very near usize?
if (mem.page_size << 2 > maxInt(usize)) return;
const USizeShift = std.meta.Int(.unsigned, std.math.log2(std.meta.bitCount(usize)));
const large_align = @as(u29, mem.page_size << 2);
var align_mask: usize = undefined;
_ = @shlWithOverflow(usize, ~@as(usize, 0), @as(USizeShift, @ctz(u29, large_align)), &align_mask);
var slice = try allocator.alignedAlloc(u8, large_align, 500);
try testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = allocator.shrink(slice, 100);
try testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = try allocator.realloc(slice, 5000);
try testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = allocator.shrink(slice, 10);
try testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = try allocator.realloc(slice, 20000);
try testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
allocator.free(slice);
}
pub fn testAllocatorAlignedShrink(base_allocator: *mem.Allocator) !void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
var debug_buffer: [1000]u8 = undefined;
const debug_allocator = &FixedBufferAllocator.init(&debug_buffer).allocator;
const alloc_size = mem.page_size * 2 + 50;
var slice = try allocator.alignedAlloc(u8, 16, alloc_size);
defer allocator.free(slice);
var stuff_to_free = std.ArrayList([]align(16) u8).init(debug_allocator);
// On Windows, VirtualAlloc returns addresses aligned to a 64K boundary,
// which is 16 pages, hence the 32. This test may require to increase
// the size of the allocations feeding the `allocator` parameter if they
// fail, because of this high over-alignment we want to have.
while (@ptrToInt(slice.ptr) == mem.alignForward(@ptrToInt(slice.ptr), mem.page_size * 32)) {
try stuff_to_free.append(slice);
slice = try allocator.alignedAlloc(u8, 16, alloc_size);
}
while (stuff_to_free.popOrNull()) |item| {
allocator.free(item);
}
slice[0] = 0x12;
slice[60] = 0x34;
// realloc to a smaller size but with a larger alignment
slice = try allocator.reallocAdvanced(slice, mem.page_size * 32, alloc_size / 2, .exact);
try testing.expect(slice[0] == 0x12);
try testing.expect(slice[60] == 0x34);
}
test "heap" {
_ = @import("heap/logging_allocator.zig");
_ = @import("heap/log_to_writer_allocator.zig");
}