zig/lib/std/Io.zig
Andrew Kelley a87fd37bf5 std.Io: make Evented equal void when unimplemented
This allows conditional compilation checks.
2025-10-29 06:20:51 -07:00

1661 lines
64 KiB
Zig
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

const builtin = @import("builtin");
const is_windows = builtin.os.tag == .windows;
const std = @import("std.zig");
const windows = std.os.windows;
const posix = std.posix;
const math = std.math;
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Alignment = std.mem.Alignment;
pub const Limit = enum(usize) {
nothing = 0,
unlimited = std.math.maxInt(usize),
_,
/// `std.math.maxInt(usize)` is interpreted to mean `.unlimited`.
pub fn limited(n: usize) Limit {
return @enumFromInt(n);
}
/// Any value grater than `std.math.maxInt(usize)` is interpreted to mean
/// `.unlimited`.
pub fn limited64(n: u64) Limit {
return @enumFromInt(@min(n, std.math.maxInt(usize)));
}
pub fn countVec(data: []const []const u8) Limit {
var total: usize = 0;
for (data) |d| total += d.len;
return .limited(total);
}
pub fn min(a: Limit, b: Limit) Limit {
return @enumFromInt(@min(@intFromEnum(a), @intFromEnum(b)));
}
pub fn minInt(l: Limit, n: usize) usize {
return @min(n, @intFromEnum(l));
}
pub fn minInt64(l: Limit, n: u64) usize {
return @min(n, @intFromEnum(l));
}
pub fn slice(l: Limit, s: []u8) []u8 {
return s[0..l.minInt(s.len)];
}
pub fn sliceConst(l: Limit, s: []const u8) []const u8 {
return s[0..l.minInt(s.len)];
}
pub fn toInt(l: Limit) ?usize {
return switch (l) {
else => @intFromEnum(l),
.unlimited => null,
};
}
/// Reduces a slice to account for the limit, leaving room for one extra
/// byte above the limit, allowing for the use case of differentiating
/// between end-of-stream and reaching the limit.
pub fn slice1(l: Limit, non_empty_buffer: []u8) []u8 {
assert(non_empty_buffer.len >= 1);
return non_empty_buffer[0..@min(@intFromEnum(l) +| 1, non_empty_buffer.len)];
}
pub fn nonzero(l: Limit) bool {
return @intFromEnum(l) > 0;
}
/// Return a new limit reduced by `amount` or return `null` indicating
/// limit would be exceeded.
pub fn subtract(l: Limit, amount: usize) ?Limit {
if (l == .unlimited) return .unlimited;
if (amount > @intFromEnum(l)) return null;
return @enumFromInt(@intFromEnum(l) - amount);
}
};
pub const Reader = @import("Io/Reader.zig");
pub const Writer = @import("Io/Writer.zig");
pub const tty = @import("Io/tty.zig");
pub fn poll(
gpa: Allocator,
comptime StreamEnum: type,
files: PollFiles(StreamEnum),
) Poller(StreamEnum) {
const enum_fields = @typeInfo(StreamEnum).@"enum".fields;
var result: Poller(StreamEnum) = .{
.gpa = gpa,
.readers = @splat(.failing),
.poll_fds = undefined,
.windows = if (is_windows) .{
.first_read_done = false,
.overlapped = [1]windows.OVERLAPPED{
std.mem.zeroes(windows.OVERLAPPED),
} ** enum_fields.len,
.small_bufs = undefined,
.active = .{
.count = 0,
.handles_buf = undefined,
.stream_map = undefined,
},
} else {},
};
inline for (enum_fields, 0..) |field, i| {
if (is_windows) {
result.windows.active.handles_buf[i] = @field(files, field.name).handle;
} else {
result.poll_fds[i] = .{
.fd = @field(files, field.name).handle,
.events = posix.POLL.IN,
.revents = undefined,
};
}
}
return result;
}
pub fn Poller(comptime StreamEnum: type) type {
return struct {
const enum_fields = @typeInfo(StreamEnum).@"enum".fields;
const PollFd = if (is_windows) void else posix.pollfd;
gpa: Allocator,
readers: [enum_fields.len]Reader,
poll_fds: [enum_fields.len]PollFd,
windows: if (is_windows) struct {
first_read_done: bool,
overlapped: [enum_fields.len]windows.OVERLAPPED,
small_bufs: [enum_fields.len][128]u8,
active: struct {
count: math.IntFittingRange(0, enum_fields.len),
handles_buf: [enum_fields.len]windows.HANDLE,
stream_map: [enum_fields.len]StreamEnum,
pub fn removeAt(self: *@This(), index: u32) void {
assert(index < self.count);
for (index + 1..self.count) |i| {
self.handles_buf[i - 1] = self.handles_buf[i];
self.stream_map[i - 1] = self.stream_map[i];
}
self.count -= 1;
}
},
} else void,
const Self = @This();
pub fn deinit(self: *Self) void {
const gpa = self.gpa;
if (is_windows) {
// cancel any pending IO to prevent clobbering OVERLAPPED value
for (self.windows.active.handles_buf[0..self.windows.active.count]) |h| {
_ = windows.kernel32.CancelIo(h);
}
}
inline for (&self.readers) |*r| gpa.free(r.buffer);
self.* = undefined;
}
pub fn poll(self: *Self) !bool {
if (is_windows) {
return pollWindows(self, null);
} else {
return pollPosix(self, null);
}
}
pub fn pollTimeout(self: *Self, nanoseconds: u64) !bool {
if (is_windows) {
return pollWindows(self, nanoseconds);
} else {
return pollPosix(self, nanoseconds);
}
}
pub fn reader(self: *Self, which: StreamEnum) *Reader {
return &self.readers[@intFromEnum(which)];
}
pub fn toOwnedSlice(self: *Self, which: StreamEnum) error{OutOfMemory}![]u8 {
const gpa = self.gpa;
const r = reader(self, which);
if (r.seek == 0) {
const new = try gpa.realloc(r.buffer, r.end);
r.buffer = &.{};
r.end = 0;
return new;
}
const new = try gpa.dupe(u8, r.buffered());
gpa.free(r.buffer);
r.buffer = &.{};
r.seek = 0;
r.end = 0;
return new;
}
fn pollWindows(self: *Self, nanoseconds: ?u64) !bool {
const bump_amt = 512;
const gpa = self.gpa;
if (!self.windows.first_read_done) {
var already_read_data = false;
for (0..enum_fields.len) |i| {
const handle = self.windows.active.handles_buf[i];
switch (try windowsAsyncReadToFifoAndQueueSmallRead(
gpa,
handle,
&self.windows.overlapped[i],
&self.readers[i],
&self.windows.small_bufs[i],
bump_amt,
)) {
.populated, .empty => |state| {
if (state == .populated) already_read_data = true;
self.windows.active.handles_buf[self.windows.active.count] = handle;
self.windows.active.stream_map[self.windows.active.count] = @as(StreamEnum, @enumFromInt(i));
self.windows.active.count += 1;
},
.closed => {}, // don't add to the wait_objects list
.closed_populated => {
// don't add to the wait_objects list, but we did already get data
already_read_data = true;
},
}
}
self.windows.first_read_done = true;
if (already_read_data) return true;
}
while (true) {
if (self.windows.active.count == 0) return false;
const status = windows.kernel32.WaitForMultipleObjects(
self.windows.active.count,
&self.windows.active.handles_buf,
0,
if (nanoseconds) |ns|
@min(std.math.cast(u32, ns / std.time.ns_per_ms) orelse (windows.INFINITE - 1), windows.INFINITE - 1)
else
windows.INFINITE,
);
if (status == windows.WAIT_FAILED)
return windows.unexpectedError(windows.GetLastError());
if (status == windows.WAIT_TIMEOUT)
return true;
if (status < windows.WAIT_OBJECT_0 or status > windows.WAIT_OBJECT_0 + enum_fields.len - 1)
unreachable;
const active_idx = status - windows.WAIT_OBJECT_0;
const stream_idx = @intFromEnum(self.windows.active.stream_map[active_idx]);
const handle = self.windows.active.handles_buf[active_idx];
const overlapped = &self.windows.overlapped[stream_idx];
const stream_reader = &self.readers[stream_idx];
const small_buf = &self.windows.small_bufs[stream_idx];
const num_bytes_read = switch (try windowsGetReadResult(handle, overlapped, false)) {
.success => |n| n,
.closed => {
self.windows.active.removeAt(active_idx);
continue;
},
.aborted => unreachable,
};
const buf = small_buf[0..num_bytes_read];
const dest = try writableSliceGreedyAlloc(stream_reader, gpa, buf.len);
@memcpy(dest[0..buf.len], buf);
advanceBufferEnd(stream_reader, buf.len);
switch (try windowsAsyncReadToFifoAndQueueSmallRead(
gpa,
handle,
overlapped,
stream_reader,
small_buf,
bump_amt,
)) {
.empty => {}, // irrelevant, we already got data from the small buffer
.populated => {},
.closed,
.closed_populated, // identical, since we already got data from the small buffer
=> self.windows.active.removeAt(active_idx),
}
return true;
}
}
fn pollPosix(self: *Self, nanoseconds: ?u64) !bool {
const gpa = self.gpa;
// We ask for ensureUnusedCapacity with this much extra space. This
// has more of an effect on small reads because once the reads
// start to get larger the amount of space an ArrayList will
// allocate grows exponentially.
const bump_amt = 512;
const err_mask = posix.POLL.ERR | posix.POLL.NVAL | posix.POLL.HUP;
const events_len = try posix.poll(&self.poll_fds, if (nanoseconds) |ns|
std.math.cast(i32, ns / std.time.ns_per_ms) orelse std.math.maxInt(i32)
else
-1);
if (events_len == 0) {
for (self.poll_fds) |poll_fd| {
if (poll_fd.fd != -1) return true;
} else return false;
}
var keep_polling = false;
for (&self.poll_fds, &self.readers) |*poll_fd, *r| {
// Try reading whatever is available before checking the error
// conditions.
// It's still possible to read after a POLL.HUP is received,
// always check if there's some data waiting to be read first.
if (poll_fd.revents & posix.POLL.IN != 0) {
const buf = try writableSliceGreedyAlloc(r, gpa, bump_amt);
const amt = posix.read(poll_fd.fd, buf) catch |err| switch (err) {
error.BrokenPipe => 0, // Handle the same as EOF.
else => |e| return e,
};
advanceBufferEnd(r, amt);
if (amt == 0) {
// Remove the fd when the EOF condition is met.
poll_fd.fd = -1;
} else {
keep_polling = true;
}
} else if (poll_fd.revents & err_mask != 0) {
// Exclude the fds that signaled an error.
poll_fd.fd = -1;
} else if (poll_fd.fd != -1) {
keep_polling = true;
}
}
return keep_polling;
}
/// Returns a slice into the unused capacity of `buffer` with at least
/// `min_len` bytes, extending `buffer` by resizing it with `gpa` as necessary.
///
/// After calling this function, typically the caller will follow up with a
/// call to `advanceBufferEnd` to report the actual number of bytes buffered.
fn writableSliceGreedyAlloc(r: *Reader, allocator: Allocator, min_len: usize) Allocator.Error![]u8 {
{
const unused = r.buffer[r.end..];
if (unused.len >= min_len) return unused;
}
if (r.seek > 0) {
const data = r.buffer[r.seek..r.end];
@memmove(r.buffer[0..data.len], data);
r.seek = 0;
r.end = data.len;
}
{
var list: std.ArrayListUnmanaged(u8) = .{
.items = r.buffer[0..r.end],
.capacity = r.buffer.len,
};
defer r.buffer = list.allocatedSlice();
try list.ensureUnusedCapacity(allocator, min_len);
}
const unused = r.buffer[r.end..];
assert(unused.len >= min_len);
return unused;
}
/// After writing directly into the unused capacity of `buffer`, this function
/// updates `end` so that users of `Reader` can receive the data.
fn advanceBufferEnd(r: *Reader, n: usize) void {
assert(n <= r.buffer.len - r.end);
r.end += n;
}
/// The `ReadFile` docuementation states that `lpNumberOfBytesRead` does not have a meaningful
/// result when using overlapped I/O, but also that it cannot be `null` on Windows 7. For
/// compatibility, we point it to this dummy variables, which we never otherwise access.
/// See: https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
var win_dummy_bytes_read: u32 = undefined;
/// Read as much data as possible from `handle` with `overlapped`, and write it to the FIFO. Before
/// returning, queue a read into `small_buf` so that `WaitForMultipleObjects` returns when more data
/// is available. `handle` must have no pending asynchronous operation.
fn windowsAsyncReadToFifoAndQueueSmallRead(
gpa: Allocator,
handle: windows.HANDLE,
overlapped: *windows.OVERLAPPED,
r: *Reader,
small_buf: *[128]u8,
bump_amt: usize,
) !enum { empty, populated, closed_populated, closed } {
var read_any_data = false;
while (true) {
const fifo_read_pending = while (true) {
const buf = try writableSliceGreedyAlloc(r, gpa, bump_amt);
const buf_len = math.cast(u32, buf.len) orelse math.maxInt(u32);
if (0 == windows.kernel32.ReadFile(
handle,
buf.ptr,
buf_len,
&win_dummy_bytes_read,
overlapped,
)) switch (windows.GetLastError()) {
.IO_PENDING => break true,
.BROKEN_PIPE => return if (read_any_data) .closed_populated else .closed,
else => |err| return windows.unexpectedError(err),
};
const num_bytes_read = switch (try windowsGetReadResult(handle, overlapped, false)) {
.success => |n| n,
.closed => return if (read_any_data) .closed_populated else .closed,
.aborted => unreachable,
};
read_any_data = true;
advanceBufferEnd(r, num_bytes_read);
if (num_bytes_read == buf_len) {
// We filled the buffer, so there's probably more data available.
continue;
} else {
// We didn't fill the buffer, so assume we're out of data.
// There is no pending read.
break false;
}
};
if (fifo_read_pending) cancel_read: {
// Cancel the pending read into the FIFO.
_ = windows.kernel32.CancelIo(handle);
// We have to wait for the handle to be signalled, i.e. for the cancellation to complete.
switch (windows.kernel32.WaitForSingleObject(handle, windows.INFINITE)) {
windows.WAIT_OBJECT_0 => {},
windows.WAIT_FAILED => return windows.unexpectedError(windows.GetLastError()),
else => unreachable,
}
// If it completed before we canceled, make sure to tell the FIFO!
const num_bytes_read = switch (try windowsGetReadResult(handle, overlapped, true)) {
.success => |n| n,
.closed => return if (read_any_data) .closed_populated else .closed,
.aborted => break :cancel_read,
};
read_any_data = true;
advanceBufferEnd(r, num_bytes_read);
}
// Try to queue the 1-byte read.
if (0 == windows.kernel32.ReadFile(
handle,
small_buf,
small_buf.len,
&win_dummy_bytes_read,
overlapped,
)) switch (windows.GetLastError()) {
.IO_PENDING => {
// 1-byte read pending as intended
return if (read_any_data) .populated else .empty;
},
.BROKEN_PIPE => return if (read_any_data) .closed_populated else .closed,
else => |err| return windows.unexpectedError(err),
};
// We got data back this time. Write it to the FIFO and run the main loop again.
const num_bytes_read = switch (try windowsGetReadResult(handle, overlapped, false)) {
.success => |n| n,
.closed => return if (read_any_data) .closed_populated else .closed,
.aborted => unreachable,
};
const buf = small_buf[0..num_bytes_read];
const dest = try writableSliceGreedyAlloc(r, gpa, buf.len);
@memcpy(dest[0..buf.len], buf);
advanceBufferEnd(r, buf.len);
read_any_data = true;
}
}
/// Simple wrapper around `GetOverlappedResult` to determine the result of a `ReadFile` operation.
/// If `!allow_aborted`, then `aborted` is never returned (`OPERATION_ABORTED` is considered unexpected).
///
/// The `ReadFile` documentation states that the number of bytes read by an overlapped `ReadFile` must be determined using `GetOverlappedResult`, even if the
/// operation immediately returns data:
/// "Use NULL for [lpNumberOfBytesRead] if this is an asynchronous operation to avoid potentially
/// erroneous results."
/// "If `hFile` was opened with `FILE_FLAG_OVERLAPPED`, the following conditions are in effect: [...]
/// The lpNumberOfBytesRead parameter should be set to NULL. Use the GetOverlappedResult function to
/// get the actual number of bytes read."
/// See: https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile
fn windowsGetReadResult(
handle: windows.HANDLE,
overlapped: *windows.OVERLAPPED,
allow_aborted: bool,
) !union(enum) {
success: u32,
closed,
aborted,
} {
var num_bytes_read: u32 = undefined;
if (0 == windows.kernel32.GetOverlappedResult(
handle,
overlapped,
&num_bytes_read,
0,
)) switch (windows.GetLastError()) {
.BROKEN_PIPE => return .closed,
.OPERATION_ABORTED => |err| if (allow_aborted) {
return .aborted;
} else {
return windows.unexpectedError(err);
},
else => |err| return windows.unexpectedError(err),
};
return .{ .success = num_bytes_read };
}
};
}
/// Given an enum, returns a struct with fields of that enum, each field
/// representing an I/O stream for polling.
pub fn PollFiles(comptime StreamEnum: type) type {
const enum_fields = @typeInfo(StreamEnum).@"enum".fields;
var struct_fields: [enum_fields.len]std.builtin.Type.StructField = undefined;
for (&struct_fields, enum_fields) |*struct_field, enum_field| {
struct_field.* = .{
.name = enum_field.name,
.type = std.fs.File,
.default_value_ptr = null,
.is_comptime = false,
.alignment = @alignOf(std.fs.File),
};
}
return @Type(.{ .@"struct" = .{
.layout = .auto,
.fields = &struct_fields,
.decls = &.{},
.is_tuple = false,
} });
}
test {
_ = net;
_ = Reader;
_ = Writer;
_ = tty;
_ = Evented;
_ = Threaded;
_ = @import("Io/test.zig");
}
const Io = @This();
pub const Evented = switch (builtin.os.tag) {
.linux => switch (builtin.cpu.arch) {
.x86_64, .aarch64 => @import("Io/IoUring.zig"),
else => void, // context-switching code not implemented yet
},
.dragonfly, .freebsd, .netbsd, .openbsd, .macos, .ios, .tvos, .visionos, .watchos => switch (builtin.cpu.arch) {
.x86_64, .aarch64 => @import("Io/Kqueue.zig"),
else => void, // context-switching code not implemented yet
},
else => void,
};
pub const Threaded = @import("Io/Threaded.zig");
pub const net = @import("Io/net.zig");
userdata: ?*anyopaque,
vtable: *const VTable,
pub const VTable = struct {
/// If it returns `null` it means `result` has been already populated and
/// `await` will be a no-op.
///
/// Thread-safe.
async: *const fn (
/// Corresponds to `Io.userdata`.
userdata: ?*anyopaque,
/// The pointer of this slice is an "eager" result value.
/// The length is the size in bytes of the result type.
/// This pointer's lifetime expires directly after the call to this function.
result: []u8,
result_alignment: std.mem.Alignment,
/// Copied and then passed to `start`.
context: []const u8,
context_alignment: std.mem.Alignment,
start: *const fn (context: *const anyopaque, result: *anyopaque) void,
) ?*AnyFuture,
/// Thread-safe.
concurrent: *const fn (
/// Corresponds to `Io.userdata`.
userdata: ?*anyopaque,
result_len: usize,
result_alignment: std.mem.Alignment,
/// Copied and then passed to `start`.
context: []const u8,
context_alignment: std.mem.Alignment,
start: *const fn (context: *const anyopaque, result: *anyopaque) void,
) ConcurrentError!*AnyFuture,
/// This function is only called when `async` returns a non-null value.
///
/// Thread-safe.
await: *const fn (
/// Corresponds to `Io.userdata`.
userdata: ?*anyopaque,
/// The same value that was returned from `async`.
any_future: *AnyFuture,
/// Points to a buffer where the result is written.
/// The length is equal to size in bytes of result type.
result: []u8,
result_alignment: std.mem.Alignment,
) void,
/// Equivalent to `await` but initiates cancel request.
///
/// This function is only called when `async` returns a non-null value.
///
/// Thread-safe.
cancel: *const fn (
/// Corresponds to `Io.userdata`.
userdata: ?*anyopaque,
/// The same value that was returned from `async`.
any_future: *AnyFuture,
/// Points to a buffer where the result is written.
/// The length is equal to size in bytes of result type.
result: []u8,
result_alignment: std.mem.Alignment,
) void,
/// Returns whether the current thread of execution is known to have
/// been requested to cancel.
///
/// Thread-safe.
cancelRequested: *const fn (?*anyopaque) bool,
/// Executes `start` asynchronously in a manner such that it cleans itself
/// up. This mode does not support results, await, or cancel.
///
/// Thread-safe.
groupAsync: *const fn (
/// Corresponds to `Io.userdata`.
userdata: ?*anyopaque,
/// Owner of the spawned async task.
group: *Group,
/// Copied and then passed to `start`.
context: []const u8,
context_alignment: std.mem.Alignment,
start: *const fn (*Group, context: *const anyopaque) void,
) void,
groupWait: *const fn (?*anyopaque, *Group, token: *anyopaque) Cancelable!void,
groupWaitUncancelable: *const fn (?*anyopaque, *Group, token: *anyopaque) void,
groupCancel: *const fn (?*anyopaque, *Group, token: *anyopaque) void,
/// Blocks until one of the futures from the list has a result ready, such
/// that awaiting it will not block. Returns that index.
select: *const fn (?*anyopaque, futures: []const *AnyFuture) Cancelable!usize,
mutexLock: *const fn (?*anyopaque, prev_state: Mutex.State, mutex: *Mutex) Cancelable!void,
mutexLockUncancelable: *const fn (?*anyopaque, prev_state: Mutex.State, mutex: *Mutex) void,
mutexUnlock: *const fn (?*anyopaque, prev_state: Mutex.State, mutex: *Mutex) void,
conditionWait: *const fn (?*anyopaque, cond: *Condition, mutex: *Mutex) Cancelable!void,
conditionWaitUncancelable: *const fn (?*anyopaque, cond: *Condition, mutex: *Mutex) void,
conditionWake: *const fn (?*anyopaque, cond: *Condition, wake: Condition.Wake) void,
dirMake: *const fn (?*anyopaque, Dir, sub_path: []const u8, Dir.Mode) Dir.MakeError!void,
dirMakePath: *const fn (?*anyopaque, Dir, sub_path: []const u8, Dir.Mode) Dir.MakeError!void,
dirMakeOpenPath: *const fn (?*anyopaque, Dir, sub_path: []const u8, Dir.OpenOptions) Dir.MakeOpenPathError!Dir,
dirStat: *const fn (?*anyopaque, Dir) Dir.StatError!Dir.Stat,
dirStatPath: *const fn (?*anyopaque, Dir, sub_path: []const u8, Dir.StatPathOptions) Dir.StatPathError!File.Stat,
dirAccess: *const fn (?*anyopaque, Dir, sub_path: []const u8, Dir.AccessOptions) Dir.AccessError!void,
dirCreateFile: *const fn (?*anyopaque, Dir, sub_path: []const u8, File.CreateFlags) File.OpenError!File,
dirOpenFile: *const fn (?*anyopaque, Dir, sub_path: []const u8, File.OpenFlags) File.OpenError!File,
dirOpenDir: *const fn (?*anyopaque, Dir, sub_path: []const u8, Dir.OpenOptions) Dir.OpenError!Dir,
dirClose: *const fn (?*anyopaque, Dir) void,
fileStat: *const fn (?*anyopaque, File) File.StatError!File.Stat,
fileClose: *const fn (?*anyopaque, File) void,
fileWriteStreaming: *const fn (?*anyopaque, File, buffer: [][]const u8) File.WriteStreamingError!usize,
fileWritePositional: *const fn (?*anyopaque, File, buffer: [][]const u8, offset: u64) File.WritePositionalError!usize,
/// Returns 0 on end of stream.
fileReadStreaming: *const fn (?*anyopaque, File, data: [][]u8) File.ReadStreamingError!usize,
/// Returns 0 on end of stream.
fileReadPositional: *const fn (?*anyopaque, File, data: [][]u8, offset: u64) File.ReadPositionalError!usize,
fileSeekBy: *const fn (?*anyopaque, File, relative_offset: i64) File.SeekError!void,
fileSeekTo: *const fn (?*anyopaque, File, absolute_offset: u64) File.SeekError!void,
openSelfExe: *const fn (?*anyopaque, File.OpenFlags) File.OpenSelfExeError!File,
now: *const fn (?*anyopaque, Clock) Clock.Error!Timestamp,
sleep: *const fn (?*anyopaque, Timeout) SleepError!void,
netListenIp: *const fn (?*anyopaque, address: net.IpAddress, net.IpAddress.ListenOptions) net.IpAddress.ListenError!net.Server,
netAccept: *const fn (?*anyopaque, server: net.Socket.Handle) net.Server.AcceptError!net.Stream,
netBindIp: *const fn (?*anyopaque, address: *const net.IpAddress, options: net.IpAddress.BindOptions) net.IpAddress.BindError!net.Socket,
netConnectIp: *const fn (?*anyopaque, address: *const net.IpAddress, options: net.IpAddress.ConnectOptions) net.IpAddress.ConnectError!net.Stream,
netListenUnix: *const fn (?*anyopaque, *const net.UnixAddress, net.UnixAddress.ListenOptions) net.UnixAddress.ListenError!net.Socket.Handle,
netConnectUnix: *const fn (?*anyopaque, *const net.UnixAddress) net.UnixAddress.ConnectError!net.Socket.Handle,
netSend: *const fn (?*anyopaque, net.Socket.Handle, []net.OutgoingMessage, net.SendFlags) struct { ?net.Socket.SendError, usize },
netReceive: *const fn (?*anyopaque, net.Socket.Handle, message_buffer: []net.IncomingMessage, data_buffer: []u8, net.ReceiveFlags, Timeout) struct { ?net.Socket.ReceiveTimeoutError, usize },
/// Returns 0 on end of stream.
netRead: *const fn (?*anyopaque, src: net.Socket.Handle, data: [][]u8) net.Stream.Reader.Error!usize,
netWrite: *const fn (?*anyopaque, dest: net.Socket.Handle, header: []const u8, data: []const []const u8, splat: usize) net.Stream.Writer.Error!usize,
netClose: *const fn (?*anyopaque, handle: net.Socket.Handle) void,
netInterfaceNameResolve: *const fn (?*anyopaque, *const net.Interface.Name) net.Interface.Name.ResolveError!net.Interface,
netInterfaceName: *const fn (?*anyopaque, net.Interface) net.Interface.NameError!net.Interface.Name,
netLookup: *const fn (?*anyopaque, net.HostName, *Queue(net.HostName.LookupResult), net.HostName.LookupOptions) void,
};
pub const Cancelable = error{
/// Caller has requested the async operation to stop.
Canceled,
};
pub const UnexpectedError = error{
/// The Operating System returned an undocumented error code.
///
/// This error is in theory not possible, but it would be better
/// to handle this error than to invoke undefined behavior.
///
/// When this error code is observed, it usually means the Zig Standard
/// Library needs a small patch to add the error code to the error set for
/// the respective function.
Unexpected,
};
pub const Dir = @import("Io/Dir.zig");
pub const File = @import("Io/File.zig");
pub const Clock = enum {
/// A settable system-wide clock that measures real (i.e. wall-clock)
/// time. This clock is affected by discontinuous jumps in the system
/// time (e.g., if the system administrator manually changes the
/// clock), and by frequency adjust ments performed by NTP and similar
/// applications.
///
/// This clock normally counts the number of seconds since 1970-01-01
/// 00:00:00 Coordinated Universal Time (UTC) except that it ignores
/// leap seconds; near a leap second it is typically adjusted by NTP to
/// stay roughly in sync with UTC.
///
/// The epoch is implementation-defined. For example NTFS/Windows uses
/// 1601-01-01.
real,
/// A nonsettable system-wide clock that represents time since some
/// unspecified point in the past.
///
/// Monotonic: Guarantees that the time returned by consecutive calls
/// will not go backwards, but successive calls may return identical
/// (not-increased) time values.
///
/// Not affected by discontinuous jumps in the system time (e.g., if
/// the system administrator manually changes the clock), but may be
/// affected by frequency adjustments.
///
/// This clock expresses intent to **exclude time that the system is
/// suspended**. However, implementations may be unable to satisify
/// this, and may include that time.
///
/// * On Linux, corresponds `CLOCK_MONOTONIC`.
/// * On macOS, corresponds to `CLOCK_UPTIME_RAW`.
awake,
/// Identical to `awake` except it expresses intent to **include time
/// that the system is suspended**, however, due to limitations it may
/// behave identically to `awake`.
///
/// * On Linux, corresponds `CLOCK_BOOTTIME`.
/// * On macOS, corresponds to `CLOCK_MONOTONIC_RAW`.
boot,
/// Tracks the amount of CPU in user or kernel mode used by the calling
/// process.
cpu_process,
/// Tracks the amount of CPU in user or kernel mode used by the calling
/// thread.
cpu_thread,
pub const Error = error{UnsupportedClock} || UnexpectedError;
/// This function is not cancelable because first of all it does not block,
/// but more importantly, the cancelation logic itself may want to check
/// the time.
pub fn now(clock: Clock, io: Io) Error!Io.Timestamp {
return io.vtable.now(io.userdata, clock);
}
pub const Timestamp = struct {
raw: Io.Timestamp,
clock: Clock,
/// This function is not cancelable because first of all it does not block,
/// but more importantly, the cancelation logic itself may want to check
/// the time.
pub fn now(io: Io, clock: Clock) Error!Clock.Timestamp {
return .{
.raw = try io.vtable.now(io.userdata, clock),
.clock = clock,
};
}
pub fn wait(t: Clock.Timestamp, io: Io) SleepError!void {
return io.vtable.sleep(io.userdata, .{ .deadline = t });
}
pub fn durationTo(from: Clock.Timestamp, to: Clock.Timestamp) Clock.Duration {
assert(from.clock == to.clock);
return .{
.raw = from.raw.durationTo(to.raw),
.clock = from.clock,
};
}
pub fn addDuration(from: Clock.Timestamp, duration: Clock.Duration) Clock.Timestamp {
assert(from.clock == duration.clock);
return .{
.raw = from.raw.addDuration(duration.raw),
.clock = from.clock,
};
}
pub fn subDuration(from: Clock.Timestamp, duration: Clock.Duration) Clock.Timestamp {
assert(from.clock == duration.clock);
return .{
.raw = from.raw.subDuration(duration.raw),
.clock = from.clock,
};
}
pub fn fromNow(io: Io, duration: Clock.Duration) Error!Clock.Timestamp {
return .{
.clock = duration.clock,
.raw = (try duration.clock.now(io)).addDuration(duration.raw),
};
}
pub fn untilNow(timestamp: Clock.Timestamp, io: Io) Error!Clock.Duration {
const now_ts = try Clock.Timestamp.now(io, timestamp.clock);
return timestamp.durationTo(now_ts);
}
pub fn durationFromNow(timestamp: Clock.Timestamp, io: Io) Error!Clock.Duration {
const now_ts = try timestamp.clock.now(io);
return .{
.clock = timestamp.clock,
.raw = now_ts.durationTo(timestamp.raw),
};
}
pub fn toClock(t: Clock.Timestamp, io: Io, clock: Clock) Error!Clock.Timestamp {
if (t.clock == clock) return t;
const now_old = try t.clock.now(io);
const now_new = try clock.now(io);
const duration = now_old.durationTo(t);
return .{
.clock = clock,
.raw = now_new.addDuration(duration),
};
}
pub fn compare(lhs: Clock.Timestamp, op: std.math.CompareOperator, rhs: Clock.Timestamp) bool {
assert(lhs.clock == rhs.clock);
return std.math.compare(lhs.raw.nanoseconds, op, rhs.raw.nanoseconds);
}
};
pub const Duration = struct {
raw: Io.Duration,
clock: Clock,
pub fn sleep(duration: Clock.Duration, io: Io) SleepError!void {
return io.vtable.sleep(io.userdata, .{ .duration = duration });
}
};
};
pub const Timestamp = struct {
nanoseconds: i96,
pub const zero: Timestamp = .{ .nanoseconds = 0 };
pub fn durationTo(from: Timestamp, to: Timestamp) Duration {
return .{ .nanoseconds = to.nanoseconds - from.nanoseconds };
}
pub fn addDuration(from: Timestamp, duration: Duration) Timestamp {
return .{ .nanoseconds = from.nanoseconds + duration.nanoseconds };
}
pub fn subDuration(from: Timestamp, duration: Duration) Timestamp {
return .{ .nanoseconds = from.nanoseconds - duration.nanoseconds };
}
pub fn withClock(t: Timestamp, clock: Clock) Clock.Timestamp {
return .{ .nanoseconds = t.nanoseconds, .clock = clock };
}
pub fn fromNanoseconds(x: i96) Timestamp {
return .{ .nanoseconds = x };
}
pub fn toSeconds(t: Timestamp) i64 {
return @intCast(@divTrunc(t.nanoseconds, std.time.ns_per_s));
}
pub fn toNanoseconds(t: Timestamp) i96 {
return t.nanoseconds;
}
pub fn formatNumber(t: Timestamp, w: *std.Io.Writer, n: std.fmt.Number) std.Io.Writer.Error!void {
return w.printInt(t.nanoseconds, n.mode.base() orelse 10, n.case, .{
.precision = n.precision,
.width = n.width,
.alignment = n.alignment,
.fill = n.fill,
});
}
};
pub const Duration = struct {
nanoseconds: i96,
pub const zero: Duration = .{ .nanoseconds = 0 };
pub const max: Duration = .{ .nanoseconds = std.math.maxInt(i96) };
pub fn fromNanoseconds(x: i96) Duration {
return .{ .nanoseconds = x };
}
pub fn fromMilliseconds(x: i64) Duration {
return .{ .nanoseconds = @as(i96, x) * std.time.ns_per_ms };
}
pub fn fromSeconds(x: i64) Duration {
return .{ .nanoseconds = @as(i96, x) * std.time.ns_per_s };
}
pub fn toMilliseconds(d: Duration) i64 {
return @intCast(@divTrunc(d.nanoseconds, std.time.ns_per_ms));
}
pub fn toSeconds(d: Duration) i64 {
return @intCast(@divTrunc(d.nanoseconds, std.time.ns_per_s));
}
pub fn toNanoseconds(d: Duration) i96 {
return d.nanoseconds;
}
};
/// Declares under what conditions an operation should return `error.Timeout`.
pub const Timeout = union(enum) {
none,
duration: Clock.Duration,
deadline: Clock.Timestamp,
pub const Error = error{ Timeout, UnsupportedClock };
pub fn toDeadline(t: Timeout, io: Io) Clock.Error!?Clock.Timestamp {
return switch (t) {
.none => null,
.duration => |d| try .fromNow(io, d),
.deadline => |d| d,
};
}
pub fn toDurationFromNow(t: Timeout, io: Io) Clock.Error!?Clock.Duration {
return switch (t) {
.none => null,
.duration => |d| d,
.deadline => |d| try d.durationFromNow(io),
};
}
pub fn sleep(timeout: Timeout, io: Io) SleepError!void {
return io.vtable.sleep(io.userdata, timeout);
}
};
pub const AnyFuture = opaque {};
pub fn Future(Result: type) type {
return struct {
any_future: ?*AnyFuture,
result: Result,
/// Equivalent to `await` but places a cancellation request.
///
/// Idempotent. Not threadsafe.
pub fn cancel(f: *@This(), io: Io) Result {
const any_future = f.any_future orelse return f.result;
io.vtable.cancel(io.userdata, any_future, @ptrCast((&f.result)[0..1]), .of(Result));
f.any_future = null;
return f.result;
}
/// Idempotent. Not threadsafe.
pub fn await(f: *@This(), io: Io) Result {
const any_future = f.any_future orelse return f.result;
io.vtable.await(io.userdata, any_future, @ptrCast((&f.result)[0..1]), .of(Result));
f.any_future = null;
return f.result;
}
};
}
pub const Group = struct {
state: usize,
context: ?*anyopaque,
token: ?*anyopaque,
pub const init: Group = .{ .state = 0, .context = null, .token = null };
/// Calls `function` with `args` asynchronously. The resource spawned is
/// owned by the group.
///
/// `function` *may* be called immediately, before `async` returns.
///
/// After this is called, `wait` or `cancel` must be called before the
/// group is deinitialized.
///
/// Threadsafe.
///
/// See also:
/// * `Io.async`
/// * `concurrent`
pub fn async(g: *Group, io: Io, function: anytype, args: std.meta.ArgsTuple(@TypeOf(function))) void {
const Args = @TypeOf(args);
const TypeErased = struct {
fn start(group: *Group, context: *const anyopaque) void {
_ = group;
const args_casted: *const Args = @ptrCast(@alignCast(context));
@call(.auto, function, args_casted.*);
}
};
io.vtable.groupAsync(io.userdata, g, @ptrCast((&args)[0..1]), .of(Args), TypeErased.start);
}
/// Blocks until all tasks of the group finish.
///
/// Idempotent. Not threadsafe.
pub fn wait(g: *Group, io: Io) Cancelable!void {
const token = g.token orelse return;
g.token = null;
return io.vtable.groupWait(io.userdata, g, token);
}
/// Equivalent to `wait` except uninterruptible.
///
/// Idempotent. Not threadsafe.
pub fn waitUncancelable(g: *Group, io: Io) void {
const token = g.token orelse return;
g.token = null;
io.vtable.groupWaitUncancelable(io.userdata, g, token);
}
/// Equivalent to `wait` but requests cancellation on all tasks owned by
/// the group.
///
/// Idempotent. Not threadsafe.
pub fn cancel(g: *Group, io: Io) void {
const token = g.token orelse return;
g.token = null;
io.vtable.groupCancel(io.userdata, g, token);
}
};
pub fn Select(comptime U: type) type {
return struct {
io: Io,
group: Group,
queue: Queue(U),
outstanding: usize,
const S = @This();
pub const Union = U;
pub const Field = std.meta.FieldEnum(U);
pub fn init(io: Io, buffer: []U) S {
return .{
.io = io,
.queue = .init(buffer),
.group = .init,
.outstanding = 0,
};
}
/// Calls `function` with `args` asynchronously. The resource spawned is
/// owned by the select.
///
/// `function` must have return type matching the `field` field of `Union`.
///
/// `function` *may* be called immediately, before `async` returns.
///
/// After this is called, `wait` or `cancel` must be called before the
/// select is deinitialized.
///
/// Threadsafe.
///
/// Related:
/// * `Io.async`
/// * `Group.async`
pub fn async(
s: *S,
comptime field: Field,
function: anytype,
args: std.meta.ArgsTuple(@TypeOf(function)),
) void {
const Args = @TypeOf(args);
const TypeErased = struct {
fn start(group: *Group, context: *const anyopaque) void {
const args_casted: *const Args = @ptrCast(@alignCast(context));
const unerased_select: *S = @fieldParentPtr("group", group);
const elem = @unionInit(U, @tagName(field), @call(.auto, function, args_casted.*));
unerased_select.queue.putOneUncancelable(unerased_select.io, elem);
}
};
_ = @atomicRmw(usize, &s.outstanding, .Add, 1, .monotonic);
s.io.vtable.groupAsync(s.io.userdata, &s.group, @ptrCast((&args)[0..1]), .of(Args), TypeErased.start);
}
/// Blocks until another task of the select finishes.
///
/// Asserts there is at least one more `outstanding` task.
///
/// Not threadsafe.
pub fn wait(s: *S) Cancelable!U {
s.outstanding -= 1;
return s.queue.getOne(s.io);
}
/// Equivalent to `wait` but requests cancellation on all remaining
/// tasks owned by the select.
///
/// It is illegal to call `wait` after this.
///
/// Idempotent. Not threadsafe.
pub fn cancel(s: *S) void {
s.outstanding = 0;
s.group.cancel(s.io);
}
};
}
pub const Mutex = struct {
state: State,
pub const State = enum(usize) {
locked_once = 0b00,
unlocked = 0b01,
contended = 0b10,
/// contended
_,
pub fn isUnlocked(state: State) bool {
return @intFromEnum(state) & @intFromEnum(State.unlocked) == @intFromEnum(State.unlocked);
}
};
pub const init: Mutex = .{ .state = .unlocked };
pub fn tryLock(mutex: *Mutex) bool {
const prev_state: State = @enumFromInt(@atomicRmw(
usize,
@as(*usize, @ptrCast(&mutex.state)),
.And,
~@intFromEnum(State.unlocked),
.acquire,
));
return prev_state.isUnlocked();
}
pub fn lock(mutex: *Mutex, io: std.Io) Cancelable!void {
const prev_state: State = @enumFromInt(@atomicRmw(
usize,
@as(*usize, @ptrCast(&mutex.state)),
.And,
~@intFromEnum(State.unlocked),
.acquire,
));
if (prev_state.isUnlocked()) {
@branchHint(.likely);
return;
}
return io.vtable.mutexLock(io.userdata, prev_state, mutex);
}
/// Same as `lock` but cannot be canceled.
pub fn lockUncancelable(mutex: *Mutex, io: std.Io) void {
const prev_state: State = @enumFromInt(@atomicRmw(
usize,
@as(*usize, @ptrCast(&mutex.state)),
.And,
~@intFromEnum(State.unlocked),
.acquire,
));
if (prev_state.isUnlocked()) {
@branchHint(.likely);
return;
}
return io.vtable.mutexLockUncancelable(io.userdata, prev_state, mutex);
}
pub fn unlock(mutex: *Mutex, io: std.Io) void {
const prev_state = @cmpxchgWeak(State, &mutex.state, .locked_once, .unlocked, .release, .acquire) orelse {
@branchHint(.likely);
return;
};
assert(prev_state != .unlocked); // mutex not locked
return io.vtable.mutexUnlock(io.userdata, prev_state, mutex);
}
};
pub const Condition = struct {
state: u64 = 0,
pub fn wait(cond: *Condition, io: Io, mutex: *Mutex) Cancelable!void {
return io.vtable.conditionWait(io.userdata, cond, mutex);
}
pub fn waitUncancelable(cond: *Condition, io: Io, mutex: *Mutex) void {
return io.vtable.conditionWaitUncancelable(io.userdata, cond, mutex);
}
pub fn signal(cond: *Condition, io: Io) void {
io.vtable.conditionWake(io.userdata, cond, .one);
}
pub fn broadcast(cond: *Condition, io: Io) void {
io.vtable.conditionWake(io.userdata, cond, .all);
}
pub const Wake = enum {
/// Wake up only one thread.
one,
/// Wake up all threads.
all,
};
};
pub const TypeErasedQueue = struct {
mutex: Mutex,
/// Ring buffer. This data is logically *after* queued getters.
buffer: []u8,
put_index: usize,
get_index: usize,
putters: std.DoublyLinkedList,
getters: std.DoublyLinkedList,
const Put = struct {
remaining: []const u8,
condition: Condition,
node: std.DoublyLinkedList.Node,
};
const Get = struct {
remaining: []u8,
condition: Condition,
node: std.DoublyLinkedList.Node,
};
pub fn init(buffer: []u8) TypeErasedQueue {
return .{
.mutex = .init,
.buffer = buffer,
.put_index = 0,
.get_index = 0,
.putters = .{},
.getters = .{},
};
}
pub fn put(q: *TypeErasedQueue, io: Io, elements: []const u8, min: usize) Cancelable!usize {
assert(elements.len >= min);
if (elements.len == 0) return 0;
try q.mutex.lock(io);
defer q.mutex.unlock(io);
return putLocked(q, io, elements, min, false);
}
/// Same as `put` but cannot be canceled.
pub fn putUncancelable(q: *TypeErasedQueue, io: Io, elements: []const u8, min: usize) usize {
assert(elements.len >= min);
if (elements.len == 0) return 0;
q.mutex.lockUncancelable(io);
defer q.mutex.unlock(io);
return putLocked(q, io, elements, min, true) catch |err| switch (err) {
error.Canceled => unreachable,
};
}
fn putLocked(q: *TypeErasedQueue, io: Io, elements: []const u8, min: usize, uncancelable: bool) Cancelable!usize {
// Getters have first priority on the data, and only when the getters
// queue is empty do we start populating the buffer.
var remaining = elements;
while (true) {
const getter: *Get = @alignCast(@fieldParentPtr("node", q.getters.popFirst() orelse break));
const copy_len = @min(getter.remaining.len, remaining.len);
@memcpy(getter.remaining[0..copy_len], remaining[0..copy_len]);
remaining = remaining[copy_len..];
getter.remaining = getter.remaining[copy_len..];
if (getter.remaining.len == 0) {
getter.condition.signal(io);
continue;
}
q.getters.prepend(&getter.node);
assert(remaining.len == 0);
return elements.len;
}
while (true) {
{
const available = q.buffer[q.put_index..];
const copy_len = @min(available.len, remaining.len);
@memcpy(available[0..copy_len], remaining[0..copy_len]);
remaining = remaining[copy_len..];
q.put_index += copy_len;
if (remaining.len == 0) return elements.len;
}
{
const available = q.buffer[0..q.get_index];
const copy_len = @min(available.len, remaining.len);
@memcpy(available[0..copy_len], remaining[0..copy_len]);
remaining = remaining[copy_len..];
q.put_index = copy_len;
if (remaining.len == 0) return elements.len;
}
const total_filled = elements.len - remaining.len;
if (total_filled >= min) return total_filled;
var pending: Put = .{ .remaining = remaining, .condition = .{}, .node = .{} };
q.putters.append(&pending.node);
if (uncancelable)
pending.condition.waitUncancelable(io, &q.mutex)
else
try pending.condition.wait(io, &q.mutex);
remaining = pending.remaining;
}
}
pub fn get(q: *@This(), io: Io, buffer: []u8, min: usize) Cancelable!usize {
assert(buffer.len >= min);
if (buffer.len == 0) return 0;
try q.mutex.lock(io);
defer q.mutex.unlock(io);
return getLocked(q, io, buffer, min, false);
}
pub fn getUncancelable(q: *@This(), io: Io, buffer: []u8, min: usize) usize {
assert(buffer.len >= min);
if (buffer.len == 0) return 0;
q.mutex.lockUncancelable(io);
defer q.mutex.unlock(io);
return getLocked(q, io, buffer, min, true) catch |err| switch (err) {
error.Canceled => unreachable,
};
}
pub fn getLocked(q: *@This(), io: Io, buffer: []u8, min: usize, uncancelable: bool) Cancelable!usize {
// The ring buffer gets first priority, then data should come from any
// queued putters, then finally the ring buffer should be filled with
// data from putters so they can be resumed.
var remaining = buffer;
while (true) {
if (q.get_index <= q.put_index) {
const available = q.buffer[q.get_index..q.put_index];
const copy_len = @min(available.len, remaining.len);
@memcpy(remaining[0..copy_len], available[0..copy_len]);
q.get_index += copy_len;
remaining = remaining[copy_len..];
if (remaining.len == 0) return fillRingBufferFromPutters(q, io, buffer.len);
} else {
{
const available = q.buffer[q.get_index..];
const copy_len = @min(available.len, remaining.len);
@memcpy(remaining[0..copy_len], available[0..copy_len]);
q.get_index += copy_len;
remaining = remaining[copy_len..];
if (remaining.len == 0) return fillRingBufferFromPutters(q, io, buffer.len);
}
{
const available = q.buffer[0..q.put_index];
const copy_len = @min(available.len, remaining.len);
@memcpy(remaining[0..copy_len], available[0..copy_len]);
q.get_index = copy_len;
remaining = remaining[copy_len..];
if (remaining.len == 0) return fillRingBufferFromPutters(q, io, buffer.len);
}
}
// Copy directly from putters into buffer.
while (remaining.len > 0) {
const putter: *Put = @alignCast(@fieldParentPtr("node", q.putters.popFirst() orelse break));
const copy_len = @min(putter.remaining.len, remaining.len);
@memcpy(remaining[0..copy_len], putter.remaining[0..copy_len]);
putter.remaining = putter.remaining[copy_len..];
remaining = remaining[copy_len..];
if (putter.remaining.len == 0) {
putter.condition.signal(io);
} else {
assert(remaining.len == 0);
q.putters.prepend(&putter.node);
return fillRingBufferFromPutters(q, io, buffer.len);
}
}
// Both ring buffer and putters queue is empty.
const total_filled = buffer.len - remaining.len;
if (total_filled >= min) return total_filled;
var pending: Get = .{ .remaining = remaining, .condition = .{}, .node = .{} };
q.getters.append(&pending.node);
if (uncancelable)
pending.condition.waitUncancelable(io, &q.mutex)
else
try pending.condition.wait(io, &q.mutex);
remaining = pending.remaining;
}
}
/// Called when there is nonzero space available in the ring buffer and
/// potentially putters waiting. The mutex is already held and the task is
/// to copy putter data to the ring buffer and signal any putters whose
/// buffers been fully copied.
fn fillRingBufferFromPutters(q: *TypeErasedQueue, io: Io, len: usize) usize {
while (true) {
const putter: *Put = @alignCast(@fieldParentPtr("node", q.putters.popFirst() orelse return len));
const available = q.buffer[q.put_index..];
const copy_len = @min(available.len, putter.remaining.len);
@memcpy(available[0..copy_len], putter.remaining[0..copy_len]);
putter.remaining = putter.remaining[copy_len..];
q.put_index += copy_len;
if (putter.remaining.len == 0) {
putter.condition.signal(io);
continue;
}
const second_available = q.buffer[0..q.get_index];
const second_copy_len = @min(second_available.len, putter.remaining.len);
@memcpy(second_available[0..second_copy_len], putter.remaining[0..second_copy_len]);
putter.remaining = putter.remaining[copy_len..];
q.put_index = copy_len;
if (putter.remaining.len == 0) {
putter.condition.signal(io);
continue;
}
q.putters.prepend(&putter.node);
return len;
}
}
};
/// Many producer, many consumer, thread-safe, runtime configurable buffer size.
/// When buffer is empty, consumers suspend and are resumed by producers.
/// When buffer is full, producers suspend and are resumed by consumers.
pub fn Queue(Elem: type) type {
return struct {
type_erased: TypeErasedQueue,
pub fn init(buffer: []Elem) @This() {
return .{ .type_erased = .init(@ptrCast(buffer)) };
}
/// Appends elements to the end of the queue. The function returns when
/// at least `min` elements have been added to the buffer or sent
/// directly to a consumer.
///
/// Returns how many elements have been added to the queue.
///
/// Asserts that `elements.len >= min`.
pub fn put(q: *@This(), io: Io, elements: []const Elem, min: usize) Cancelable!usize {
return @divExact(try q.type_erased.put(io, @ptrCast(elements), min * @sizeOf(Elem)), @sizeOf(Elem));
}
/// Same as `put` but blocks until all elements have been added to the queue.
pub fn putAll(q: *@This(), io: Io, elements: []const Elem) Cancelable!void {
assert(try q.put(io, elements, elements.len) == elements.len);
}
/// Same as `put` but cannot be interrupted.
pub fn putUncancelable(q: *@This(), io: Io, elements: []const Elem, min: usize) usize {
return @divExact(q.type_erased.putUncancelable(io, @ptrCast(elements), min * @sizeOf(Elem)), @sizeOf(Elem));
}
pub fn putOne(q: *@This(), io: Io, item: Elem) Cancelable!void {
assert(try q.put(io, &.{item}, 1) == 1);
}
pub fn putOneUncancelable(q: *@This(), io: Io, item: Elem) void {
assert(q.putUncancelable(io, &.{item}, 1) == 1);
}
/// Receives elements from the beginning of the queue. The function
/// returns when at least `min` elements have been populated inside
/// `buffer`.
///
/// Returns how many elements of `buffer` have been populated.
///
/// Asserts that `buffer.len >= min`.
pub fn get(q: *@This(), io: Io, buffer: []Elem, min: usize) Cancelable!usize {
return @divExact(try q.type_erased.get(io, @ptrCast(buffer), min * @sizeOf(Elem)), @sizeOf(Elem));
}
pub fn getUncancelable(q: *@This(), io: Io, buffer: []Elem, min: usize) usize {
return @divExact(q.type_erased.getUncancelable(io, @ptrCast(buffer), min * @sizeOf(Elem)), @sizeOf(Elem));
}
pub fn getOne(q: *@This(), io: Io) Cancelable!Elem {
var buf: [1]Elem = undefined;
assert(try q.get(io, &buf, 1) == 1);
return buf[0];
}
pub fn getOneUncancelable(q: *@This(), io: Io) Elem {
var buf: [1]Elem = undefined;
assert(q.getUncancelable(io, &buf, 1) == 1);
return buf[0];
}
/// Returns buffer length in `Elem` units.
pub fn capacity(q: *const @This()) usize {
return @divExact(q.type_erased.buffer.len, @sizeOf(Elem));
}
};
}
/// Calls `function` with `args`, such that the return value of the function is
/// not guaranteed to be available until `await` is called.
///
/// `function` *may* be called immediately, before `async` returns. This has
/// weaker guarantees than `concurrent`, making more portable and
/// reusable.
///
/// See also:
/// * `Group`
pub fn async(
io: Io,
function: anytype,
args: std.meta.ArgsTuple(@TypeOf(function)),
) Future(@typeInfo(@TypeOf(function)).@"fn".return_type.?) {
const Result = @typeInfo(@TypeOf(function)).@"fn".return_type.?;
const Args = @TypeOf(args);
const TypeErased = struct {
fn start(context: *const anyopaque, result: *anyopaque) void {
const args_casted: *const Args = @ptrCast(@alignCast(context));
const result_casted: *Result = @ptrCast(@alignCast(result));
result_casted.* = @call(.auto, function, args_casted.*);
}
};
var future: Future(Result) = undefined;
future.any_future = io.vtable.async(
io.userdata,
@ptrCast((&future.result)[0..1]),
.of(Result),
@ptrCast((&args)[0..1]),
.of(Args),
TypeErased.start,
);
return future;
}
pub const ConcurrentError = error{
/// May occur due to a temporary condition such as resource exhaustion, or
/// to the Io implementation not supporting concurrency.
ConcurrencyUnavailable,
};
/// Calls `function` with `args`, such that the return value of the function is
/// not guaranteed to be available until `await` is called, allowing the caller
/// to progress while waiting for any `Io` operations.
///
/// This has stronger guarantee than `async`, placing restrictions on what kind
/// of `Io` implementations are supported. By calling `async` instead, one
/// allows, for example, stackful single-threaded blocking I/O.
pub fn concurrent(
io: Io,
function: anytype,
args: std.meta.ArgsTuple(@TypeOf(function)),
) ConcurrentError!Future(@typeInfo(@TypeOf(function)).@"fn".return_type.?) {
const Result = @typeInfo(@TypeOf(function)).@"fn".return_type.?;
const Args = @TypeOf(args);
const TypeErased = struct {
fn start(context: *const anyopaque, result: *anyopaque) void {
const args_casted: *const Args = @ptrCast(@alignCast(context));
const result_casted: *Result = @ptrCast(@alignCast(result));
result_casted.* = @call(.auto, function, args_casted.*);
}
};
var future: Future(Result) = undefined;
future.any_future = try io.vtable.concurrent(
io.userdata,
@sizeOf(Result),
.of(Result),
@ptrCast((&args)[0..1]),
.of(Args),
TypeErased.start,
);
return future;
}
pub fn cancelRequested(io: Io) bool {
return io.vtable.cancelRequested(io.userdata);
}
pub const SleepError = error{UnsupportedClock} || UnexpectedError || Cancelable;
pub fn sleep(io: Io, duration: Duration, clock: Clock) SleepError!void {
return io.vtable.sleep(io.userdata, .{ .duration = .{
.raw = duration,
.clock = clock,
} });
}
/// Given a struct with each field a `*Future`, returns a union with the same
/// fields, each field type the future's result.
pub fn SelectUnion(S: type) type {
const struct_fields = @typeInfo(S).@"struct".fields;
var fields: [struct_fields.len]std.builtin.Type.UnionField = undefined;
for (&fields, struct_fields) |*union_field, struct_field| {
const F = @typeInfo(struct_field.type).pointer.child;
const Result = @TypeOf(@as(F, undefined).result);
union_field.* = .{
.name = struct_field.name,
.type = Result,
.alignment = struct_field.alignment,
};
}
return @Type(.{ .@"union" = .{
.layout = .auto,
.tag_type = std.meta.FieldEnum(S),
.fields = &fields,
.decls = &.{},
} });
}
/// `s` is a struct with every field a `*Future(T)`, where `T` can be any type,
/// and can be different for each field.
pub fn select(io: Io, s: anytype) SelectUnion(@TypeOf(s)) {
const U = SelectUnion(@TypeOf(s));
const S = @TypeOf(s);
const fields = @typeInfo(S).@"struct".fields;
var futures: [fields.len]*AnyFuture = undefined;
inline for (fields, &futures) |field, *any_future| {
const future = @field(s, field.name);
any_future.* = future.any_future orelse return @unionInit(U, field.name, future.result);
}
switch (io.vtable.select(io.userdata, &futures)) {
inline 0...(fields.len - 1) => |selected_index| {
const field_name = fields[selected_index].name;
return @unionInit(U, field_name, @field(s, field_name).await(io));
},
else => unreachable,
}
}