mirror of
https://github.com/ziglang/zig.git
synced 2026-01-26 01:05:22 +00:00
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
781 lines
31 KiB
Zig
781 lines
31 KiB
Zig
//! This file contains logic for bit-casting arbitrary values at comptime, including splicing
|
|
//! bits together for comptime stores of bit-pointers. The strategy is to "flatten" values to
|
|
//! a sequence of values in *packed* memory, and then unflatten through a combination of special
|
|
//! cases (particularly for pointers and `undefined` values) and in-memory buffer reinterprets.
|
|
//!
|
|
//! This is a little awkward on big-endian targets, as non-packed datastructures (e.g. `extern struct`)
|
|
//! have their fields reversed when represented as packed memory on such targets.
|
|
|
|
/// If `host_bits` is `0`, attempts to convert the memory at offset
|
|
/// `byte_offset` into `val` to a non-packed value of type `dest_ty`,
|
|
/// ignoring `bit_offset`.
|
|
///
|
|
/// Otherwise, `byte_offset` is an offset in bytes into `val` to a
|
|
/// non-packed value consisting of `host_bits` bits. A value of type
|
|
/// `dest_ty` will be interpreted at a packed offset of `bit_offset`
|
|
/// into this value.
|
|
///
|
|
/// Returns `null` if the operation must be performed at runtime.
|
|
pub fn bitCast(
|
|
sema: *Sema,
|
|
val: Value,
|
|
dest_ty: Type,
|
|
byte_offset: u64,
|
|
host_bits: u64,
|
|
bit_offset: u64,
|
|
) CompileError!?Value {
|
|
return bitCastInner(sema, val, dest_ty, byte_offset, host_bits, bit_offset) catch |err| switch (err) {
|
|
error.ReinterpretDeclRef => return null,
|
|
error.IllDefinedMemoryLayout => unreachable,
|
|
error.Unimplemented => @panic("unimplemented bitcast"),
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
|
|
/// Uses bitcasting to splice the value `splice_val` into `val`,
|
|
/// replacing overlapping bits and returning the modified value.
|
|
///
|
|
/// If `host_bits` is `0`, splices `splice_val` at an offset
|
|
/// `byte_offset` bytes into the virtual memory of `val`, ignoring
|
|
/// `bit_offset`.
|
|
///
|
|
/// Otherwise, `byte_offset` is an offset into bytes into `val` to
|
|
/// a non-packed value consisting of `host_bits` bits. The value
|
|
/// `splice_val` will be placed at a packed offset of `bit_offset`
|
|
/// into this value.
|
|
pub fn bitCastSplice(
|
|
sema: *Sema,
|
|
val: Value,
|
|
splice_val: Value,
|
|
byte_offset: u64,
|
|
host_bits: u64,
|
|
bit_offset: u64,
|
|
) CompileError!?Value {
|
|
return bitCastSpliceInner(sema, val, splice_val, byte_offset, host_bits, bit_offset) catch |err| switch (err) {
|
|
error.ReinterpretDeclRef => return null,
|
|
error.IllDefinedMemoryLayout => unreachable,
|
|
error.Unimplemented => @panic("unimplemented bitcast"),
|
|
else => |e| return e,
|
|
};
|
|
}
|
|
|
|
const BitCastError = CompileError || error{ ReinterpretDeclRef, IllDefinedMemoryLayout, Unimplemented };
|
|
|
|
fn bitCastInner(
|
|
sema: *Sema,
|
|
val: Value,
|
|
dest_ty: Type,
|
|
byte_offset: u64,
|
|
host_bits: u64,
|
|
bit_offset: u64,
|
|
) BitCastError!Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const endian = zcu.getTarget().cpu.arch.endian();
|
|
|
|
if (dest_ty.toIntern() == val.typeOf(zcu).toIntern() and bit_offset == 0) {
|
|
return val;
|
|
}
|
|
|
|
const val_ty = val.typeOf(zcu);
|
|
|
|
try val_ty.resolveLayout(pt);
|
|
try dest_ty.resolveLayout(pt);
|
|
|
|
assert(val_ty.hasWellDefinedLayout(zcu));
|
|
|
|
const abi_pad_bits, const host_pad_bits = if (host_bits > 0)
|
|
.{ val_ty.abiSize(zcu) * 8 - host_bits, host_bits - val_ty.bitSize(zcu) }
|
|
else
|
|
.{ val_ty.abiSize(zcu) * 8 - val_ty.bitSize(zcu), 0 };
|
|
|
|
const skip_bits = switch (endian) {
|
|
.little => bit_offset + byte_offset * 8,
|
|
.big => if (host_bits > 0)
|
|
val_ty.abiSize(zcu) * 8 - byte_offset * 8 - host_bits + bit_offset
|
|
else
|
|
val_ty.abiSize(zcu) * 8 - byte_offset * 8 - dest_ty.bitSize(zcu),
|
|
};
|
|
|
|
var unpack: UnpackValueBits = .{
|
|
.pt = sema.pt,
|
|
.arena = sema.arena,
|
|
.skip_bits = skip_bits,
|
|
.remaining_bits = dest_ty.bitSize(zcu),
|
|
.unpacked = std.ArrayList(InternPool.Index).init(sema.arena),
|
|
};
|
|
switch (endian) {
|
|
.little => {
|
|
try unpack.add(val);
|
|
try unpack.padding(abi_pad_bits);
|
|
},
|
|
.big => {
|
|
try unpack.padding(abi_pad_bits);
|
|
try unpack.add(val);
|
|
},
|
|
}
|
|
try unpack.padding(host_pad_bits);
|
|
|
|
var pack: PackValueBits = .{
|
|
.pt = sema.pt,
|
|
.arena = sema.arena,
|
|
.unpacked = unpack.unpacked.items,
|
|
};
|
|
return pack.get(dest_ty);
|
|
}
|
|
|
|
fn bitCastSpliceInner(
|
|
sema: *Sema,
|
|
val: Value,
|
|
splice_val: Value,
|
|
byte_offset: u64,
|
|
host_bits: u64,
|
|
bit_offset: u64,
|
|
) BitCastError!Value {
|
|
const pt = sema.pt;
|
|
const zcu = pt.zcu;
|
|
const endian = zcu.getTarget().cpu.arch.endian();
|
|
const val_ty = val.typeOf(zcu);
|
|
const splice_val_ty = splice_val.typeOf(zcu);
|
|
|
|
try val_ty.resolveLayout(pt);
|
|
try splice_val_ty.resolveLayout(pt);
|
|
|
|
const splice_bits = splice_val_ty.bitSize(zcu);
|
|
|
|
const splice_offset = switch (endian) {
|
|
.little => bit_offset + byte_offset * 8,
|
|
.big => if (host_bits > 0)
|
|
val_ty.abiSize(zcu) * 8 - byte_offset * 8 - host_bits + bit_offset
|
|
else
|
|
val_ty.abiSize(zcu) * 8 - byte_offset * 8 - splice_bits,
|
|
};
|
|
|
|
assert(splice_offset + splice_bits <= val_ty.abiSize(zcu) * 8);
|
|
|
|
const abi_pad_bits, const host_pad_bits = if (host_bits > 0)
|
|
.{ val_ty.abiSize(zcu) * 8 - host_bits, host_bits - val_ty.bitSize(zcu) }
|
|
else
|
|
.{ val_ty.abiSize(zcu) * 8 - val_ty.bitSize(zcu), 0 };
|
|
|
|
var unpack: UnpackValueBits = .{
|
|
.pt = pt,
|
|
.arena = sema.arena,
|
|
.skip_bits = 0,
|
|
.remaining_bits = splice_offset,
|
|
.unpacked = std.ArrayList(InternPool.Index).init(sema.arena),
|
|
};
|
|
switch (endian) {
|
|
.little => {
|
|
try unpack.add(val);
|
|
try unpack.padding(abi_pad_bits);
|
|
},
|
|
.big => {
|
|
try unpack.padding(abi_pad_bits);
|
|
try unpack.add(val);
|
|
},
|
|
}
|
|
try unpack.padding(host_pad_bits);
|
|
|
|
unpack.remaining_bits = splice_bits;
|
|
try unpack.add(splice_val);
|
|
|
|
unpack.skip_bits = splice_offset + splice_bits;
|
|
unpack.remaining_bits = val_ty.abiSize(zcu) * 8 - splice_offset - splice_bits;
|
|
switch (endian) {
|
|
.little => {
|
|
try unpack.add(val);
|
|
try unpack.padding(abi_pad_bits);
|
|
},
|
|
.big => {
|
|
try unpack.padding(abi_pad_bits);
|
|
try unpack.add(val);
|
|
},
|
|
}
|
|
try unpack.padding(host_pad_bits);
|
|
|
|
var pack: PackValueBits = .{
|
|
.pt = pt,
|
|
.arena = sema.arena,
|
|
.unpacked = unpack.unpacked.items,
|
|
};
|
|
switch (endian) {
|
|
.little => {},
|
|
.big => try pack.padding(abi_pad_bits),
|
|
}
|
|
return pack.get(val_ty);
|
|
}
|
|
|
|
/// Recurses through struct fields, array elements, etc, to get a sequence of "primitive" values
|
|
/// which are bit-packed in memory to represent a single value. `unpacked` represents a series
|
|
/// of values in *packed* memory - therefore, on big-endian targets, the first element of this
|
|
/// list contains bits from the *final* byte of the value.
|
|
const UnpackValueBits = struct {
|
|
pt: Zcu.PerThread,
|
|
arena: Allocator,
|
|
skip_bits: u64,
|
|
remaining_bits: u64,
|
|
extra_bits: u64 = undefined,
|
|
unpacked: std.ArrayList(InternPool.Index),
|
|
|
|
fn add(unpack: *UnpackValueBits, val: Value) BitCastError!void {
|
|
const pt = unpack.pt;
|
|
const zcu = pt.zcu;
|
|
const endian = zcu.getTarget().cpu.arch.endian();
|
|
const ip = &zcu.intern_pool;
|
|
|
|
if (unpack.remaining_bits == 0) {
|
|
return;
|
|
}
|
|
|
|
const ty = val.typeOf(zcu);
|
|
const bit_size = ty.bitSize(zcu);
|
|
|
|
if (unpack.skip_bits >= bit_size) {
|
|
unpack.skip_bits -= bit_size;
|
|
return;
|
|
}
|
|
|
|
switch (ip.indexToKey(val.toIntern())) {
|
|
.int_type,
|
|
.ptr_type,
|
|
.array_type,
|
|
.vector_type,
|
|
.opt_type,
|
|
.anyframe_type,
|
|
.error_union_type,
|
|
.simple_type,
|
|
.struct_type,
|
|
.tuple_type,
|
|
.union_type,
|
|
.opaque_type,
|
|
.enum_type,
|
|
.func_type,
|
|
.error_set_type,
|
|
.inferred_error_set_type,
|
|
.variable,
|
|
.@"extern",
|
|
.func,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.slice,
|
|
.memoized_call,
|
|
=> unreachable, // ill-defined layout or not real values
|
|
|
|
.undef,
|
|
.int,
|
|
.enum_tag,
|
|
.simple_value,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.opt,
|
|
=> try unpack.primitive(val),
|
|
|
|
.aggregate => switch (ty.zigTypeTag(zcu)) {
|
|
.vector => {
|
|
const len: usize = @intCast(ty.arrayLen(zcu));
|
|
for (0..len) |i| {
|
|
// We reverse vector elements in packed memory on BE targets.
|
|
const real_idx = switch (endian) {
|
|
.little => i,
|
|
.big => len - i - 1,
|
|
};
|
|
const elem_val = try val.elemValue(pt, real_idx);
|
|
try unpack.add(elem_val);
|
|
}
|
|
},
|
|
.array => {
|
|
// Each element is padded up to its ABI size. Padding bits are undefined.
|
|
// The final element does not have trailing padding.
|
|
// Elements are reversed in packed memory on BE targets.
|
|
const elem_ty = ty.childType(zcu);
|
|
const pad_bits = elem_ty.abiSize(zcu) * 8 - elem_ty.bitSize(zcu);
|
|
const len = ty.arrayLen(zcu);
|
|
const maybe_sent = ty.sentinel(zcu);
|
|
|
|
if (endian == .big) if (maybe_sent) |s| {
|
|
try unpack.add(s);
|
|
if (len != 0) try unpack.padding(pad_bits);
|
|
};
|
|
|
|
for (0..@intCast(len)) |i| {
|
|
// We reverse array elements in packed memory on BE targets.
|
|
const real_idx = switch (endian) {
|
|
.little => i,
|
|
.big => len - i - 1,
|
|
};
|
|
const elem_val = try val.elemValue(pt, @intCast(real_idx));
|
|
try unpack.add(elem_val);
|
|
if (i != len - 1) try unpack.padding(pad_bits);
|
|
}
|
|
|
|
if (endian == .little) if (maybe_sent) |s| {
|
|
if (len != 0) try unpack.padding(pad_bits);
|
|
try unpack.add(s);
|
|
};
|
|
},
|
|
.@"struct" => switch (ty.containerLayout(zcu)) {
|
|
.auto => unreachable, // ill-defined layout
|
|
.@"extern" => switch (endian) {
|
|
.little => {
|
|
var cur_bit_off: u64 = 0;
|
|
var it = zcu.typeToStruct(ty).?.iterateRuntimeOrder(ip);
|
|
while (it.next()) |field_idx| {
|
|
const want_bit_off = ty.structFieldOffset(field_idx, zcu) * 8;
|
|
const pad_bits = want_bit_off - cur_bit_off;
|
|
const field_val = try val.fieldValue(pt, field_idx);
|
|
try unpack.padding(pad_bits);
|
|
try unpack.add(field_val);
|
|
cur_bit_off = want_bit_off + field_val.typeOf(zcu).bitSize(zcu);
|
|
}
|
|
// Add trailing padding bits.
|
|
try unpack.padding(bit_size - cur_bit_off);
|
|
},
|
|
.big => {
|
|
var cur_bit_off: u64 = bit_size;
|
|
var it = zcu.typeToStruct(ty).?.iterateRuntimeOrderReverse(ip);
|
|
while (it.next()) |field_idx| {
|
|
const field_val = try val.fieldValue(pt, field_idx);
|
|
const field_ty = field_val.typeOf(zcu);
|
|
const want_bit_off = ty.structFieldOffset(field_idx, zcu) * 8 + field_ty.bitSize(zcu);
|
|
const pad_bits = cur_bit_off - want_bit_off;
|
|
try unpack.padding(pad_bits);
|
|
try unpack.add(field_val);
|
|
cur_bit_off = want_bit_off - field_ty.bitSize(zcu);
|
|
}
|
|
assert(cur_bit_off == 0);
|
|
},
|
|
},
|
|
.@"packed" => {
|
|
// Just add all fields in order. There are no padding bits.
|
|
// This is identical between LE and BE targets.
|
|
for (0..ty.structFieldCount(zcu)) |i| {
|
|
const field_val = try val.fieldValue(pt, i);
|
|
try unpack.add(field_val);
|
|
}
|
|
},
|
|
},
|
|
else => unreachable,
|
|
},
|
|
|
|
.un => |un| {
|
|
// We actually don't care about the tag here!
|
|
// Instead, we just need to write the payload value, plus any necessary padding.
|
|
// This correctly handles the case where `tag == .none`, since the payload is then
|
|
// either an integer or a byte array, both of which we can unpack.
|
|
const payload_val = Value.fromInterned(un.val);
|
|
const pad_bits = bit_size - payload_val.typeOf(zcu).bitSize(zcu);
|
|
if (endian == .little or ty.containerLayout(zcu) == .@"packed") {
|
|
try unpack.add(payload_val);
|
|
try unpack.padding(pad_bits);
|
|
} else {
|
|
try unpack.padding(pad_bits);
|
|
try unpack.add(payload_val);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
fn padding(unpack: *UnpackValueBits, pad_bits: u64) BitCastError!void {
|
|
if (pad_bits == 0) return;
|
|
const pt = unpack.pt;
|
|
// Figure out how many full bytes and leftover bits there are.
|
|
const bytes = pad_bits / 8;
|
|
const bits = pad_bits % 8;
|
|
// Add undef u8 values for the bytes...
|
|
const undef_u8 = try pt.undefValue(Type.u8);
|
|
for (0..@intCast(bytes)) |_| {
|
|
try unpack.primitive(undef_u8);
|
|
}
|
|
// ...and an undef int for the leftover bits.
|
|
if (bits == 0) return;
|
|
const bits_ty = try pt.intType(.unsigned, @intCast(bits));
|
|
const bits_val = try pt.undefValue(bits_ty);
|
|
try unpack.primitive(bits_val);
|
|
}
|
|
|
|
fn primitive(unpack: *UnpackValueBits, val: Value) BitCastError!void {
|
|
const pt = unpack.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
if (unpack.remaining_bits == 0) {
|
|
return;
|
|
}
|
|
|
|
const ty = val.typeOf(pt.zcu);
|
|
const bit_size = ty.bitSize(zcu);
|
|
|
|
// Note that this skips all zero-bit types.
|
|
if (unpack.skip_bits >= bit_size) {
|
|
unpack.skip_bits -= bit_size;
|
|
return;
|
|
}
|
|
|
|
if (unpack.skip_bits > 0) {
|
|
const skip = unpack.skip_bits;
|
|
unpack.skip_bits = 0;
|
|
return unpack.splitPrimitive(val, skip, bit_size - skip);
|
|
}
|
|
|
|
if (unpack.remaining_bits < bit_size) {
|
|
return unpack.splitPrimitive(val, 0, unpack.remaining_bits);
|
|
}
|
|
|
|
unpack.remaining_bits -|= bit_size;
|
|
|
|
try unpack.unpacked.append(val.toIntern());
|
|
}
|
|
|
|
fn splitPrimitive(unpack: *UnpackValueBits, val: Value, bit_offset: u64, bit_count: u64) BitCastError!void {
|
|
const pt = unpack.pt;
|
|
const zcu = pt.zcu;
|
|
const ty = val.typeOf(pt.zcu);
|
|
|
|
const val_bits = ty.bitSize(zcu);
|
|
assert(bit_offset + bit_count <= val_bits);
|
|
|
|
switch (pt.zcu.intern_pool.indexToKey(val.toIntern())) {
|
|
// In the `ptr` case, this will return `error.ReinterpretDeclRef`
|
|
// if we're trying to split a non-integer pointer value.
|
|
.int, .float, .enum_tag, .ptr, .opt => {
|
|
// This @intCast is okay because no primitive can exceed the size of a u16.
|
|
const int_ty = try unpack.pt.intType(.unsigned, @intCast(bit_count));
|
|
const buf = try unpack.arena.alloc(u8, @intCast((val_bits + 7) / 8));
|
|
try val.writeToPackedMemory(ty, unpack.pt, buf, 0);
|
|
const sub_val = try Value.readFromPackedMemory(int_ty, unpack.pt, buf, @intCast(bit_offset), unpack.arena);
|
|
try unpack.primitive(sub_val);
|
|
},
|
|
.undef => try unpack.padding(bit_count),
|
|
// The only values here with runtime bits are `true` and `false.
|
|
// These are both 1 bit, so will never need truncating.
|
|
.simple_value => unreachable,
|
|
.empty_enum_value => unreachable, // zero-bit
|
|
else => unreachable, // zero-bit or not primitives
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Given a sequence of bit-packed values in packed memory (see `UnpackValueBits`),
|
|
/// reconstructs a value of an arbitrary type, with correct handling of `undefined`
|
|
/// values and of pointers which align in virtual memory.
|
|
const PackValueBits = struct {
|
|
pt: Zcu.PerThread,
|
|
arena: Allocator,
|
|
bit_offset: u64 = 0,
|
|
unpacked: []const InternPool.Index,
|
|
|
|
fn get(pack: *PackValueBits, ty: Type) BitCastError!Value {
|
|
const pt = pack.pt;
|
|
const zcu = pt.zcu;
|
|
const endian = zcu.getTarget().cpu.arch.endian();
|
|
const ip = &zcu.intern_pool;
|
|
const arena = pack.arena;
|
|
switch (ty.zigTypeTag(zcu)) {
|
|
.vector => {
|
|
// Elements are bit-packed.
|
|
const len = ty.arrayLen(zcu);
|
|
const elem_ty = ty.childType(zcu);
|
|
const elems = try arena.alloc(InternPool.Index, @intCast(len));
|
|
// We reverse vector elements in packed memory on BE targets.
|
|
switch (endian) {
|
|
.little => for (elems) |*elem| {
|
|
elem.* = (try pack.get(elem_ty)).toIntern();
|
|
},
|
|
.big => {
|
|
var i = elems.len;
|
|
while (i > 0) {
|
|
i -= 1;
|
|
elems[i] = (try pack.get(elem_ty)).toIntern();
|
|
}
|
|
},
|
|
}
|
|
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .elems = elems },
|
|
} }));
|
|
},
|
|
.array => {
|
|
// Each element is padded up to its ABI size. The final element does not have trailing padding.
|
|
const len = ty.arrayLen(zcu);
|
|
const elem_ty = ty.childType(zcu);
|
|
const maybe_sent = ty.sentinel(zcu);
|
|
const pad_bits = elem_ty.abiSize(zcu) * 8 - elem_ty.bitSize(zcu);
|
|
const elems = try arena.alloc(InternPool.Index, @intCast(len));
|
|
|
|
if (endian == .big and maybe_sent != null) {
|
|
// TODO: validate sentinel was preserved!
|
|
try pack.padding(elem_ty.bitSize(zcu));
|
|
if (len != 0) try pack.padding(pad_bits);
|
|
}
|
|
|
|
for (0..elems.len) |i| {
|
|
const real_idx = switch (endian) {
|
|
.little => i,
|
|
.big => len - i - 1,
|
|
};
|
|
elems[@intCast(real_idx)] = (try pack.get(elem_ty)).toIntern();
|
|
if (i != len - 1) try pack.padding(pad_bits);
|
|
}
|
|
|
|
if (endian == .little and maybe_sent != null) {
|
|
// TODO: validate sentinel was preserved!
|
|
if (len != 0) try pack.padding(pad_bits);
|
|
try pack.padding(elem_ty.bitSize(zcu));
|
|
}
|
|
|
|
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .elems = elems },
|
|
} }));
|
|
},
|
|
.@"struct" => switch (ty.containerLayout(zcu)) {
|
|
.auto => unreachable, // ill-defined layout
|
|
.@"extern" => {
|
|
const elems = try arena.alloc(InternPool.Index, ty.structFieldCount(zcu));
|
|
@memset(elems, .none);
|
|
switch (endian) {
|
|
.little => {
|
|
var cur_bit_off: u64 = 0;
|
|
var it = zcu.typeToStruct(ty).?.iterateRuntimeOrder(ip);
|
|
while (it.next()) |field_idx| {
|
|
const want_bit_off = ty.structFieldOffset(field_idx, zcu) * 8;
|
|
try pack.padding(want_bit_off - cur_bit_off);
|
|
const field_ty = ty.fieldType(field_idx, zcu);
|
|
elems[field_idx] = (try pack.get(field_ty)).toIntern();
|
|
cur_bit_off = want_bit_off + field_ty.bitSize(zcu);
|
|
}
|
|
try pack.padding(ty.bitSize(zcu) - cur_bit_off);
|
|
},
|
|
.big => {
|
|
var cur_bit_off: u64 = ty.bitSize(zcu);
|
|
var it = zcu.typeToStruct(ty).?.iterateRuntimeOrderReverse(ip);
|
|
while (it.next()) |field_idx| {
|
|
const field_ty = ty.fieldType(field_idx, zcu);
|
|
const want_bit_off = ty.structFieldOffset(field_idx, zcu) * 8 + field_ty.bitSize(zcu);
|
|
try pack.padding(cur_bit_off - want_bit_off);
|
|
elems[field_idx] = (try pack.get(field_ty)).toIntern();
|
|
cur_bit_off = want_bit_off - field_ty.bitSize(zcu);
|
|
}
|
|
assert(cur_bit_off == 0);
|
|
},
|
|
}
|
|
// Any fields which do not have runtime bits should be OPV or comptime fields.
|
|
// Fill those values now.
|
|
for (elems, 0..) |*elem, field_idx| {
|
|
if (elem.* != .none) continue;
|
|
const val = (try ty.structFieldValueComptime(pt, field_idx)).?;
|
|
elem.* = val.toIntern();
|
|
}
|
|
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .elems = elems },
|
|
} }));
|
|
},
|
|
.@"packed" => {
|
|
// All fields are in order with no padding.
|
|
// This is identical between LE and BE targets.
|
|
const elems = try arena.alloc(InternPool.Index, ty.structFieldCount(zcu));
|
|
for (elems, 0..) |*elem, i| {
|
|
const field_ty = ty.fieldType(i, zcu);
|
|
elem.* = (try pack.get(field_ty)).toIntern();
|
|
}
|
|
return Value.fromInterned(try pt.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .elems = elems },
|
|
} }));
|
|
},
|
|
},
|
|
.@"union" => {
|
|
// We will attempt to read as the backing representation. If this emits
|
|
// `error.ReinterpretDeclRef`, we will try each union field, preferring larger ones.
|
|
// We will also attempt smaller fields when we get `undefined`, as if some bits are
|
|
// defined we want to include them.
|
|
// TODO: this is very very bad. We need a more sophisticated union representation.
|
|
|
|
const prev_unpacked = pack.unpacked;
|
|
const prev_bit_offset = pack.bit_offset;
|
|
|
|
const backing_ty = try ty.unionBackingType(pt);
|
|
|
|
backing: {
|
|
const backing_val = pack.get(backing_ty) catch |err| switch (err) {
|
|
error.ReinterpretDeclRef => {
|
|
pack.unpacked = prev_unpacked;
|
|
pack.bit_offset = prev_bit_offset;
|
|
break :backing;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
if (backing_val.isUndef(zcu)) {
|
|
pack.unpacked = prev_unpacked;
|
|
pack.bit_offset = prev_bit_offset;
|
|
break :backing;
|
|
}
|
|
return Value.fromInterned(try pt.internUnion(.{
|
|
.ty = ty.toIntern(),
|
|
.tag = .none,
|
|
.val = backing_val.toIntern(),
|
|
}));
|
|
}
|
|
|
|
const field_order = try pack.arena.alloc(u32, ty.unionTagTypeHypothetical(zcu).enumFieldCount(zcu));
|
|
for (field_order, 0..) |*f, i| f.* = @intCast(i);
|
|
// Sort `field_order` to put the fields with the largest bit sizes first.
|
|
const SizeSortCtx = struct {
|
|
zcu: *Zcu,
|
|
field_types: []const InternPool.Index,
|
|
fn lessThan(ctx: @This(), a_idx: u32, b_idx: u32) bool {
|
|
const a_ty = Type.fromInterned(ctx.field_types[a_idx]);
|
|
const b_ty = Type.fromInterned(ctx.field_types[b_idx]);
|
|
return a_ty.bitSize(ctx.zcu) > b_ty.bitSize(ctx.zcu);
|
|
}
|
|
};
|
|
std.mem.sortUnstable(u32, field_order, SizeSortCtx{
|
|
.zcu = zcu,
|
|
.field_types = zcu.typeToUnion(ty).?.field_types.get(ip),
|
|
}, SizeSortCtx.lessThan);
|
|
|
|
const padding_after = endian == .little or ty.containerLayout(zcu) == .@"packed";
|
|
|
|
for (field_order) |field_idx| {
|
|
const field_ty = Type.fromInterned(zcu.typeToUnion(ty).?.field_types.get(ip)[field_idx]);
|
|
const pad_bits = ty.bitSize(zcu) - field_ty.bitSize(zcu);
|
|
if (!padding_after) try pack.padding(pad_bits);
|
|
const field_val = pack.get(field_ty) catch |err| switch (err) {
|
|
error.ReinterpretDeclRef => {
|
|
pack.unpacked = prev_unpacked;
|
|
pack.bit_offset = prev_bit_offset;
|
|
continue;
|
|
},
|
|
else => |e| return e,
|
|
};
|
|
if (padding_after) try pack.padding(pad_bits);
|
|
if (field_val.isUndef(zcu)) {
|
|
pack.unpacked = prev_unpacked;
|
|
pack.bit_offset = prev_bit_offset;
|
|
continue;
|
|
}
|
|
const tag_val = try pt.enumValueFieldIndex(ty.unionTagTypeHypothetical(zcu), field_idx);
|
|
return Value.fromInterned(try pt.internUnion(.{
|
|
.ty = ty.toIntern(),
|
|
.tag = tag_val.toIntern(),
|
|
.val = field_val.toIntern(),
|
|
}));
|
|
}
|
|
|
|
// No field could represent the value. Just do whatever happens when we try to read
|
|
// the backing type - either `undefined` or `error.ReinterpretDeclRef`.
|
|
const backing_val = try pack.get(backing_ty);
|
|
return Value.fromInterned(try pt.internUnion(.{
|
|
.ty = ty.toIntern(),
|
|
.tag = .none,
|
|
.val = backing_val.toIntern(),
|
|
}));
|
|
},
|
|
else => return pack.primitive(ty),
|
|
}
|
|
}
|
|
|
|
fn padding(pack: *PackValueBits, pad_bits: u64) BitCastError!void {
|
|
_ = pack.prepareBits(pad_bits);
|
|
}
|
|
|
|
fn primitive(pack: *PackValueBits, want_ty: Type) BitCastError!Value {
|
|
const pt = pack.pt;
|
|
const zcu = pt.zcu;
|
|
const vals, const bit_offset = pack.prepareBits(want_ty.bitSize(zcu));
|
|
|
|
for (vals) |val| {
|
|
if (!Value.fromInterned(val).isUndef(zcu)) break;
|
|
} else {
|
|
// All bits of the value are `undefined`.
|
|
return pt.undefValue(want_ty);
|
|
}
|
|
|
|
// TODO: we need to decide how to handle partially-undef values here.
|
|
// Currently, a value with some undefined bits becomes `0xAA` so that we
|
|
// preserve the well-defined bits, because we can't currently represent
|
|
// a partially-undefined primitive (e.g. an int with some undef bits).
|
|
// In future, we probably want to take one of these two routes:
|
|
// * Define that if any bits are `undefined`, the entire value is `undefined`.
|
|
// This is a major breaking change, and probably a footgun.
|
|
// * Introduce tracking for partially-undef values at comptime.
|
|
// This would complicate a lot of operations in Sema, such as basic
|
|
// arithmetic.
|
|
// This design complexity is tracked by #19634.
|
|
|
|
ptr_cast: {
|
|
if (vals.len != 1) break :ptr_cast;
|
|
const val = Value.fromInterned(vals[0]);
|
|
if (!val.typeOf(zcu).isPtrAtRuntime(zcu)) break :ptr_cast;
|
|
if (!want_ty.isPtrAtRuntime(zcu)) break :ptr_cast;
|
|
return pt.getCoerced(val, want_ty);
|
|
}
|
|
|
|
// Reinterpret via an in-memory buffer.
|
|
|
|
var buf_bits: u64 = 0;
|
|
for (vals) |ip_val| {
|
|
const val = Value.fromInterned(ip_val);
|
|
const ty = val.typeOf(pt.zcu);
|
|
buf_bits += ty.bitSize(zcu);
|
|
}
|
|
|
|
const buf = try pack.arena.alloc(u8, @intCast((buf_bits + 7) / 8));
|
|
// We will skip writing undefined values, so mark the buffer as `0xAA` so we get "undefined" bits.
|
|
@memset(buf, 0xAA);
|
|
var cur_bit_off: usize = 0;
|
|
for (vals) |ip_val| {
|
|
const val = Value.fromInterned(ip_val);
|
|
const ty = val.typeOf(zcu);
|
|
if (!val.isUndef(zcu)) {
|
|
try val.writeToPackedMemory(ty, pt, buf, cur_bit_off);
|
|
}
|
|
cur_bit_off += @intCast(ty.bitSize(zcu));
|
|
}
|
|
|
|
return Value.readFromPackedMemory(want_ty, pt, buf, @intCast(bit_offset), pack.arena);
|
|
}
|
|
|
|
fn prepareBits(pack: *PackValueBits, need_bits: u64) struct { []const InternPool.Index, u64 } {
|
|
if (need_bits == 0) return .{ &.{}, 0 };
|
|
|
|
const pt = pack.pt;
|
|
const zcu = pt.zcu;
|
|
|
|
var bits: u64 = 0;
|
|
var len: usize = 0;
|
|
while (bits < pack.bit_offset + need_bits) {
|
|
bits += Value.fromInterned(pack.unpacked[len]).typeOf(pt.zcu).bitSize(zcu);
|
|
len += 1;
|
|
}
|
|
|
|
const result_vals = pack.unpacked[0..len];
|
|
const result_offset = pack.bit_offset;
|
|
|
|
const extra_bits = bits - pack.bit_offset - need_bits;
|
|
if (extra_bits == 0) {
|
|
pack.unpacked = pack.unpacked[len..];
|
|
pack.bit_offset = 0;
|
|
} else {
|
|
pack.unpacked = pack.unpacked[len - 1 ..];
|
|
pack.bit_offset = Value.fromInterned(pack.unpacked[0]).typeOf(pt.zcu).bitSize(zcu) - extra_bits;
|
|
}
|
|
|
|
return .{ result_vals, result_offset };
|
|
}
|
|
};
|
|
|
|
const std = @import("std");
|
|
const Allocator = std.mem.Allocator;
|
|
const assert = std.debug.assert;
|
|
|
|
const Sema = @import("../Sema.zig");
|
|
const Zcu = @import("../Zcu.zig");
|
|
const InternPool = @import("../InternPool.zig");
|
|
const Type = @import("../Type.zig");
|
|
const Value = @import("../Value.zig");
|
|
const CompileError = Zcu.CompileError;
|