mirror of
https://github.com/ziglang/zig.git
synced 2025-12-30 10:03:21 +00:00
Previously, auto hash tests required vectors of different types to not hash to the same value. Now, this is allowed.
382 lines
13 KiB
Zig
382 lines
13 KiB
Zig
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const mem = std.mem;
|
|
const meta = std.meta;
|
|
|
|
/// Describes how pointer types should be hashed.
|
|
pub const HashStrategy = enum {
|
|
/// Do not follow pointers, only hash their value.
|
|
Shallow,
|
|
|
|
/// Follow pointers, hash the pointee content.
|
|
/// Only dereferences one level, ie. it is changed into .Shallow when a
|
|
/// pointer type is encountered.
|
|
Deep,
|
|
|
|
/// Follow pointers, hash the pointee content.
|
|
/// Dereferences all pointers encountered.
|
|
/// Assumes no cycle.
|
|
DeepRecursive,
|
|
};
|
|
|
|
/// Helper function to hash a pointer and mutate the strategy if needed.
|
|
pub fn hashPointer(hasher: var, key: var, comptime strat: HashStrategy) void {
|
|
const info = @typeInfo(@typeOf(key));
|
|
|
|
switch (info.Pointer.size) {
|
|
builtin.TypeInfo.Pointer.Size.One => switch (strat) {
|
|
.Shallow => hash(hasher, @ptrToInt(key), .Shallow),
|
|
.Deep => hash(hasher, key.*, .Shallow),
|
|
.DeepRecursive => hash(hasher, key.*, .DeepRecursive),
|
|
},
|
|
|
|
builtin.TypeInfo.Pointer.Size.Slice => switch (strat) {
|
|
.Shallow => {
|
|
hashPointer(hasher, key.ptr, .Shallow);
|
|
hash(hasher, key.len, .Shallow);
|
|
},
|
|
.Deep => hashArray(hasher, key, .Shallow),
|
|
.DeepRecursive => hashArray(hasher, key, .DeepRecursive),
|
|
},
|
|
|
|
builtin.TypeInfo.Pointer.Size.Many,
|
|
builtin.TypeInfo.Pointer.Size.C,
|
|
=> switch (strat) {
|
|
.Shallow => hash(hasher, @ptrToInt(key), .Shallow),
|
|
else => @compileError(
|
|
\\ unknown-length pointers and C pointers cannot be hashed deeply.
|
|
\\ Consider providing your own hash function.
|
|
),
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Helper function to hash a set of contiguous objects, from an array or slice.
|
|
pub fn hashArray(hasher: var, key: var, comptime strat: HashStrategy) void {
|
|
switch (strat) {
|
|
.Shallow => {
|
|
// TODO detect via a trait when Key has no padding bits to
|
|
// hash it as an array of bytes.
|
|
// Otherwise, hash every element.
|
|
for (key) |element| {
|
|
hash(hasher, element, .Shallow);
|
|
}
|
|
},
|
|
else => {
|
|
for (key) |element| {
|
|
hash(hasher, element, strat);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Provides generic hashing for any eligible type.
|
|
/// Strategy is provided to determine if pointers should be followed or not.
|
|
pub fn hash(hasher: var, key: var, comptime strat: HashStrategy) void {
|
|
const Key = @typeOf(key);
|
|
switch (@typeInfo(Key)) {
|
|
.NoReturn,
|
|
.Opaque,
|
|
.Undefined,
|
|
.ArgTuple,
|
|
.Void,
|
|
.Null,
|
|
.BoundFn,
|
|
.ComptimeFloat,
|
|
.ComptimeInt,
|
|
.Type,
|
|
.EnumLiteral,
|
|
.Frame,
|
|
=> @compileError("cannot hash this type"),
|
|
|
|
// Help the optimizer see that hashing an int is easy by inlining!
|
|
// TODO Check if the situation is better after #561 is resolved.
|
|
.Int => @inlineCall(hasher.update, std.mem.asBytes(&key)),
|
|
|
|
.Float => |info| hash(hasher, @bitCast(@IntType(false, info.bits), key), strat),
|
|
|
|
.Bool => hash(hasher, @boolToInt(key), strat),
|
|
.Enum => hash(hasher, @enumToInt(key), strat),
|
|
.ErrorSet => hash(hasher, @errorToInt(key), strat),
|
|
.AnyFrame, .Fn => hash(hasher, @ptrToInt(key), strat),
|
|
|
|
.Pointer => @inlineCall(hashPointer, hasher, key, strat),
|
|
|
|
.Optional => if (key) |k| hash(hasher, k, strat),
|
|
|
|
.Array => hashArray(hasher, key, strat),
|
|
|
|
.Vector => |info| {
|
|
if (info.child.bit_count % 8 == 0) {
|
|
// If there's no unused bits in the child type, we can just hash
|
|
// this as an array of bytes.
|
|
hasher.update(mem.asBytes(&key));
|
|
} else {
|
|
// Otherwise, hash every element.
|
|
// TODO remove the copy to an array once field access is done.
|
|
const array: [info.len]info.child = key;
|
|
comptime var i = 0;
|
|
inline while (i < info.len) : (i += 1) {
|
|
hash(hasher, array[i], strat);
|
|
}
|
|
}
|
|
},
|
|
|
|
.Struct => |info| {
|
|
// TODO detect via a trait when Key has no padding bits to
|
|
// hash it as an array of bytes.
|
|
// Otherwise, hash every field.
|
|
inline for (info.fields) |field| {
|
|
// We reuse the hash of the previous field as the seed for the
|
|
// next one so that they're dependant.
|
|
hash(hasher, @field(key, field.name), strat);
|
|
}
|
|
},
|
|
|
|
.Union => |info| blk: {
|
|
if (info.tag_type) |tag_type| {
|
|
const tag = meta.activeTag(key);
|
|
const s = hash(hasher, tag, strat);
|
|
inline for (info.fields) |field| {
|
|
const enum_field = field.enum_field.?;
|
|
if (enum_field.value == @enumToInt(tag)) {
|
|
hash(hasher, @field(key, enum_field.name), strat);
|
|
// TODO use a labelled break when it does not crash the compiler. cf #2908
|
|
// break :blk;
|
|
return;
|
|
}
|
|
}
|
|
unreachable;
|
|
} else @compileError("cannot hash untagged union type: " ++ @typeName(Key) ++ ", provide your own hash function");
|
|
},
|
|
|
|
.ErrorUnion => blk: {
|
|
const payload = key catch |err| {
|
|
hash(hasher, err, strat);
|
|
break :blk;
|
|
};
|
|
hash(hasher, payload, strat);
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Provides generic hashing for any eligible type.
|
|
/// Only hashes `key` itself, pointers are not followed.
|
|
/// Slices are rejected to avoid ambiguity on the user's intention.
|
|
pub fn autoHash(hasher: var, key: var) void {
|
|
const Key = @typeOf(key);
|
|
if (comptime meta.trait.isSlice(Key)) {
|
|
comptime assert(@hasDecl(std, "StringHashMap")); // detect when the following message needs updated
|
|
const extra_help = if (Key == []const u8)
|
|
" Consider std.StringHashMap for hashing the contents of []const u8."
|
|
else
|
|
"";
|
|
|
|
@compileError("std.auto_hash.autoHash does not allow slices (here " ++ @typeName(Key) ++
|
|
") because the intent is unclear. Consider using std.auto_hash.hash or providing your own hash function instead." ++
|
|
extra_help);
|
|
}
|
|
|
|
hash(hasher, key, .Shallow);
|
|
}
|
|
|
|
const testing = std.testing;
|
|
const Wyhash = std.hash.Wyhash;
|
|
|
|
fn testHash(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .Shallow);
|
|
return hasher.final();
|
|
}
|
|
|
|
fn testHashShallow(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .Shallow);
|
|
return hasher.final();
|
|
}
|
|
|
|
fn testHashDeep(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .Deep);
|
|
return hasher.final();
|
|
}
|
|
|
|
fn testHashDeepRecursive(key: var) u64 {
|
|
// Any hash could be used here, for testing autoHash.
|
|
var hasher = Wyhash.init(0);
|
|
hash(&hasher, key, .DeepRecursive);
|
|
return hasher.final();
|
|
}
|
|
|
|
test "hash pointer" {
|
|
const array = [_]u32{ 123, 123, 123 };
|
|
const a = &array[0];
|
|
const b = &array[1];
|
|
const c = &array[2];
|
|
const d = a;
|
|
|
|
testing.expect(testHashShallow(a) == testHashShallow(d));
|
|
testing.expect(testHashShallow(a) != testHashShallow(c));
|
|
testing.expect(testHashShallow(a) != testHashShallow(b));
|
|
|
|
testing.expect(testHashDeep(a) == testHashDeep(a));
|
|
testing.expect(testHashDeep(a) == testHashDeep(c));
|
|
testing.expect(testHashDeep(a) == testHashDeep(b));
|
|
|
|
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(a));
|
|
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(c));
|
|
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(b));
|
|
}
|
|
|
|
test "hash slice shallow" {
|
|
// Allocate one array dynamically so that we're assured it is not merged
|
|
// with the other by the optimization passes.
|
|
const array1 = try std.heap.direct_allocator.create([6]u32);
|
|
defer std.heap.direct_allocator.destroy(array1);
|
|
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const a = array1[0..];
|
|
const b = array2[0..];
|
|
const c = array1[0..3];
|
|
testing.expect(testHashShallow(a) == testHashShallow(a));
|
|
testing.expect(testHashShallow(a) != testHashShallow(array1));
|
|
testing.expect(testHashShallow(a) != testHashShallow(b));
|
|
testing.expect(testHashShallow(a) != testHashShallow(c));
|
|
}
|
|
|
|
test "hash slice deep" {
|
|
// Allocate one array dynamically so that we're assured it is not merged
|
|
// with the other by the optimization passes.
|
|
const array1 = try std.heap.direct_allocator.create([6]u32);
|
|
defer std.heap.direct_allocator.destroy(array1);
|
|
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
|
const a = array1[0..];
|
|
const b = array2[0..];
|
|
const c = array1[0..3];
|
|
testing.expect(testHashDeep(a) == testHashDeep(a));
|
|
testing.expect(testHashDeep(a) == testHashDeep(array1));
|
|
testing.expect(testHashDeep(a) == testHashDeep(b));
|
|
testing.expect(testHashDeep(a) != testHashDeep(c));
|
|
}
|
|
|
|
test "hash struct deep" {
|
|
const Foo = struct {
|
|
a: u32,
|
|
b: f64,
|
|
c: *bool,
|
|
|
|
const Self = @This();
|
|
|
|
pub fn init(allocator: *mem.Allocator, a_: u32, b_: f64, c_: bool) !Self {
|
|
const ptr = try allocator.create(bool);
|
|
ptr.* = c_;
|
|
return Self{ .a = a_, .b = b_, .c = ptr };
|
|
}
|
|
};
|
|
|
|
const allocator = std.heap.direct_allocator;
|
|
const foo = try Foo.init(allocator, 123, 1.0, true);
|
|
const bar = try Foo.init(allocator, 123, 1.0, true);
|
|
const baz = try Foo.init(allocator, 123, 1.0, false);
|
|
defer allocator.destroy(foo.c);
|
|
defer allocator.destroy(bar.c);
|
|
defer allocator.destroy(baz.c);
|
|
|
|
testing.expect(testHashDeep(foo) == testHashDeep(bar));
|
|
testing.expect(testHashDeep(foo) != testHashDeep(baz));
|
|
testing.expect(testHashDeep(bar) != testHashDeep(baz));
|
|
|
|
var hasher = Wyhash.init(0);
|
|
const h = testHashDeep(foo);
|
|
autoHash(&hasher, foo.a);
|
|
autoHash(&hasher, foo.b);
|
|
autoHash(&hasher, foo.c.*);
|
|
testing.expectEqual(h, hasher.final());
|
|
|
|
const h2 = testHashDeepRecursive(&foo);
|
|
testing.expect(h2 != testHashDeep(&foo));
|
|
testing.expect(h2 == testHashDeep(foo));
|
|
}
|
|
|
|
test "testHash optional" {
|
|
const a: ?u32 = 123;
|
|
const b: ?u32 = null;
|
|
testing.expectEqual(testHash(a), testHash(u32(123)));
|
|
testing.expect(testHash(a) != testHash(b));
|
|
testing.expectEqual(testHash(b), 0);
|
|
}
|
|
|
|
test "testHash array" {
|
|
const a = [_]u32{ 1, 2, 3 };
|
|
const h = testHash(a);
|
|
var hasher = Wyhash.init(0);
|
|
autoHash(&hasher, u32(1));
|
|
autoHash(&hasher, u32(2));
|
|
autoHash(&hasher, u32(3));
|
|
testing.expectEqual(h, hasher.final());
|
|
}
|
|
|
|
test "testHash struct" {
|
|
const Foo = struct {
|
|
a: u32 = 1,
|
|
b: u32 = 2,
|
|
c: u32 = 3,
|
|
};
|
|
const f = Foo{};
|
|
const h = testHash(f);
|
|
var hasher = Wyhash.init(0);
|
|
autoHash(&hasher, u32(1));
|
|
autoHash(&hasher, u32(2));
|
|
autoHash(&hasher, u32(3));
|
|
testing.expectEqual(h, hasher.final());
|
|
}
|
|
|
|
test "testHash union" {
|
|
const Foo = union(enum) {
|
|
A: u32,
|
|
B: f32,
|
|
C: u32,
|
|
};
|
|
|
|
const a = Foo{ .A = 18 };
|
|
var b = Foo{ .B = 12.34 };
|
|
const c = Foo{ .C = 18 };
|
|
testing.expect(testHash(a) == testHash(a));
|
|
testing.expect(testHash(a) != testHash(b));
|
|
testing.expect(testHash(a) != testHash(c));
|
|
|
|
b = Foo{ .A = 18 };
|
|
testing.expect(testHash(a) == testHash(b));
|
|
}
|
|
|
|
test "testHash vector" {
|
|
const a: @Vector(4, u32) = [_]u32{ 1, 2, 3, 4 };
|
|
const b: @Vector(4, u32) = [_]u32{ 1, 2, 3, 5 };
|
|
testing.expect(testHash(a) == testHash(a));
|
|
testing.expect(testHash(a) != testHash(b));
|
|
|
|
const c: @Vector(4, u31) = [_]u31{ 1, 2, 3, 4 };
|
|
const d: @Vector(4, u31) = [_]u31{ 1, 2, 3, 5 };
|
|
testing.expect(testHash(c) == testHash(c));
|
|
testing.expect(testHash(c) != testHash(d));
|
|
}
|
|
|
|
test "testHash error union" {
|
|
const Errors = error{Test};
|
|
const Foo = struct {
|
|
a: u32 = 1,
|
|
b: u32 = 2,
|
|
c: u32 = 3,
|
|
};
|
|
const f = Foo{};
|
|
const g: Errors!Foo = Errors.Test;
|
|
testing.expect(testHash(f) != testHash(g));
|
|
testing.expect(testHash(f) == testHash(Foo{}));
|
|
testing.expect(testHash(g) == testHash(Errors.Test));
|
|
}
|