mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
230 lines
6.9 KiB
Zig
230 lines
6.9 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1pf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1p.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns the natural logarithm of 1 + x with greater accuracy when x is near zero.
|
|
///
|
|
/// Special Cases:
|
|
/// - log1p(+inf) = +inf
|
|
/// - log1p(+-0) = +-0
|
|
/// - log1p(-1) = -inf
|
|
/// - log1p(x) = nan if x < -1
|
|
/// - log1p(nan) = nan
|
|
pub fn log1p(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => log1p_32(x),
|
|
f64 => log1p_64(x),
|
|
else => @compileError("log1p not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn log1p_32(x: f32) f32 {
|
|
const ln2_hi = 6.9313812256e-01;
|
|
const ln2_lo = 9.0580006145e-06;
|
|
const Lg1: f32 = 0xaaaaaa.0p-24;
|
|
const Lg2: f32 = 0xccce13.0p-25;
|
|
const Lg3: f32 = 0x91e9ee.0p-25;
|
|
const Lg4: f32 = 0xf89e26.0p-26;
|
|
|
|
const u = @bitCast(u32, x);
|
|
var ix = u;
|
|
var k: i32 = 1;
|
|
var f: f32 = undefined;
|
|
var c: f32 = undefined;
|
|
|
|
// 1 + x < sqrt(2)+
|
|
if (ix < 0x3ED413D0 or ix >> 31 != 0) {
|
|
// x <= -1.0
|
|
if (ix >= 0xBF800000) {
|
|
// log1p(-1) = -inf
|
|
if (x == -1.0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log1p(x < -1) = nan
|
|
else {
|
|
return math.nan(f32);
|
|
}
|
|
}
|
|
// |x| < 2^(-24)
|
|
if ((ix << 1) < (0x33800000 << 1)) {
|
|
// underflow if subnormal
|
|
if (ix & 0x7F800000 == 0) {
|
|
math.doNotOptimizeAway(x * x);
|
|
}
|
|
return x;
|
|
}
|
|
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
|
|
if (ix <= 0xBE95F619) {
|
|
k = 0;
|
|
c = 0;
|
|
f = x;
|
|
}
|
|
} else if (ix >= 0x7F800000) {
|
|
return x;
|
|
}
|
|
|
|
if (k != 0) {
|
|
const uf = 1 + x;
|
|
var iu = @bitCast(u32, uf);
|
|
iu += 0x3F800000 - 0x3F3504F3;
|
|
k = @intCast(i32, iu >> 23) - 0x7F;
|
|
|
|
// correction to avoid underflow in c / u
|
|
if (k < 25) {
|
|
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
|
|
c /= uf;
|
|
} else {
|
|
c = 0;
|
|
}
|
|
|
|
// u into [sqrt(2)/2, sqrt(2)]
|
|
iu = (iu & 0x007FFFFF) + 0x3F3504F3;
|
|
f = @bitCast(f32, iu) - 1;
|
|
}
|
|
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * Lg4);
|
|
const t2 = z * (Lg1 + w * Lg3);
|
|
const R = t2 + t1;
|
|
const hfsq = 0.5 * f * f;
|
|
const dk = @intToFloat(f32, k);
|
|
|
|
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
|
|
}
|
|
|
|
fn log1p_64(x: f64) f64 {
|
|
const ln2_hi: f64 = 6.93147180369123816490e-01;
|
|
const ln2_lo: f64 = 1.90821492927058770002e-10;
|
|
const Lg1: f64 = 6.666666666666735130e-01;
|
|
const Lg2: f64 = 3.999999999940941908e-01;
|
|
const Lg3: f64 = 2.857142874366239149e-01;
|
|
const Lg4: f64 = 2.222219843214978396e-01;
|
|
const Lg5: f64 = 1.818357216161805012e-01;
|
|
const Lg6: f64 = 1.531383769920937332e-01;
|
|
const Lg7: f64 = 1.479819860511658591e-01;
|
|
|
|
var ix = @bitCast(u64, x);
|
|
var hx = @intCast(u32, ix >> 32);
|
|
var k: i32 = 1;
|
|
var c: f64 = undefined;
|
|
var f: f64 = undefined;
|
|
|
|
// 1 + x < sqrt(2)
|
|
if (hx < 0x3FDA827A or hx >> 31 != 0) {
|
|
// x <= -1.0
|
|
if (hx >= 0xBFF00000) {
|
|
// log1p(-1) = -inf
|
|
if (x == -1.0) {
|
|
return -math.inf(f64);
|
|
}
|
|
// log1p(x < -1) = nan
|
|
else {
|
|
return math.nan(f64);
|
|
}
|
|
}
|
|
// |x| < 2^(-53)
|
|
if ((hx << 1) < (0x3CA00000 << 1)) {
|
|
if ((hx & 0x7FF00000) == 0) {
|
|
math.raiseUnderflow();
|
|
}
|
|
return x;
|
|
}
|
|
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
|
|
if (hx <= 0xBFD2BEC4) {
|
|
k = 0;
|
|
c = 0;
|
|
f = x;
|
|
}
|
|
} else if (hx >= 0x7FF00000) {
|
|
return x;
|
|
}
|
|
|
|
if (k != 0) {
|
|
const uf = 1 + x;
|
|
const hu = @bitCast(u64, uf);
|
|
var iu = @intCast(u32, hu >> 32);
|
|
iu += 0x3FF00000 - 0x3FE6A09E;
|
|
k = @intCast(i32, iu >> 20) - 0x3FF;
|
|
|
|
// correction to avoid underflow in c / u
|
|
if (k < 54) {
|
|
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
|
|
c /= uf;
|
|
} else {
|
|
c = 0;
|
|
}
|
|
|
|
// u into [sqrt(2)/2, sqrt(2)]
|
|
iu = (iu & 0x000FFFFF) + 0x3FE6A09E;
|
|
const iq = (@as(u64, iu) << 32) | (hu & 0xFFFFFFFF);
|
|
f = @bitCast(f64, iq) - 1;
|
|
}
|
|
|
|
const hfsq = 0.5 * f * f;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
|
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
|
const R = t2 + t1;
|
|
const dk = @intToFloat(f64, k);
|
|
|
|
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
|
|
}
|
|
|
|
test "math.log1p" {
|
|
try expect(log1p(@as(f32, 0.0)) == log1p_32(0.0));
|
|
try expect(log1p(@as(f64, 0.0)) == log1p_64(0.0));
|
|
}
|
|
|
|
test "math.log1p_32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f32, log1p_32(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, log1p_32(0.2), 0.182322, epsilon));
|
|
try expect(math.approxEqAbs(f32, log1p_32(0.8923), 0.637793, epsilon));
|
|
try expect(math.approxEqAbs(f32, log1p_32(1.5), 0.916291, epsilon));
|
|
try expect(math.approxEqAbs(f32, log1p_32(37.45), 3.649359, epsilon));
|
|
try expect(math.approxEqAbs(f32, log1p_32(89.123), 4.501175, epsilon));
|
|
try expect(math.approxEqAbs(f32, log1p_32(123123.234375), 11.720949, epsilon));
|
|
}
|
|
|
|
test "math.log1p_64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, log1p_64(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, log1p_64(0.2), 0.182322, epsilon));
|
|
try expect(math.approxEqAbs(f64, log1p_64(0.8923), 0.637793, epsilon));
|
|
try expect(math.approxEqAbs(f64, log1p_64(1.5), 0.916291, epsilon));
|
|
try expect(math.approxEqAbs(f64, log1p_64(37.45), 3.649359, epsilon));
|
|
try expect(math.approxEqAbs(f64, log1p_64(89.123), 4.501175, epsilon));
|
|
try expect(math.approxEqAbs(f64, log1p_64(123123.234375), 11.720949, epsilon));
|
|
}
|
|
|
|
test "math.log1p_32.special" {
|
|
try expect(math.isPositiveInf(log1p_32(math.inf(f32))));
|
|
try expect(log1p_32(0.0) == 0.0);
|
|
try expect(log1p_32(-0.0) == -0.0);
|
|
try expect(math.isNegativeInf(log1p_32(-1.0)));
|
|
try expect(math.isNan(log1p_32(-2.0)));
|
|
try expect(math.isNan(log1p_32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.log1p_64.special" {
|
|
try expect(math.isPositiveInf(log1p_64(math.inf(f64))));
|
|
try expect(log1p_64(0.0) == 0.0);
|
|
try expect(log1p_64(-0.0) == -0.0);
|
|
try expect(math.isNegativeInf(log1p_64(-1.0)));
|
|
try expect(math.isNan(log1p_64(-2.0)));
|
|
try expect(math.isNan(log1p_64(math.nan(f64))));
|
|
}
|