mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
161 lines
4.8 KiB
Zig
161 lines
4.8 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexpf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexp.c
|
|
|
|
const std = @import("../../std.zig");
|
|
const testing = std.testing;
|
|
const math = std.math;
|
|
const cmath = math.complex;
|
|
const Complex = cmath.Complex;
|
|
|
|
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
|
|
|
|
/// Returns e raised to the power of z (e^z).
|
|
pub fn exp(z: anytype) @TypeOf(z) {
|
|
const T = @TypeOf(z.re);
|
|
|
|
return switch (T) {
|
|
f32 => exp32(z),
|
|
f64 => exp64(z),
|
|
else => @compileError("exp not implemented for " ++ @typeName(z)),
|
|
};
|
|
}
|
|
|
|
fn exp32(z: Complex(f32)) Complex(f32) {
|
|
const exp_overflow = 0x42b17218; // max_exp * ln2 ~= 88.72283955
|
|
const cexp_overflow = 0x43400074; // (max_exp - min_denom_exp) * ln2
|
|
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const hy = @bitCast(u32, y) & 0x7fffffff;
|
|
// cexp(x + i0) = exp(x) + i0
|
|
if (hy == 0) {
|
|
return Complex(f32).init(math.exp(x), y);
|
|
}
|
|
|
|
const hx = @bitCast(u32, x);
|
|
// cexp(0 + iy) = cos(y) + isin(y)
|
|
if ((hx & 0x7fffffff) == 0) {
|
|
return Complex(f32).init(math.cos(y), math.sin(y));
|
|
}
|
|
|
|
if (hy >= 0x7f800000) {
|
|
// cexp(finite|nan +- i inf|nan) = nan + i nan
|
|
if ((hx & 0x7fffffff) != 0x7f800000) {
|
|
return Complex(f32).init(y - y, y - y);
|
|
} // cexp(-inf +- i inf|nan) = 0 + i0
|
|
else if (hx & 0x80000000 != 0) {
|
|
return Complex(f32).init(0, 0);
|
|
} // cexp(+inf +- i inf|nan) = inf + i nan
|
|
else {
|
|
return Complex(f32).init(x, y - y);
|
|
}
|
|
}
|
|
|
|
// 88.7 <= x <= 192 so must scale
|
|
if (hx >= exp_overflow and hx <= cexp_overflow) {
|
|
return ldexp_cexp(z, 0);
|
|
} // - x < exp_overflow => exp(x) won't overflow (common)
|
|
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
|
|
// - x = +-inf
|
|
// - x = nan
|
|
else {
|
|
const exp_x = math.exp(x);
|
|
return Complex(f32).init(exp_x * math.cos(y), exp_x * math.sin(y));
|
|
}
|
|
}
|
|
|
|
fn exp64(z: Complex(f64)) Complex(f64) {
|
|
const exp_overflow = 0x40862e42; // high bits of max_exp * ln2 ~= 710
|
|
const cexp_overflow = 0x4096b8e4; // (max_exp - min_denorm_exp) * ln2
|
|
|
|
const x = z.re;
|
|
const y = z.im;
|
|
|
|
const fy = @bitCast(u64, y);
|
|
const hy = @intCast(u32, (fy >> 32) & 0x7fffffff);
|
|
const ly = @truncate(u32, fy);
|
|
|
|
// cexp(x + i0) = exp(x) + i0
|
|
if (hy | ly == 0) {
|
|
return Complex(f64).init(math.exp(x), y);
|
|
}
|
|
|
|
const fx = @bitCast(u64, x);
|
|
const hx = @intCast(u32, fx >> 32);
|
|
const lx = @truncate(u32, fx);
|
|
|
|
// cexp(0 + iy) = cos(y) + isin(y)
|
|
if ((hx & 0x7fffffff) | lx == 0) {
|
|
return Complex(f64).init(math.cos(y), math.sin(y));
|
|
}
|
|
|
|
if (hy >= 0x7ff00000) {
|
|
// cexp(finite|nan +- i inf|nan) = nan + i nan
|
|
if (lx != 0 or (hx & 0x7fffffff) != 0x7ff00000) {
|
|
return Complex(f64).init(y - y, y - y);
|
|
} // cexp(-inf +- i inf|nan) = 0 + i0
|
|
else if (hx & 0x80000000 != 0) {
|
|
return Complex(f64).init(0, 0);
|
|
} // cexp(+inf +- i inf|nan) = inf + i nan
|
|
else {
|
|
return Complex(f64).init(x, y - y);
|
|
}
|
|
}
|
|
|
|
// 709.7 <= x <= 1454.3 so must scale
|
|
if (hx >= exp_overflow and hx <= cexp_overflow) {
|
|
return ldexp_cexp(z, 0);
|
|
} // - x < exp_overflow => exp(x) won't overflow (common)
|
|
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
|
|
// - x = +-inf
|
|
// - x = nan
|
|
else {
|
|
const exp_x = math.exp(x);
|
|
return Complex(f64).init(exp_x * math.cos(y), exp_x * math.sin(y));
|
|
}
|
|
}
|
|
|
|
test "complex.cexp32" {
|
|
const tolerance_f32 = math.sqrt(math.epsilon(f32));
|
|
|
|
{
|
|
const a = Complex(f32).init(5, 3);
|
|
const c = exp(a);
|
|
|
|
try testing.expectApproxEqRel(@as(f32, -1.46927917e+02), c.re, tolerance_f32);
|
|
try testing.expectApproxEqRel(@as(f32, 2.0944065e+01), c.im, tolerance_f32);
|
|
}
|
|
|
|
{
|
|
const a = Complex(f32).init(88.8, 0x1p-149);
|
|
const c = exp(a);
|
|
|
|
try testing.expectApproxEqAbs(math.inf(f32), c.re, tolerance_f32);
|
|
try testing.expectApproxEqAbs(@as(f32, 5.15088629e-07), c.im, tolerance_f32);
|
|
}
|
|
}
|
|
|
|
test "complex.cexp64" {
|
|
const tolerance_f64 = math.sqrt(math.epsilon(f64));
|
|
|
|
{
|
|
const a = Complex(f64).init(5, 3);
|
|
const c = exp(a);
|
|
|
|
try testing.expectApproxEqRel(@as(f64, -1.469279139083189e+02), c.re, tolerance_f64);
|
|
try testing.expectApproxEqRel(@as(f64, 2.094406620874596e+01), c.im, tolerance_f64);
|
|
}
|
|
|
|
{
|
|
const a = Complex(f64).init(709.8, 0x1p-1074);
|
|
const c = exp(a);
|
|
|
|
try testing.expectApproxEqAbs(math.inf(f64), c.re, tolerance_f64);
|
|
try testing.expectApproxEqAbs(@as(f64, 9.036659362159884e-16), c.im, tolerance_f64);
|
|
}
|
|
}
|