zig/lib/std/compress/zstandard/decompress.zig

1550 lines
62 KiB
Zig

const std = @import("std");
const assert = std.debug.assert;
const types = @import("types.zig");
const frame = types.frame;
const LiteralsSection = types.compressed_block.LiteralsSection;
const SequencesSection = types.compressed_block.SequencesSection;
const Table = types.compressed_block.Table;
pub const RingBuffer = @import("RingBuffer.zig");
const readInt = std.mem.readIntLittle;
const readIntSlice = std.mem.readIntSliceLittle;
fn readVarInt(comptime T: type, bytes: []const u8) T {
return std.mem.readVarInt(T, bytes, .Little);
}
const log = std.log.scoped(.Decompress);
fn isSkippableMagic(magic: u32) bool {
return frame.Skippable.magic_number_min <= magic and magic <= frame.Skippable.magic_number_max;
}
pub fn getFrameDecompressedSize(src: []const u8) !?usize {
switch (try frameType(src)) {
.zstandard => {
const header = try decodeZStandardHeader(src[4..], null);
return header.content_size;
},
.skippable => return 0,
}
}
pub fn frameType(src: []const u8) !frame.Kind {
const magic = readInt(u32, src[0..4]);
return if (magic == frame.ZStandard.magic_number)
.zstandard
else if (isSkippableMagic(magic))
.skippable
else
error.BadMagic;
}
const ReadWriteCount = struct {
read_count: usize,
write_count: usize,
};
pub fn decodeFrame(dest: []u8, src: []const u8, verify_checksum: bool) !ReadWriteCount {
return switch (try frameType(src)) {
.zstandard => decodeZStandardFrame(dest, src, verify_checksum),
.skippable => ReadWriteCount{
.read_count = try skippableFrameSize(src[0..8]) + 8,
.write_count = 0,
},
};
}
pub const DecodeState = struct {
repeat_offsets: [3]u32,
offset: StateData(8),
match: StateData(9),
literal: StateData(9),
offset_fse_buffer: []Table.Fse,
match_fse_buffer: []Table.Fse,
literal_fse_buffer: []Table.Fse,
fse_tables_undefined: bool,
literal_stream_reader: ReverseBitReader,
literal_stream_index: usize,
huffman_tree: ?LiteralsSection.HuffmanTree,
literal_written_count: usize,
fn StateData(comptime max_accuracy_log: comptime_int) type {
return struct {
state: State,
table: Table,
accuracy_log: u8,
const State = std.meta.Int(.unsigned, max_accuracy_log);
};
}
pub fn prepare(
self: *DecodeState,
src: []const u8,
literals: LiteralsSection,
sequences_header: SequencesSection.Header,
) !usize {
if (literals.huffman_tree) |tree| {
self.huffman_tree = tree;
} else if (literals.header.block_type == .treeless and self.huffman_tree == null) {
return error.TreelessLiteralsFirst;
}
switch (literals.header.block_type) {
.raw, .rle => {},
.compressed, .treeless => {
self.literal_stream_index = 0;
switch (literals.streams) {
.one => |slice| try self.initLiteralStream(slice),
.four => |streams| try self.initLiteralStream(streams[0]),
}
},
}
if (sequences_header.sequence_count > 0) {
var bytes_read = try self.updateFseTable(
src,
.literal,
sequences_header.literal_lengths,
);
bytes_read += try self.updateFseTable(
src[bytes_read..],
.offset,
sequences_header.offsets,
);
bytes_read += try self.updateFseTable(
src[bytes_read..],
.match,
sequences_header.match_lengths,
);
self.fse_tables_undefined = false;
return bytes_read;
}
return 0;
}
pub fn readInitialFseState(self: *DecodeState, bit_reader: anytype) !void {
self.literal.state = try bit_reader.readBitsNoEof(u9, self.literal.accuracy_log);
self.offset.state = try bit_reader.readBitsNoEof(u8, self.offset.accuracy_log);
self.match.state = try bit_reader.readBitsNoEof(u9, self.match.accuracy_log);
log.debug("initial decoder state: literal = {d}, offset = {d} match = {d}", .{
self.literal.state,
self.offset.state,
self.match.state,
});
}
fn updateRepeatOffset(self: *DecodeState, offset: u32) void {
std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[1]);
std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[2]);
self.repeat_offsets[0] = offset;
}
fn useRepeatOffset(self: *DecodeState, index: usize) u32 {
if (index == 1)
std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[1])
else if (index == 2) {
std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[2]);
std.mem.swap(u32, &self.repeat_offsets[1], &self.repeat_offsets[2]);
}
return self.repeat_offsets[0];
}
const DataType = enum { offset, match, literal };
fn updateState(self: *DecodeState, comptime choice: DataType, bit_reader: anytype) !void {
switch (@field(self, @tagName(choice)).table) {
.rle => {},
.fse => |table| {
const data = table[@field(self, @tagName(choice)).state];
const T = @TypeOf(@field(self, @tagName(choice))).State;
const bits_summand = try bit_reader.readBitsNoEof(T, data.bits);
const next_state = std.math.cast(
@TypeOf(@field(self, @tagName(choice))).State,
data.baseline + bits_summand,
) orelse return error.MalformedFseBits;
@field(self, @tagName(choice)).state = next_state;
},
}
}
fn updateFseTable(
self: *DecodeState,
src: []const u8,
comptime choice: DataType,
mode: SequencesSection.Header.Mode,
) !usize {
const field_name = @tagName(choice);
switch (mode) {
.predefined => {
@field(self, field_name).accuracy_log = @field(types.compressed_block.default_accuracy_log, field_name);
@field(self, field_name).table = @field(types.compressed_block, "predefined_" ++ field_name ++ "_fse_table");
return 0;
},
.rle => {
@field(self, field_name).accuracy_log = 0;
@field(self, field_name).table = .{ .rle = src[0] };
return 1;
},
.fse => {
var stream = std.io.fixedBufferStream(src);
var counting_reader = std.io.countingReader(stream.reader());
var bit_reader = bitReader(counting_reader.reader());
const table_size = try decodeFseTable(
&bit_reader,
@field(types.compressed_block.table_symbol_count_max, field_name),
@field(types.compressed_block.table_accuracy_log_max, field_name),
@field(self, field_name ++ "_fse_buffer"),
);
@field(self, field_name).table = .{ .fse = @field(self, field_name ++ "_fse_buffer")[0..table_size] };
@field(self, field_name).accuracy_log = std.math.log2_int_ceil(usize, table_size);
log.debug("decoded fse " ++ field_name ++ " table '{}'", .{
std.fmt.fmtSliceHexUpper(src[0..counting_reader.bytes_read]),
});
dumpFseTable(field_name, @field(self, field_name).table.fse);
return counting_reader.bytes_read;
},
.repeat => return if (self.fse_tables_undefined) error.RepeatModeFirst else 0,
}
}
const Sequence = struct {
literal_length: u32,
match_length: u32,
offset: u32,
};
fn nextSequence(self: *DecodeState, bit_reader: anytype) !Sequence {
const raw_code = self.getCode(.offset);
const offset_code = std.math.cast(u5, raw_code) orelse {
log.err("got offset code of {d}", .{raw_code});
return error.OffsetCodeTooLarge;
};
const offset_value = (@as(u32, 1) << offset_code) + try bit_reader.readBitsNoEof(u32, offset_code);
const match_code = self.getCode(.match);
const match = types.compressed_block.match_length_code_table[match_code];
const match_length = match[0] + try bit_reader.readBitsNoEof(u32, match[1]);
const literal_code = self.getCode(.literal);
const literal = types.compressed_block.literals_length_code_table[literal_code];
const literal_length = literal[0] + try bit_reader.readBitsNoEof(u32, literal[1]);
const offset = if (offset_value > 3) offset: {
const offset = offset_value - 3;
self.updateRepeatOffset(offset);
break :offset offset;
} else offset: {
if (literal_length == 0) {
if (offset_value == 3) {
const offset = self.repeat_offsets[0] - 1;
self.updateRepeatOffset(offset);
break :offset offset;
}
break :offset self.useRepeatOffset(offset_value);
}
break :offset self.useRepeatOffset(offset_value - 1);
};
log.debug("sequence = ({d}, {d}, {d})", .{ literal_length, offset, match_length });
return .{
.literal_length = literal_length,
.match_length = match_length,
.offset = offset,
};
}
fn executeSequenceSlice(
self: *DecodeState,
dest: []u8,
write_pos: usize,
literals: LiteralsSection,
sequence: Sequence,
) !void {
if (sequence.offset > write_pos + sequence.literal_length) return error.MalformedSequence;
try self.decodeLiteralsSlice(dest[write_pos..], literals, sequence.literal_length);
const copy_start = write_pos + sequence.literal_length - sequence.offset;
const copy_end = copy_start + sequence.match_length;
// NOTE: we ignore the usage message for std.mem.copy and copy with dest.ptr >= src.ptr
// to allow repeats
std.mem.copy(u8, dest[write_pos + sequence.literal_length ..], dest[copy_start..copy_end]);
}
fn executeSequenceRingBuffer(
self: *DecodeState,
dest: *RingBuffer,
literals: LiteralsSection,
sequence: Sequence,
) !void {
if (sequence.offset > dest.data.len) return error.MalformedSequence;
try self.decodeLiteralsRingBuffer(dest, literals, sequence.literal_length);
const copy_slice = dest.sliceAt(dest.write_index + dest.data.len - sequence.offset, sequence.match_length);
// TODO: would std.mem.copy and figuring out dest slice be better/faster?
for (copy_slice.first) |b| dest.writeAssumeCapacity(b);
for (copy_slice.second) |b| dest.writeAssumeCapacity(b);
}
pub fn decodeSequenceSlice(
self: *DecodeState,
dest: []u8,
write_pos: usize,
literals: LiteralsSection,
bit_reader: anytype,
sequence_size_limit: usize,
last_sequence: bool,
) !usize {
const sequence = try self.nextSequence(bit_reader);
const sequence_length = @as(usize, sequence.literal_length) + sequence.match_length;
if (sequence_length > sequence_size_limit) return error.MalformedSequence;
try self.executeSequenceSlice(dest, write_pos, literals, sequence);
log.debug("sequence decompressed into '{x}'", .{
std.fmt.fmtSliceHexUpper(dest[write_pos .. write_pos + sequence.literal_length + sequence.match_length]),
});
if (!last_sequence) {
try self.updateState(.literal, bit_reader);
try self.updateState(.match, bit_reader);
try self.updateState(.offset, bit_reader);
}
return sequence_length;
}
pub fn decodeSequenceRingBuffer(
self: *DecodeState,
dest: *RingBuffer,
literals: LiteralsSection,
bit_reader: anytype,
sequence_size_limit: usize,
last_sequence: bool,
) !usize {
const sequence = try self.nextSequence(bit_reader);
const sequence_length = @as(usize, sequence.literal_length) + sequence.match_length;
if (sequence_length > sequence_size_limit) return error.MalformedSequence;
try self.executeSequenceRingBuffer(dest, literals, sequence);
if (std.options.log_level == .debug) {
const written_slice = dest.sliceLast(sequence_length);
log.debug("sequence decompressed into '{x}{x}'", .{
std.fmt.fmtSliceHexUpper(written_slice.first),
std.fmt.fmtSliceHexUpper(written_slice.second),
});
}
if (!last_sequence) {
try self.updateState(.literal, bit_reader);
try self.updateState(.match, bit_reader);
try self.updateState(.offset, bit_reader);
}
return sequence_length;
}
fn nextLiteralMultiStream(self: *DecodeState, literals: LiteralsSection) !void {
self.literal_stream_index += 1;
try self.initLiteralStream(literals.streams.four[self.literal_stream_index]);
}
fn initLiteralStream(self: *DecodeState, bytes: []const u8) !void {
log.debug("initing literal stream: {}", .{std.fmt.fmtSliceHexUpper(bytes)});
try self.literal_stream_reader.init(bytes);
}
pub fn decodeLiteralsSlice(self: *DecodeState, dest: []u8, literals: LiteralsSection, len: usize) !void {
if (self.literal_written_count + len > literals.header.regenerated_size) return error.MalformedLiteralsLength;
switch (literals.header.block_type) {
.raw => {
const literal_data = literals.streams.one[self.literal_written_count .. self.literal_written_count + len];
std.mem.copy(u8, dest, literal_data);
self.literal_written_count += len;
},
.rle => {
var i: usize = 0;
while (i < len) : (i += 1) {
dest[i] = literals.streams.one[0];
}
log.debug("rle: {}", .{std.fmt.fmtSliceHexUpper(dest[0..len])});
self.literal_written_count += len;
},
.compressed, .treeless => {
// const written_bytes_per_stream = (literals.header.regenerated_size + 3) / 4;
const huffman_tree = self.huffman_tree orelse unreachable;
const max_bit_count = huffman_tree.max_bit_count;
const starting_bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[huffman_tree.symbol_count_minus_one].weight,
max_bit_count,
);
var bits_read: u4 = 0;
var huffman_tree_index: usize = huffman_tree.symbol_count_minus_one;
var bit_count_to_read: u4 = starting_bit_count;
var i: usize = 0;
while (i < len) : (i += 1) {
var prefix: u16 = 0;
while (true) {
const new_bits = self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read) catch |err|
switch (err) {
error.EndOfStream => if (literals.streams == .four and self.literal_stream_index < 3) bits: {
try self.nextLiteralMultiStream(literals);
break :bits try self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read);
} else {
return error.UnexpectedEndOfLiteralStream;
},
};
prefix <<= bit_count_to_read;
prefix |= new_bits;
bits_read += bit_count_to_read;
const result = try huffman_tree.query(huffman_tree_index, prefix);
switch (result) {
.symbol => |sym| {
dest[i] = sym;
bit_count_to_read = starting_bit_count;
bits_read = 0;
huffman_tree_index = huffman_tree.symbol_count_minus_one;
break;
},
.index => |index| {
huffman_tree_index = index;
const bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[index].weight,
max_bit_count,
);
bit_count_to_read = bit_count - bits_read;
},
}
}
}
self.literal_written_count += len;
},
}
}
pub fn decodeLiteralsRingBuffer(self: *DecodeState, dest: *RingBuffer, literals: LiteralsSection, len: usize) !void {
if (self.literal_written_count + len > literals.header.regenerated_size) return error.MalformedLiteralsLength;
switch (literals.header.block_type) {
.raw => {
const literal_data = literals.streams.one[self.literal_written_count .. self.literal_written_count + len];
dest.writeSliceAssumeCapacity(literal_data);
self.literal_written_count += len;
},
.rle => {
var i: usize = 0;
while (i < len) : (i += 1) {
dest.writeAssumeCapacity(literals.streams.one[0]);
}
self.literal_written_count += len;
},
.compressed, .treeless => {
// const written_bytes_per_stream = (literals.header.regenerated_size + 3) / 4;
const huffman_tree = self.huffman_tree orelse unreachable;
const max_bit_count = huffman_tree.max_bit_count;
const starting_bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[huffman_tree.symbol_count_minus_one].weight,
max_bit_count,
);
var bits_read: u4 = 0;
var huffman_tree_index: usize = huffman_tree.symbol_count_minus_one;
var bit_count_to_read: u4 = starting_bit_count;
var i: usize = 0;
while (i < len) : (i += 1) {
var prefix: u16 = 0;
while (true) {
const new_bits = self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read) catch |err|
switch (err) {
error.EndOfStream => if (literals.streams == .four and self.literal_stream_index < 3) bits: {
try self.nextLiteralMultiStream(literals);
break :bits try self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read);
} else {
return error.UnexpectedEndOfLiteralStream;
},
};
prefix <<= bit_count_to_read;
prefix |= new_bits;
bits_read += bit_count_to_read;
const result = try huffman_tree.query(huffman_tree_index, prefix);
switch (result) {
.symbol => |sym| {
dest.writeAssumeCapacity(sym);
bit_count_to_read = starting_bit_count;
bits_read = 0;
huffman_tree_index = huffman_tree.symbol_count_minus_one;
break;
},
.index => |index| {
huffman_tree_index = index;
const bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[index].weight,
max_bit_count,
);
bit_count_to_read = bit_count - bits_read;
},
}
}
}
self.literal_written_count += len;
},
}
}
fn getCode(self: *DecodeState, comptime choice: DataType) u32 {
return switch (@field(self, @tagName(choice)).table) {
.rle => |value| value,
.fse => |table| table[@field(self, @tagName(choice)).state].symbol,
};
}
};
const literal_table_size_max = 1 << types.compressed_block.table_accuracy_log_max.literal;
const match_table_size_max = 1 << types.compressed_block.table_accuracy_log_max.match;
const offset_table_size_max = 1 << types.compressed_block.table_accuracy_log_max.match;
pub fn decodeZStandardFrame(dest: []u8, src: []const u8, verify_checksum: bool) !ReadWriteCount {
assert(readInt(u32, src[0..4]) == frame.ZStandard.magic_number);
var consumed_count: usize = 4;
const frame_header = try decodeZStandardHeader(src[consumed_count..], &consumed_count);
if (frame_header.descriptor.dictionary_id_flag != 0) return error.DictionaryIdFlagUnsupported;
const content_size = frame_header.content_size orelse return error.UnknownContentSizeUnsupported;
// const window_size = frameWindowSize(header) orelse return error.WindowSizeUnknown;
if (dest.len < content_size) return error.ContentTooLarge;
const should_compute_checksum = frame_header.descriptor.content_checksum_flag and verify_checksum;
var hash_state = if (should_compute_checksum) std.hash.XxHash64.init(0) else undefined;
// TODO: block_maximum_size should be @min(1 << 17, window_size);
const written_count = try decodeFrameBlocks(
dest,
src[consumed_count..],
&consumed_count,
if (should_compute_checksum) &hash_state else null,
);
if (frame_header.descriptor.content_checksum_flag) {
const checksum = readIntSlice(u32, src[consumed_count .. consumed_count + 4]);
consumed_count += 4;
if (verify_checksum) {
const hash = hash_state.final();
const hash_low_bytes = hash & 0xFFFFFFFF;
if (checksum != hash_low_bytes) {
std.log.err("expected checksum {x}, got {x} (full hash {x})", .{ checksum, hash_low_bytes, hash });
return error.ChecksumFailure;
}
}
}
return ReadWriteCount{ .read_count = consumed_count, .write_count = written_count };
}
pub fn decodeZStandardFrameAlloc(allocator: std.mem.Allocator, src: []const u8, verify_checksum: bool) ![]u8 {
var result = std.ArrayList(u8).init(allocator);
assert(readInt(u32, src[0..4]) == frame.ZStandard.magic_number);
var consumed_count: usize = 4;
const frame_header = try decodeZStandardHeader(src[consumed_count..], &consumed_count);
if (frame_header.descriptor.dictionary_id_flag != 0) return error.DictionaryIdFlagUnsupported;
const window_size = frameWindowSize(frame_header) orelse return error.WindowSizeUnknown;
log.debug("window size = {d}", .{window_size});
const should_compute_checksum = frame_header.descriptor.content_checksum_flag and verify_checksum;
var hash = if (should_compute_checksum) std.hash.XxHash64.init(0) else null;
const block_size_maximum = @min(1 << 17, window_size);
log.debug("block size maximum = {d}", .{block_size_maximum});
var window_data = try allocator.alloc(u8, window_size);
defer allocator.free(window_data);
var ring_buffer = RingBuffer{
.data = window_data,
.write_index = 0,
.read_index = 0,
};
// These tables take 7680 bytes
var literal_fse_data: [literal_table_size_max]Table.Fse = undefined;
var match_fse_data: [match_table_size_max]Table.Fse = undefined;
var offset_fse_data: [offset_table_size_max]Table.Fse = undefined;
var block_header = decodeBlockHeader(src[consumed_count..][0..3]);
consumed_count += 3;
var decode_state = DecodeState{
.repeat_offsets = .{
types.compressed_block.start_repeated_offset_1,
types.compressed_block.start_repeated_offset_2,
types.compressed_block.start_repeated_offset_3,
},
.offset = undefined,
.match = undefined,
.literal = undefined,
.literal_fse_buffer = &literal_fse_data,
.match_fse_buffer = &match_fse_data,
.offset_fse_buffer = &offset_fse_data,
.fse_tables_undefined = true,
.literal_written_count = 0,
.literal_stream_reader = undefined,
.literal_stream_index = undefined,
.huffman_tree = null,
};
var written_count: usize = 0;
while (true) : ({
block_header = decodeBlockHeader(src[consumed_count..][0..3]);
consumed_count += 3;
}) {
if (block_header.block_size > block_size_maximum) return error.CompressedBlockSizeOverMaximum;
const written_size = try decodeBlockRingBuffer(
&ring_buffer,
src[consumed_count..],
block_header,
&decode_state,
&consumed_count,
block_size_maximum,
);
if (written_size > block_size_maximum) return error.DecompressedBlockSizeOverMaximum;
const written_slice = ring_buffer.sliceLast(written_size);
try result.appendSlice(written_slice.first);
try result.appendSlice(written_slice.second);
if (hash) |*hash_state| {
hash_state.update(written_slice.first);
hash_state.update(written_slice.second);
}
written_count += written_size;
if (block_header.last_block) break;
}
return result.toOwnedSlice();
}
pub fn decodeFrameBlocks(dest: []u8, src: []const u8, consumed_count: *usize, hash: ?*std.hash.XxHash64) !usize {
// These tables take 7680 bytes
var literal_fse_data: [literal_table_size_max]Table.Fse = undefined;
var match_fse_data: [match_table_size_max]Table.Fse = undefined;
var offset_fse_data: [offset_table_size_max]Table.Fse = undefined;
var block_header = decodeBlockHeader(src[0..3]);
var bytes_read: usize = 3;
var decode_state = DecodeState{
.repeat_offsets = .{
types.compressed_block.start_repeated_offset_1,
types.compressed_block.start_repeated_offset_2,
types.compressed_block.start_repeated_offset_3,
},
.offset = undefined,
.match = undefined,
.literal = undefined,
.literal_fse_buffer = &literal_fse_data,
.match_fse_buffer = &match_fse_data,
.offset_fse_buffer = &offset_fse_data,
.fse_tables_undefined = true,
.literal_written_count = 0,
.literal_stream_reader = undefined,
.literal_stream_index = undefined,
.huffman_tree = null,
};
var written_count: usize = 0;
while (true) : ({
block_header = decodeBlockHeader(src[bytes_read..][0..3]);
bytes_read += 3;
}) {
const written_size = try decodeBlock(
dest,
src[bytes_read..],
block_header,
&decode_state,
&bytes_read,
written_count,
);
if (hash) |hash_state| hash_state.update(dest[written_count .. written_count + written_size]);
written_count += written_size;
if (block_header.last_block) break;
}
consumed_count.* += bytes_read;
return written_count;
}
fn decodeRawBlock(dest: []u8, src: []const u8, block_size: u21, consumed_count: *usize) usize {
log.debug("writing raw block - size {d}", .{block_size});
const data = src[0..block_size];
std.mem.copy(u8, dest, data);
consumed_count.* += block_size;
return block_size;
}
fn decodeRawBlockRingBuffer(dest: *RingBuffer, src: []const u8, block_size: u21, consumed_count: *usize) usize {
log.debug("writing raw block - size {d}", .{block_size});
const data = src[0..block_size];
dest.writeSliceAssumeCapacity(data);
consumed_count.* += block_size;
return block_size;
}
fn decodeRleBlock(dest: []u8, src: []const u8, block_size: u21, consumed_count: *usize) usize {
log.debug("writing rle block - '{x}'x{d}", .{ src[0], block_size });
var write_pos: usize = 0;
while (write_pos < block_size) : (write_pos += 1) {
dest[write_pos] = src[0];
}
consumed_count.* += 1;
return block_size;
}
fn decodeRleBlockRingBuffer(dest: *RingBuffer, src: []const u8, block_size: u21, consumed_count: *usize) usize {
log.debug("writing rle block - '{x}'x{d}", .{ src[0], block_size });
var write_pos: usize = 0;
while (write_pos < block_size) : (write_pos += 1) {
dest.writeAssumeCapacity(src[0]);
}
consumed_count.* += 1;
return block_size;
}
pub fn decodeBlock(
dest: []u8,
src: []const u8,
block_header: frame.ZStandard.Block.Header,
decode_state: *DecodeState,
consumed_count: *usize,
written_count: usize,
) !usize {
const block_size_max = @min(1 << 17, dest[written_count..].len); // 128KiB
const block_size = block_header.block_size;
if (block_size_max < block_size) return error.BlockSizeOverMaximum;
// TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks)
switch (block_header.block_type) {
.raw => return decodeRawBlock(dest[written_count..], src, block_size, consumed_count),
.rle => return decodeRleBlock(dest[written_count..], src, block_size, consumed_count),
.compressed => {
var bytes_read: usize = 0;
const literals = try decodeLiteralsSection(src, &bytes_read);
const sequences_header = try decodeSequencesHeader(src[bytes_read..], &bytes_read);
bytes_read += try decode_state.prepare(src[bytes_read..], literals, sequences_header);
var bytes_written: usize = 0;
if (sequences_header.sequence_count > 0) {
const bit_stream_bytes = src[bytes_read..block_size];
var bit_stream: ReverseBitReader = undefined;
try bit_stream.init(bit_stream_bytes);
try decode_state.readInitialFseState(&bit_stream);
var sequence_size_limit = block_size_max;
var i: usize = 0;
while (i < sequences_header.sequence_count) : (i += 1) {
log.debug("decoding sequence {d}", .{i});
const write_pos = written_count + bytes_written;
const decompressed_size = try decode_state.decodeSequenceSlice(
dest,
write_pos,
literals,
&bit_stream,
sequence_size_limit,
i == sequences_header.sequence_count - 1,
);
bytes_written += decompressed_size;
sequence_size_limit -= decompressed_size;
}
bytes_read += bit_stream_bytes.len;
}
if (decode_state.literal_written_count < literals.header.regenerated_size) {
log.debug("decoding remaining literals", .{});
const len = literals.header.regenerated_size - decode_state.literal_written_count;
try decode_state.decodeLiteralsSlice(dest[written_count + bytes_written ..], literals, len);
log.debug("remaining decoded literals at {d}: {}", .{
written_count,
std.fmt.fmtSliceHexUpper(dest[written_count .. written_count + len]),
});
bytes_written += len;
}
decode_state.literal_written_count = 0;
assert(bytes_read == block_header.block_size);
consumed_count.* += bytes_read;
return bytes_written;
},
.reserved => return error.FrameContainsReservedBlock,
}
}
pub fn decodeBlockRingBuffer(
dest: *RingBuffer,
src: []const u8,
block_header: frame.ZStandard.Block.Header,
decode_state: *DecodeState,
consumed_count: *usize,
block_size_max: usize,
) !usize {
const block_size = block_header.block_size;
if (block_size_max < block_size) return error.BlockSizeOverMaximum;
// TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks)
switch (block_header.block_type) {
.raw => return decodeRawBlockRingBuffer(dest, src, block_size, consumed_count),
.rle => return decodeRleBlockRingBuffer(dest, src, block_size, consumed_count),
.compressed => {
var bytes_read: usize = 0;
const literals = try decodeLiteralsSection(src, &bytes_read);
const sequences_header = try decodeSequencesHeader(src[bytes_read..], &bytes_read);
bytes_read += try decode_state.prepare(src[bytes_read..], literals, sequences_header);
var bytes_written: usize = 0;
if (sequences_header.sequence_count > 0) {
const bit_stream_bytes = src[bytes_read..block_size];
var bit_stream: ReverseBitReader = undefined;
try bit_stream.init(bit_stream_bytes);
try decode_state.readInitialFseState(&bit_stream);
var sequence_size_limit = block_size_max;
var i: usize = 0;
while (i < sequences_header.sequence_count) : (i += 1) {
log.debug("decoding sequence {d}", .{i});
const decompressed_size = try decode_state.decodeSequenceRingBuffer(
dest,
literals,
&bit_stream,
sequence_size_limit,
i == sequences_header.sequence_count - 1,
);
bytes_written += decompressed_size;
sequence_size_limit -= decompressed_size;
}
bytes_read += bit_stream_bytes.len;
}
if (decode_state.literal_written_count < literals.header.regenerated_size) {
log.debug("decoding remaining literals", .{});
const len = literals.header.regenerated_size - decode_state.literal_written_count;
try decode_state.decodeLiteralsRingBuffer(dest, literals, len);
const written_slice = dest.sliceLast(len);
log.debug("remaining decoded literals at {d}: {}{}", .{
bytes_written,
std.fmt.fmtSliceHexUpper(written_slice.first),
std.fmt.fmtSliceHexUpper(written_slice.second),
});
bytes_written += len;
}
decode_state.literal_written_count = 0;
assert(bytes_read == block_header.block_size);
consumed_count.* += bytes_read;
return bytes_written;
},
.reserved => return error.FrameContainsReservedBlock,
}
}
pub fn decodeSkippableHeader(src: *const [8]u8) frame.Skippable.Header {
const magic = readInt(u32, src[0..4]);
assert(isSkippableMagic(magic));
const frame_size = readInt(u32, src[4..8]);
return .{
.magic_number = magic,
.frame_size = frame_size,
};
}
pub fn skippableFrameSize(src: *const [8]u8) !usize {
assert(isSkippableMagic(readInt(u32, src[0..4])));
const frame_size = readInt(u32, src[4..8]);
return frame_size;
}
pub fn frameWindowSize(header: frame.ZStandard.Header) ?u64 {
if (header.window_descriptor) |descriptor| {
const exponent = (descriptor & 0b11111000) >> 3;
const mantissa = descriptor & 0b00000111;
const window_log = 10 + exponent;
const window_base = @as(u64, 1) << @intCast(u6, window_log);
const window_add = (window_base / 8) * mantissa;
return window_base + window_add;
} else return header.content_size;
}
pub fn decodeZStandardHeader(src: []const u8, consumed_count: ?*usize) !frame.ZStandard.Header {
const descriptor = @bitCast(frame.ZStandard.Header.Descriptor, src[0]);
if (descriptor.unused) return error.UnusedBitSet;
if (descriptor.reserved) return error.ReservedBitSet;
var bytes_read_count: usize = 1;
var window_descriptor: ?u8 = null;
if (!descriptor.single_segment_flag) {
window_descriptor = src[bytes_read_count];
bytes_read_count += 1;
}
var dictionary_id: ?u32 = null;
if (descriptor.dictionary_id_flag > 0) {
// if flag is 3 then field_size = 4, else field_size = flag
const field_size = (@as(u4, 1) << descriptor.dictionary_id_flag) >> 1;
dictionary_id = readVarInt(u32, src[bytes_read_count .. bytes_read_count + field_size]);
bytes_read_count += field_size;
}
var content_size: ?u64 = null;
if (descriptor.single_segment_flag or descriptor.content_size_flag > 0) {
const field_size = @as(u4, 1) << descriptor.content_size_flag;
content_size = readVarInt(u64, src[bytes_read_count .. bytes_read_count + field_size]);
if (field_size == 2) content_size.? += 256;
bytes_read_count += field_size;
}
if (consumed_count) |p| p.* += bytes_read_count;
const header = frame.ZStandard.Header{
.descriptor = descriptor,
.window_descriptor = window_descriptor,
.dictionary_id = dictionary_id,
.content_size = content_size,
};
log.debug(
"decoded ZStandard frame header {x}: " ++
"desc = (d={d},c={},r={},u={},s={},cs={d}), win_desc = {?x}, dict_id = {?x}, content_size = {?d}",
.{
std.fmt.fmtSliceHexUpper(src[0..bytes_read_count]),
header.descriptor.dictionary_id_flag,
header.descriptor.content_checksum_flag,
header.descriptor.reserved,
header.descriptor.unused,
header.descriptor.single_segment_flag,
header.descriptor.content_size_flag,
header.window_descriptor,
header.dictionary_id,
header.content_size,
},
);
return header;
}
pub fn decodeBlockHeader(src: *const [3]u8) frame.ZStandard.Block.Header {
const last_block = src[0] & 1 == 1;
const block_type = @intToEnum(frame.ZStandard.Block.Type, (src[0] & 0b110) >> 1);
const block_size = ((src[0] & 0b11111000) >> 3) + (@as(u21, src[1]) << 5) + (@as(u21, src[2]) << 13);
log.debug("decoded block header {}: last = {}, type = {s}, size = {d}", .{
std.fmt.fmtSliceHexUpper(src),
last_block,
@tagName(block_type),
block_size,
});
return .{
.last_block = last_block,
.block_type = block_type,
.block_size = block_size,
};
}
pub fn decodeLiteralsSection(src: []const u8, consumed_count: *usize) !LiteralsSection {
// TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks)
var bytes_read: usize = 0;
const header = decodeLiteralsHeader(src, &bytes_read);
switch (header.block_type) {
.raw => {
const stream = src[bytes_read .. bytes_read + header.regenerated_size];
consumed_count.* += header.regenerated_size + bytes_read;
return LiteralsSection{
.header = header,
.huffman_tree = null,
.streams = .{ .one = stream },
};
},
.rle => {
const stream = src[bytes_read .. bytes_read + 1];
consumed_count.* += 1 + bytes_read;
return LiteralsSection{
.header = header,
.huffman_tree = null,
.streams = .{ .one = stream },
};
},
.compressed, .treeless => {
const huffman_tree_start = bytes_read;
const huffman_tree = if (header.block_type == .compressed)
try decodeHuffmanTree(src[bytes_read..], &bytes_read)
else
null;
const huffman_tree_size = bytes_read - huffman_tree_start;
const total_streams_size = @as(usize, header.compressed_size.?) - huffman_tree_size;
log.debug("huffman tree size = {}, total streams size = {}", .{ huffman_tree_size, total_streams_size });
if (huffman_tree) |tree| dumpHuffmanTree(tree);
if (header.size_format == 0) {
const stream = src[bytes_read .. bytes_read + total_streams_size];
bytes_read += total_streams_size;
consumed_count.* += bytes_read;
return LiteralsSection{
.header = header,
.huffman_tree = huffman_tree,
.streams = .{ .one = stream },
};
}
const stream_data = src[bytes_read .. bytes_read + total_streams_size];
log.debug("jump table: {}", .{std.fmt.fmtSliceHexUpper(stream_data[0..6])});
const stream_1_length = @as(usize, readInt(u16, stream_data[0..2]));
const stream_2_length = @as(usize, readInt(u16, stream_data[2..4]));
const stream_3_length = @as(usize, readInt(u16, stream_data[4..6]));
const stream_4_length = (total_streams_size - 6) - (stream_1_length + stream_2_length + stream_3_length);
const stream_1_start = 6;
const stream_2_start = stream_1_start + stream_1_length;
const stream_3_start = stream_2_start + stream_2_length;
const stream_4_start = stream_3_start + stream_3_length;
consumed_count.* += total_streams_size + bytes_read;
return LiteralsSection{
.header = header,
.huffman_tree = huffman_tree,
.streams = .{ .four = .{
stream_data[stream_1_start .. stream_1_start + stream_1_length],
stream_data[stream_2_start .. stream_2_start + stream_2_length],
stream_data[stream_3_start .. stream_3_start + stream_3_length],
stream_data[stream_4_start .. stream_4_start + stream_4_length],
} },
};
},
}
}
fn decodeHuffmanTree(src: []const u8, consumed_count: *usize) !LiteralsSection.HuffmanTree {
var bytes_read: usize = 0;
bytes_read += 1;
const header = src[0];
var symbol_count: usize = undefined;
var weights: [256]u4 = undefined;
var max_number_of_bits: u4 = undefined;
if (header < 128) {
// FSE compressed weigths
const compressed_size = header;
var stream = std.io.fixedBufferStream(src[1 .. compressed_size + 1]);
var counting_reader = std.io.countingReader(stream.reader());
var bit_reader = bitReader(counting_reader.reader());
var entries: [1 << 6]Table.Fse = undefined;
const table_size = try decodeFseTable(&bit_reader, 256, 6, &entries);
const accuracy_log = std.math.log2_int_ceil(usize, table_size);
var huff_data = src[1 + counting_reader.bytes_read .. compressed_size + 1];
var huff_bits: ReverseBitReader = undefined;
try huff_bits.init(huff_data);
dumpFseTable("huffman", entries[0..table_size]);
var i: usize = 0;
var even_state: u32 = try huff_bits.readBitsNoEof(u32, accuracy_log);
var odd_state: u32 = try huff_bits.readBitsNoEof(u32, accuracy_log);
while (i < 255) {
const even_data = entries[even_state];
var read_bits: usize = 0;
const even_bits = try huff_bits.readBits(u32, even_data.bits, &read_bits);
weights[i] = std.math.cast(u4, even_data.symbol) orelse return error.MalformedHuffmanTree;
i += 1;
if (read_bits < even_data.bits) {
weights[i] = std.math.cast(u4, entries[odd_state].symbol) orelse return error.MalformedHuffmanTree;
log.debug("overflow condition: setting weights[{d}] = {d}", .{ i, weights[i] });
i += 1;
break;
}
even_state = even_data.baseline + even_bits;
read_bits = 0;
const odd_data = entries[odd_state];
const odd_bits = try huff_bits.readBits(u32, odd_data.bits, &read_bits);
weights[i] = std.math.cast(u4, odd_data.symbol) orelse return error.MalformedHuffmanTree;
i += 1;
if (read_bits < odd_data.bits) {
if (i == 256) return error.MalformedHuffmanTree;
weights[i] = std.math.cast(u4, entries[even_state].symbol) orelse return error.MalformedHuffmanTree;
log.debug("overflow condition: setting weights[{d}] = {d}", .{ i, weights[i] });
i += 1;
break;
}
odd_state = odd_data.baseline + odd_bits;
} else return error.MalformedHuffmanTree;
symbol_count = i + 1; // stream contains all but the last symbol
bytes_read += compressed_size;
} else {
const encoded_symbol_count = header - 127;
symbol_count = encoded_symbol_count + 1;
log.debug("huffman tree symbol count = {d}", .{symbol_count});
const weights_byte_count = (encoded_symbol_count + 1) / 2;
log.debug("decoding direct huffman tree: {}|{}", .{
std.fmt.fmtSliceHexUpper(src[0..1]),
std.fmt.fmtSliceHexUpper(src[1 .. weights_byte_count + 1]),
});
if (src.len < weights_byte_count) return error.MalformedHuffmanTree;
var i: usize = 0;
while (i < weights_byte_count) : (i += 1) {
weights[2 * i] = @intCast(u4, src[i + 1] >> 4);
weights[2 * i + 1] = @intCast(u4, src[i + 1] & 0xF);
log.debug("weights[{d}] = {d}", .{ 2 * i, weights[2 * i] });
log.debug("weights[{d}] = {d}", .{ 2 * i + 1, weights[2 * i + 1] });
}
bytes_read += weights_byte_count;
}
var weight_power_sum: u16 = 0;
for (weights[0 .. symbol_count - 1]) |value| {
if (value > 0) {
weight_power_sum += @as(u16, 1) << (value - 1);
}
}
log.debug("weight power sum = {d}", .{weight_power_sum});
// advance to next power of two (even if weight_power_sum is a power of 2)
max_number_of_bits = std.math.log2_int(u16, weight_power_sum) + 1;
const next_power_of_two = @as(u16, 1) << max_number_of_bits;
weights[symbol_count - 1] = std.math.log2_int(u16, next_power_of_two - weight_power_sum) + 1;
log.debug("weights[{d}] = {d}", .{ symbol_count - 1, weights[symbol_count - 1] });
var weight_sorted_prefixed_symbols: [256]LiteralsSection.HuffmanTree.PrefixedSymbol = undefined;
for (weight_sorted_prefixed_symbols[0..symbol_count]) |_, i| {
weight_sorted_prefixed_symbols[i] = .{
.symbol = @intCast(u8, i),
.weight = undefined,
.prefix = undefined,
};
}
std.sort.sort(
LiteralsSection.HuffmanTree.PrefixedSymbol,
weight_sorted_prefixed_symbols[0..symbol_count],
weights,
lessThanByWeight,
);
var prefix: u16 = 0;
var prefixed_symbol_count: usize = 0;
var sorted_index: usize = 0;
while (sorted_index < symbol_count) {
var symbol = weight_sorted_prefixed_symbols[sorted_index].symbol;
const weight = weights[symbol];
if (weight == 0) {
sorted_index += 1;
continue;
}
while (sorted_index < symbol_count) : ({
sorted_index += 1;
prefixed_symbol_count += 1;
prefix += 1;
}) {
symbol = weight_sorted_prefixed_symbols[sorted_index].symbol;
if (weights[symbol] != weight) {
prefix = ((prefix - 1) >> (weights[symbol] - weight)) + 1;
break;
}
weight_sorted_prefixed_symbols[prefixed_symbol_count].symbol = symbol;
weight_sorted_prefixed_symbols[prefixed_symbol_count].prefix = prefix;
weight_sorted_prefixed_symbols[prefixed_symbol_count].weight = weight;
}
}
consumed_count.* += bytes_read;
const tree = LiteralsSection.HuffmanTree{
.max_bit_count = max_number_of_bits,
.symbol_count_minus_one = @intCast(u8, prefixed_symbol_count - 1),
.nodes = weight_sorted_prefixed_symbols,
};
log.debug("decoded huffman tree {}:", .{std.fmt.fmtSliceHexUpper(src[0..bytes_read])});
return tree;
}
fn lessThanByWeight(
weights: [256]u4,
lhs: LiteralsSection.HuffmanTree.PrefixedSymbol,
rhs: LiteralsSection.HuffmanTree.PrefixedSymbol,
) bool {
// NOTE: this function relies on the use of a stable sorting algorithm,
// otherwise a special case of if (weights[lhs] == weights[rhs]) return lhs < rhs;
// should be added
return weights[lhs.symbol] < weights[rhs.symbol];
}
pub fn decodeLiteralsHeader(src: []const u8, consumed_count: *usize) LiteralsSection.Header {
// TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks)
const start = consumed_count.*;
const byte0 = src[0];
const block_type = @intToEnum(LiteralsSection.BlockType, byte0 & 0b11);
const size_format = @intCast(u2, (byte0 & 0b1100) >> 2);
var regenerated_size: u20 = undefined;
var compressed_size: ?u18 = null;
switch (block_type) {
.raw, .rle => {
switch (size_format) {
0, 2 => {
regenerated_size = byte0 >> 3;
consumed_count.* += 1;
},
1 => {
regenerated_size = (byte0 >> 4) +
(@as(u20, src[consumed_count.* + 1]) << 4);
consumed_count.* += 2;
},
3 => {
regenerated_size = (byte0 >> 4) +
(@as(u20, src[consumed_count.* + 1]) << 4) +
(@as(u20, src[consumed_count.* + 2]) << 12);
consumed_count.* += 3;
},
}
},
.compressed, .treeless => {
const byte1 = src[1];
const byte2 = src[2];
switch (size_format) {
0, 1 => {
regenerated_size = (byte0 >> 4) + ((@as(u20, byte1) & 0b00111111) << 4);
compressed_size = ((byte1 & 0b11000000) >> 6) + (@as(u18, byte2) << 2);
consumed_count.* += 3;
},
2 => {
const byte3 = src[3];
regenerated_size = (byte0 >> 4) + (@as(u20, byte1) << 4) + ((@as(u20, byte2) & 0b00000011) << 12);
compressed_size = ((byte2 & 0b11111100) >> 2) + (@as(u18, byte3) << 6);
consumed_count.* += 4;
},
3 => {
const byte3 = src[3];
const byte4 = src[4];
regenerated_size = (byte0 >> 4) + (@as(u20, byte1) << 4) + ((@as(u20, byte2) & 0b00111111) << 12);
compressed_size = ((byte2 & 0b11000000) >> 6) + (@as(u18, byte3) << 2) + (@as(u18, byte4) << 10);
consumed_count.* += 5;
},
}
},
}
log.debug(
"decoded literals section header '{}': type = {s}, size_format = {}, regen_size = {d}, compressed size = {?d}",
.{
std.fmt.fmtSliceHexUpper(src[0 .. consumed_count.* - start]),
@tagName(block_type),
size_format,
regenerated_size,
compressed_size,
},
);
return LiteralsSection.Header{
.block_type = block_type,
.size_format = size_format,
.regenerated_size = regenerated_size,
.compressed_size = compressed_size,
};
}
pub fn decodeSequencesHeader(src: []const u8, consumed_count: *usize) !SequencesSection.Header {
var sequence_count: u24 = undefined;
var bytes_read: usize = 0;
const byte0 = src[0];
if (byte0 == 0) {
bytes_read += 1;
log.debug("decoded sequences header '{}': sequence count = 0", .{std.fmt.fmtSliceHexUpper(src[0..bytes_read])});
consumed_count.* += bytes_read;
return SequencesSection.Header{
.sequence_count = 0,
.offsets = undefined,
.match_lengths = undefined,
.literal_lengths = undefined,
};
} else if (byte0 < 128) {
sequence_count = byte0;
bytes_read += 1;
} else if (byte0 < 255) {
sequence_count = (@as(u24, (byte0 - 128)) << 8) + src[1];
bytes_read += 2;
} else {
sequence_count = src[1] + (@as(u24, src[2]) << 8) + 0x7F00;
bytes_read += 3;
}
const compression_modes = src[bytes_read];
bytes_read += 1;
consumed_count.* += bytes_read;
const matches_mode = @intToEnum(SequencesSection.Header.Mode, (compression_modes & 0b00001100) >> 2);
const offsets_mode = @intToEnum(SequencesSection.Header.Mode, (compression_modes & 0b00110000) >> 4);
const literal_mode = @intToEnum(SequencesSection.Header.Mode, (compression_modes & 0b11000000) >> 6);
log.debug("decoded sequences header '{}': (sc={d},o={s},m={s},l={s})", .{
std.fmt.fmtSliceHexUpper(src[0..bytes_read]),
sequence_count,
@tagName(offsets_mode),
@tagName(matches_mode),
@tagName(literal_mode),
});
if (compression_modes & 0b11 != 0) return error.ReservedBitSet;
return SequencesSection.Header{
.sequence_count = sequence_count,
.offsets = offsets_mode,
.match_lengths = matches_mode,
.literal_lengths = literal_mode,
};
}
fn buildFseTable(values: []const u16, entries: []Table.Fse) !void {
const total_probability = @intCast(u16, entries.len);
const accuracy_log = std.math.log2_int(u16, total_probability);
assert(total_probability <= 1 << 9);
var less_than_one_count: usize = 0;
for (values) |value, i| {
if (value == 0) {
entries[entries.len - 1 - less_than_one_count] = Table.Fse{
.symbol = @intCast(u8, i),
.baseline = 0,
.bits = accuracy_log,
};
less_than_one_count += 1;
}
}
var position: usize = 0;
var temp_states: [1 << 9]u16 = undefined;
for (values) |value, symbol| {
if (value == 0 or value == 1) continue;
const probability = value - 1;
const state_share_dividend = try std.math.ceilPowerOfTwo(u16, probability);
const share_size = @divExact(total_probability, state_share_dividend);
const double_state_count = state_share_dividend - probability;
const single_state_count = probability - double_state_count;
const share_size_log = std.math.log2_int(u16, share_size);
var i: u16 = 0;
while (i < probability) : (i += 1) {
temp_states[i] = @intCast(u16, position);
position += (entries.len >> 1) + (entries.len >> 3) + 3;
position &= entries.len - 1;
while (position >= entries.len - less_than_one_count) {
position += (entries.len >> 1) + (entries.len >> 3) + 3;
position &= entries.len - 1;
}
}
std.sort.sort(u16, temp_states[0..probability], {}, std.sort.asc(u16));
i = 0;
while (i < probability) : (i += 1) {
entries[temp_states[i]] = if (i < double_state_count) Table.Fse{
.symbol = @intCast(u8, symbol),
.bits = share_size_log + 1,
.baseline = single_state_count * share_size + i * 2 * share_size,
} else Table.Fse{
.symbol = @intCast(u8, symbol),
.bits = share_size_log,
.baseline = (i - double_state_count) * share_size,
};
}
}
}
fn decodeFseTable(
bit_reader: anytype,
expected_symbol_count: usize,
max_accuracy_log: u4,
entries: []Table.Fse,
) !usize {
log.debug("decoding fse table {d} {d}", .{ max_accuracy_log, expected_symbol_count });
const accuracy_log_biased = try bit_reader.readBitsNoEof(u4, 4);
log.debug("accuracy_log_biased = {d}", .{accuracy_log_biased});
if (accuracy_log_biased > max_accuracy_log -| 5) return error.MalformedAccuracyLog;
const accuracy_log = accuracy_log_biased + 5;
var values: [256]u16 = undefined;
var value_count: usize = 0;
const total_probability = @as(u16, 1) << accuracy_log;
log.debug("total probability = {d}", .{total_probability});
var accumulated_probability: u16 = 0;
while (accumulated_probability < total_probability) {
// WARNING: The RFC in poorly worded, and would suggest std.math.log2_int_ceil is correct here,
// but power of two (remaining probabilities + 1) need max bits set to 1 more.
const max_bits = std.math.log2_int(u16, total_probability - accumulated_probability + 1) + 1;
const small = try bit_reader.readBitsNoEof(u16, max_bits - 1);
const cutoff = (@as(u16, 1) << max_bits) - 1 - (total_probability - accumulated_probability + 1);
const value = if (small < cutoff)
small
else value: {
const value_read = small + (try bit_reader.readBitsNoEof(u16, 1) << (max_bits - 1));
break :value if (value_read < @as(u16, 1) << (max_bits - 1))
value_read
else
value_read - cutoff;
};
accumulated_probability += if (value != 0) value - 1 else 1;
values[value_count] = value;
value_count += 1;
if (value == 1) {
while (true) {
const repeat_flag = try bit_reader.readBitsNoEof(u2, 2);
var i: usize = 0;
while (i < repeat_flag) : (i += 1) {
values[value_count] = 1;
value_count += 1;
}
if (repeat_flag < 3) break;
}
}
}
bit_reader.alignToByte();
if (value_count < 2) return error.MalformedFseTable;
if (accumulated_probability != total_probability) return error.MalformedFseTable;
if (value_count > expected_symbol_count) return error.MalformedFseTable;
const table_size = total_probability;
try buildFseTable(values[0..value_count], entries[0..table_size]);
return table_size;
}
const ReversedByteReader = struct {
remaining_bytes: usize,
bytes: []const u8,
const Reader = std.io.Reader(*ReversedByteReader, error{}, readFn);
fn init(bytes: []const u8) ReversedByteReader {
return .{
.bytes = bytes,
.remaining_bytes = bytes.len,
};
}
fn reader(self: *ReversedByteReader) Reader {
return .{ .context = self };
}
fn readFn(ctx: *ReversedByteReader, buffer: []u8) !usize {
if (ctx.remaining_bytes == 0) return 0;
const byte_index = ctx.remaining_bytes - 1;
buffer[0] = ctx.bytes[byte_index];
// buffer[0] = @bitReverse(ctx.bytes[byte_index]);
ctx.remaining_bytes = byte_index;
return 1;
}
};
pub const ReverseBitReader = struct {
byte_reader: ReversedByteReader,
bit_reader: std.io.BitReader(.Big, ReversedByteReader.Reader),
pub fn init(self: *ReverseBitReader, bytes: []const u8) !void {
self.byte_reader = ReversedByteReader.init(bytes);
self.bit_reader = std.io.bitReader(.Big, self.byte_reader.reader());
while (0 == self.readBitsNoEof(u1, 1) catch return error.BitStreamHasNoStartBit) {}
}
pub fn readBitsNoEof(self: *@This(), comptime U: type, num_bits: usize) !U {
return self.bit_reader.readBitsNoEof(U, num_bits);
}
pub fn readBits(self: *@This(), comptime U: type, num_bits: usize, out_bits: *usize) !U {
return try self.bit_reader.readBits(U, num_bits, out_bits);
}
pub fn alignToByte(self: *@This()) void {
self.bit_reader.alignToByte();
}
};
fn BitReader(comptime Reader: type) type {
return struct {
underlying: std.io.BitReader(.Little, Reader),
fn readBitsNoEof(self: *@This(), comptime U: type, num_bits: usize) !U {
return self.underlying.readBitsNoEof(U, num_bits);
}
fn readBits(self: *@This(), comptime U: type, num_bits: usize, out_bits: *usize) !U {
return self.underlying.readBits(U, num_bits, out_bits);
}
fn alignToByte(self: *@This()) void {
self.underlying.alignToByte();
}
};
}
fn bitReader(reader: anytype) BitReader(@TypeOf(reader)) {
return .{ .underlying = std.io.bitReader(.Little, reader) };
}
test {
std.testing.refAllDecls(@This());
}
test buildFseTable {
const literals_length_default_values = [36]u16{
5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 2, 2, 2, 2,
0, 0, 0, 0,
};
const match_lengths_default_values = [53]u16{
2, 5, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0,
0, 0, 0, 0, 0,
};
const offset_codes_default_values = [29]u16{
2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0,
};
var entries: [64]Table.Fse = undefined;
try buildFseTable(&literals_length_default_values, &entries);
try std.testing.expectEqualSlices(Table.Fse, types.compressed_block.predefined_literal_fse_table.fse, &entries);
try buildFseTable(&match_lengths_default_values, &entries);
try std.testing.expectEqualSlices(Table.Fse, types.compressed_block.predefined_match_fse_table.fse, &entries);
try buildFseTable(&offset_codes_default_values, entries[0..32]);
try std.testing.expectEqualSlices(Table.Fse, types.compressed_block.predefined_offset_fse_table.fse, entries[0..32]);
}
fn dumpFseTable(prefix: []const u8, table: []const Table.Fse) void {
log.debug("{s} fse table:", .{prefix});
for (table) |entry, i| {
log.debug("state = {d} symbol = {d} bl = {d}, bits = {d}", .{ i, entry.symbol, entry.baseline, entry.bits });
}
}
fn dumpHuffmanTree(tree: LiteralsSection.HuffmanTree) void {
log.debug("Huffman tree: max bit count = {}, symbol count = {}", .{ tree.max_bit_count, tree.symbol_count_minus_one + 1 });
for (tree.nodes[0 .. tree.symbol_count_minus_one + 1]) |node| {
log.debug("symbol = {[symbol]d}, prefix = {[prefix]d}, weight = {[weight]d}", node);
}
}