mirror of
https://github.com/ziglang/zig.git
synced 2025-12-25 23:53:15 +00:00
3578 lines
147 KiB
Zig
3578 lines
147 KiB
Zig
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const Value = @import("Value.zig");
|
|
const assert = std.debug.assert;
|
|
const Target = std.Target;
|
|
const Module = @import("Module.zig");
|
|
const Zcu = Module;
|
|
const log = std.log.scoped(.Type);
|
|
const target_util = @import("target.zig");
|
|
const Sema = @import("Sema.zig");
|
|
const InternPool = @import("InternPool.zig");
|
|
const Alignment = InternPool.Alignment;
|
|
|
|
/// Both types and values are canonically represented by a single 32-bit integer
|
|
/// which is an index into an `InternPool` data structure.
|
|
/// This struct abstracts around this storage by providing methods only
|
|
/// applicable to types rather than values in general.
|
|
pub const Type = struct {
|
|
ip_index: InternPool.Index,
|
|
|
|
pub fn zigTypeTag(ty: Type, mod: *const Module) std.builtin.TypeId {
|
|
return ty.zigTypeTagOrPoison(mod) catch unreachable;
|
|
}
|
|
|
|
pub fn zigTypeTagOrPoison(ty: Type, mod: *const Module) error{GenericPoison}!std.builtin.TypeId {
|
|
return mod.intern_pool.zigTypeTagOrPoison(ty.toIntern());
|
|
}
|
|
|
|
pub fn baseZigTypeTag(self: Type, mod: *Module) std.builtin.TypeId {
|
|
return switch (self.zigTypeTag(mod)) {
|
|
.ErrorUnion => self.errorUnionPayload(mod).baseZigTypeTag(mod),
|
|
.Optional => {
|
|
return self.optionalChild(mod).baseZigTypeTag(mod);
|
|
},
|
|
else => |t| t,
|
|
};
|
|
}
|
|
|
|
pub fn isSelfComparable(ty: Type, mod: *const Module, is_equality_cmp: bool) bool {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Int,
|
|
.Float,
|
|
.ComptimeFloat,
|
|
.ComptimeInt,
|
|
=> true,
|
|
|
|
.Vector => ty.elemType2(mod).isSelfComparable(mod, is_equality_cmp),
|
|
|
|
.Bool,
|
|
.Type,
|
|
.Void,
|
|
.ErrorSet,
|
|
.Fn,
|
|
.Opaque,
|
|
.AnyFrame,
|
|
.Enum,
|
|
.EnumLiteral,
|
|
=> is_equality_cmp,
|
|
|
|
.NoReturn,
|
|
.Array,
|
|
.Struct,
|
|
.Undefined,
|
|
.Null,
|
|
.ErrorUnion,
|
|
.Union,
|
|
.Frame,
|
|
=> false,
|
|
|
|
.Pointer => !ty.isSlice(mod) and (is_equality_cmp or ty.isCPtr(mod)),
|
|
.Optional => {
|
|
if (!is_equality_cmp) return false;
|
|
return ty.optionalChild(mod).isSelfComparable(mod, is_equality_cmp);
|
|
},
|
|
};
|
|
}
|
|
|
|
/// If it is a function pointer, returns the function type. Otherwise returns null.
|
|
pub fn castPtrToFn(ty: Type, mod: *const Module) ?Type {
|
|
if (ty.zigTypeTag(mod) != .Pointer) return null;
|
|
const elem_ty = ty.childType(mod);
|
|
if (elem_ty.zigTypeTag(mod) != .Fn) return null;
|
|
return elem_ty;
|
|
}
|
|
|
|
/// Asserts the type is a pointer.
|
|
pub fn ptrIsMutable(ty: Type, mod: *const Module) bool {
|
|
return !mod.intern_pool.indexToKey(ty.toIntern()).ptr_type.flags.is_const;
|
|
}
|
|
|
|
pub const ArrayInfo = struct {
|
|
elem_type: Type,
|
|
sentinel: ?Value = null,
|
|
len: u64,
|
|
};
|
|
|
|
pub fn arrayInfo(self: Type, mod: *const Module) ArrayInfo {
|
|
return .{
|
|
.len = self.arrayLen(mod),
|
|
.sentinel = self.sentinel(mod),
|
|
.elem_type = self.childType(mod),
|
|
};
|
|
}
|
|
|
|
pub fn ptrInfo(ty: Type, mod: *const Module) InternPool.Key.PtrType {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |p| p,
|
|
.opt_type => |child| switch (mod.intern_pool.indexToKey(child)) {
|
|
.ptr_type => |p| p,
|
|
else => unreachable,
|
|
},
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn eql(a: Type, b: Type, mod: *const Module) bool {
|
|
_ = mod; // TODO: remove this parameter
|
|
// The InternPool data structure hashes based on Key to make interned objects
|
|
// unique. An Index can be treated simply as u32 value for the
|
|
// purpose of Type/Value hashing and equality.
|
|
return a.toIntern() == b.toIntern();
|
|
}
|
|
|
|
pub fn format(ty: Type, comptime unused_fmt_string: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
|
|
_ = ty;
|
|
_ = unused_fmt_string;
|
|
_ = options;
|
|
_ = writer;
|
|
@compileError("do not format types directly; use either ty.fmtDebug() or ty.fmt()");
|
|
}
|
|
|
|
pub const Formatter = std.fmt.Formatter(format2);
|
|
|
|
pub fn fmt(ty: Type, module: *Module) Formatter {
|
|
return .{ .data = .{
|
|
.ty = ty,
|
|
.module = module,
|
|
} };
|
|
}
|
|
|
|
const FormatContext = struct {
|
|
ty: Type,
|
|
module: *Module,
|
|
};
|
|
|
|
fn format2(
|
|
ctx: FormatContext,
|
|
comptime unused_format_string: []const u8,
|
|
options: std.fmt.FormatOptions,
|
|
writer: anytype,
|
|
) !void {
|
|
comptime assert(unused_format_string.len == 0);
|
|
_ = options;
|
|
return print(ctx.ty, writer, ctx.module);
|
|
}
|
|
|
|
pub fn fmtDebug(ty: Type) std.fmt.Formatter(dump) {
|
|
return .{ .data = ty };
|
|
}
|
|
|
|
/// This is a debug function. In order to print types in a meaningful way
|
|
/// we also need access to the module.
|
|
pub fn dump(
|
|
start_type: Type,
|
|
comptime unused_format_string: []const u8,
|
|
options: std.fmt.FormatOptions,
|
|
writer: anytype,
|
|
) @TypeOf(writer).Error!void {
|
|
_ = options;
|
|
comptime assert(unused_format_string.len == 0);
|
|
return writer.print("{any}", .{start_type.ip_index});
|
|
}
|
|
|
|
/// Prints a name suitable for `@typeName`.
|
|
/// TODO: take an `opt_sema` to pass to `fmtValue` when printing sentinels.
|
|
pub fn print(ty: Type, writer: anytype, mod: *Module) @TypeOf(writer).Error!void {
|
|
const ip = &mod.intern_pool;
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| {
|
|
const sign_char: u8 = switch (int_type.signedness) {
|
|
.signed => 'i',
|
|
.unsigned => 'u',
|
|
};
|
|
return writer.print("{c}{d}", .{ sign_char, int_type.bits });
|
|
},
|
|
.ptr_type => {
|
|
const info = ty.ptrInfo(mod);
|
|
|
|
if (info.sentinel != .none) switch (info.flags.size) {
|
|
.One, .C => unreachable,
|
|
.Many => try writer.print("[*:{}]", .{Value.fromInterned(info.sentinel).fmtValue(mod, null)}),
|
|
.Slice => try writer.print("[:{}]", .{Value.fromInterned(info.sentinel).fmtValue(mod, null)}),
|
|
} else switch (info.flags.size) {
|
|
.One => try writer.writeAll("*"),
|
|
.Many => try writer.writeAll("[*]"),
|
|
.C => try writer.writeAll("[*c]"),
|
|
.Slice => try writer.writeAll("[]"),
|
|
}
|
|
if (info.flags.alignment != .none or
|
|
info.packed_offset.host_size != 0 or
|
|
info.flags.vector_index != .none)
|
|
{
|
|
const alignment = if (info.flags.alignment != .none)
|
|
info.flags.alignment
|
|
else
|
|
Type.fromInterned(info.child).abiAlignment(mod);
|
|
try writer.print("align({d}", .{alignment.toByteUnits() orelse 0});
|
|
|
|
if (info.packed_offset.bit_offset != 0 or info.packed_offset.host_size != 0) {
|
|
try writer.print(":{d}:{d}", .{
|
|
info.packed_offset.bit_offset, info.packed_offset.host_size,
|
|
});
|
|
}
|
|
if (info.flags.vector_index == .runtime) {
|
|
try writer.writeAll(":?");
|
|
} else if (info.flags.vector_index != .none) {
|
|
try writer.print(":{d}", .{@intFromEnum(info.flags.vector_index)});
|
|
}
|
|
try writer.writeAll(") ");
|
|
}
|
|
if (info.flags.address_space != .generic) {
|
|
try writer.print("addrspace(.{s}) ", .{@tagName(info.flags.address_space)});
|
|
}
|
|
if (info.flags.is_const) try writer.writeAll("const ");
|
|
if (info.flags.is_volatile) try writer.writeAll("volatile ");
|
|
if (info.flags.is_allowzero and info.flags.size != .C) try writer.writeAll("allowzero ");
|
|
|
|
try print(Type.fromInterned(info.child), writer, mod);
|
|
return;
|
|
},
|
|
.array_type => |array_type| {
|
|
if (array_type.sentinel == .none) {
|
|
try writer.print("[{d}]", .{array_type.len});
|
|
try print(Type.fromInterned(array_type.child), writer, mod);
|
|
} else {
|
|
try writer.print("[{d}:{}]", .{
|
|
array_type.len,
|
|
Value.fromInterned(array_type.sentinel).fmtValue(mod, null),
|
|
});
|
|
try print(Type.fromInterned(array_type.child), writer, mod);
|
|
}
|
|
return;
|
|
},
|
|
.vector_type => |vector_type| {
|
|
try writer.print("@Vector({d}, ", .{vector_type.len});
|
|
try print(Type.fromInterned(vector_type.child), writer, mod);
|
|
try writer.writeAll(")");
|
|
return;
|
|
},
|
|
.opt_type => |child| {
|
|
try writer.writeByte('?');
|
|
return print(Type.fromInterned(child), writer, mod);
|
|
},
|
|
.error_union_type => |error_union_type| {
|
|
try print(Type.fromInterned(error_union_type.error_set_type), writer, mod);
|
|
try writer.writeByte('!');
|
|
if (error_union_type.payload_type == .generic_poison_type) {
|
|
try writer.writeAll("anytype");
|
|
} else {
|
|
try print(Type.fromInterned(error_union_type.payload_type), writer, mod);
|
|
}
|
|
return;
|
|
},
|
|
.inferred_error_set_type => |func_index| {
|
|
try writer.writeAll("@typeInfo(@typeInfo(@TypeOf(");
|
|
const owner_decl = mod.funcOwnerDeclPtr(func_index);
|
|
try owner_decl.renderFullyQualifiedName(mod, writer);
|
|
try writer.writeAll(")).Fn.return_type.?).ErrorUnion.error_set");
|
|
},
|
|
.error_set_type => |error_set_type| {
|
|
const names = error_set_type.names;
|
|
try writer.writeAll("error{");
|
|
for (names.get(ip), 0..) |name, i| {
|
|
if (i != 0) try writer.writeByte(',');
|
|
try writer.print("{}", .{name.fmt(ip)});
|
|
}
|
|
try writer.writeAll("}");
|
|
},
|
|
.simple_type => |s| switch (s) {
|
|
.f16,
|
|
.f32,
|
|
.f64,
|
|
.f80,
|
|
.f128,
|
|
.usize,
|
|
.isize,
|
|
.c_char,
|
|
.c_short,
|
|
.c_ushort,
|
|
.c_int,
|
|
.c_uint,
|
|
.c_long,
|
|
.c_ulong,
|
|
.c_longlong,
|
|
.c_ulonglong,
|
|
.c_longdouble,
|
|
.anyopaque,
|
|
.bool,
|
|
.void,
|
|
.type,
|
|
.anyerror,
|
|
.comptime_int,
|
|
.comptime_float,
|
|
.noreturn,
|
|
.adhoc_inferred_error_set,
|
|
=> return writer.writeAll(@tagName(s)),
|
|
|
|
.null,
|
|
.undefined,
|
|
=> try writer.print("@TypeOf({s})", .{@tagName(s)}),
|
|
|
|
.enum_literal => try writer.print("@TypeOf(.{s})", .{@tagName(s)}),
|
|
.atomic_order => try writer.writeAll("std.builtin.AtomicOrder"),
|
|
.atomic_rmw_op => try writer.writeAll("std.builtin.AtomicRmwOp"),
|
|
.calling_convention => try writer.writeAll("std.builtin.CallingConvention"),
|
|
.address_space => try writer.writeAll("std.builtin.AddressSpace"),
|
|
.float_mode => try writer.writeAll("std.builtin.FloatMode"),
|
|
.reduce_op => try writer.writeAll("std.builtin.ReduceOp"),
|
|
.call_modifier => try writer.writeAll("std.builtin.CallModifier"),
|
|
.prefetch_options => try writer.writeAll("std.builtin.PrefetchOptions"),
|
|
.export_options => try writer.writeAll("std.builtin.ExportOptions"),
|
|
.extern_options => try writer.writeAll("std.builtin.ExternOptions"),
|
|
.type_info => try writer.writeAll("std.builtin.Type"),
|
|
|
|
.generic_poison => unreachable,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
if (struct_type.decl.unwrap()) |decl_index| {
|
|
const decl = mod.declPtr(decl_index);
|
|
try decl.renderFullyQualifiedName(mod, writer);
|
|
} else if (ip.loadStructType(ty.toIntern()).namespace.unwrap()) |namespace_index| {
|
|
const namespace = mod.namespacePtr(namespace_index);
|
|
try namespace.renderFullyQualifiedName(mod, .empty, writer);
|
|
} else {
|
|
try writer.writeAll("@TypeOf(.{})");
|
|
}
|
|
},
|
|
.anon_struct_type => |anon_struct| {
|
|
if (anon_struct.types.len == 0) {
|
|
return writer.writeAll("@TypeOf(.{})");
|
|
}
|
|
try writer.writeAll("struct{");
|
|
for (anon_struct.types.get(ip), anon_struct.values.get(ip), 0..) |field_ty, val, i| {
|
|
if (i != 0) try writer.writeAll(", ");
|
|
if (val != .none) {
|
|
try writer.writeAll("comptime ");
|
|
}
|
|
if (anon_struct.names.len != 0) {
|
|
try writer.print("{}: ", .{anon_struct.names.get(ip)[i].fmt(&mod.intern_pool)});
|
|
}
|
|
|
|
try print(Type.fromInterned(field_ty), writer, mod);
|
|
|
|
if (val != .none) {
|
|
try writer.print(" = {}", .{Value.fromInterned(val).fmtValue(mod, null)});
|
|
}
|
|
}
|
|
try writer.writeAll("}");
|
|
},
|
|
|
|
.union_type => {
|
|
const decl = mod.declPtr(ip.loadUnionType(ty.toIntern()).decl);
|
|
try decl.renderFullyQualifiedName(mod, writer);
|
|
},
|
|
.opaque_type => {
|
|
const decl = mod.declPtr(ip.loadOpaqueType(ty.toIntern()).decl);
|
|
try decl.renderFullyQualifiedName(mod, writer);
|
|
},
|
|
.enum_type => {
|
|
const decl = mod.declPtr(ip.loadEnumType(ty.toIntern()).decl);
|
|
try decl.renderFullyQualifiedName(mod, writer);
|
|
},
|
|
.func_type => |fn_info| {
|
|
if (fn_info.is_noinline) {
|
|
try writer.writeAll("noinline ");
|
|
}
|
|
try writer.writeAll("fn (");
|
|
const param_types = fn_info.param_types.get(&mod.intern_pool);
|
|
for (param_types, 0..) |param_ty, i| {
|
|
if (i != 0) try writer.writeAll(", ");
|
|
if (std.math.cast(u5, i)) |index| {
|
|
if (fn_info.paramIsComptime(index)) {
|
|
try writer.writeAll("comptime ");
|
|
}
|
|
if (fn_info.paramIsNoalias(index)) {
|
|
try writer.writeAll("noalias ");
|
|
}
|
|
}
|
|
if (param_ty == .generic_poison_type) {
|
|
try writer.writeAll("anytype");
|
|
} else {
|
|
try print(Type.fromInterned(param_ty), writer, mod);
|
|
}
|
|
}
|
|
if (fn_info.is_var_args) {
|
|
if (param_types.len != 0) {
|
|
try writer.writeAll(", ");
|
|
}
|
|
try writer.writeAll("...");
|
|
}
|
|
try writer.writeAll(") ");
|
|
if (fn_info.cc != .Unspecified) {
|
|
try writer.writeAll("callconv(.");
|
|
try writer.writeAll(@tagName(fn_info.cc));
|
|
try writer.writeAll(") ");
|
|
}
|
|
if (fn_info.return_type == .generic_poison_type) {
|
|
try writer.writeAll("anytype");
|
|
} else {
|
|
try print(Type.fromInterned(fn_info.return_type), writer, mod);
|
|
}
|
|
},
|
|
.anyframe_type => |child| {
|
|
if (child == .none) return writer.writeAll("anyframe");
|
|
try writer.writeAll("anyframe->");
|
|
return print(Type.fromInterned(child), writer, mod);
|
|
},
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
}
|
|
}
|
|
|
|
pub fn fromInterned(i: InternPool.Index) Type {
|
|
assert(i != .none);
|
|
return .{ .ip_index = i };
|
|
}
|
|
|
|
pub fn toIntern(ty: Type) InternPool.Index {
|
|
assert(ty.ip_index != .none);
|
|
return ty.ip_index;
|
|
}
|
|
|
|
pub fn toValue(self: Type) Value {
|
|
return Value.fromInterned(self.toIntern());
|
|
}
|
|
|
|
const RuntimeBitsError = Module.CompileError || error{NeedLazy};
|
|
|
|
/// true if and only if the type takes up space in memory at runtime.
|
|
/// There are two reasons a type will return false:
|
|
/// * the type is a comptime-only type. For example, the type `type` itself.
|
|
/// - note, however, that a struct can have mixed fields and only the non-comptime-only
|
|
/// fields will count towards the ABI size. For example, `struct {T: type, x: i32}`
|
|
/// hasRuntimeBits()=true and abiSize()=4
|
|
/// * the type has only one possible value, making its ABI size 0.
|
|
/// - an enum with an explicit tag type has the ABI size of the integer tag type,
|
|
/// making it one-possible-value only if the integer tag type has 0 bits.
|
|
/// When `ignore_comptime_only` is true, then types that are comptime-only
|
|
/// may return false positives.
|
|
pub fn hasRuntimeBitsAdvanced(
|
|
ty: Type,
|
|
mod: *Module,
|
|
ignore_comptime_only: bool,
|
|
strat: AbiAlignmentAdvancedStrat,
|
|
) RuntimeBitsError!bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ty.toIntern()) {
|
|
// False because it is a comptime-only type.
|
|
.empty_struct_type => false,
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| int_type.bits != 0,
|
|
.ptr_type => {
|
|
// Pointers to zero-bit types still have a runtime address; however, pointers
|
|
// to comptime-only types do not, with the exception of function pointers.
|
|
if (ignore_comptime_only) return true;
|
|
return switch (strat) {
|
|
.sema => |sema| !(try sema.typeRequiresComptime(ty)),
|
|
.eager => !comptimeOnly(ty, mod),
|
|
.lazy => error.NeedLazy,
|
|
};
|
|
},
|
|
.anyframe_type => true,
|
|
.array_type => |array_type| return array_type.lenIncludingSentinel() > 0 and
|
|
try Type.fromInterned(array_type.child).hasRuntimeBitsAdvanced(mod, ignore_comptime_only, strat),
|
|
.vector_type => |vector_type| return vector_type.len > 0 and
|
|
try Type.fromInterned(vector_type.child).hasRuntimeBitsAdvanced(mod, ignore_comptime_only, strat),
|
|
.opt_type => |child| {
|
|
const child_ty = Type.fromInterned(child);
|
|
if (child_ty.isNoReturn(mod)) {
|
|
// Then the optional is comptime-known to be null.
|
|
return false;
|
|
}
|
|
if (ignore_comptime_only) return true;
|
|
return switch (strat) {
|
|
.sema => |sema| !(try sema.typeRequiresComptime(child_ty)),
|
|
.eager => !comptimeOnly(child_ty, mod),
|
|
.lazy => error.NeedLazy,
|
|
};
|
|
},
|
|
.error_union_type,
|
|
.error_set_type,
|
|
.inferred_error_set_type,
|
|
=> true,
|
|
|
|
// These are function *bodies*, not pointers.
|
|
// They return false here because they are comptime-only types.
|
|
// Special exceptions have to be made when emitting functions due to
|
|
// this returning false.
|
|
.func_type => false,
|
|
|
|
.simple_type => |t| switch (t) {
|
|
.f16,
|
|
.f32,
|
|
.f64,
|
|
.f80,
|
|
.f128,
|
|
.usize,
|
|
.isize,
|
|
.c_char,
|
|
.c_short,
|
|
.c_ushort,
|
|
.c_int,
|
|
.c_uint,
|
|
.c_long,
|
|
.c_ulong,
|
|
.c_longlong,
|
|
.c_ulonglong,
|
|
.c_longdouble,
|
|
.bool,
|
|
.anyerror,
|
|
.adhoc_inferred_error_set,
|
|
.anyopaque,
|
|
.atomic_order,
|
|
.atomic_rmw_op,
|
|
.calling_convention,
|
|
.address_space,
|
|
.float_mode,
|
|
.reduce_op,
|
|
.call_modifier,
|
|
.prefetch_options,
|
|
.export_options,
|
|
.extern_options,
|
|
=> true,
|
|
|
|
// These are false because they are comptime-only types.
|
|
.void,
|
|
.type,
|
|
.comptime_int,
|
|
.comptime_float,
|
|
.noreturn,
|
|
.null,
|
|
.undefined,
|
|
.enum_literal,
|
|
.type_info,
|
|
=> false,
|
|
|
|
.generic_poison => unreachable,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
if (struct_type.assumeRuntimeBitsIfFieldTypesWip(ip)) {
|
|
// In this case, we guess that hasRuntimeBits() for this type is true,
|
|
// and then later if our guess was incorrect, we emit a compile error.
|
|
return true;
|
|
}
|
|
switch (strat) {
|
|
.sema => |sema| _ = try sema.resolveTypeFields(ty),
|
|
.eager => assert(struct_type.haveFieldTypes(ip)),
|
|
.lazy => if (!struct_type.haveFieldTypes(ip)) return error.NeedLazy,
|
|
}
|
|
for (0..struct_type.field_types.len) |i| {
|
|
if (struct_type.comptime_bits.getBit(ip, i)) continue;
|
|
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
|
|
if (try field_ty.hasRuntimeBitsAdvanced(mod, ignore_comptime_only, strat))
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
},
|
|
.anon_struct_type => |tuple| {
|
|
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, val| {
|
|
if (val != .none) continue; // comptime field
|
|
if (try Type.fromInterned(field_ty).hasRuntimeBitsAdvanced(mod, ignore_comptime_only, strat)) return true;
|
|
}
|
|
return false;
|
|
},
|
|
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
switch (union_type.flagsPtr(ip).runtime_tag) {
|
|
.none => {
|
|
if (union_type.flagsPtr(ip).status == .field_types_wip) {
|
|
// In this case, we guess that hasRuntimeBits() for this type is true,
|
|
// and then later if our guess was incorrect, we emit a compile error.
|
|
union_type.flagsPtr(ip).assumed_runtime_bits = true;
|
|
return true;
|
|
}
|
|
},
|
|
.safety, .tagged => {
|
|
const tag_ty = union_type.tagTypePtr(ip).*;
|
|
// tag_ty will be `none` if this union's tag type is not resolved yet,
|
|
// in which case we want control flow to continue down below.
|
|
if (tag_ty != .none and
|
|
try Type.fromInterned(tag_ty).hasRuntimeBitsAdvanced(mod, ignore_comptime_only, strat))
|
|
{
|
|
return true;
|
|
}
|
|
},
|
|
}
|
|
switch (strat) {
|
|
.sema => |sema| _ = try sema.resolveTypeFields(ty),
|
|
.eager => assert(union_type.flagsPtr(ip).status.haveFieldTypes()),
|
|
.lazy => if (!union_type.flagsPtr(ip).status.haveFieldTypes())
|
|
return error.NeedLazy,
|
|
}
|
|
for (0..union_type.field_types.len) |field_index| {
|
|
const field_ty = Type.fromInterned(union_type.field_types.get(ip)[field_index]);
|
|
if (try field_ty.hasRuntimeBitsAdvanced(mod, ignore_comptime_only, strat))
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
},
|
|
|
|
.opaque_type => true,
|
|
.enum_type => Type.fromInterned(ip.loadEnumType(ty.toIntern()).tag_ty).hasRuntimeBitsAdvanced(mod, ignore_comptime_only, strat),
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// true if and only if the type has a well-defined memory layout
|
|
/// readFrom/writeToMemory are supported only for types with a well-
|
|
/// defined memory layout
|
|
pub fn hasWellDefinedLayout(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type,
|
|
.vector_type,
|
|
=> true,
|
|
|
|
.error_union_type,
|
|
.error_set_type,
|
|
.inferred_error_set_type,
|
|
.anon_struct_type,
|
|
.opaque_type,
|
|
.anyframe_type,
|
|
// These are function bodies, not function pointers.
|
|
.func_type,
|
|
=> false,
|
|
|
|
.array_type => |array_type| Type.fromInterned(array_type.child).hasWellDefinedLayout(mod),
|
|
.opt_type => ty.isPtrLikeOptional(mod),
|
|
.ptr_type => |ptr_type| ptr_type.flags.size != .Slice,
|
|
|
|
.simple_type => |t| switch (t) {
|
|
.f16,
|
|
.f32,
|
|
.f64,
|
|
.f80,
|
|
.f128,
|
|
.usize,
|
|
.isize,
|
|
.c_char,
|
|
.c_short,
|
|
.c_ushort,
|
|
.c_int,
|
|
.c_uint,
|
|
.c_long,
|
|
.c_ulong,
|
|
.c_longlong,
|
|
.c_ulonglong,
|
|
.c_longdouble,
|
|
.bool,
|
|
.void,
|
|
=> true,
|
|
|
|
.anyerror,
|
|
.adhoc_inferred_error_set,
|
|
.anyopaque,
|
|
.atomic_order,
|
|
.atomic_rmw_op,
|
|
.calling_convention,
|
|
.address_space,
|
|
.float_mode,
|
|
.reduce_op,
|
|
.call_modifier,
|
|
.prefetch_options,
|
|
.export_options,
|
|
.extern_options,
|
|
.type,
|
|
.comptime_int,
|
|
.comptime_float,
|
|
.noreturn,
|
|
.null,
|
|
.undefined,
|
|
.enum_literal,
|
|
.type_info,
|
|
.generic_poison,
|
|
=> false,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
// Struct with no fields have a well-defined layout of no bits.
|
|
return struct_type.layout != .auto or struct_type.field_types.len == 0;
|
|
},
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
return switch (union_type.flagsPtr(ip).runtime_tag) {
|
|
.none, .safety => union_type.flagsPtr(ip).layout != .auto,
|
|
.tagged => false,
|
|
};
|
|
},
|
|
.enum_type => switch (ip.loadEnumType(ty.toIntern()).tag_mode) {
|
|
.auto => false,
|
|
.explicit, .nonexhaustive => true,
|
|
},
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn hasRuntimeBits(ty: Type, mod: *Module) bool {
|
|
return hasRuntimeBitsAdvanced(ty, mod, false, .eager) catch unreachable;
|
|
}
|
|
|
|
pub fn hasRuntimeBitsIgnoreComptime(ty: Type, mod: *Module) bool {
|
|
return hasRuntimeBitsAdvanced(ty, mod, true, .eager) catch unreachable;
|
|
}
|
|
|
|
pub fn fnHasRuntimeBits(ty: Type, mod: *Module) bool {
|
|
return ty.fnHasRuntimeBitsAdvanced(mod, null) catch unreachable;
|
|
}
|
|
|
|
/// Determines whether a function type has runtime bits, i.e. whether a
|
|
/// function with this type can exist at runtime.
|
|
/// Asserts that `ty` is a function type.
|
|
/// If `opt_sema` is not provided, asserts that the return type is sufficiently resolved.
|
|
pub fn fnHasRuntimeBitsAdvanced(ty: Type, mod: *Module, opt_sema: ?*Sema) Module.CompileError!bool {
|
|
const fn_info = mod.typeToFunc(ty).?;
|
|
if (fn_info.is_generic) return false;
|
|
if (fn_info.is_var_args) return true;
|
|
if (fn_info.cc == .Inline) return false;
|
|
return !try Type.fromInterned(fn_info.return_type).comptimeOnlyAdvanced(mod, opt_sema);
|
|
}
|
|
|
|
pub fn isFnOrHasRuntimeBits(ty: Type, mod: *Module) bool {
|
|
switch (ty.zigTypeTag(mod)) {
|
|
.Fn => return ty.fnHasRuntimeBits(mod),
|
|
else => return ty.hasRuntimeBits(mod),
|
|
}
|
|
}
|
|
|
|
/// Same as `isFnOrHasRuntimeBits` but comptime-only types may return a false positive.
|
|
pub fn isFnOrHasRuntimeBitsIgnoreComptime(ty: Type, mod: *Module) bool {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Fn => true,
|
|
else => return ty.hasRuntimeBitsIgnoreComptime(mod),
|
|
};
|
|
}
|
|
|
|
pub fn isNoReturn(ty: Type, mod: *Module) bool {
|
|
return mod.intern_pool.isNoReturn(ty.toIntern());
|
|
}
|
|
|
|
/// Returns `none` if the pointer is naturally aligned and the element type is 0-bit.
|
|
pub fn ptrAlignment(ty: Type, mod: *Module) Alignment {
|
|
return ptrAlignmentAdvanced(ty, mod, null) catch unreachable;
|
|
}
|
|
|
|
pub fn ptrAlignmentAdvanced(ty: Type, mod: *Module, opt_sema: ?*Sema) !Alignment {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| {
|
|
if (ptr_type.flags.alignment != .none)
|
|
return ptr_type.flags.alignment;
|
|
|
|
if (opt_sema) |sema| {
|
|
const res = try Type.fromInterned(ptr_type.child).abiAlignmentAdvanced(mod, .{ .sema = sema });
|
|
return res.scalar;
|
|
}
|
|
|
|
return (Type.fromInterned(ptr_type.child).abiAlignmentAdvanced(mod, .eager) catch unreachable).scalar;
|
|
},
|
|
.opt_type => |child| Type.fromInterned(child).ptrAlignmentAdvanced(mod, opt_sema),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn ptrAddressSpace(ty: Type, mod: *const Module) std.builtin.AddressSpace {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.address_space,
|
|
.opt_type => |child| mod.intern_pool.indexToKey(child).ptr_type.flags.address_space,
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Never returns `none`. Asserts that all necessary type resolution is already done.
|
|
pub fn abiAlignment(ty: Type, mod: *Module) Alignment {
|
|
return (ty.abiAlignmentAdvanced(mod, .eager) catch unreachable).scalar;
|
|
}
|
|
|
|
/// May capture a reference to `ty`.
|
|
/// Returned value has type `comptime_int`.
|
|
pub fn lazyAbiAlignment(ty: Type, mod: *Module) !Value {
|
|
switch (try ty.abiAlignmentAdvanced(mod, .lazy)) {
|
|
.val => |val| return val,
|
|
.scalar => |x| return mod.intValue(Type.comptime_int, x.toByteUnits() orelse 0),
|
|
}
|
|
}
|
|
|
|
pub const AbiAlignmentAdvanced = union(enum) {
|
|
scalar: Alignment,
|
|
val: Value,
|
|
};
|
|
|
|
pub const AbiAlignmentAdvancedStrat = union(enum) {
|
|
eager,
|
|
lazy,
|
|
sema: *Sema,
|
|
};
|
|
|
|
/// If you pass `eager` you will get back `scalar` and assert the type is resolved.
|
|
/// In this case there will be no error, guaranteed.
|
|
/// If you pass `lazy` you may get back `scalar` or `val`.
|
|
/// If `val` is returned, a reference to `ty` has been captured.
|
|
/// If you pass `sema` you will get back `scalar` and resolve the type if
|
|
/// necessary, possibly returning a CompileError.
|
|
pub fn abiAlignmentAdvanced(
|
|
ty: Type,
|
|
mod: *Module,
|
|
strat: AbiAlignmentAdvancedStrat,
|
|
) Module.CompileError!AbiAlignmentAdvanced {
|
|
const target = mod.getTarget();
|
|
const use_llvm = mod.comp.config.use_llvm;
|
|
const ip = &mod.intern_pool;
|
|
|
|
const opt_sema = switch (strat) {
|
|
.sema => |sema| sema,
|
|
else => null,
|
|
};
|
|
|
|
switch (ty.toIntern()) {
|
|
.empty_struct_type => return AbiAlignmentAdvanced{ .scalar = .@"1" },
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| {
|
|
if (int_type.bits == 0) return AbiAlignmentAdvanced{ .scalar = .@"1" };
|
|
return .{ .scalar = intAbiAlignment(int_type.bits, target, use_llvm) };
|
|
},
|
|
.ptr_type, .anyframe_type => {
|
|
return .{ .scalar = ptrAbiAlignment(target) };
|
|
},
|
|
.array_type => |array_type| {
|
|
return Type.fromInterned(array_type.child).abiAlignmentAdvanced(mod, strat);
|
|
},
|
|
.vector_type => |vector_type| {
|
|
if (vector_type.len == 0) return .{ .scalar = .@"1" };
|
|
switch (mod.comp.getZigBackend()) {
|
|
else => {
|
|
const elem_bits: u32 = @intCast(try Type.fromInterned(vector_type.child).bitSizeAdvanced(mod, opt_sema));
|
|
if (elem_bits == 0) return .{ .scalar = .@"1" };
|
|
const bytes = ((elem_bits * vector_type.len) + 7) / 8;
|
|
const alignment = std.math.ceilPowerOfTwoAssert(u32, bytes);
|
|
return .{ .scalar = Alignment.fromByteUnits(alignment) };
|
|
},
|
|
.stage2_c => {
|
|
return Type.fromInterned(vector_type.child).abiAlignmentAdvanced(mod, strat);
|
|
},
|
|
.stage2_x86_64 => {
|
|
if (vector_type.child == .bool_type) {
|
|
if (vector_type.len > 256 and std.Target.x86.featureSetHas(target.cpu.features, .avx512f)) return .{ .scalar = .@"64" };
|
|
if (vector_type.len > 128 and std.Target.x86.featureSetHas(target.cpu.features, .avx2)) return .{ .scalar = .@"32" };
|
|
if (vector_type.len > 64) return .{ .scalar = .@"16" };
|
|
const bytes = std.math.divCeil(u32, vector_type.len, 8) catch unreachable;
|
|
const alignment = std.math.ceilPowerOfTwoAssert(u32, bytes);
|
|
return .{ .scalar = Alignment.fromByteUnits(alignment) };
|
|
}
|
|
const elem_bytes: u32 = @intCast((try Type.fromInterned(vector_type.child).abiSizeAdvanced(mod, strat)).scalar);
|
|
if (elem_bytes == 0) return .{ .scalar = .@"1" };
|
|
const bytes = elem_bytes * vector_type.len;
|
|
if (bytes > 32 and std.Target.x86.featureSetHas(target.cpu.features, .avx512f)) return .{ .scalar = .@"64" };
|
|
if (bytes > 16 and std.Target.x86.featureSetHas(target.cpu.features, .avx)) return .{ .scalar = .@"32" };
|
|
return .{ .scalar = .@"16" };
|
|
},
|
|
}
|
|
},
|
|
|
|
.opt_type => return abiAlignmentAdvancedOptional(ty, mod, strat),
|
|
.error_union_type => |info| return abiAlignmentAdvancedErrorUnion(ty, mod, strat, Type.fromInterned(info.payload_type)),
|
|
|
|
.error_set_type, .inferred_error_set_type => {
|
|
const bits = mod.errorSetBits();
|
|
if (bits == 0) return AbiAlignmentAdvanced{ .scalar = .@"1" };
|
|
return .{ .scalar = intAbiAlignment(bits, target, use_llvm) };
|
|
},
|
|
|
|
// represents machine code; not a pointer
|
|
.func_type => return .{ .scalar = target_util.defaultFunctionAlignment(target) },
|
|
|
|
.simple_type => |t| switch (t) {
|
|
.bool,
|
|
.atomic_order,
|
|
.atomic_rmw_op,
|
|
.calling_convention,
|
|
.address_space,
|
|
.float_mode,
|
|
.reduce_op,
|
|
.call_modifier,
|
|
.prefetch_options,
|
|
.anyopaque,
|
|
=> return .{ .scalar = .@"1" },
|
|
|
|
.usize,
|
|
.isize,
|
|
=> return .{ .scalar = intAbiAlignment(target.ptrBitWidth(), target, use_llvm) },
|
|
|
|
.export_options,
|
|
.extern_options,
|
|
.type_info,
|
|
=> return .{ .scalar = ptrAbiAlignment(target) },
|
|
|
|
.c_char => return .{ .scalar = cTypeAlign(target, .char) },
|
|
.c_short => return .{ .scalar = cTypeAlign(target, .short) },
|
|
.c_ushort => return .{ .scalar = cTypeAlign(target, .ushort) },
|
|
.c_int => return .{ .scalar = cTypeAlign(target, .int) },
|
|
.c_uint => return .{ .scalar = cTypeAlign(target, .uint) },
|
|
.c_long => return .{ .scalar = cTypeAlign(target, .long) },
|
|
.c_ulong => return .{ .scalar = cTypeAlign(target, .ulong) },
|
|
.c_longlong => return .{ .scalar = cTypeAlign(target, .longlong) },
|
|
.c_ulonglong => return .{ .scalar = cTypeAlign(target, .ulonglong) },
|
|
.c_longdouble => return .{ .scalar = cTypeAlign(target, .longdouble) },
|
|
|
|
.f16 => return .{ .scalar = .@"2" },
|
|
.f32 => return .{ .scalar = cTypeAlign(target, .float) },
|
|
.f64 => switch (target.c_type_bit_size(.double)) {
|
|
64 => return .{ .scalar = cTypeAlign(target, .double) },
|
|
else => return .{ .scalar = .@"8" },
|
|
},
|
|
.f80 => switch (target.c_type_bit_size(.longdouble)) {
|
|
80 => return .{ .scalar = cTypeAlign(target, .longdouble) },
|
|
else => {
|
|
const u80_ty: Type = .{ .ip_index = .u80_type };
|
|
return .{ .scalar = abiAlignment(u80_ty, mod) };
|
|
},
|
|
},
|
|
.f128 => switch (target.c_type_bit_size(.longdouble)) {
|
|
128 => return .{ .scalar = cTypeAlign(target, .longdouble) },
|
|
else => return .{ .scalar = .@"16" },
|
|
},
|
|
|
|
.anyerror, .adhoc_inferred_error_set => {
|
|
const bits = mod.errorSetBits();
|
|
if (bits == 0) return AbiAlignmentAdvanced{ .scalar = .@"1" };
|
|
return .{ .scalar = intAbiAlignment(bits, target, use_llvm) };
|
|
},
|
|
|
|
.void,
|
|
.type,
|
|
.comptime_int,
|
|
.comptime_float,
|
|
.null,
|
|
.undefined,
|
|
.enum_literal,
|
|
=> return .{ .scalar = .@"1" },
|
|
|
|
.noreturn => unreachable,
|
|
.generic_poison => unreachable,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
if (struct_type.layout == .@"packed") {
|
|
switch (strat) {
|
|
.sema => |sema| try sema.resolveTypeLayout(ty),
|
|
.lazy => if (struct_type.backingIntType(ip).* == .none) return .{
|
|
.val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))),
|
|
},
|
|
.eager => {},
|
|
}
|
|
return .{ .scalar = Type.fromInterned(struct_type.backingIntType(ip).*).abiAlignment(mod) };
|
|
}
|
|
|
|
const flags = struct_type.flagsPtr(ip).*;
|
|
if (flags.alignment != .none) return .{ .scalar = flags.alignment };
|
|
|
|
return switch (strat) {
|
|
.eager => unreachable, // struct alignment not resolved
|
|
.sema => |sema| .{
|
|
.scalar = try sema.resolveStructAlignment(ty.toIntern(), struct_type),
|
|
},
|
|
.lazy => .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))) },
|
|
};
|
|
},
|
|
.anon_struct_type => |tuple| {
|
|
var big_align: Alignment = .@"1";
|
|
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, val| {
|
|
if (val != .none) continue; // comptime field
|
|
switch (try Type.fromInterned(field_ty).abiAlignmentAdvanced(mod, strat)) {
|
|
.scalar => |field_align| big_align = big_align.max(field_align),
|
|
.val => switch (strat) {
|
|
.eager => unreachable, // field type alignment not resolved
|
|
.sema => unreachable, // passed to abiAlignmentAdvanced above
|
|
.lazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))) },
|
|
},
|
|
}
|
|
}
|
|
return .{ .scalar = big_align };
|
|
},
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
const flags = union_type.flagsPtr(ip).*;
|
|
if (flags.alignment != .none) return .{ .scalar = flags.alignment };
|
|
|
|
if (!union_type.haveLayout(ip)) switch (strat) {
|
|
.eager => unreachable, // union layout not resolved
|
|
.sema => |sema| return .{ .scalar = try sema.resolveUnionAlignment(ty, union_type) },
|
|
.lazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))) },
|
|
};
|
|
|
|
return .{ .scalar = union_type.flagsPtr(ip).alignment };
|
|
},
|
|
.opaque_type => return .{ .scalar = .@"1" },
|
|
.enum_type => return .{
|
|
.scalar = Type.fromInterned(ip.loadEnumType(ty.toIntern()).tag_ty).abiAlignment(mod),
|
|
},
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
},
|
|
}
|
|
}
|
|
|
|
fn abiAlignmentAdvancedErrorUnion(
|
|
ty: Type,
|
|
mod: *Module,
|
|
strat: AbiAlignmentAdvancedStrat,
|
|
payload_ty: Type,
|
|
) Module.CompileError!AbiAlignmentAdvanced {
|
|
// This code needs to be kept in sync with the equivalent switch prong
|
|
// in abiSizeAdvanced.
|
|
const code_align = abiAlignment(Type.anyerror, mod);
|
|
switch (strat) {
|
|
.eager, .sema => {
|
|
if (!(payload_ty.hasRuntimeBitsAdvanced(mod, false, strat) catch |err| switch (err) {
|
|
error.NeedLazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))) },
|
|
else => |e| return e,
|
|
})) {
|
|
return .{ .scalar = code_align };
|
|
}
|
|
return .{ .scalar = code_align.max(
|
|
(try payload_ty.abiAlignmentAdvanced(mod, strat)).scalar,
|
|
) };
|
|
},
|
|
.lazy => {
|
|
switch (try payload_ty.abiAlignmentAdvanced(mod, strat)) {
|
|
.scalar => |payload_align| return .{ .scalar = code_align.max(payload_align) },
|
|
.val => {},
|
|
}
|
|
return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))) };
|
|
},
|
|
}
|
|
}
|
|
|
|
fn abiAlignmentAdvancedOptional(
|
|
ty: Type,
|
|
mod: *Module,
|
|
strat: AbiAlignmentAdvancedStrat,
|
|
) Module.CompileError!AbiAlignmentAdvanced {
|
|
const target = mod.getTarget();
|
|
const child_type = ty.optionalChild(mod);
|
|
|
|
switch (child_type.zigTypeTag(mod)) {
|
|
.Pointer => return .{ .scalar = ptrAbiAlignment(target) },
|
|
.ErrorSet => return abiAlignmentAdvanced(Type.anyerror, mod, strat),
|
|
.NoReturn => return .{ .scalar = .@"1" },
|
|
else => {},
|
|
}
|
|
|
|
switch (strat) {
|
|
.eager, .sema => {
|
|
if (!(child_type.hasRuntimeBitsAdvanced(mod, false, strat) catch |err| switch (err) {
|
|
error.NeedLazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))) },
|
|
else => |e| return e,
|
|
})) {
|
|
return .{ .scalar = .@"1" };
|
|
}
|
|
return child_type.abiAlignmentAdvanced(mod, strat);
|
|
},
|
|
.lazy => switch (try child_type.abiAlignmentAdvanced(mod, strat)) {
|
|
.scalar => |x| return .{ .scalar = x.max(.@"1") },
|
|
.val => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_align = ty.toIntern() },
|
|
} }))) },
|
|
},
|
|
}
|
|
}
|
|
|
|
/// May capture a reference to `ty`.
|
|
pub fn lazyAbiSize(ty: Type, mod: *Module) !Value {
|
|
switch (try ty.abiSizeAdvanced(mod, .lazy)) {
|
|
.val => |val| return val,
|
|
.scalar => |x| return mod.intValue(Type.comptime_int, x),
|
|
}
|
|
}
|
|
|
|
/// Asserts the type has the ABI size already resolved.
|
|
/// Types that return false for hasRuntimeBits() return 0.
|
|
pub fn abiSize(ty: Type, mod: *Module) u64 {
|
|
return (abiSizeAdvanced(ty, mod, .eager) catch unreachable).scalar;
|
|
}
|
|
|
|
const AbiSizeAdvanced = union(enum) {
|
|
scalar: u64,
|
|
val: Value,
|
|
};
|
|
|
|
/// If you pass `eager` you will get back `scalar` and assert the type is resolved.
|
|
/// In this case there will be no error, guaranteed.
|
|
/// If you pass `lazy` you may get back `scalar` or `val`.
|
|
/// If `val` is returned, a reference to `ty` has been captured.
|
|
/// If you pass `sema` you will get back `scalar` and resolve the type if
|
|
/// necessary, possibly returning a CompileError.
|
|
pub fn abiSizeAdvanced(
|
|
ty: Type,
|
|
mod: *Module,
|
|
strat: AbiAlignmentAdvancedStrat,
|
|
) Module.CompileError!AbiSizeAdvanced {
|
|
const target = mod.getTarget();
|
|
const use_llvm = mod.comp.config.use_llvm;
|
|
const ip = &mod.intern_pool;
|
|
|
|
switch (ty.toIntern()) {
|
|
.empty_struct_type => return AbiSizeAdvanced{ .scalar = 0 },
|
|
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| {
|
|
if (int_type.bits == 0) return AbiSizeAdvanced{ .scalar = 0 };
|
|
return AbiSizeAdvanced{ .scalar = intAbiSize(int_type.bits, target, use_llvm) };
|
|
},
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.Slice => return .{ .scalar = @divExact(target.ptrBitWidth(), 8) * 2 },
|
|
else => return .{ .scalar = @divExact(target.ptrBitWidth(), 8) },
|
|
},
|
|
.anyframe_type => return AbiSizeAdvanced{ .scalar = @divExact(target.ptrBitWidth(), 8) },
|
|
|
|
.array_type => |array_type| {
|
|
const len = array_type.lenIncludingSentinel();
|
|
if (len == 0) return .{ .scalar = 0 };
|
|
switch (try Type.fromInterned(array_type.child).abiSizeAdvanced(mod, strat)) {
|
|
.scalar => |elem_size| return .{ .scalar = len * elem_size },
|
|
.val => switch (strat) {
|
|
.sema, .eager => unreachable,
|
|
.lazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))) },
|
|
},
|
|
}
|
|
},
|
|
.vector_type => |vector_type| {
|
|
const opt_sema = switch (strat) {
|
|
.sema => |sema| sema,
|
|
.eager => null,
|
|
.lazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))) },
|
|
};
|
|
const alignment = switch (try ty.abiAlignmentAdvanced(mod, strat)) {
|
|
.scalar => |x| x,
|
|
.val => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))) },
|
|
};
|
|
const total_bytes = switch (mod.comp.getZigBackend()) {
|
|
else => total_bytes: {
|
|
const elem_bits = try Type.fromInterned(vector_type.child).bitSizeAdvanced(mod, opt_sema);
|
|
const total_bits = elem_bits * vector_type.len;
|
|
break :total_bytes (total_bits + 7) / 8;
|
|
},
|
|
.stage2_c => total_bytes: {
|
|
const elem_bytes: u32 = @intCast((try Type.fromInterned(vector_type.child).abiSizeAdvanced(mod, strat)).scalar);
|
|
break :total_bytes elem_bytes * vector_type.len;
|
|
},
|
|
.stage2_x86_64 => total_bytes: {
|
|
if (vector_type.child == .bool_type) break :total_bytes std.math.divCeil(u32, vector_type.len, 8) catch unreachable;
|
|
const elem_bytes: u32 = @intCast((try Type.fromInterned(vector_type.child).abiSizeAdvanced(mod, strat)).scalar);
|
|
break :total_bytes elem_bytes * vector_type.len;
|
|
},
|
|
};
|
|
return AbiSizeAdvanced{ .scalar = alignment.forward(total_bytes) };
|
|
},
|
|
|
|
.opt_type => return ty.abiSizeAdvancedOptional(mod, strat),
|
|
|
|
.error_set_type, .inferred_error_set_type => {
|
|
const bits = mod.errorSetBits();
|
|
if (bits == 0) return AbiSizeAdvanced{ .scalar = 0 };
|
|
return AbiSizeAdvanced{ .scalar = intAbiSize(bits, target, use_llvm) };
|
|
},
|
|
|
|
.error_union_type => |error_union_type| {
|
|
const payload_ty = Type.fromInterned(error_union_type.payload_type);
|
|
// This code needs to be kept in sync with the equivalent switch prong
|
|
// in abiAlignmentAdvanced.
|
|
const code_size = abiSize(Type.anyerror, mod);
|
|
if (!(payload_ty.hasRuntimeBitsAdvanced(mod, false, strat) catch |err| switch (err) {
|
|
error.NeedLazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))) },
|
|
else => |e| return e,
|
|
})) {
|
|
// Same as anyerror.
|
|
return AbiSizeAdvanced{ .scalar = code_size };
|
|
}
|
|
const code_align = abiAlignment(Type.anyerror, mod);
|
|
const payload_align = abiAlignment(payload_ty, mod);
|
|
const payload_size = switch (try payload_ty.abiSizeAdvanced(mod, strat)) {
|
|
.scalar => |elem_size| elem_size,
|
|
.val => switch (strat) {
|
|
.sema => unreachable,
|
|
.eager => unreachable,
|
|
.lazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))) },
|
|
},
|
|
};
|
|
|
|
var size: u64 = 0;
|
|
if (code_align.compare(.gt, payload_align)) {
|
|
size += code_size;
|
|
size = payload_align.forward(size);
|
|
size += payload_size;
|
|
size = code_align.forward(size);
|
|
} else {
|
|
size += payload_size;
|
|
size = code_align.forward(size);
|
|
size += code_size;
|
|
size = payload_align.forward(size);
|
|
}
|
|
return AbiSizeAdvanced{ .scalar = size };
|
|
},
|
|
.func_type => unreachable, // represents machine code; not a pointer
|
|
.simple_type => |t| switch (t) {
|
|
.bool,
|
|
.atomic_order,
|
|
.atomic_rmw_op,
|
|
.calling_convention,
|
|
.address_space,
|
|
.float_mode,
|
|
.reduce_op,
|
|
.call_modifier,
|
|
=> return AbiSizeAdvanced{ .scalar = 1 },
|
|
|
|
.f16 => return AbiSizeAdvanced{ .scalar = 2 },
|
|
.f32 => return AbiSizeAdvanced{ .scalar = 4 },
|
|
.f64 => return AbiSizeAdvanced{ .scalar = 8 },
|
|
.f128 => return AbiSizeAdvanced{ .scalar = 16 },
|
|
.f80 => switch (target.c_type_bit_size(.longdouble)) {
|
|
80 => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.longdouble) },
|
|
else => {
|
|
const u80_ty: Type = .{ .ip_index = .u80_type };
|
|
return AbiSizeAdvanced{ .scalar = abiSize(u80_ty, mod) };
|
|
},
|
|
},
|
|
|
|
.usize,
|
|
.isize,
|
|
=> return AbiSizeAdvanced{ .scalar = @divExact(target.ptrBitWidth(), 8) },
|
|
|
|
.c_char => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.char) },
|
|
.c_short => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.short) },
|
|
.c_ushort => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.ushort) },
|
|
.c_int => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.int) },
|
|
.c_uint => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.uint) },
|
|
.c_long => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.long) },
|
|
.c_ulong => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.ulong) },
|
|
.c_longlong => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.longlong) },
|
|
.c_ulonglong => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.ulonglong) },
|
|
.c_longdouble => return AbiSizeAdvanced{ .scalar = target.c_type_byte_size(.longdouble) },
|
|
|
|
.anyopaque,
|
|
.void,
|
|
.type,
|
|
.comptime_int,
|
|
.comptime_float,
|
|
.null,
|
|
.undefined,
|
|
.enum_literal,
|
|
=> return AbiSizeAdvanced{ .scalar = 0 },
|
|
|
|
.anyerror, .adhoc_inferred_error_set => {
|
|
const bits = mod.errorSetBits();
|
|
if (bits == 0) return AbiSizeAdvanced{ .scalar = 0 };
|
|
return AbiSizeAdvanced{ .scalar = intAbiSize(bits, target, use_llvm) };
|
|
},
|
|
|
|
.prefetch_options => unreachable, // missing call to resolveTypeFields
|
|
.export_options => unreachable, // missing call to resolveTypeFields
|
|
.extern_options => unreachable, // missing call to resolveTypeFields
|
|
|
|
.type_info => unreachable,
|
|
.noreturn => unreachable,
|
|
.generic_poison => unreachable,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
switch (strat) {
|
|
.sema => |sema| try sema.resolveTypeLayout(ty),
|
|
.lazy => switch (struct_type.layout) {
|
|
.@"packed" => {
|
|
if (struct_type.backingIntType(ip).* == .none) return .{
|
|
.val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))),
|
|
};
|
|
},
|
|
.auto, .@"extern" => {
|
|
if (!struct_type.haveLayout(ip)) return .{
|
|
.val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))),
|
|
};
|
|
},
|
|
},
|
|
.eager => {},
|
|
}
|
|
switch (struct_type.layout) {
|
|
.@"packed" => return .{
|
|
.scalar = Type.fromInterned(struct_type.backingIntType(ip).*).abiSize(mod),
|
|
},
|
|
.auto, .@"extern" => {
|
|
assert(struct_type.haveLayout(ip));
|
|
return .{ .scalar = struct_type.size(ip).* };
|
|
},
|
|
}
|
|
},
|
|
.anon_struct_type => |tuple| {
|
|
switch (strat) {
|
|
.sema => |sema| try sema.resolveTypeLayout(ty),
|
|
.lazy, .eager => {},
|
|
}
|
|
const field_count = tuple.types.len;
|
|
if (field_count == 0) {
|
|
return AbiSizeAdvanced{ .scalar = 0 };
|
|
}
|
|
return AbiSizeAdvanced{ .scalar = ty.structFieldOffset(field_count, mod) };
|
|
},
|
|
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
switch (strat) {
|
|
.sema => |sema| try sema.resolveTypeLayout(ty),
|
|
.lazy => if (!union_type.flagsPtr(ip).status.haveLayout()) return .{
|
|
.val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))),
|
|
},
|
|
.eager => {},
|
|
}
|
|
|
|
assert(union_type.haveLayout(ip));
|
|
return .{ .scalar = union_type.size(ip).* };
|
|
},
|
|
.opaque_type => unreachable, // no size available
|
|
.enum_type => return .{ .scalar = Type.fromInterned(ip.loadEnumType(ty.toIntern()).tag_ty).abiSize(mod) },
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
},
|
|
}
|
|
}
|
|
|
|
fn abiSizeAdvancedOptional(
|
|
ty: Type,
|
|
mod: *Module,
|
|
strat: AbiAlignmentAdvancedStrat,
|
|
) Module.CompileError!AbiSizeAdvanced {
|
|
const child_ty = ty.optionalChild(mod);
|
|
|
|
if (child_ty.isNoReturn(mod)) {
|
|
return AbiSizeAdvanced{ .scalar = 0 };
|
|
}
|
|
|
|
if (!(child_ty.hasRuntimeBitsAdvanced(mod, false, strat) catch |err| switch (err) {
|
|
error.NeedLazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))) },
|
|
else => |e| return e,
|
|
})) return AbiSizeAdvanced{ .scalar = 1 };
|
|
|
|
if (ty.optionalReprIsPayload(mod)) {
|
|
return abiSizeAdvanced(child_ty, mod, strat);
|
|
}
|
|
|
|
const payload_size = switch (try child_ty.abiSizeAdvanced(mod, strat)) {
|
|
.scalar => |elem_size| elem_size,
|
|
.val => switch (strat) {
|
|
.sema => unreachable,
|
|
.eager => unreachable,
|
|
.lazy => return .{ .val = Value.fromInterned((try mod.intern(.{ .int = .{
|
|
.ty = .comptime_int_type,
|
|
.storage = .{ .lazy_size = ty.toIntern() },
|
|
} }))) },
|
|
},
|
|
};
|
|
|
|
// Optional types are represented as a struct with the child type as the first
|
|
// field and a boolean as the second. Since the child type's abi alignment is
|
|
// guaranteed to be >= that of bool's (1 byte) the added size is exactly equal
|
|
// to the child type's ABI alignment.
|
|
return AbiSizeAdvanced{
|
|
.scalar = (child_ty.abiAlignment(mod).toByteUnits() orelse 0) + payload_size,
|
|
};
|
|
}
|
|
|
|
pub fn ptrAbiAlignment(target: Target) Alignment {
|
|
return Alignment.fromNonzeroByteUnits(@divExact(target.ptrBitWidth(), 8));
|
|
}
|
|
|
|
pub fn intAbiSize(bits: u16, target: Target, use_llvm: bool) u64 {
|
|
return intAbiAlignment(bits, target, use_llvm).forward(@as(u16, @intCast((@as(u17, bits) + 7) / 8)));
|
|
}
|
|
|
|
pub fn intAbiAlignment(bits: u16, target: Target, use_llvm: bool) Alignment {
|
|
return switch (target.cpu.arch) {
|
|
.x86 => switch (bits) {
|
|
0 => .none,
|
|
1...8 => .@"1",
|
|
9...16 => .@"2",
|
|
17...64 => .@"4",
|
|
else => .@"16",
|
|
},
|
|
.x86_64 => switch (bits) {
|
|
0 => .none,
|
|
1...8 => .@"1",
|
|
9...16 => .@"2",
|
|
17...32 => .@"4",
|
|
33...64 => .@"8",
|
|
else => switch (target_util.zigBackend(target, use_llvm)) {
|
|
.stage2_x86_64 => .@"8",
|
|
else => .@"16",
|
|
},
|
|
},
|
|
else => return Alignment.fromByteUnits(@min(
|
|
std.math.ceilPowerOfTwoPromote(u16, @as(u16, @intCast((@as(u17, bits) + 7) / 8))),
|
|
maxIntAlignment(target, use_llvm),
|
|
)),
|
|
};
|
|
}
|
|
|
|
pub fn maxIntAlignment(target: std.Target, use_llvm: bool) u16 {
|
|
return switch (target.cpu.arch) {
|
|
.avr => 1,
|
|
.msp430 => 2,
|
|
.xcore => 4,
|
|
|
|
.arm,
|
|
.armeb,
|
|
.thumb,
|
|
.thumbeb,
|
|
.hexagon,
|
|
.mips,
|
|
.mipsel,
|
|
.powerpc,
|
|
.powerpcle,
|
|
.r600,
|
|
.amdgcn,
|
|
.riscv32,
|
|
.sparc,
|
|
.sparcel,
|
|
.s390x,
|
|
.lanai,
|
|
.wasm32,
|
|
.wasm64,
|
|
=> 8,
|
|
|
|
// For these, LLVMABIAlignmentOfType(i128) reports 8. Note that 16
|
|
// is a relevant number in three cases:
|
|
// 1. Different machine code instruction when loading into SIMD register.
|
|
// 2. The C ABI wants 16 for extern structs.
|
|
// 3. 16-byte cmpxchg needs 16-byte alignment.
|
|
// Same logic for powerpc64, mips64, sparc64.
|
|
.powerpc64,
|
|
.powerpc64le,
|
|
.mips64,
|
|
.mips64el,
|
|
.sparc64,
|
|
=> switch (target.ofmt) {
|
|
.c => 16,
|
|
else => 8,
|
|
},
|
|
|
|
.x86_64 => switch (target_util.zigBackend(target, use_llvm)) {
|
|
.stage2_x86_64 => 8,
|
|
else => 16,
|
|
},
|
|
|
|
// Even LLVMABIAlignmentOfType(i128) agrees on these targets.
|
|
.x86,
|
|
.aarch64,
|
|
.aarch64_be,
|
|
.aarch64_32,
|
|
.riscv64,
|
|
.bpfel,
|
|
.bpfeb,
|
|
.nvptx,
|
|
.nvptx64,
|
|
=> 16,
|
|
|
|
// Below this comment are unverified but based on the fact that C requires
|
|
// int128_t to be 16 bytes aligned, it's a safe default.
|
|
.spu_2,
|
|
.csky,
|
|
.arc,
|
|
.m68k,
|
|
.tce,
|
|
.tcele,
|
|
.le32,
|
|
.amdil,
|
|
.hsail,
|
|
.spir,
|
|
.kalimba,
|
|
.renderscript32,
|
|
.spirv,
|
|
.spirv32,
|
|
.shave,
|
|
.le64,
|
|
.amdil64,
|
|
.hsail64,
|
|
.spir64,
|
|
.renderscript64,
|
|
.ve,
|
|
.spirv64,
|
|
.dxil,
|
|
.loongarch32,
|
|
.loongarch64,
|
|
.xtensa,
|
|
=> 16,
|
|
};
|
|
}
|
|
|
|
pub fn bitSize(ty: Type, mod: *Module) u64 {
|
|
return bitSizeAdvanced(ty, mod, null) catch unreachable;
|
|
}
|
|
|
|
/// If you pass `opt_sema`, any recursive type resolutions will happen if
|
|
/// necessary, possibly returning a CompileError. Passing `null` instead asserts
|
|
/// the type is fully resolved, and there will be no error, guaranteed.
|
|
pub fn bitSizeAdvanced(
|
|
ty: Type,
|
|
mod: *Module,
|
|
opt_sema: ?*Sema,
|
|
) Module.CompileError!u64 {
|
|
const target = mod.getTarget();
|
|
const ip = &mod.intern_pool;
|
|
|
|
const strat: AbiAlignmentAdvancedStrat = if (opt_sema) |sema| .{ .sema = sema } else .eager;
|
|
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| return int_type.bits,
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.Slice => return target.ptrBitWidth() * 2,
|
|
else => return target.ptrBitWidth(),
|
|
},
|
|
.anyframe_type => return target.ptrBitWidth(),
|
|
|
|
.array_type => |array_type| {
|
|
const len = array_type.lenIncludingSentinel();
|
|
if (len == 0) return 0;
|
|
const elem_ty = Type.fromInterned(array_type.child);
|
|
const elem_size = @max(
|
|
(try elem_ty.abiAlignmentAdvanced(mod, strat)).scalar.toByteUnits() orelse 0,
|
|
(try elem_ty.abiSizeAdvanced(mod, strat)).scalar,
|
|
);
|
|
if (elem_size == 0) return 0;
|
|
const elem_bit_size = try bitSizeAdvanced(elem_ty, mod, opt_sema);
|
|
return (len - 1) * 8 * elem_size + elem_bit_size;
|
|
},
|
|
.vector_type => |vector_type| {
|
|
const child_ty = Type.fromInterned(vector_type.child);
|
|
const elem_bit_size = try bitSizeAdvanced(child_ty, mod, opt_sema);
|
|
return elem_bit_size * vector_type.len;
|
|
},
|
|
.opt_type => {
|
|
// Optionals and error unions are not packed so their bitsize
|
|
// includes padding bits.
|
|
return (try abiSizeAdvanced(ty, mod, strat)).scalar * 8;
|
|
},
|
|
|
|
.error_set_type, .inferred_error_set_type => return mod.errorSetBits(),
|
|
|
|
.error_union_type => {
|
|
// Optionals and error unions are not packed so their bitsize
|
|
// includes padding bits.
|
|
return (try abiSizeAdvanced(ty, mod, strat)).scalar * 8;
|
|
},
|
|
.func_type => unreachable, // represents machine code; not a pointer
|
|
.simple_type => |t| switch (t) {
|
|
.f16 => return 16,
|
|
.f32 => return 32,
|
|
.f64 => return 64,
|
|
.f80 => return 80,
|
|
.f128 => return 128,
|
|
|
|
.usize,
|
|
.isize,
|
|
=> return target.ptrBitWidth(),
|
|
|
|
.c_char => return target.c_type_bit_size(.char),
|
|
.c_short => return target.c_type_bit_size(.short),
|
|
.c_ushort => return target.c_type_bit_size(.ushort),
|
|
.c_int => return target.c_type_bit_size(.int),
|
|
.c_uint => return target.c_type_bit_size(.uint),
|
|
.c_long => return target.c_type_bit_size(.long),
|
|
.c_ulong => return target.c_type_bit_size(.ulong),
|
|
.c_longlong => return target.c_type_bit_size(.longlong),
|
|
.c_ulonglong => return target.c_type_bit_size(.ulonglong),
|
|
.c_longdouble => return target.c_type_bit_size(.longdouble),
|
|
|
|
.bool => return 1,
|
|
.void => return 0,
|
|
|
|
.anyerror,
|
|
.adhoc_inferred_error_set,
|
|
=> return mod.errorSetBits(),
|
|
|
|
.anyopaque => unreachable,
|
|
.type => unreachable,
|
|
.comptime_int => unreachable,
|
|
.comptime_float => unreachable,
|
|
.noreturn => unreachable,
|
|
.null => unreachable,
|
|
.undefined => unreachable,
|
|
.enum_literal => unreachable,
|
|
.generic_poison => unreachable,
|
|
|
|
.atomic_order => unreachable,
|
|
.atomic_rmw_op => unreachable,
|
|
.calling_convention => unreachable,
|
|
.address_space => unreachable,
|
|
.float_mode => unreachable,
|
|
.reduce_op => unreachable,
|
|
.call_modifier => unreachable,
|
|
.prefetch_options => unreachable,
|
|
.export_options => unreachable,
|
|
.extern_options => unreachable,
|
|
.type_info => unreachable,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
const is_packed = struct_type.layout == .@"packed";
|
|
if (opt_sema) |sema| {
|
|
try sema.resolveTypeFields(ty);
|
|
if (is_packed) try sema.resolveTypeLayout(ty);
|
|
}
|
|
if (is_packed) {
|
|
return try Type.fromInterned(struct_type.backingIntType(ip).*).bitSizeAdvanced(mod, opt_sema);
|
|
}
|
|
return (try ty.abiSizeAdvanced(mod, strat)).scalar * 8;
|
|
},
|
|
|
|
.anon_struct_type => {
|
|
if (opt_sema) |sema| try sema.resolveTypeFields(ty);
|
|
return (try ty.abiSizeAdvanced(mod, strat)).scalar * 8;
|
|
},
|
|
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
const is_packed = ty.containerLayout(mod) == .@"packed";
|
|
if (opt_sema) |sema| {
|
|
try sema.resolveTypeFields(ty);
|
|
if (is_packed) try sema.resolveTypeLayout(ty);
|
|
}
|
|
if (!is_packed) {
|
|
return (try ty.abiSizeAdvanced(mod, strat)).scalar * 8;
|
|
}
|
|
assert(union_type.flagsPtr(ip).status.haveFieldTypes());
|
|
|
|
var size: u64 = 0;
|
|
for (0..union_type.field_types.len) |field_index| {
|
|
const field_ty = union_type.field_types.get(ip)[field_index];
|
|
size = @max(size, try bitSizeAdvanced(Type.fromInterned(field_ty), mod, opt_sema));
|
|
}
|
|
|
|
return size;
|
|
},
|
|
.opaque_type => unreachable,
|
|
.enum_type => return bitSizeAdvanced(Type.fromInterned(ip.loadEnumType(ty.toIntern()).tag_ty), mod, opt_sema),
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
}
|
|
}
|
|
|
|
/// Returns true if the type's layout is already resolved and it is safe
|
|
/// to use `abiSize`, `abiAlignment` and `bitSize` on it.
|
|
pub fn layoutIsResolved(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).haveLayout(ip),
|
|
.union_type => ip.loadUnionType(ty.toIntern()).haveLayout(ip),
|
|
.array_type => |array_type| {
|
|
if (array_type.lenIncludingSentinel() == 0) return true;
|
|
return Type.fromInterned(array_type.child).layoutIsResolved(mod);
|
|
},
|
|
.opt_type => |child| Type.fromInterned(child).layoutIsResolved(mod),
|
|
.error_union_type => |k| Type.fromInterned(k.payload_type).layoutIsResolved(mod),
|
|
else => true,
|
|
};
|
|
}
|
|
|
|
pub fn isSinglePointer(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_info| ptr_info.flags.size == .One,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Asserts `ty` is a pointer.
|
|
pub fn ptrSize(ty: Type, mod: *const Module) std.builtin.Type.Pointer.Size {
|
|
return ptrSizeOrNull(ty, mod).?;
|
|
}
|
|
|
|
/// Returns `null` if `ty` is not a pointer.
|
|
pub fn ptrSizeOrNull(ty: Type, mod: *const Module) ?std.builtin.Type.Pointer.Size {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_info| ptr_info.flags.size,
|
|
else => null,
|
|
};
|
|
}
|
|
|
|
pub fn isSlice(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.size == .Slice,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn slicePtrFieldType(ty: Type, mod: *const Module) Type {
|
|
return Type.fromInterned(mod.intern_pool.slicePtrType(ty.toIntern()));
|
|
}
|
|
|
|
pub fn isConstPtr(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.is_const,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isVolatilePtr(ty: Type, mod: *const Module) bool {
|
|
return isVolatilePtrIp(ty, &mod.intern_pool);
|
|
}
|
|
|
|
pub fn isVolatilePtrIp(ty: Type, ip: *const InternPool) bool {
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.is_volatile,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isAllowzeroPtr(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.is_allowzero,
|
|
.opt_type => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isCPtr(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.size == .C,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isPtrAtRuntime(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.Slice => false,
|
|
.One, .Many, .C => true,
|
|
},
|
|
.opt_type => |child| switch (mod.intern_pool.indexToKey(child)) {
|
|
.ptr_type => |p| switch (p.flags.size) {
|
|
.Slice, .C => false,
|
|
.Many, .One => !p.flags.is_allowzero,
|
|
},
|
|
else => false,
|
|
},
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// For pointer-like optionals, returns true, otherwise returns the allowzero property
|
|
/// of pointers.
|
|
pub fn ptrAllowsZero(ty: Type, mod: *const Module) bool {
|
|
if (ty.isPtrLikeOptional(mod)) {
|
|
return true;
|
|
}
|
|
return ty.ptrInfo(mod).flags.is_allowzero;
|
|
}
|
|
|
|
/// See also `isPtrLikeOptional`.
|
|
pub fn optionalReprIsPayload(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.opt_type => |child_type| child_type == .anyerror_type or switch (mod.intern_pool.indexToKey(child_type)) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.size != .C and !ptr_type.flags.is_allowzero,
|
|
.error_set_type, .inferred_error_set_type => true,
|
|
else => false,
|
|
},
|
|
.ptr_type => |ptr_type| ptr_type.flags.size == .C,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Returns true if the type is optional and would be lowered to a single pointer
|
|
/// address value, using 0 for null. Note that this returns true for C pointers.
|
|
/// This function must be kept in sync with `Sema.typePtrOrOptionalPtrTy`.
|
|
pub fn isPtrLikeOptional(ty: Type, mod: *const Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| ptr_type.flags.size == .C,
|
|
.opt_type => |child| switch (mod.intern_pool.indexToKey(child)) {
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.Slice, .C => false,
|
|
.Many, .One => !ptr_type.flags.is_allowzero,
|
|
},
|
|
else => false,
|
|
},
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// For *[N]T, returns [N]T.
|
|
/// For *T, returns T.
|
|
/// For [*]T, returns T.
|
|
pub fn childType(ty: Type, mod: *const Module) Type {
|
|
return childTypeIp(ty, &mod.intern_pool);
|
|
}
|
|
|
|
pub fn childTypeIp(ty: Type, ip: *const InternPool) Type {
|
|
return Type.fromInterned(ip.childType(ty.toIntern()));
|
|
}
|
|
|
|
/// For *[N]T, returns T.
|
|
/// For ?*T, returns T.
|
|
/// For ?*[N]T, returns T.
|
|
/// For ?[*]T, returns T.
|
|
/// For *T, returns T.
|
|
/// For [*]T, returns T.
|
|
/// For [N]T, returns T.
|
|
/// For []T, returns T.
|
|
/// For anyframe->T, returns T.
|
|
pub fn elemType2(ty: Type, mod: *const Module) Type {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.ptr_type => |ptr_type| switch (ptr_type.flags.size) {
|
|
.One => Type.fromInterned(ptr_type.child).shallowElemType(mod),
|
|
.Many, .C, .Slice => Type.fromInterned(ptr_type.child),
|
|
},
|
|
.anyframe_type => |child| {
|
|
assert(child != .none);
|
|
return Type.fromInterned(child);
|
|
},
|
|
.vector_type => |vector_type| Type.fromInterned(vector_type.child),
|
|
.array_type => |array_type| Type.fromInterned(array_type.child),
|
|
.opt_type => |child| Type.fromInterned(mod.intern_pool.childType(child)),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
fn shallowElemType(child_ty: Type, mod: *const Module) Type {
|
|
return switch (child_ty.zigTypeTag(mod)) {
|
|
.Array, .Vector => child_ty.childType(mod),
|
|
else => child_ty,
|
|
};
|
|
}
|
|
|
|
/// For vectors, returns the element type. Otherwise returns self.
|
|
pub fn scalarType(ty: Type, mod: *Module) Type {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Vector => ty.childType(mod),
|
|
else => ty,
|
|
};
|
|
}
|
|
|
|
/// Asserts that the type is an optional.
|
|
/// Note that for C pointers this returns the type unmodified.
|
|
pub fn optionalChild(ty: Type, mod: *const Module) Type {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.opt_type => |child| Type.fromInterned(child),
|
|
.ptr_type => |ptr_type| b: {
|
|
assert(ptr_type.flags.size == .C);
|
|
break :b ty;
|
|
},
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Returns the tag type of a union, if the type is a union and it has a tag type.
|
|
/// Otherwise, returns `null`.
|
|
pub fn unionTagType(ty: Type, mod: *Module) ?Type {
|
|
const ip = &mod.intern_pool;
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.union_type => {},
|
|
else => return null,
|
|
}
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
switch (union_type.flagsPtr(ip).runtime_tag) {
|
|
.tagged => {
|
|
assert(union_type.flagsPtr(ip).status.haveFieldTypes());
|
|
return Type.fromInterned(union_type.enum_tag_ty);
|
|
},
|
|
else => return null,
|
|
}
|
|
}
|
|
|
|
/// Same as `unionTagType` but includes safety tag.
|
|
/// Codegen should use this version.
|
|
pub fn unionTagTypeSafety(ty: Type, mod: *Module) ?Type {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
if (!union_type.hasTag(ip)) return null;
|
|
assert(union_type.haveFieldTypes(ip));
|
|
return Type.fromInterned(union_type.enum_tag_ty);
|
|
},
|
|
else => null,
|
|
};
|
|
}
|
|
|
|
/// Asserts the type is a union; returns the tag type, even if the tag will
|
|
/// not be stored at runtime.
|
|
pub fn unionTagTypeHypothetical(ty: Type, mod: *Module) Type {
|
|
const union_obj = mod.typeToUnion(ty).?;
|
|
return Type.fromInterned(union_obj.enum_tag_ty);
|
|
}
|
|
|
|
pub fn unionFieldType(ty: Type, enum_tag: Value, mod: *Module) ?Type {
|
|
const ip = &mod.intern_pool;
|
|
const union_obj = mod.typeToUnion(ty).?;
|
|
const union_fields = union_obj.field_types.get(ip);
|
|
const index = mod.unionTagFieldIndex(union_obj, enum_tag) orelse return null;
|
|
return Type.fromInterned(union_fields[index]);
|
|
}
|
|
|
|
pub fn unionFieldTypeByIndex(ty: Type, index: usize, mod: *Module) Type {
|
|
const ip = &mod.intern_pool;
|
|
const union_obj = mod.typeToUnion(ty).?;
|
|
return Type.fromInterned(union_obj.field_types.get(ip)[index]);
|
|
}
|
|
|
|
pub fn unionTagFieldIndex(ty: Type, enum_tag: Value, mod: *Module) ?u32 {
|
|
const union_obj = mod.typeToUnion(ty).?;
|
|
return mod.unionTagFieldIndex(union_obj, enum_tag);
|
|
}
|
|
|
|
pub fn unionHasAllZeroBitFieldTypes(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
const union_obj = mod.typeToUnion(ty).?;
|
|
for (union_obj.field_types.get(ip)) |field_ty| {
|
|
if (Type.fromInterned(field_ty).hasRuntimeBits(mod)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns the type used for backing storage of this union during comptime operations.
|
|
/// Asserts the type is either an extern or packed union.
|
|
pub fn unionBackingType(ty: Type, mod: *Module) !Type {
|
|
return switch (ty.containerLayout(mod)) {
|
|
.@"extern" => try mod.arrayType(.{ .len = ty.abiSize(mod), .child = .u8_type }),
|
|
.@"packed" => try mod.intType(.unsigned, @intCast(ty.bitSize(mod))),
|
|
.auto => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn unionGetLayout(ty: Type, mod: *Module) Module.UnionLayout {
|
|
const ip = &mod.intern_pool;
|
|
const union_obj = ip.loadUnionType(ty.toIntern());
|
|
return mod.getUnionLayout(union_obj);
|
|
}
|
|
|
|
pub fn containerLayout(ty: Type, mod: *Module) std.builtin.Type.ContainerLayout {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).layout,
|
|
.anon_struct_type => .auto,
|
|
.union_type => ip.loadUnionType(ty.toIntern()).flagsPtr(ip).layout,
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Asserts that the type is an error union.
|
|
pub fn errorUnionPayload(ty: Type, mod: *Module) Type {
|
|
return Type.fromInterned(mod.intern_pool.indexToKey(ty.toIntern()).error_union_type.payload_type);
|
|
}
|
|
|
|
/// Asserts that the type is an error union.
|
|
pub fn errorUnionSet(ty: Type, mod: *Module) Type {
|
|
return Type.fromInterned(mod.intern_pool.errorUnionSet(ty.toIntern()));
|
|
}
|
|
|
|
/// Returns false for unresolved inferred error sets.
|
|
pub fn errorSetIsEmpty(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ty.toIntern()) {
|
|
.anyerror_type, .adhoc_inferred_error_set_type => false,
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.error_set_type => |error_set_type| error_set_type.names.len == 0,
|
|
.inferred_error_set_type => |i| switch (ip.funcIesResolved(i).*) {
|
|
.none, .anyerror_type => false,
|
|
else => |t| ip.indexToKey(t).error_set_type.names.len == 0,
|
|
},
|
|
else => unreachable,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// Returns true if it is an error set that includes anyerror, false otherwise.
|
|
/// Note that the result may be a false negative if the type did not get error set
|
|
/// resolution prior to this call.
|
|
pub fn isAnyError(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ty.toIntern()) {
|
|
.anyerror_type => true,
|
|
.adhoc_inferred_error_set_type => false,
|
|
else => switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.inferred_error_set_type => |i| ip.funcIesResolved(i).* == .anyerror_type,
|
|
else => false,
|
|
},
|
|
};
|
|
}
|
|
|
|
pub fn isError(ty: Type, mod: *const Module) bool {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.ErrorUnion, .ErrorSet => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Returns whether ty, which must be an error set, includes an error `name`.
|
|
/// Might return a false negative if `ty` is an inferred error set and not fully
|
|
/// resolved yet.
|
|
pub fn errorSetHasFieldIp(
|
|
ip: *const InternPool,
|
|
ty: InternPool.Index,
|
|
name: InternPool.NullTerminatedString,
|
|
) bool {
|
|
return switch (ty) {
|
|
.anyerror_type => true,
|
|
else => switch (ip.indexToKey(ty)) {
|
|
.error_set_type => |error_set_type| error_set_type.nameIndex(ip, name) != null,
|
|
.inferred_error_set_type => |i| switch (ip.funcIesResolved(i).*) {
|
|
.anyerror_type => true,
|
|
.none => false,
|
|
else => |t| ip.indexToKey(t).error_set_type.nameIndex(ip, name) != null,
|
|
},
|
|
else => unreachable,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// Returns whether ty, which must be an error set, includes an error `name`.
|
|
/// Might return a false negative if `ty` is an inferred error set and not fully
|
|
/// resolved yet.
|
|
pub fn errorSetHasField(ty: Type, name: []const u8, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ty.toIntern()) {
|
|
.anyerror_type => true,
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.error_set_type => |error_set_type| {
|
|
// If the string is not interned, then the field certainly is not present.
|
|
const field_name_interned = ip.getString(name).unwrap() orelse return false;
|
|
return error_set_type.nameIndex(ip, field_name_interned) != null;
|
|
},
|
|
.inferred_error_set_type => |i| switch (ip.funcIesResolved(i).*) {
|
|
.anyerror_type => true,
|
|
.none => false,
|
|
else => |t| {
|
|
// If the string is not interned, then the field certainly is not present.
|
|
const field_name_interned = ip.getString(name).unwrap() orelse return false;
|
|
return ip.indexToKey(t).error_set_type.nameIndex(ip, field_name_interned) != null;
|
|
},
|
|
},
|
|
else => unreachable,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// Asserts the type is an array or vector or struct.
|
|
pub fn arrayLen(ty: Type, mod: *const Module) u64 {
|
|
return ty.arrayLenIp(&mod.intern_pool);
|
|
}
|
|
|
|
pub fn arrayLenIp(ty: Type, ip: *const InternPool) u64 {
|
|
return ip.aggregateTypeLen(ty.toIntern());
|
|
}
|
|
|
|
pub fn arrayLenIncludingSentinel(ty: Type, mod: *const Module) u64 {
|
|
return mod.intern_pool.aggregateTypeLenIncludingSentinel(ty.toIntern());
|
|
}
|
|
|
|
pub fn vectorLen(ty: Type, mod: *const Module) u32 {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.vector_type => |vector_type| vector_type.len,
|
|
.anon_struct_type => |tuple| @intCast(tuple.types.len),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Asserts the type is an array, pointer or vector.
|
|
pub fn sentinel(ty: Type, mod: *const Module) ?Value {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.vector_type,
|
|
.struct_type,
|
|
.anon_struct_type,
|
|
=> null,
|
|
|
|
.array_type => |t| if (t.sentinel != .none) Value.fromInterned(t.sentinel) else null,
|
|
.ptr_type => |t| if (t.sentinel != .none) Value.fromInterned(t.sentinel) else null,
|
|
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Returns true if and only if the type is a fixed-width integer.
|
|
pub fn isInt(self: Type, mod: *const Module) bool {
|
|
return self.toIntern() != .comptime_int_type and
|
|
mod.intern_pool.isIntegerType(self.toIntern());
|
|
}
|
|
|
|
/// Returns true if and only if the type is a fixed-width, signed integer.
|
|
pub fn isSignedInt(ty: Type, mod: *const Module) bool {
|
|
return switch (ty.toIntern()) {
|
|
.c_char_type => mod.getTarget().charSignedness() == .signed,
|
|
.isize_type, .c_short_type, .c_int_type, .c_long_type, .c_longlong_type => true,
|
|
else => switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| int_type.signedness == .signed,
|
|
else => false,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// Returns true if and only if the type is a fixed-width, unsigned integer.
|
|
pub fn isUnsignedInt(ty: Type, mod: *const Module) bool {
|
|
return switch (ty.toIntern()) {
|
|
.c_char_type => mod.getTarget().charSignedness() == .unsigned,
|
|
.usize_type, .c_ushort_type, .c_uint_type, .c_ulong_type, .c_ulonglong_type => true,
|
|
else => switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| int_type.signedness == .unsigned,
|
|
else => false,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// Returns true for integers, enums, error sets, and packed structs.
|
|
/// If this function returns true, then intInfo() can be called on the type.
|
|
pub fn isAbiInt(ty: Type, mod: *Module) bool {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Int, .Enum, .ErrorSet => true,
|
|
.Struct => ty.containerLayout(mod) == .@"packed",
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Asserts the type is an integer, enum, error set, or vector of one of them.
|
|
pub fn intInfo(starting_ty: Type, mod: *Module) InternPool.Key.IntType {
|
|
const ip = &mod.intern_pool;
|
|
const target = mod.getTarget();
|
|
var ty = starting_ty;
|
|
|
|
while (true) switch (ty.toIntern()) {
|
|
.anyerror_type, .adhoc_inferred_error_set_type => {
|
|
return .{ .signedness = .unsigned, .bits = mod.errorSetBits() };
|
|
},
|
|
.usize_type => return .{ .signedness = .unsigned, .bits = target.ptrBitWidth() },
|
|
.isize_type => return .{ .signedness = .signed, .bits = target.ptrBitWidth() },
|
|
.c_char_type => return .{ .signedness = mod.getTarget().charSignedness(), .bits = target.c_type_bit_size(.char) },
|
|
.c_short_type => return .{ .signedness = .signed, .bits = target.c_type_bit_size(.short) },
|
|
.c_ushort_type => return .{ .signedness = .unsigned, .bits = target.c_type_bit_size(.ushort) },
|
|
.c_int_type => return .{ .signedness = .signed, .bits = target.c_type_bit_size(.int) },
|
|
.c_uint_type => return .{ .signedness = .unsigned, .bits = target.c_type_bit_size(.uint) },
|
|
.c_long_type => return .{ .signedness = .signed, .bits = target.c_type_bit_size(.long) },
|
|
.c_ulong_type => return .{ .signedness = .unsigned, .bits = target.c_type_bit_size(.ulong) },
|
|
.c_longlong_type => return .{ .signedness = .signed, .bits = target.c_type_bit_size(.longlong) },
|
|
.c_ulonglong_type => return .{ .signedness = .unsigned, .bits = target.c_type_bit_size(.ulonglong) },
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| return int_type,
|
|
.struct_type => ty = Type.fromInterned(ip.loadStructType(ty.toIntern()).backingIntType(ip).*),
|
|
.enum_type => ty = Type.fromInterned(ip.loadEnumType(ty.toIntern()).tag_ty),
|
|
.vector_type => |vector_type| ty = Type.fromInterned(vector_type.child),
|
|
|
|
.error_set_type, .inferred_error_set_type => {
|
|
return .{ .signedness = .unsigned, .bits = mod.errorSetBits() };
|
|
},
|
|
|
|
.anon_struct_type => unreachable,
|
|
|
|
.ptr_type => unreachable,
|
|
.anyframe_type => unreachable,
|
|
.array_type => unreachable,
|
|
|
|
.opt_type => unreachable,
|
|
.error_union_type => unreachable,
|
|
.func_type => unreachable,
|
|
.simple_type => unreachable, // handled via Index enum tag above
|
|
|
|
.union_type => unreachable,
|
|
.opaque_type => unreachable,
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
},
|
|
};
|
|
}
|
|
|
|
pub fn isNamedInt(ty: Type) bool {
|
|
return switch (ty.toIntern()) {
|
|
.usize_type,
|
|
.isize_type,
|
|
.c_char_type,
|
|
.c_short_type,
|
|
.c_ushort_type,
|
|
.c_int_type,
|
|
.c_uint_type,
|
|
.c_long_type,
|
|
.c_ulong_type,
|
|
.c_longlong_type,
|
|
.c_ulonglong_type,
|
|
=> true,
|
|
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Returns `false` for `comptime_float`.
|
|
pub fn isRuntimeFloat(ty: Type) bool {
|
|
return switch (ty.toIntern()) {
|
|
.f16_type,
|
|
.f32_type,
|
|
.f64_type,
|
|
.f80_type,
|
|
.f128_type,
|
|
.c_longdouble_type,
|
|
=> true,
|
|
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Returns `true` for `comptime_float`.
|
|
pub fn isAnyFloat(ty: Type) bool {
|
|
return switch (ty.toIntern()) {
|
|
.f16_type,
|
|
.f32_type,
|
|
.f64_type,
|
|
.f80_type,
|
|
.f128_type,
|
|
.c_longdouble_type,
|
|
.comptime_float_type,
|
|
=> true,
|
|
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Asserts the type is a fixed-size float or comptime_float.
|
|
/// Returns 128 for comptime_float types.
|
|
pub fn floatBits(ty: Type, target: Target) u16 {
|
|
return switch (ty.toIntern()) {
|
|
.f16_type => 16,
|
|
.f32_type => 32,
|
|
.f64_type => 64,
|
|
.f80_type => 80,
|
|
.f128_type, .comptime_float_type => 128,
|
|
.c_longdouble_type => target.c_type_bit_size(.longdouble),
|
|
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Asserts the type is a function or a function pointer.
|
|
pub fn fnReturnType(ty: Type, mod: *Module) Type {
|
|
return Type.fromInterned(mod.intern_pool.funcTypeReturnType(ty.toIntern()));
|
|
}
|
|
|
|
/// Asserts the type is a function.
|
|
pub fn fnCallingConvention(ty: Type, mod: *Module) std.builtin.CallingConvention {
|
|
return mod.intern_pool.indexToKey(ty.toIntern()).func_type.cc;
|
|
}
|
|
|
|
pub fn isValidParamType(self: Type, mod: *const Module) bool {
|
|
return switch (self.zigTypeTagOrPoison(mod) catch return true) {
|
|
.Opaque, .NoReturn => false,
|
|
else => true,
|
|
};
|
|
}
|
|
|
|
pub fn isValidReturnType(self: Type, mod: *const Module) bool {
|
|
return switch (self.zigTypeTagOrPoison(mod) catch return true) {
|
|
.Opaque => false,
|
|
else => true,
|
|
};
|
|
}
|
|
|
|
/// Asserts the type is a function.
|
|
pub fn fnIsVarArgs(ty: Type, mod: *Module) bool {
|
|
return mod.intern_pool.indexToKey(ty.toIntern()).func_type.is_var_args;
|
|
}
|
|
|
|
pub fn isNumeric(ty: Type, mod: *const Module) bool {
|
|
return switch (ty.toIntern()) {
|
|
.f16_type,
|
|
.f32_type,
|
|
.f64_type,
|
|
.f80_type,
|
|
.f128_type,
|
|
.c_longdouble_type,
|
|
.comptime_int_type,
|
|
.comptime_float_type,
|
|
.usize_type,
|
|
.isize_type,
|
|
.c_char_type,
|
|
.c_short_type,
|
|
.c_ushort_type,
|
|
.c_int_type,
|
|
.c_uint_type,
|
|
.c_long_type,
|
|
.c_ulong_type,
|
|
.c_longlong_type,
|
|
.c_ulonglong_type,
|
|
=> true,
|
|
|
|
else => switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.int_type => true,
|
|
else => false,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// During semantic analysis, instead call `Sema.typeHasOnePossibleValue` which
|
|
/// resolves field types rather than asserting they are already resolved.
|
|
pub fn onePossibleValue(starting_type: Type, mod: *Module) !?Value {
|
|
var ty = starting_type;
|
|
const ip = &mod.intern_pool;
|
|
while (true) switch (ty.toIntern()) {
|
|
.empty_struct_type => return Value.empty_struct,
|
|
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => |int_type| {
|
|
if (int_type.bits == 0) {
|
|
return try mod.intValue(ty, 0);
|
|
} else {
|
|
return null;
|
|
}
|
|
},
|
|
|
|
.ptr_type,
|
|
.error_union_type,
|
|
.func_type,
|
|
.anyframe_type,
|
|
.error_set_type,
|
|
.inferred_error_set_type,
|
|
=> return null,
|
|
|
|
inline .array_type, .vector_type => |seq_type, seq_tag| {
|
|
const has_sentinel = seq_tag == .array_type and seq_type.sentinel != .none;
|
|
if (seq_type.len + @intFromBool(has_sentinel) == 0) return Value.fromInterned((try mod.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .elems = &.{} },
|
|
} })));
|
|
if (try Type.fromInterned(seq_type.child).onePossibleValue(mod)) |opv| {
|
|
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .repeated_elem = opv.toIntern() },
|
|
} })));
|
|
}
|
|
return null;
|
|
},
|
|
.opt_type => |child| {
|
|
if (child == .noreturn_type) {
|
|
return try mod.nullValue(ty);
|
|
} else {
|
|
return null;
|
|
}
|
|
},
|
|
|
|
.simple_type => |t| switch (t) {
|
|
.f16,
|
|
.f32,
|
|
.f64,
|
|
.f80,
|
|
.f128,
|
|
.usize,
|
|
.isize,
|
|
.c_char,
|
|
.c_short,
|
|
.c_ushort,
|
|
.c_int,
|
|
.c_uint,
|
|
.c_long,
|
|
.c_ulong,
|
|
.c_longlong,
|
|
.c_ulonglong,
|
|
.c_longdouble,
|
|
.anyopaque,
|
|
.bool,
|
|
.type,
|
|
.anyerror,
|
|
.comptime_int,
|
|
.comptime_float,
|
|
.enum_literal,
|
|
.atomic_order,
|
|
.atomic_rmw_op,
|
|
.calling_convention,
|
|
.address_space,
|
|
.float_mode,
|
|
.reduce_op,
|
|
.call_modifier,
|
|
.prefetch_options,
|
|
.export_options,
|
|
.extern_options,
|
|
.type_info,
|
|
.adhoc_inferred_error_set,
|
|
=> return null,
|
|
|
|
.void => return Value.void,
|
|
.noreturn => return Value.@"unreachable",
|
|
.null => return Value.null,
|
|
.undefined => return Value.undef,
|
|
|
|
.generic_poison => unreachable,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
assert(struct_type.haveFieldTypes(ip));
|
|
if (struct_type.knownNonOpv(ip))
|
|
return null;
|
|
const field_vals = try mod.gpa.alloc(InternPool.Index, struct_type.field_types.len);
|
|
defer mod.gpa.free(field_vals);
|
|
for (field_vals, 0..) |*field_val, i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
if (struct_type.fieldIsComptime(ip, i)) {
|
|
assert(struct_type.haveFieldInits(ip));
|
|
field_val.* = struct_type.field_inits.get(ip)[i];
|
|
continue;
|
|
}
|
|
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
|
|
if (try field_ty.onePossibleValue(mod)) |field_opv| {
|
|
field_val.* = field_opv.toIntern();
|
|
} else return null;
|
|
}
|
|
|
|
// In this case the struct has no runtime-known fields and
|
|
// therefore has one possible value.
|
|
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .elems = field_vals },
|
|
} })));
|
|
},
|
|
|
|
.anon_struct_type => |tuple| {
|
|
for (tuple.values.get(ip)) |val| {
|
|
if (val == .none) return null;
|
|
}
|
|
// In this case the struct has all comptime-known fields and
|
|
// therefore has one possible value.
|
|
// TODO: write something like getCoercedInts to avoid needing to dupe
|
|
const duped_values = try mod.gpa.dupe(InternPool.Index, tuple.values.get(ip));
|
|
defer mod.gpa.free(duped_values);
|
|
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
|
|
.ty = ty.toIntern(),
|
|
.storage = .{ .elems = duped_values },
|
|
} })));
|
|
},
|
|
|
|
.union_type => {
|
|
const union_obj = ip.loadUnionType(ty.toIntern());
|
|
const tag_val = (try Type.fromInterned(union_obj.enum_tag_ty).onePossibleValue(mod)) orelse
|
|
return null;
|
|
if (union_obj.field_types.len == 0) {
|
|
const only = try mod.intern(.{ .empty_enum_value = ty.toIntern() });
|
|
return Value.fromInterned(only);
|
|
}
|
|
const only_field_ty = union_obj.field_types.get(ip)[0];
|
|
const val_val = (try Type.fromInterned(only_field_ty).onePossibleValue(mod)) orelse
|
|
return null;
|
|
const only = try mod.intern(.{ .un = .{
|
|
.ty = ty.toIntern(),
|
|
.tag = tag_val.toIntern(),
|
|
.val = val_val.toIntern(),
|
|
} });
|
|
return Value.fromInterned(only);
|
|
},
|
|
.opaque_type => return null,
|
|
.enum_type => {
|
|
const enum_type = ip.loadEnumType(ty.toIntern());
|
|
switch (enum_type.tag_mode) {
|
|
.nonexhaustive => {
|
|
if (enum_type.tag_ty == .comptime_int_type) return null;
|
|
|
|
if (try Type.fromInterned(enum_type.tag_ty).onePossibleValue(mod)) |int_opv| {
|
|
const only = try mod.intern(.{ .enum_tag = .{
|
|
.ty = ty.toIntern(),
|
|
.int = int_opv.toIntern(),
|
|
} });
|
|
return Value.fromInterned(only);
|
|
}
|
|
|
|
return null;
|
|
},
|
|
.auto, .explicit => {
|
|
if (Type.fromInterned(enum_type.tag_ty).hasRuntimeBits(mod)) return null;
|
|
|
|
switch (enum_type.names.len) {
|
|
0 => {
|
|
const only = try mod.intern(.{ .empty_enum_value = ty.toIntern() });
|
|
return Value.fromInterned(only);
|
|
},
|
|
1 => {
|
|
if (enum_type.values.len == 0) {
|
|
const only = try mod.intern(.{ .enum_tag = .{
|
|
.ty = ty.toIntern(),
|
|
.int = try mod.intern(.{ .int = .{
|
|
.ty = enum_type.tag_ty,
|
|
.storage = .{ .u64 = 0 },
|
|
} }),
|
|
} });
|
|
return Value.fromInterned(only);
|
|
} else {
|
|
return Value.fromInterned(enum_type.values.get(ip)[0]);
|
|
}
|
|
},
|
|
else => return null,
|
|
}
|
|
},
|
|
}
|
|
},
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
},
|
|
};
|
|
}
|
|
|
|
/// During semantic analysis, instead call `Sema.typeRequiresComptime` which
|
|
/// resolves field types rather than asserting they are already resolved.
|
|
pub fn comptimeOnly(ty: Type, mod: *Module) bool {
|
|
return ty.comptimeOnlyAdvanced(mod, null) catch unreachable;
|
|
}
|
|
|
|
/// `generic_poison` will return false.
|
|
/// May return false negatives when structs and unions are having their field types resolved.
|
|
/// If `opt_sema` is not provided, asserts that the type is sufficiently resolved.
|
|
pub fn comptimeOnlyAdvanced(ty: Type, mod: *Module, opt_sema: ?*Sema) Module.CompileError!bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ty.toIntern()) {
|
|
.empty_struct_type => false,
|
|
|
|
else => switch (ip.indexToKey(ty.toIntern())) {
|
|
.int_type => false,
|
|
.ptr_type => |ptr_type| {
|
|
const child_ty = Type.fromInterned(ptr_type.child);
|
|
switch (child_ty.zigTypeTag(mod)) {
|
|
.Fn => return !try child_ty.fnHasRuntimeBitsAdvanced(mod, opt_sema),
|
|
.Opaque => return false,
|
|
else => return child_ty.comptimeOnlyAdvanced(mod, opt_sema),
|
|
}
|
|
},
|
|
.anyframe_type => |child| {
|
|
if (child == .none) return false;
|
|
return Type.fromInterned(child).comptimeOnlyAdvanced(mod, opt_sema);
|
|
},
|
|
.array_type => |array_type| return Type.fromInterned(array_type.child).comptimeOnlyAdvanced(mod, opt_sema),
|
|
.vector_type => |vector_type| return Type.fromInterned(vector_type.child).comptimeOnlyAdvanced(mod, opt_sema),
|
|
.opt_type => |child| return Type.fromInterned(child).comptimeOnlyAdvanced(mod, opt_sema),
|
|
.error_union_type => |error_union_type| return Type.fromInterned(error_union_type.payload_type).comptimeOnlyAdvanced(mod, opt_sema),
|
|
|
|
.error_set_type,
|
|
.inferred_error_set_type,
|
|
=> false,
|
|
|
|
// These are function bodies, not function pointers.
|
|
.func_type => true,
|
|
|
|
.simple_type => |t| switch (t) {
|
|
.f16,
|
|
.f32,
|
|
.f64,
|
|
.f80,
|
|
.f128,
|
|
.usize,
|
|
.isize,
|
|
.c_char,
|
|
.c_short,
|
|
.c_ushort,
|
|
.c_int,
|
|
.c_uint,
|
|
.c_long,
|
|
.c_ulong,
|
|
.c_longlong,
|
|
.c_ulonglong,
|
|
.c_longdouble,
|
|
.anyopaque,
|
|
.bool,
|
|
.void,
|
|
.anyerror,
|
|
.adhoc_inferred_error_set,
|
|
.noreturn,
|
|
.generic_poison,
|
|
.atomic_order,
|
|
.atomic_rmw_op,
|
|
.calling_convention,
|
|
.address_space,
|
|
.float_mode,
|
|
.reduce_op,
|
|
.call_modifier,
|
|
.prefetch_options,
|
|
.export_options,
|
|
.extern_options,
|
|
=> false,
|
|
|
|
.type,
|
|
.comptime_int,
|
|
.comptime_float,
|
|
.null,
|
|
.undefined,
|
|
.enum_literal,
|
|
.type_info,
|
|
=> true,
|
|
},
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
// packed structs cannot be comptime-only because they have a well-defined
|
|
// memory layout and every field has a well-defined bit pattern.
|
|
if (struct_type.layout == .@"packed")
|
|
return false;
|
|
|
|
// A struct with no fields is not comptime-only.
|
|
return switch (struct_type.flagsPtr(ip).requires_comptime) {
|
|
.no, .wip => false,
|
|
.yes => true,
|
|
.unknown => {
|
|
// The type is not resolved; assert that we have a Sema.
|
|
const sema = opt_sema.?;
|
|
|
|
if (struct_type.flagsPtr(ip).field_types_wip)
|
|
return false;
|
|
|
|
struct_type.flagsPtr(ip).requires_comptime = .wip;
|
|
errdefer struct_type.flagsPtr(ip).requires_comptime = .unknown;
|
|
|
|
try sema.resolveTypeFieldsStruct(ty.toIntern(), struct_type);
|
|
|
|
for (0..struct_type.field_types.len) |i_usize| {
|
|
const i: u32 = @intCast(i_usize);
|
|
if (struct_type.fieldIsComptime(ip, i)) continue;
|
|
const field_ty = struct_type.field_types.get(ip)[i];
|
|
if (try Type.fromInterned(field_ty).comptimeOnlyAdvanced(mod, opt_sema)) {
|
|
// Note that this does not cause the layout to
|
|
// be considered resolved. Comptime-only types
|
|
// still maintain a layout of their
|
|
// runtime-known fields.
|
|
struct_type.flagsPtr(ip).requires_comptime = .yes;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
struct_type.flagsPtr(ip).requires_comptime = .no;
|
|
return false;
|
|
},
|
|
};
|
|
},
|
|
|
|
.anon_struct_type => |tuple| {
|
|
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, val| {
|
|
const have_comptime_val = val != .none;
|
|
if (!have_comptime_val and try Type.fromInterned(field_ty).comptimeOnlyAdvanced(mod, opt_sema)) return true;
|
|
}
|
|
return false;
|
|
},
|
|
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
switch (union_type.flagsPtr(ip).requires_comptime) {
|
|
.no, .wip => return false,
|
|
.yes => return true,
|
|
.unknown => {
|
|
// The type is not resolved; assert that we have a Sema.
|
|
const sema = opt_sema.?;
|
|
|
|
if (union_type.flagsPtr(ip).status == .field_types_wip)
|
|
return false;
|
|
|
|
union_type.flagsPtr(ip).requires_comptime = .wip;
|
|
errdefer union_type.flagsPtr(ip).requires_comptime = .unknown;
|
|
|
|
try sema.resolveTypeFieldsUnion(ty, union_type);
|
|
|
|
for (0..union_type.field_types.len) |field_idx| {
|
|
const field_ty = union_type.field_types.get(ip)[field_idx];
|
|
if (try Type.fromInterned(field_ty).comptimeOnlyAdvanced(mod, opt_sema)) {
|
|
union_type.flagsPtr(ip).requires_comptime = .yes;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
union_type.flagsPtr(ip).requires_comptime = .no;
|
|
return false;
|
|
},
|
|
}
|
|
},
|
|
|
|
.opaque_type => false,
|
|
|
|
.enum_type => return Type.fromInterned(ip.loadEnumType(ty.toIntern()).tag_ty).comptimeOnlyAdvanced(mod, opt_sema),
|
|
|
|
// values, not types
|
|
.undef,
|
|
.simple_value,
|
|
.variable,
|
|
.extern_func,
|
|
.func,
|
|
.int,
|
|
.err,
|
|
.error_union,
|
|
.enum_literal,
|
|
.enum_tag,
|
|
.empty_enum_value,
|
|
.float,
|
|
.ptr,
|
|
.slice,
|
|
.opt,
|
|
.aggregate,
|
|
.un,
|
|
// memoization, not types
|
|
.memoized_call,
|
|
=> unreachable,
|
|
},
|
|
};
|
|
}
|
|
|
|
pub fn isVector(ty: Type, mod: *const Module) bool {
|
|
return ty.zigTypeTag(mod) == .Vector;
|
|
}
|
|
|
|
/// Returns 0 if not a vector, otherwise returns @bitSizeOf(Element) * vector_len.
|
|
pub fn totalVectorBits(ty: Type, zcu: *Zcu) u64 {
|
|
if (!ty.isVector(zcu)) return 0;
|
|
const v = zcu.intern_pool.indexToKey(ty.toIntern()).vector_type;
|
|
return v.len * Type.fromInterned(v.child).bitSize(zcu);
|
|
}
|
|
|
|
pub fn isArrayOrVector(ty: Type, mod: *const Module) bool {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Array, .Vector => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isIndexable(ty: Type, mod: *Module) bool {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Array, .Vector => true,
|
|
.Pointer => switch (ty.ptrSize(mod)) {
|
|
.Slice, .Many, .C => true,
|
|
.One => switch (ty.childType(mod).zigTypeTag(mod)) {
|
|
.Array, .Vector => true,
|
|
.Struct => ty.childType(mod).isTuple(mod),
|
|
else => false,
|
|
},
|
|
},
|
|
.Struct => ty.isTuple(mod),
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn indexableHasLen(ty: Type, mod: *Module) bool {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Array, .Vector => true,
|
|
.Pointer => switch (ty.ptrSize(mod)) {
|
|
.Many, .C => false,
|
|
.Slice => true,
|
|
.One => switch (ty.childType(mod).zigTypeTag(mod)) {
|
|
.Array, .Vector => true,
|
|
.Struct => ty.childType(mod).isTuple(mod),
|
|
else => false,
|
|
},
|
|
},
|
|
.Struct => ty.isTuple(mod),
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Asserts that the type can have a namespace.
|
|
pub fn getNamespaceIndex(ty: Type, zcu: *Zcu) InternPool.OptionalNamespaceIndex {
|
|
return ty.getNamespace(zcu).?;
|
|
}
|
|
|
|
/// Returns null if the type has no namespace.
|
|
pub fn getNamespace(ty: Type, zcu: *Zcu) ?InternPool.OptionalNamespaceIndex {
|
|
const ip = &zcu.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.opaque_type => ip.loadOpaqueType(ty.toIntern()).namespace,
|
|
.struct_type => ip.loadStructType(ty.toIntern()).namespace,
|
|
.union_type => ip.loadUnionType(ty.toIntern()).namespace,
|
|
.enum_type => ip.loadEnumType(ty.toIntern()).namespace,
|
|
|
|
.anon_struct_type => .none,
|
|
.simple_type => |s| switch (s) {
|
|
.anyopaque,
|
|
.atomic_order,
|
|
.atomic_rmw_op,
|
|
.calling_convention,
|
|
.address_space,
|
|
.float_mode,
|
|
.reduce_op,
|
|
.call_modifier,
|
|
.prefetch_options,
|
|
.export_options,
|
|
.extern_options,
|
|
.type_info,
|
|
=> .none,
|
|
else => null,
|
|
},
|
|
|
|
else => null,
|
|
};
|
|
}
|
|
|
|
// Works for vectors and vectors of integers.
|
|
pub fn minInt(ty: Type, mod: *Module, dest_ty: Type) !Value {
|
|
const scalar = try minIntScalar(ty.scalarType(mod), mod, dest_ty.scalarType(mod));
|
|
return if (ty.zigTypeTag(mod) == .Vector) Value.fromInterned((try mod.intern(.{ .aggregate = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.storage = .{ .repeated_elem = scalar.toIntern() },
|
|
} }))) else scalar;
|
|
}
|
|
|
|
/// Asserts that the type is an integer.
|
|
pub fn minIntScalar(ty: Type, mod: *Module, dest_ty: Type) !Value {
|
|
const info = ty.intInfo(mod);
|
|
if (info.signedness == .unsigned) return mod.intValue(dest_ty, 0);
|
|
if (info.bits == 0) return mod.intValue(dest_ty, -1);
|
|
|
|
if (std.math.cast(u6, info.bits - 1)) |shift| {
|
|
const n = @as(i64, std.math.minInt(i64)) >> (63 - shift);
|
|
return mod.intValue(dest_ty, n);
|
|
}
|
|
|
|
var res = try std.math.big.int.Managed.init(mod.gpa);
|
|
defer res.deinit();
|
|
|
|
try res.setTwosCompIntLimit(.min, info.signedness, info.bits);
|
|
|
|
return mod.intValue_big(dest_ty, res.toConst());
|
|
}
|
|
|
|
// Works for vectors and vectors of integers.
|
|
/// The returned Value will have type dest_ty.
|
|
pub fn maxInt(ty: Type, mod: *Module, dest_ty: Type) !Value {
|
|
const scalar = try maxIntScalar(ty.scalarType(mod), mod, dest_ty.scalarType(mod));
|
|
return if (ty.zigTypeTag(mod) == .Vector) Value.fromInterned((try mod.intern(.{ .aggregate = .{
|
|
.ty = dest_ty.toIntern(),
|
|
.storage = .{ .repeated_elem = scalar.toIntern() },
|
|
} }))) else scalar;
|
|
}
|
|
|
|
/// The returned Value will have type dest_ty.
|
|
pub fn maxIntScalar(ty: Type, mod: *Module, dest_ty: Type) !Value {
|
|
const info = ty.intInfo(mod);
|
|
|
|
switch (info.bits) {
|
|
0 => return switch (info.signedness) {
|
|
.signed => try mod.intValue(dest_ty, -1),
|
|
.unsigned => try mod.intValue(dest_ty, 0),
|
|
},
|
|
1 => return switch (info.signedness) {
|
|
.signed => try mod.intValue(dest_ty, 0),
|
|
.unsigned => try mod.intValue(dest_ty, 1),
|
|
},
|
|
else => {},
|
|
}
|
|
|
|
if (std.math.cast(u6, info.bits - 1)) |shift| switch (info.signedness) {
|
|
.signed => {
|
|
const n = @as(i64, std.math.maxInt(i64)) >> (63 - shift);
|
|
return mod.intValue(dest_ty, n);
|
|
},
|
|
.unsigned => {
|
|
const n = @as(u64, std.math.maxInt(u64)) >> (63 - shift);
|
|
return mod.intValue(dest_ty, n);
|
|
},
|
|
};
|
|
|
|
var res = try std.math.big.int.Managed.init(mod.gpa);
|
|
defer res.deinit();
|
|
|
|
try res.setTwosCompIntLimit(.max, info.signedness, info.bits);
|
|
|
|
return mod.intValue_big(dest_ty, res.toConst());
|
|
}
|
|
|
|
/// Asserts the type is an enum or a union.
|
|
pub fn intTagType(ty: Type, mod: *Module) Type {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.union_type => Type.fromInterned(ip.loadUnionType(ty.toIntern()).enum_tag_ty).intTagType(mod),
|
|
.enum_type => Type.fromInterned(ip.loadEnumType(ty.toIntern()).tag_ty),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn isNonexhaustiveEnum(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.enum_type => switch (ip.loadEnumType(ty.toIntern()).tag_mode) {
|
|
.nonexhaustive => true,
|
|
.auto, .explicit => false,
|
|
},
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
// Asserts that `ty` is an error set and not `anyerror`.
|
|
// Asserts that `ty` is resolved if it is an inferred error set.
|
|
pub fn errorSetNames(ty: Type, mod: *Module) InternPool.NullTerminatedString.Slice {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.error_set_type => |x| x.names,
|
|
.inferred_error_set_type => |i| switch (ip.funcIesResolved(i).*) {
|
|
.none => unreachable, // unresolved inferred error set
|
|
.anyerror_type => unreachable,
|
|
else => |t| ip.indexToKey(t).error_set_type.names,
|
|
},
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn enumFields(ty: Type, mod: *Module) InternPool.NullTerminatedString.Slice {
|
|
return mod.intern_pool.loadEnumType(ty.toIntern()).names;
|
|
}
|
|
|
|
pub fn enumFieldCount(ty: Type, mod: *Module) usize {
|
|
return mod.intern_pool.loadEnumType(ty.toIntern()).names.len;
|
|
}
|
|
|
|
pub fn enumFieldName(ty: Type, field_index: usize, mod: *Module) InternPool.NullTerminatedString {
|
|
const ip = &mod.intern_pool;
|
|
return ip.loadEnumType(ty.toIntern()).names.get(ip)[field_index];
|
|
}
|
|
|
|
pub fn enumFieldIndex(ty: Type, field_name: InternPool.NullTerminatedString, mod: *Module) ?u32 {
|
|
const ip = &mod.intern_pool;
|
|
const enum_type = ip.loadEnumType(ty.toIntern());
|
|
return enum_type.nameIndex(ip, field_name);
|
|
}
|
|
|
|
/// Asserts `ty` is an enum. `enum_tag` can either be `enum_field_index` or
|
|
/// an integer which represents the enum value. Returns the field index in
|
|
/// declaration order, or `null` if `enum_tag` does not match any field.
|
|
pub fn enumTagFieldIndex(ty: Type, enum_tag: Value, mod: *Module) ?u32 {
|
|
const ip = &mod.intern_pool;
|
|
const enum_type = ip.loadEnumType(ty.toIntern());
|
|
const int_tag = switch (ip.indexToKey(enum_tag.toIntern())) {
|
|
.int => enum_tag.toIntern(),
|
|
.enum_tag => |info| info.int,
|
|
else => unreachable,
|
|
};
|
|
assert(ip.typeOf(int_tag) == enum_type.tag_ty);
|
|
return enum_type.tagValueIndex(ip, int_tag);
|
|
}
|
|
|
|
/// Returns none in the case of a tuple which uses the integer index as the field name.
|
|
pub fn structFieldName(ty: Type, index: usize, mod: *Module) InternPool.OptionalNullTerminatedString {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).fieldName(ip, index),
|
|
.anon_struct_type => |anon_struct| anon_struct.fieldName(ip, index),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn structFieldCount(ty: Type, mod: *Module) u32 {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).field_types.len,
|
|
.anon_struct_type => |anon_struct| anon_struct.types.len,
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
/// Supports structs and unions.
|
|
pub fn structFieldType(ty: Type, index: usize, mod: *Module) Type {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => Type.fromInterned(ip.loadStructType(ty.toIntern()).field_types.get(ip)[index]),
|
|
.union_type => {
|
|
const union_obj = ip.loadUnionType(ty.toIntern());
|
|
return Type.fromInterned(union_obj.field_types.get(ip)[index]);
|
|
},
|
|
.anon_struct_type => |anon_struct| Type.fromInterned(anon_struct.types.get(ip)[index]),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn structFieldAlign(ty: Type, index: usize, zcu: *Zcu) Alignment {
|
|
return ty.structFieldAlignAdvanced(index, zcu, null) catch unreachable;
|
|
}
|
|
|
|
pub fn structFieldAlignAdvanced(ty: Type, index: usize, zcu: *Zcu, opt_sema: ?*Sema) !Alignment {
|
|
const ip = &zcu.intern_pool;
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
assert(struct_type.layout != .@"packed");
|
|
const explicit_align = struct_type.fieldAlign(ip, index);
|
|
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[index]);
|
|
if (opt_sema) |sema| {
|
|
return sema.structFieldAlignment(explicit_align, field_ty, struct_type.layout);
|
|
} else {
|
|
return zcu.structFieldAlignment(explicit_align, field_ty, struct_type.layout);
|
|
}
|
|
},
|
|
.anon_struct_type => |anon_struct| {
|
|
return (try Type.fromInterned(anon_struct.types.get(ip)[index]).abiAlignmentAdvanced(zcu, if (opt_sema) |sema| .{ .sema = sema } else .eager)).scalar;
|
|
},
|
|
.union_type => {
|
|
const union_obj = ip.loadUnionType(ty.toIntern());
|
|
if (opt_sema) |sema| {
|
|
return sema.unionFieldAlignment(union_obj, @intCast(index));
|
|
} else {
|
|
return zcu.unionFieldNormalAlignment(union_obj, @intCast(index));
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
pub fn structFieldDefaultValue(ty: Type, index: usize, mod: *Module) Value {
|
|
const ip = &mod.intern_pool;
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
const val = struct_type.fieldInit(ip, index);
|
|
// TODO: avoid using `unreachable` to indicate this.
|
|
if (val == .none) return Value.@"unreachable";
|
|
return Value.fromInterned(val);
|
|
},
|
|
.anon_struct_type => |anon_struct| {
|
|
const val = anon_struct.values.get(ip)[index];
|
|
// TODO: avoid using `unreachable` to indicate this.
|
|
if (val == .none) return Value.@"unreachable";
|
|
return Value.fromInterned(val);
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
pub fn structFieldValueComptime(ty: Type, mod: *Module, index: usize) !?Value {
|
|
const ip = &mod.intern_pool;
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
if (struct_type.fieldIsComptime(ip, index)) {
|
|
assert(struct_type.haveFieldInits(ip));
|
|
return Value.fromInterned(struct_type.field_inits.get(ip)[index]);
|
|
} else {
|
|
return Type.fromInterned(struct_type.field_types.get(ip)[index]).onePossibleValue(mod);
|
|
}
|
|
},
|
|
.anon_struct_type => |tuple| {
|
|
const val = tuple.values.get(ip)[index];
|
|
if (val == .none) {
|
|
return Type.fromInterned(tuple.types.get(ip)[index]).onePossibleValue(mod);
|
|
} else {
|
|
return Value.fromInterned(val);
|
|
}
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
pub fn structFieldIsComptime(ty: Type, index: usize, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).fieldIsComptime(ip, index),
|
|
.anon_struct_type => |anon_struct| anon_struct.values.get(ip)[index] != .none,
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub const FieldOffset = struct {
|
|
field: usize,
|
|
offset: u64,
|
|
};
|
|
|
|
/// Supports structs and unions.
|
|
pub fn structFieldOffset(ty: Type, index: usize, mod: *Module) u64 {
|
|
const ip = &mod.intern_pool;
|
|
switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
assert(struct_type.haveLayout(ip));
|
|
assert(struct_type.layout != .@"packed");
|
|
return struct_type.offsets.get(ip)[index];
|
|
},
|
|
|
|
.anon_struct_type => |tuple| {
|
|
var offset: u64 = 0;
|
|
var big_align: Alignment = .none;
|
|
|
|
for (tuple.types.get(ip), tuple.values.get(ip), 0..) |field_ty, field_val, i| {
|
|
if (field_val != .none or !Type.fromInterned(field_ty).hasRuntimeBits(mod)) {
|
|
// comptime field
|
|
if (i == index) return offset;
|
|
continue;
|
|
}
|
|
|
|
const field_align = Type.fromInterned(field_ty).abiAlignment(mod);
|
|
big_align = big_align.max(field_align);
|
|
offset = field_align.forward(offset);
|
|
if (i == index) return offset;
|
|
offset += Type.fromInterned(field_ty).abiSize(mod);
|
|
}
|
|
offset = big_align.max(.@"1").forward(offset);
|
|
return offset;
|
|
},
|
|
|
|
.union_type => {
|
|
const union_type = ip.loadUnionType(ty.toIntern());
|
|
if (!union_type.hasTag(ip))
|
|
return 0;
|
|
const layout = mod.getUnionLayout(union_type);
|
|
if (layout.tag_align.compare(.gte, layout.payload_align)) {
|
|
// {Tag, Payload}
|
|
return layout.payload_align.forward(layout.tag_size);
|
|
} else {
|
|
// {Payload, Tag}
|
|
return 0;
|
|
}
|
|
},
|
|
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
pub fn declSrcLoc(ty: Type, mod: *Module) Module.SrcLoc {
|
|
return declSrcLocOrNull(ty, mod).?;
|
|
}
|
|
|
|
pub fn declSrcLocOrNull(ty: Type, mod: *Module) ?Module.SrcLoc {
|
|
const decl = ty.getOwnerDeclOrNull(mod) orelse return null;
|
|
return mod.declPtr(decl).srcLoc(mod);
|
|
}
|
|
|
|
pub fn getOwnerDecl(ty: Type, mod: *Module) InternPool.DeclIndex {
|
|
return ty.getOwnerDeclOrNull(mod) orelse unreachable;
|
|
}
|
|
|
|
pub fn getOwnerDeclOrNull(ty: Type, mod: *Module) ?InternPool.DeclIndex {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).decl.unwrap(),
|
|
.union_type => ip.loadUnionType(ty.toIntern()).decl,
|
|
.opaque_type => ip.loadOpaqueType(ty.toIntern()).decl,
|
|
.enum_type => ip.loadEnumType(ty.toIntern()).decl,
|
|
else => null,
|
|
};
|
|
}
|
|
|
|
pub fn isGenericPoison(ty: Type) bool {
|
|
return ty.toIntern() == .generic_poison_type;
|
|
}
|
|
|
|
pub fn isTuple(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
if (struct_type.layout == .@"packed") return false;
|
|
if (struct_type.decl == .none) return false;
|
|
return struct_type.flagsPtr(ip).is_tuple;
|
|
},
|
|
.anon_struct_type => |anon_struct| anon_struct.names.len == 0,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isAnonStruct(ty: Type, mod: *Module) bool {
|
|
if (ty.toIntern() == .empty_struct_type) return true;
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.anon_struct_type => |anon_struct_type| anon_struct_type.names.len > 0,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isTupleOrAnonStruct(ty: Type, mod: *Module) bool {
|
|
const ip = &mod.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => {
|
|
const struct_type = ip.loadStructType(ty.toIntern());
|
|
if (struct_type.layout == .@"packed") return false;
|
|
if (struct_type.decl == .none) return false;
|
|
return struct_type.flagsPtr(ip).is_tuple;
|
|
},
|
|
.anon_struct_type => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isSimpleTuple(ty: Type, mod: *Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.anon_struct_type => |anon_struct_type| anon_struct_type.names.len == 0,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
pub fn isSimpleTupleOrAnonStruct(ty: Type, mod: *Module) bool {
|
|
return switch (mod.intern_pool.indexToKey(ty.toIntern())) {
|
|
.anon_struct_type => true,
|
|
else => false,
|
|
};
|
|
}
|
|
|
|
/// Traverses optional child types and error union payloads until the type
|
|
/// is not a pointer. For `E!?u32`, returns `u32`; for `*u8`, returns `*u8`.
|
|
pub fn optEuBaseType(ty: Type, mod: *Module) Type {
|
|
var cur = ty;
|
|
while (true) switch (cur.zigTypeTag(mod)) {
|
|
.Optional => cur = cur.optionalChild(mod),
|
|
.ErrorUnion => cur = cur.errorUnionPayload(mod),
|
|
else => return cur,
|
|
};
|
|
}
|
|
|
|
pub fn toUnsigned(ty: Type, mod: *Module) !Type {
|
|
return switch (ty.zigTypeTag(mod)) {
|
|
.Int => mod.intType(.unsigned, ty.intInfo(mod).bits),
|
|
.Vector => try mod.vectorType(.{
|
|
.len = ty.vectorLen(mod),
|
|
.child = (try ty.childType(mod).toUnsigned(mod)).toIntern(),
|
|
}),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn typeDeclInst(ty: Type, zcu: *const Zcu) ?InternPool.TrackedInst.Index {
|
|
const ip = &zcu.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).zir_index.unwrap(),
|
|
.union_type => ip.loadUnionType(ty.toIntern()).zir_index,
|
|
.enum_type => ip.loadEnumType(ty.toIntern()).zir_index.unwrap(),
|
|
.opaque_type => ip.loadOpaqueType(ty.toIntern()).zir_index,
|
|
else => null,
|
|
};
|
|
}
|
|
|
|
/// Given a namespace type, returns its list of caotured values.
|
|
pub fn getCaptures(ty: Type, zcu: *const Zcu) InternPool.CaptureValue.Slice {
|
|
const ip = &zcu.intern_pool;
|
|
return switch (ip.indexToKey(ty.toIntern())) {
|
|
.struct_type => ip.loadStructType(ty.toIntern()).captures,
|
|
.union_type => ip.loadUnionType(ty.toIntern()).captures,
|
|
.enum_type => ip.loadEnumType(ty.toIntern()).captures,
|
|
.opaque_type => ip.loadOpaqueType(ty.toIntern()).captures,
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
pub fn arrayBase(ty: Type, zcu: *const Zcu) struct { Type, u64 } {
|
|
var cur_ty: Type = ty;
|
|
var cur_len: u64 = 1;
|
|
while (cur_ty.zigTypeTag(zcu) == .Array) {
|
|
cur_len *= cur_ty.arrayLenIncludingSentinel(zcu);
|
|
cur_ty = cur_ty.childType(zcu);
|
|
}
|
|
return .{ cur_ty, cur_len };
|
|
}
|
|
|
|
pub fn packedStructFieldPtrInfo(struct_ty: Type, parent_ptr_ty: Type, field_idx: u32, zcu: *Zcu) union(enum) {
|
|
/// The result is a bit-pointer with the same value and a new packed offset.
|
|
bit_ptr: InternPool.Key.PtrType.PackedOffset,
|
|
/// The result is a standard pointer.
|
|
byte_ptr: struct {
|
|
/// The byte offset of the field pointer from the parent pointer value.
|
|
offset: u64,
|
|
/// The alignment of the field pointer type.
|
|
alignment: InternPool.Alignment,
|
|
},
|
|
} {
|
|
comptime assert(Type.packed_struct_layout_version == 2);
|
|
|
|
const parent_ptr_info = parent_ptr_ty.ptrInfo(zcu);
|
|
const field_ty = struct_ty.structFieldType(field_idx, zcu);
|
|
|
|
var bit_offset: u16 = 0;
|
|
var running_bits: u16 = 0;
|
|
for (0..struct_ty.structFieldCount(zcu)) |i| {
|
|
const f_ty = struct_ty.structFieldType(i, zcu);
|
|
if (i == field_idx) {
|
|
bit_offset = running_bits;
|
|
}
|
|
running_bits += @intCast(f_ty.bitSize(zcu));
|
|
}
|
|
|
|
const res_host_size: u16, const res_bit_offset: u16 = if (parent_ptr_info.packed_offset.host_size != 0)
|
|
.{ parent_ptr_info.packed_offset.host_size, parent_ptr_info.packed_offset.bit_offset + bit_offset }
|
|
else
|
|
.{ (running_bits + 7) / 8, bit_offset };
|
|
|
|
// If the field happens to be byte-aligned, simplify the pointer type.
|
|
// We can only do this if the pointee's bit size matches its ABI byte size,
|
|
// so that loads and stores do not interfere with surrounding packed bits.
|
|
//
|
|
// TODO: we do not attempt this with big-endian targets yet because of nested
|
|
// structs and floats. I need to double-check the desired behavior for big endian
|
|
// targets before adding the necessary complications to this code. This will not
|
|
// cause miscompilations; it only means the field pointer uses bit masking when it
|
|
// might not be strictly necessary.
|
|
if (res_bit_offset % 8 == 0 and field_ty.bitSize(zcu) == field_ty.abiSize(zcu) * 8 and zcu.getTarget().cpu.arch.endian() == .little) {
|
|
const byte_offset = res_bit_offset / 8;
|
|
const new_align = Alignment.fromLog2Units(@ctz(byte_offset | parent_ptr_ty.ptrAlignment(zcu).toByteUnits().?));
|
|
return .{ .byte_ptr = .{
|
|
.offset = byte_offset,
|
|
.alignment = new_align,
|
|
} };
|
|
}
|
|
|
|
return .{ .bit_ptr = .{
|
|
.host_size = res_host_size,
|
|
.bit_offset = res_bit_offset,
|
|
} };
|
|
}
|
|
|
|
pub const @"u1": Type = .{ .ip_index = .u1_type };
|
|
pub const @"u8": Type = .{ .ip_index = .u8_type };
|
|
pub const @"u16": Type = .{ .ip_index = .u16_type };
|
|
pub const @"u29": Type = .{ .ip_index = .u29_type };
|
|
pub const @"u32": Type = .{ .ip_index = .u32_type };
|
|
pub const @"u64": Type = .{ .ip_index = .u64_type };
|
|
pub const @"u128": Type = .{ .ip_index = .u128_type };
|
|
|
|
pub const @"i8": Type = .{ .ip_index = .i8_type };
|
|
pub const @"i16": Type = .{ .ip_index = .i16_type };
|
|
pub const @"i32": Type = .{ .ip_index = .i32_type };
|
|
pub const @"i64": Type = .{ .ip_index = .i64_type };
|
|
pub const @"i128": Type = .{ .ip_index = .i128_type };
|
|
|
|
pub const @"f16": Type = .{ .ip_index = .f16_type };
|
|
pub const @"f32": Type = .{ .ip_index = .f32_type };
|
|
pub const @"f64": Type = .{ .ip_index = .f64_type };
|
|
pub const @"f80": Type = .{ .ip_index = .f80_type };
|
|
pub const @"f128": Type = .{ .ip_index = .f128_type };
|
|
|
|
pub const @"bool": Type = .{ .ip_index = .bool_type };
|
|
pub const @"usize": Type = .{ .ip_index = .usize_type };
|
|
pub const @"isize": Type = .{ .ip_index = .isize_type };
|
|
pub const @"comptime_int": Type = .{ .ip_index = .comptime_int_type };
|
|
pub const @"comptime_float": Type = .{ .ip_index = .comptime_float_type };
|
|
pub const @"void": Type = .{ .ip_index = .void_type };
|
|
pub const @"type": Type = .{ .ip_index = .type_type };
|
|
pub const @"anyerror": Type = .{ .ip_index = .anyerror_type };
|
|
pub const @"anyopaque": Type = .{ .ip_index = .anyopaque_type };
|
|
pub const @"anyframe": Type = .{ .ip_index = .anyframe_type };
|
|
pub const @"null": Type = .{ .ip_index = .null_type };
|
|
pub const @"undefined": Type = .{ .ip_index = .undefined_type };
|
|
pub const @"noreturn": Type = .{ .ip_index = .noreturn_type };
|
|
|
|
pub const @"c_char": Type = .{ .ip_index = .c_char_type };
|
|
pub const @"c_short": Type = .{ .ip_index = .c_short_type };
|
|
pub const @"c_ushort": Type = .{ .ip_index = .c_ushort_type };
|
|
pub const @"c_int": Type = .{ .ip_index = .c_int_type };
|
|
pub const @"c_uint": Type = .{ .ip_index = .c_uint_type };
|
|
pub const @"c_long": Type = .{ .ip_index = .c_long_type };
|
|
pub const @"c_ulong": Type = .{ .ip_index = .c_ulong_type };
|
|
pub const @"c_longlong": Type = .{ .ip_index = .c_longlong_type };
|
|
pub const @"c_ulonglong": Type = .{ .ip_index = .c_ulonglong_type };
|
|
pub const @"c_longdouble": Type = .{ .ip_index = .c_longdouble_type };
|
|
|
|
pub const slice_const_u8: Type = .{ .ip_index = .slice_const_u8_type };
|
|
pub const manyptr_u8: Type = .{ .ip_index = .manyptr_u8_type };
|
|
pub const single_const_pointer_to_comptime_int: Type = .{
|
|
.ip_index = .single_const_pointer_to_comptime_int_type,
|
|
};
|
|
pub const slice_const_u8_sentinel_0: Type = .{ .ip_index = .slice_const_u8_sentinel_0_type };
|
|
pub const empty_struct_literal: Type = .{ .ip_index = .empty_struct_type };
|
|
|
|
pub const generic_poison: Type = .{ .ip_index = .generic_poison_type };
|
|
|
|
pub fn smallestUnsignedBits(max: u64) u16 {
|
|
if (max == 0) return 0;
|
|
const base = std.math.log2(max);
|
|
const upper = (@as(u64, 1) << @as(u6, @intCast(base))) - 1;
|
|
return @as(u16, @intCast(base + @intFromBool(upper < max)));
|
|
}
|
|
|
|
/// This is only used for comptime asserts. Bump this number when you make a change
|
|
/// to packed struct layout to find out all the places in the codebase you need to edit!
|
|
pub const packed_struct_layout_version = 2;
|
|
};
|
|
|
|
fn cTypeAlign(target: Target, c_type: Target.CType) Alignment {
|
|
return Alignment.fromByteUnits(target.c_type_alignment(c_type));
|
|
}
|