mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
2163 lines
79 KiB
Zig
2163 lines
79 KiB
Zig
const std = @import("std");
|
||
const builtin = @import("builtin");
|
||
const crypto = std.crypto;
|
||
const Allocator = std.mem.Allocator;
|
||
const Io = std.Io;
|
||
const Thread = std.Thread;
|
||
|
||
const TurboSHAKE128State = crypto.hash.sha3.TurboShake128(0x06);
|
||
const TurboSHAKE256State = crypto.hash.sha3.TurboShake256(0x06);
|
||
|
||
const chunk_size: usize = 8192; // Chunk size for tree hashing (8 KiB)
|
||
const cache_line_size = std.atomic.cache_line;
|
||
|
||
// Optimal SIMD vector length for u64 on this target platform
|
||
const optimal_vector_len = std.simd.suggestVectorLength(u64) orelse 1;
|
||
|
||
// Number of bytes processed per SIMD batch in multi-threaded mode
|
||
const bytes_per_batch = 256 * 1024;
|
||
|
||
// Multi-threading threshold: inputs larger than this will use parallel processing.
|
||
// Benchmarked optimal value for ReleaseFast mode.
|
||
const large_file_threshold: usize = 2 * 1024 * 1024; // 2 MB
|
||
|
||
// Round constants for Keccak-p[1600,12]
|
||
const RC = [12]u64{
|
||
0x000000008000808B,
|
||
0x800000000000008B,
|
||
0x8000000000008089,
|
||
0x8000000000008003,
|
||
0x8000000000008002,
|
||
0x8000000000000080,
|
||
0x000000000000800A,
|
||
0x800000008000000A,
|
||
0x8000000080008081,
|
||
0x8000000000008080,
|
||
0x0000000080000001,
|
||
0x8000000080008008,
|
||
};
|
||
|
||
/// Generic KangarooTwelve variant builder.
|
||
/// Creates a variant type with specific cryptographic parameters.
|
||
fn KangarooVariant(
|
||
comptime security_level_bits: comptime_int,
|
||
comptime rate_bytes: usize,
|
||
comptime cv_size_bytes: usize,
|
||
comptime StateTypeParam: type,
|
||
comptime sep_x: usize,
|
||
comptime sep_y: usize,
|
||
comptime pad_x: usize,
|
||
comptime pad_y: usize,
|
||
comptime toBufferFn: fn (*const MultiSliceView, u8, []u8) void,
|
||
comptime allocFn: fn (Allocator, *const MultiSliceView, u8, usize) anyerror![]u8,
|
||
) type {
|
||
return struct {
|
||
const security_level = security_level_bits;
|
||
const rate = rate_bytes;
|
||
const rate_in_lanes = rate_bytes / 8;
|
||
const cv_size = cv_size_bytes;
|
||
const StateType = StateTypeParam;
|
||
const separation_byte_pos = .{ .x = sep_x, .y = sep_y };
|
||
const padding_pos = .{ .x = pad_x, .y = pad_y };
|
||
|
||
inline fn turboShakeToBuffer(view: *const MultiSliceView, separation_byte: u8, output: []u8) void {
|
||
toBufferFn(view, separation_byte, output);
|
||
}
|
||
|
||
inline fn turboShakeMultiSliceAlloc(
|
||
allocator: Allocator,
|
||
view: *const MultiSliceView,
|
||
separation_byte: u8,
|
||
output_len: usize,
|
||
) ![]u8 {
|
||
return allocFn(allocator, view, separation_byte, output_len);
|
||
}
|
||
};
|
||
}
|
||
|
||
/// KangarooTwelve with 128-bit security parameters
|
||
const KT128Variant = KangarooVariant(
|
||
128, // Security level in bits
|
||
168, // TurboSHAKE128 rate in bytes
|
||
32, // Chaining value size in bytes
|
||
TurboSHAKE128State,
|
||
1, // separation_byte_pos.x (lane 11: 88 bytes into 168-byte rate)
|
||
3, // separation_byte_pos.y
|
||
0, // padding_pos.x (lane 20: last lane of 168-byte rate)
|
||
4, // padding_pos.y
|
||
turboShake128MultiSliceToBuffer,
|
||
turboShake128MultiSlice,
|
||
);
|
||
|
||
/// KangarooTwelve with 256-bit security parameters
|
||
const KT256Variant = KangarooVariant(
|
||
256, // Security level in bits
|
||
136, // TurboSHAKE256 rate in bytes
|
||
64, // Chaining value size in bytes
|
||
TurboSHAKE256State,
|
||
4, // separation_byte_pos.x (lane 4: 32 bytes into 136-byte rate)
|
||
0, // separation_byte_pos.y
|
||
1, // padding_pos.x (lane 16: last lane of 136-byte rate)
|
||
3, // padding_pos.y
|
||
turboShake256MultiSliceToBuffer,
|
||
turboShake256MultiSlice,
|
||
);
|
||
|
||
/// Rotate left for u64 vector
|
||
inline fn rol64Vec(comptime N: usize, v: @Vector(N, u64), comptime n: u6) @Vector(N, u64) {
|
||
if (n == 0) return v;
|
||
const left: @Vector(N, u64) = @splat(n);
|
||
const right_shift: u64 = 64 - @as(u64, n);
|
||
const right: @Vector(N, u64) = @splat(right_shift);
|
||
return (v << left) | (v >> right);
|
||
}
|
||
|
||
/// Load a 64-bit little-endian value
|
||
inline fn load64(bytes: []const u8) u64 {
|
||
return std.mem.readInt(u64, bytes[0..8], .little);
|
||
}
|
||
|
||
/// Store a 64-bit little-endian value
|
||
inline fn store64(value: u64, bytes: []u8) void {
|
||
std.mem.writeInt(u64, bytes[0..8], value, .little);
|
||
}
|
||
|
||
/// Right-encode result type (max 9 bytes for 64-bit usize)
|
||
const RightEncoded = struct {
|
||
bytes: [9]u8,
|
||
len: u8,
|
||
|
||
fn slice(self: *const RightEncoded) []const u8 {
|
||
return self.bytes[0..self.len];
|
||
}
|
||
};
|
||
|
||
/// Right-encode: encodes a number as bytes with length suffix (no allocation)
|
||
fn rightEncode(x: usize) RightEncoded {
|
||
var result: RightEncoded = undefined;
|
||
|
||
if (x == 0) {
|
||
result.bytes[0] = 0;
|
||
result.len = 1;
|
||
return result;
|
||
}
|
||
|
||
var temp: [9]u8 = undefined;
|
||
var len: usize = 0;
|
||
var val = x;
|
||
|
||
while (val > 0) : (val /= 256) {
|
||
temp[len] = @intCast(val % 256);
|
||
len += 1;
|
||
}
|
||
|
||
// Reverse bytes (MSB first)
|
||
for (0..len) |i| {
|
||
result.bytes[i] = temp[len - 1 - i];
|
||
}
|
||
result.bytes[len] = @intCast(len);
|
||
result.len = @intCast(len + 1);
|
||
|
||
return result;
|
||
}
|
||
|
||
/// Virtual contiguous view over multiple slices (zero-copy)
|
||
const MultiSliceView = struct {
|
||
slices: [3][]const u8,
|
||
offsets: [4]usize,
|
||
|
||
fn init(s1: []const u8, s2: []const u8, s3: []const u8) MultiSliceView {
|
||
return .{
|
||
.slices = .{ s1, s2, s3 },
|
||
.offsets = .{
|
||
0,
|
||
s1.len,
|
||
s1.len + s2.len,
|
||
s1.len + s2.len + s3.len,
|
||
},
|
||
};
|
||
}
|
||
|
||
fn totalLen(self: *const MultiSliceView) usize {
|
||
return self.offsets[3];
|
||
}
|
||
|
||
/// Get byte at position (zero-copy)
|
||
fn getByte(self: *const MultiSliceView, pos: usize) u8 {
|
||
for (0..3) |i| {
|
||
if (pos >= self.offsets[i] and pos < self.offsets[i + 1]) {
|
||
return self.slices[i][pos - self.offsets[i]];
|
||
}
|
||
}
|
||
unreachable;
|
||
}
|
||
|
||
/// Try to get a contiguous slice [start..end) - returns null if spans boundaries
|
||
fn tryGetSlice(self: *const MultiSliceView, start: usize, end: usize) ?[]const u8 {
|
||
for (0..3) |i| {
|
||
if (start >= self.offsets[i] and end <= self.offsets[i + 1]) {
|
||
const local_start = start - self.offsets[i];
|
||
const local_end = end - self.offsets[i];
|
||
return self.slices[i][local_start..local_end];
|
||
}
|
||
}
|
||
return null;
|
||
}
|
||
|
||
/// Copy range [start..end) to buffer (used when slice spans boundaries)
|
||
fn copyRange(self: *const MultiSliceView, start: usize, end: usize, buffer: []u8) void {
|
||
var pos: usize = 0;
|
||
for (start..end) |i| {
|
||
buffer[pos] = self.getByte(i);
|
||
pos += 1;
|
||
}
|
||
}
|
||
};
|
||
|
||
/// Apply Keccak-p[1600,12] to N states using SIMD
|
||
fn keccakP1600timesN(comptime N: usize, states: *[5][5]@Vector(N, u64)) void {
|
||
@setEvalBranchQuota(10000);
|
||
|
||
// Pre-computed rotation offsets for rho-pi step
|
||
const rho_offsets = comptime blk: {
|
||
var offsets: [24]u6 = undefined;
|
||
var px: usize = 1;
|
||
var py: usize = 0;
|
||
for (0..24) |t| {
|
||
const rot_amount = ((t + 1) * (t + 2) / 2) % 64;
|
||
offsets[t] = @intCast(rot_amount);
|
||
const temp_x = py;
|
||
py = (2 * px + 3 * py) % 5;
|
||
px = temp_x;
|
||
}
|
||
break :blk offsets;
|
||
};
|
||
|
||
var round: usize = 0;
|
||
while (round < 12) : (round += 2) {
|
||
inline for (0..2) |i| {
|
||
// θ (theta)
|
||
var C: [5]@Vector(N, u64) = undefined;
|
||
inline for (0..5) |x| {
|
||
C[x] = states[x][0] ^ states[x][1] ^ states[x][2] ^ states[x][3] ^ states[x][4];
|
||
}
|
||
|
||
var D: [5]@Vector(N, u64) = undefined;
|
||
inline for (0..5) |x| {
|
||
D[x] = C[(x + 4) % 5] ^ rol64Vec(N, C[(x + 1) % 5], 1);
|
||
}
|
||
|
||
// Apply D to all lanes
|
||
inline for (0..5) |x| {
|
||
states[x][0] ^= D[x];
|
||
states[x][1] ^= D[x];
|
||
states[x][2] ^= D[x];
|
||
states[x][3] ^= D[x];
|
||
states[x][4] ^= D[x];
|
||
}
|
||
|
||
// ρ (rho) and π (pi) - optimized with pre-computed offsets
|
||
var current = states[1][0];
|
||
var px: usize = 1;
|
||
var py: usize = 0;
|
||
inline for (rho_offsets) |rot| {
|
||
const next_y = (2 * px + 3 * py) % 5;
|
||
const next = states[py][next_y];
|
||
states[py][next_y] = rol64Vec(N, current, rot);
|
||
current = next;
|
||
px = py;
|
||
py = next_y;
|
||
}
|
||
|
||
// χ (chi) - optimized with better register usage
|
||
inline for (0..5) |y| {
|
||
const t0 = states[0][y];
|
||
const t1 = states[1][y];
|
||
const t2 = states[2][y];
|
||
const t3 = states[3][y];
|
||
const t4 = states[4][y];
|
||
|
||
states[0][y] = t0 ^ (~t1 & t2);
|
||
states[1][y] = t1 ^ (~t2 & t3);
|
||
states[2][y] = t2 ^ (~t3 & t4);
|
||
states[3][y] = t3 ^ (~t4 & t0);
|
||
states[4][y] = t4 ^ (~t0 & t1);
|
||
}
|
||
|
||
// ι (iota)
|
||
const rc_splat: @Vector(N, u64) = @splat(RC[round + i]);
|
||
states[0][0] ^= rc_splat;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Add lanes from data to N states in parallel with stride using SIMD
|
||
fn addLanesAll(
|
||
comptime N: usize,
|
||
states: *[5][5]@Vector(N, u64),
|
||
data: []const u8,
|
||
lane_count: usize,
|
||
lane_offset: usize,
|
||
) void {
|
||
|
||
// Process lanes (at most 25 lanes in Keccak state)
|
||
inline for (0..25) |xy| {
|
||
if (xy < lane_count) {
|
||
const x = xy % 5;
|
||
const y = xy / 5;
|
||
|
||
var loaded_data: @Vector(N, u64) = undefined;
|
||
inline for (0..N) |i| {
|
||
loaded_data[i] = load64(data[8 * (i * lane_offset + xy) ..]);
|
||
}
|
||
states[x][y] ^= loaded_data;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Apply Keccak-p[1600,12] to a single state (byte representation)
|
||
fn keccakP(state: *[200]u8) void {
|
||
@setEvalBranchQuota(10000);
|
||
var lanes: [5][5]u64 = undefined;
|
||
|
||
// Load state into lanes
|
||
inline for (0..5) |x| {
|
||
inline for (0..5) |y| {
|
||
lanes[x][y] = load64(state[8 * (x + 5 * y) ..]);
|
||
}
|
||
}
|
||
|
||
// Apply 12 rounds
|
||
var round: usize = 0;
|
||
while (round < 12) : (round += 2) {
|
||
inline for (0..2) |i| {
|
||
// θ
|
||
var C: [5]u64 = undefined;
|
||
inline for (0..5) |x| {
|
||
C[x] = lanes[x][0] ^ lanes[x][1] ^ lanes[x][2] ^ lanes[x][3] ^ lanes[x][4];
|
||
}
|
||
var D: [5]u64 = undefined;
|
||
inline for (0..5) |x| {
|
||
D[x] = C[(x + 4) % 5] ^ std.math.rotl(u64, C[(x + 1) % 5], 1);
|
||
}
|
||
inline for (0..5) |x| {
|
||
inline for (0..5) |y| {
|
||
lanes[x][y] ^= D[x];
|
||
}
|
||
}
|
||
|
||
// ρ and π
|
||
var current = lanes[1][0];
|
||
var px: usize = 1;
|
||
var py: usize = 0;
|
||
inline for (0..24) |t| {
|
||
const temp = lanes[py][(2 * px + 3 * py) % 5];
|
||
const rot_amount = ((t + 1) * (t + 2) / 2) % 64;
|
||
lanes[py][(2 * px + 3 * py) % 5] = std.math.rotl(u64, current, @as(u6, @intCast(rot_amount)));
|
||
current = temp;
|
||
const temp_x = py;
|
||
py = (2 * px + 3 * py) % 5;
|
||
px = temp_x;
|
||
}
|
||
|
||
// χ
|
||
inline for (0..5) |y| {
|
||
const T = [5]u64{ lanes[0][y], lanes[1][y], lanes[2][y], lanes[3][y], lanes[4][y] };
|
||
inline for (0..5) |x| {
|
||
lanes[x][y] = T[x] ^ (~T[(x + 1) % 5] & T[(x + 2) % 5]);
|
||
}
|
||
}
|
||
|
||
// ι
|
||
lanes[0][0] ^= RC[round + i];
|
||
}
|
||
}
|
||
|
||
// Store lanes back to state
|
||
inline for (0..5) |x| {
|
||
inline for (0..5) |y| {
|
||
store64(lanes[x][y], state[8 * (x + 5 * y) ..]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Apply Keccak-p[1600,12] to a single state (u64 lane representation)
|
||
fn keccakPLanes(lanes: *[25]u64) void {
|
||
@setEvalBranchQuota(10000);
|
||
|
||
// Apply 12 rounds
|
||
inline for (RC) |rc| {
|
||
// θ
|
||
var C: [5]u64 = undefined;
|
||
inline for (0..5) |x| {
|
||
C[x] = lanes[x] ^ lanes[x + 5] ^ lanes[x + 10] ^ lanes[x + 15] ^ lanes[x + 20];
|
||
}
|
||
var D: [5]u64 = undefined;
|
||
inline for (0..5) |x| {
|
||
D[x] = C[(x + 4) % 5] ^ std.math.rotl(u64, C[(x + 1) % 5], 1);
|
||
}
|
||
inline for (0..5) |x| {
|
||
inline for (0..5) |y| {
|
||
lanes[x + 5 * y] ^= D[x];
|
||
}
|
||
}
|
||
|
||
// ρ and π
|
||
var current = lanes[1];
|
||
var px: usize = 1;
|
||
var py: usize = 0;
|
||
inline for (0..24) |t| {
|
||
const next_y = (2 * px + 3 * py) % 5;
|
||
const next_idx = py + 5 * next_y;
|
||
const temp = lanes[next_idx];
|
||
const rot_amount = ((t + 1) * (t + 2) / 2) % 64;
|
||
lanes[next_idx] = std.math.rotl(u64, current, @as(u6, @intCast(rot_amount)));
|
||
current = temp;
|
||
px = py;
|
||
py = next_y;
|
||
}
|
||
|
||
// χ
|
||
inline for (0..5) |y| {
|
||
const idx = 5 * y;
|
||
const T = [5]u64{ lanes[idx], lanes[idx + 1], lanes[idx + 2], lanes[idx + 3], lanes[idx + 4] };
|
||
inline for (0..5) |x| {
|
||
lanes[idx + x] = T[x] ^ (~T[(x + 1) % 5] & T[(x + 2) % 5]);
|
||
}
|
||
}
|
||
|
||
// ι
|
||
lanes[0] ^= rc;
|
||
}
|
||
}
|
||
|
||
/// Generic non-allocating TurboSHAKE: write output to provided buffer
|
||
fn turboShakeMultiSliceToBuffer(
|
||
comptime rate: usize,
|
||
view: *const MultiSliceView,
|
||
separation_byte: u8,
|
||
output: []u8,
|
||
) void {
|
||
var state: [200]u8 = @splat(0);
|
||
var state_pos: usize = 0;
|
||
|
||
// Absorb all bytes from the multi-slice view
|
||
const total = view.totalLen();
|
||
var pos: usize = 0;
|
||
while (pos < total) {
|
||
state[state_pos] ^= view.getByte(pos);
|
||
state_pos += 1;
|
||
pos += 1;
|
||
|
||
if (state_pos == rate) {
|
||
keccakP(&state);
|
||
state_pos = 0;
|
||
}
|
||
}
|
||
|
||
// Add separation byte and padding
|
||
state[state_pos] ^= separation_byte;
|
||
state[rate - 1] ^= 0x80;
|
||
keccakP(&state);
|
||
|
||
// Squeeze
|
||
var out_offset: usize = 0;
|
||
while (out_offset < output.len) {
|
||
const chunk = @min(rate, output.len - out_offset);
|
||
@memcpy(output[out_offset..][0..chunk], state[0..chunk]);
|
||
out_offset += chunk;
|
||
if (out_offset < output.len) {
|
||
keccakP(&state);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Generic allocating TurboSHAKE
|
||
fn turboShakeMultiSlice(
|
||
comptime rate: usize,
|
||
allocator: Allocator,
|
||
view: *const MultiSliceView,
|
||
separation_byte: u8,
|
||
output_len: usize,
|
||
) ![]u8 {
|
||
const output = try allocator.alloc(u8, output_len);
|
||
turboShakeMultiSliceToBuffer(rate, view, separation_byte, output);
|
||
return output;
|
||
}
|
||
|
||
/// Non-allocating TurboSHAKE128: write output to provided buffer
|
||
fn turboShake128MultiSliceToBuffer(
|
||
view: *const MultiSliceView,
|
||
separation_byte: u8,
|
||
output: []u8,
|
||
) void {
|
||
turboShakeMultiSliceToBuffer(168, view, separation_byte, output);
|
||
}
|
||
|
||
/// Allocating TurboSHAKE128
|
||
fn turboShake128MultiSlice(
|
||
allocator: Allocator,
|
||
view: *const MultiSliceView,
|
||
separation_byte: u8,
|
||
output_len: usize,
|
||
) ![]u8 {
|
||
return turboShakeMultiSlice(168, allocator, view, separation_byte, output_len);
|
||
}
|
||
|
||
/// Non-allocating TurboSHAKE256: write output to provided buffer
|
||
fn turboShake256MultiSliceToBuffer(
|
||
view: *const MultiSliceView,
|
||
separation_byte: u8,
|
||
output: []u8,
|
||
) void {
|
||
turboShakeMultiSliceToBuffer(136, view, separation_byte, output);
|
||
}
|
||
|
||
/// Allocating TurboSHAKE256
|
||
fn turboShake256MultiSlice(
|
||
allocator: Allocator,
|
||
view: *const MultiSliceView,
|
||
separation_byte: u8,
|
||
output_len: usize,
|
||
) ![]u8 {
|
||
return turboShakeMultiSlice(136, allocator, view, separation_byte, output_len);
|
||
}
|
||
|
||
/// Process N leaves (8KiB chunks) in parallel - generic version
|
||
fn processLeaves(
|
||
comptime Variant: type,
|
||
comptime N: usize,
|
||
data: []const u8,
|
||
result: *[N * Variant.cv_size]u8,
|
||
) void {
|
||
const rate_in_lanes: usize = Variant.rate_in_lanes;
|
||
const rate_in_bytes: usize = rate_in_lanes * 8;
|
||
const cv_size: usize = Variant.cv_size;
|
||
|
||
// Initialize N all-zero states with cache alignment
|
||
var states: [5][5]@Vector(N, u64) align(cache_line_size) = undefined;
|
||
inline for (0..5) |x| {
|
||
inline for (0..5) |y| {
|
||
states[x][y] = @splat(0);
|
||
}
|
||
}
|
||
|
||
// Process complete blocks
|
||
var j: usize = 0;
|
||
while (j + rate_in_bytes <= chunk_size) : (j += rate_in_bytes) {
|
||
addLanesAll(N, &states, data[j..], rate_in_lanes, chunk_size / 8);
|
||
keccakP1600timesN(N, &states);
|
||
}
|
||
|
||
// Process last incomplete block
|
||
const remaining_lanes = (chunk_size - j) / 8;
|
||
if (remaining_lanes > 0) {
|
||
addLanesAll(N, &states, data[j..], remaining_lanes, chunk_size / 8);
|
||
}
|
||
|
||
// Add suffix 0x0B and padding
|
||
const suffix_pos = Variant.separation_byte_pos;
|
||
const padding_pos = Variant.padding_pos;
|
||
|
||
const suffix_splat: @Vector(N, u64) = @splat(0x0B);
|
||
states[suffix_pos.x][suffix_pos.y] ^= suffix_splat;
|
||
const padding_splat: @Vector(N, u64) = @splat(0x8000000000000000);
|
||
states[padding_pos.x][padding_pos.y] ^= padding_splat;
|
||
|
||
keccakP1600timesN(N, &states);
|
||
|
||
// Extract chaining values from each state
|
||
const lanes_to_extract = cv_size / 8;
|
||
comptime var lane_idx: usize = 0;
|
||
inline while (lane_idx < lanes_to_extract) : (lane_idx += 1) {
|
||
const x = lane_idx % 5;
|
||
const y = lane_idx / 5;
|
||
inline for (0..N) |i| {
|
||
store64(states[x][y][i], result[i * cv_size + lane_idx * 8 ..]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Context for processing a batch of leaves in a thread
|
||
const LeafBatchContext = struct {
|
||
output_cvs: []align(@alignOf(u64)) u8,
|
||
batch_start: usize,
|
||
batch_count: usize,
|
||
view: *const MultiSliceView,
|
||
scratch_buffer: []u8, // Pre-allocated scratch space (no allocations in worker)
|
||
total_len: usize, // Total length of input data (for boundary checking)
|
||
};
|
||
|
||
/// Helper function to process N leaves in parallel, reducing code duplication
|
||
inline fn processNLeaves(
|
||
comptime Variant: type,
|
||
comptime N: usize,
|
||
view: *const MultiSliceView,
|
||
j: usize,
|
||
leaf_buffer: []u8,
|
||
output: []align(@alignOf(u64)) u8,
|
||
) void {
|
||
const cv_size = Variant.cv_size;
|
||
comptime std.debug.assert(cv_size % @sizeOf(u64) == 0);
|
||
|
||
if (view.tryGetSlice(j, j + N * chunk_size)) |leaf_data| {
|
||
var leaf_cvs: [N * cv_size]u8 = undefined;
|
||
processLeaves(Variant, N, leaf_data, &leaf_cvs);
|
||
@memcpy(output[0..leaf_cvs.len], &leaf_cvs);
|
||
} else {
|
||
view.copyRange(j, j + N * chunk_size, leaf_buffer[0 .. N * chunk_size]);
|
||
var leaf_cvs: [N * cv_size]u8 = undefined;
|
||
processLeaves(Variant, N, leaf_buffer[0 .. N * chunk_size], &leaf_cvs);
|
||
@memcpy(output[0..leaf_cvs.len], &leaf_cvs);
|
||
}
|
||
}
|
||
|
||
/// Process a batch of leaves in a single thread using SIMD
|
||
fn processLeafBatch(comptime Variant: type, ctx: LeafBatchContext) void {
|
||
const cv_size = Variant.cv_size;
|
||
const leaf_buffer = ctx.scratch_buffer[0 .. 8 * chunk_size];
|
||
|
||
var cvs_offset: usize = 0;
|
||
var j: usize = ctx.batch_start;
|
||
const batch_end = @min(ctx.batch_start + ctx.batch_count * chunk_size, ctx.total_len);
|
||
|
||
// Process leaves using SIMD (8x, 4x, 2x) based on optimal vector length
|
||
inline for ([_]usize{ 8, 4, 2 }) |batch_size| {
|
||
while (optimal_vector_len >= batch_size and j + batch_size * chunk_size <= batch_end) {
|
||
processNLeaves(Variant, batch_size, ctx.view, j, leaf_buffer, @alignCast(ctx.output_cvs[cvs_offset..]));
|
||
cvs_offset += batch_size * cv_size;
|
||
j += batch_size * chunk_size;
|
||
}
|
||
}
|
||
|
||
// Process remaining single leaves
|
||
while (j < batch_end) {
|
||
const chunk_len = @min(chunk_size, batch_end - j);
|
||
if (ctx.view.tryGetSlice(j, j + chunk_len)) |leaf_data| {
|
||
const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, ctx.output_cvs[cvs_offset..][0..cv_size]);
|
||
} else {
|
||
ctx.view.copyRange(j, j + chunk_len, leaf_buffer[0..chunk_len]);
|
||
const cv_slice = MultiSliceView.init(leaf_buffer[0..chunk_len], &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, ctx.output_cvs[cvs_offset..][0..cv_size]);
|
||
}
|
||
cvs_offset += cv_size;
|
||
j += chunk_len;
|
||
}
|
||
|
||
std.debug.assert(cvs_offset == ctx.output_cvs.len);
|
||
}
|
||
|
||
/// Helper to process N leaves in SIMD and absorb CVs into state
|
||
inline fn processAndAbsorbNLeaves(
|
||
comptime Variant: type,
|
||
comptime N: usize,
|
||
view: *const MultiSliceView,
|
||
j: usize,
|
||
leaf_buffer: []u8,
|
||
final_state: anytype,
|
||
) void {
|
||
const cv_size = Variant.cv_size;
|
||
if (view.tryGetSlice(j, j + N * chunk_size)) |leaf_data| {
|
||
var leaf_cvs: [N * cv_size]u8 align(cache_line_size) = undefined;
|
||
processLeaves(Variant, N, leaf_data, &leaf_cvs);
|
||
final_state.update(&leaf_cvs);
|
||
} else {
|
||
view.copyRange(j, j + N * chunk_size, leaf_buffer[0 .. N * chunk_size]);
|
||
var leaf_cvs: [N * cv_size]u8 align(cache_line_size) = undefined;
|
||
processLeaves(Variant, N, leaf_buffer[0 .. N * chunk_size], &leaf_cvs);
|
||
final_state.update(&leaf_cvs);
|
||
}
|
||
}
|
||
|
||
/// Generic single-threaded implementation
|
||
fn ktSingleThreaded(comptime Variant: type, view: *const MultiSliceView, total_len: usize, output: []u8) void {
|
||
const cv_size = Variant.cv_size;
|
||
const StateType = Variant.StateType;
|
||
|
||
// Initialize streaming TurboSHAKE state for final node (delimiter 0x06 is set in the type)
|
||
var final_state = StateType.init(.{});
|
||
|
||
// Absorb first B bytes from input
|
||
var first_b_buffer: [chunk_size]u8 = undefined;
|
||
if (view.tryGetSlice(0, chunk_size)) |first_chunk| {
|
||
final_state.update(first_chunk);
|
||
} else {
|
||
view.copyRange(0, chunk_size, &first_b_buffer);
|
||
final_state.update(&first_b_buffer);
|
||
}
|
||
|
||
// Absorb padding bytes (8 bytes: 0x03 followed by 7 zeros)
|
||
const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||
final_state.update(&padding);
|
||
|
||
var j: usize = chunk_size;
|
||
var n: usize = 0;
|
||
|
||
// Temporary buffers for boundary-spanning leaves and CV computation
|
||
var leaf_buffer: [chunk_size * 8]u8 align(cache_line_size) = undefined;
|
||
var cv_buffer: [64]u8 = undefined; // Max CV size is 64 bytes
|
||
|
||
// Process leaves in SIMD batches (8x, 4x, 2x)
|
||
inline for ([_]usize{ 8, 4, 2 }) |batch_size| {
|
||
while (optimal_vector_len >= batch_size and j + batch_size * chunk_size <= total_len) {
|
||
processAndAbsorbNLeaves(Variant, batch_size, view, j, &leaf_buffer, &final_state);
|
||
j += batch_size * chunk_size;
|
||
n += batch_size;
|
||
}
|
||
}
|
||
|
||
// Process remaining leaves one at a time
|
||
while (j < total_len) {
|
||
const chunk_len = @min(chunk_size, total_len - j);
|
||
if (view.tryGetSlice(j, j + chunk_len)) |leaf_data| {
|
||
const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
final_state.update(cv_buffer[0..cv_size]); // Absorb CV immediately
|
||
} else {
|
||
view.copyRange(j, j + chunk_len, leaf_buffer[0..chunk_len]);
|
||
const cv_slice = MultiSliceView.init(leaf_buffer[0..chunk_len], &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
final_state.update(cv_buffer[0..cv_size]);
|
||
}
|
||
j += chunk_size;
|
||
n += 1;
|
||
}
|
||
|
||
// Absorb right_encode(n) and terminator
|
||
const n_enc = rightEncode(n);
|
||
final_state.update(n_enc.slice());
|
||
const terminator = [_]u8{ 0xFF, 0xFF };
|
||
final_state.update(&terminator);
|
||
|
||
// Finalize and squeeze output
|
||
final_state.final(output);
|
||
}
|
||
|
||
fn BatchResult(comptime Variant: type) type {
|
||
const cv_size = Variant.cv_size;
|
||
const leaves_per_batch = bytes_per_batch / chunk_size;
|
||
const max_cvs_size = leaves_per_batch * cv_size;
|
||
|
||
return struct {
|
||
batch_idx: usize,
|
||
cv_len: usize,
|
||
cvs: [max_cvs_size]u8,
|
||
};
|
||
}
|
||
|
||
fn SelectLeafContext(comptime Variant: type) type {
|
||
const cv_size = Variant.cv_size;
|
||
const Result = BatchResult(Variant);
|
||
|
||
return struct {
|
||
view: *const MultiSliceView,
|
||
batch_idx: usize,
|
||
start_offset: usize,
|
||
num_leaves: usize,
|
||
|
||
fn process(ctx: @This()) Result {
|
||
var result: Result = .{
|
||
.batch_idx = ctx.batch_idx,
|
||
.cv_len = ctx.num_leaves * cv_size,
|
||
.cvs = undefined,
|
||
};
|
||
|
||
var leaf_buffer: [bytes_per_batch]u8 align(cache_line_size) = undefined;
|
||
var leaves_processed: usize = 0;
|
||
var byte_offset = ctx.start_offset;
|
||
var cv_offset: usize = 0;
|
||
const simd_batch_bytes = optimal_vector_len * chunk_size;
|
||
while (leaves_processed + optimal_vector_len <= ctx.num_leaves) {
|
||
if (ctx.view.tryGetSlice(byte_offset, byte_offset + simd_batch_bytes)) |leaf_data| {
|
||
var leaf_cvs: [optimal_vector_len * Variant.cv_size]u8 = undefined;
|
||
processLeaves(Variant, optimal_vector_len, leaf_data, &leaf_cvs);
|
||
@memcpy(result.cvs[cv_offset..][0..leaf_cvs.len], &leaf_cvs);
|
||
} else {
|
||
ctx.view.copyRange(byte_offset, byte_offset + simd_batch_bytes, leaf_buffer[0..simd_batch_bytes]);
|
||
var leaf_cvs: [optimal_vector_len * Variant.cv_size]u8 = undefined;
|
||
processLeaves(Variant, optimal_vector_len, leaf_buffer[0..simd_batch_bytes], &leaf_cvs);
|
||
@memcpy(result.cvs[cv_offset..][0..leaf_cvs.len], &leaf_cvs);
|
||
}
|
||
leaves_processed += optimal_vector_len;
|
||
byte_offset += optimal_vector_len * chunk_size;
|
||
cv_offset += optimal_vector_len * cv_size;
|
||
}
|
||
|
||
while (leaves_processed < ctx.num_leaves) {
|
||
const leaf_end = byte_offset + chunk_size;
|
||
var cv_buffer: [64]u8 = undefined;
|
||
|
||
if (ctx.view.tryGetSlice(byte_offset, leaf_end)) |leaf_data| {
|
||
const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
} else {
|
||
ctx.view.copyRange(byte_offset, leaf_end, leaf_buffer[0..chunk_size]);
|
||
const cv_slice = MultiSliceView.init(leaf_buffer[0..chunk_size], &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
}
|
||
@memcpy(result.cvs[cv_offset..][0..cv_size], cv_buffer[0..cv_size]);
|
||
|
||
leaves_processed += 1;
|
||
byte_offset += chunk_size;
|
||
cv_offset += cv_size;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
};
|
||
}
|
||
|
||
fn FinalLeafContext(comptime Variant: type) type {
|
||
return struct {
|
||
view: *const MultiSliceView,
|
||
start_offset: usize,
|
||
leaf_len: usize,
|
||
output_cv: []align(@alignOf(u64)) u8,
|
||
|
||
fn process(ctx: @This()) void {
|
||
const cv_size = Variant.cv_size;
|
||
var leaf_buffer: [chunk_size]u8 = undefined;
|
||
var cv_buffer: [64]u8 = undefined;
|
||
|
||
if (ctx.view.tryGetSlice(ctx.start_offset, ctx.start_offset + ctx.leaf_len)) |leaf_data| {
|
||
const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
} else {
|
||
ctx.view.copyRange(ctx.start_offset, ctx.start_offset + ctx.leaf_len, leaf_buffer[0..ctx.leaf_len]);
|
||
const cv_slice = MultiSliceView.init(leaf_buffer[0..ctx.leaf_len], &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
}
|
||
@memcpy(ctx.output_cv[0..cv_size], cv_buffer[0..cv_size]);
|
||
}
|
||
};
|
||
}
|
||
|
||
fn ktMultiThreaded(
|
||
comptime Variant: type,
|
||
allocator: Allocator,
|
||
io: Io,
|
||
view: *const MultiSliceView,
|
||
total_len: usize,
|
||
output: []u8,
|
||
) !void {
|
||
comptime std.debug.assert(bytes_per_batch % (optimal_vector_len * chunk_size) == 0);
|
||
|
||
const cv_size = Variant.cv_size;
|
||
const StateType = Variant.StateType;
|
||
const leaves_per_batch = bytes_per_batch / chunk_size;
|
||
const remaining_bytes = total_len - chunk_size;
|
||
const total_leaves = std.math.divCeil(usize, remaining_bytes, chunk_size) catch unreachable;
|
||
|
||
var final_state = StateType.init(.{});
|
||
|
||
var first_chunk_buffer: [chunk_size]u8 = undefined;
|
||
if (view.tryGetSlice(0, chunk_size)) |first_chunk| {
|
||
final_state.update(first_chunk);
|
||
} else {
|
||
view.copyRange(0, chunk_size, &first_chunk_buffer);
|
||
final_state.update(&first_chunk_buffer);
|
||
}
|
||
|
||
const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||
final_state.update(&padding);
|
||
|
||
const full_leaves = remaining_bytes / chunk_size;
|
||
const has_partial_leaf = (remaining_bytes % chunk_size) != 0;
|
||
const partial_leaf_size = if (has_partial_leaf) remaining_bytes % chunk_size else 0;
|
||
|
||
if (full_leaves > 0) {
|
||
const total_batches = std.math.divCeil(usize, full_leaves, leaves_per_batch) catch unreachable;
|
||
const max_concurrent: usize = @min(256, total_batches);
|
||
|
||
const Result = BatchResult(Variant);
|
||
const SelectResult = union(enum) { batch: Result };
|
||
const Select = Io.Select(SelectResult);
|
||
|
||
const select_buf = try allocator.alloc(SelectResult, max_concurrent);
|
||
defer allocator.free(select_buf);
|
||
|
||
// Buffer for out-of-order results (select_buf slots get reused)
|
||
const pending_cv_buf = try allocator.alloc([leaves_per_batch * cv_size]u8, max_concurrent);
|
||
defer allocator.free(pending_cv_buf);
|
||
var pending_cv_lens: [256]usize = .{0} ** 256;
|
||
|
||
var select: Select = .init(io, select_buf);
|
||
var batches_spawned: usize = 0;
|
||
var next_to_process: usize = 0;
|
||
|
||
while (next_to_process < total_batches) {
|
||
while (batches_spawned < total_batches and batches_spawned - next_to_process < max_concurrent) {
|
||
const batch_start_leaf = batches_spawned * leaves_per_batch;
|
||
const batch_leaves = @min(leaves_per_batch, full_leaves - batch_start_leaf);
|
||
const start_offset = chunk_size + batch_start_leaf * chunk_size;
|
||
|
||
select.async(.batch, SelectLeafContext(Variant).process, .{SelectLeafContext(Variant){
|
||
.view = view,
|
||
.batch_idx = batches_spawned,
|
||
.start_offset = start_offset,
|
||
.num_leaves = batch_leaves,
|
||
}});
|
||
batches_spawned += 1;
|
||
}
|
||
|
||
const result = select.wait() catch unreachable;
|
||
const batch = result.batch;
|
||
const slot = batch.batch_idx % max_concurrent;
|
||
|
||
if (batch.batch_idx == next_to_process) {
|
||
final_state.update(batch.cvs[0..batch.cv_len]);
|
||
next_to_process += 1;
|
||
|
||
// Drain pending batches that are now ready
|
||
while (next_to_process < total_batches) {
|
||
const pending_slot = next_to_process % max_concurrent;
|
||
const pending_len = pending_cv_lens[pending_slot];
|
||
if (pending_len == 0) break;
|
||
|
||
final_state.update(pending_cv_buf[pending_slot][0..pending_len]);
|
||
pending_cv_lens[pending_slot] = 0;
|
||
next_to_process += 1;
|
||
}
|
||
} else {
|
||
@memcpy(pending_cv_buf[slot][0..batch.cv_len], batch.cvs[0..batch.cv_len]);
|
||
pending_cv_lens[slot] = batch.cv_len;
|
||
}
|
||
}
|
||
|
||
select.group.wait(io);
|
||
}
|
||
|
||
if (has_partial_leaf) {
|
||
var cv_buffer: [64]u8 = undefined;
|
||
var leaf_buffer: [chunk_size]u8 = undefined;
|
||
|
||
const start_offset = chunk_size + full_leaves * chunk_size;
|
||
if (view.tryGetSlice(start_offset, start_offset + partial_leaf_size)) |leaf_data| {
|
||
const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
} else {
|
||
view.copyRange(start_offset, start_offset + partial_leaf_size, leaf_buffer[0..partial_leaf_size]);
|
||
const cv_slice = MultiSliceView.init(leaf_buffer[0..partial_leaf_size], &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
}
|
||
final_state.update(cv_buffer[0..cv_size]);
|
||
}
|
||
|
||
const n_enc = rightEncode(total_leaves);
|
||
final_state.update(n_enc.slice());
|
||
const terminator = [_]u8{ 0xFF, 0xFF };
|
||
final_state.update(&terminator);
|
||
|
||
final_state.final(output);
|
||
}
|
||
|
||
/// Generic KangarooTwelve hash function builder.
|
||
/// Creates a public API type with hash and hashParallel methods for a specific variant.
|
||
fn KTHash(
|
||
comptime Variant: type,
|
||
comptime singleChunkFn: fn (*const MultiSliceView, u8, []u8) void,
|
||
) type {
|
||
return struct {
|
||
const Self = @This();
|
||
const StateType = Variant.StateType;
|
||
|
||
/// The recommended output length, in bytes.
|
||
pub const digest_length = Variant.security_level / 8 * 2;
|
||
/// The block length, or rate, in bytes.
|
||
pub const block_length = Variant.rate;
|
||
|
||
/// Configuration options for KangarooTwelve hashing.
|
||
///
|
||
/// Options include an optional customization string that provides domain separation,
|
||
/// ensuring that identical inputs with different customization strings
|
||
/// produce completely distinct hash outputs.
|
||
///
|
||
/// This prevents hash collisions when the same data is hashed in different contexts.
|
||
///
|
||
/// Customization strings can be of any length.
|
||
///
|
||
/// Common options for customization::
|
||
///
|
||
/// - Key derivation or MAC: 16-byte secret for KT128, 32-byte secret for KT256
|
||
/// - Context Separation: domain-specific strings (e.g., "email", "password", "session")
|
||
/// - Composite Keys: concatenation of secret key + context string
|
||
pub const Options = struct {
|
||
customization: ?[]const u8 = null,
|
||
};
|
||
|
||
// Message buffer (accumulates message data only, not customization)
|
||
buffer: [chunk_size]u8,
|
||
buffer_len: usize,
|
||
message_len: usize,
|
||
|
||
// Customization string (fixed at init)
|
||
customization: []const u8,
|
||
custom_len_enc: RightEncoded,
|
||
|
||
// Tree mode state (lazy initialization when buffer overflows first time)
|
||
first_chunk: ?[chunk_size]u8, // Saved first chunk for tree mode
|
||
final_state: ?StateType, // Running TurboSHAKE state for final node
|
||
num_leaves: usize, // Count of leaves processed (after first chunk)
|
||
|
||
// SIMD chunk batching
|
||
pending_chunks: [8 * chunk_size]u8 align(cache_line_size), // Buffer for up to 8 chunks
|
||
pending_count: usize, // Number of complete chunks in pending_chunks
|
||
|
||
/// Initialize a KangarooTwelve hashing context.
|
||
///
|
||
/// Options include an optional customization string that provides domain separation,
|
||
/// ensuring that identical inputs with different customization strings
|
||
/// produce completely distinct hash outputs.
|
||
///
|
||
/// This prevents hash collisions when the same data is hashed in different contexts.
|
||
///
|
||
/// Customization strings can be of any length.
|
||
///
|
||
/// Common options for customization::
|
||
///
|
||
/// - Key derivation or MAC: 16-byte secret for KT128, 32-byte secret for KT256
|
||
/// - Context Separation: domain-specific strings (e.g., "email", "password", "session")
|
||
/// - Composite Keys: concatenation of secret key + context string
|
||
pub fn init(options: Options) Self {
|
||
const custom = options.customization orelse &[_]u8{};
|
||
return .{
|
||
.buffer = undefined,
|
||
.buffer_len = 0,
|
||
.message_len = 0,
|
||
.customization = custom,
|
||
.custom_len_enc = rightEncode(custom.len),
|
||
.first_chunk = null,
|
||
.final_state = null,
|
||
.num_leaves = 0,
|
||
.pending_chunks = undefined,
|
||
.pending_count = 0,
|
||
};
|
||
}
|
||
|
||
/// Flush all pending chunks using SIMD when possible
|
||
fn flushPendingChunks(self: *Self) void {
|
||
const cv_size = Variant.cv_size;
|
||
|
||
// Process all pending chunks using the largest SIMD batch sizes possible
|
||
while (self.pending_count > 0) {
|
||
// Try SIMD batches in decreasing size order
|
||
inline for ([_]usize{ 8, 4, 2 }) |batch_size| {
|
||
if (optimal_vector_len >= batch_size and self.pending_count >= batch_size) {
|
||
var leaf_cvs: [batch_size * cv_size]u8 align(cache_line_size) = undefined;
|
||
processLeaves(Variant, batch_size, self.pending_chunks[0 .. batch_size * chunk_size], &leaf_cvs);
|
||
self.final_state.?.update(&leaf_cvs);
|
||
self.num_leaves += batch_size;
|
||
self.pending_count -= batch_size;
|
||
|
||
// Shift remaining chunks to the front
|
||
if (self.pending_count > 0) {
|
||
const remaining_bytes = self.pending_count * chunk_size;
|
||
@memcpy(self.pending_chunks[0..remaining_bytes], self.pending_chunks[batch_size * chunk_size ..][0..remaining_bytes]);
|
||
}
|
||
break; // Continue outer loop to try next batch
|
||
}
|
||
}
|
||
|
||
// If no SIMD batch was possible, process one chunk with scalar code
|
||
if (self.pending_count > 0 and self.pending_count < 2) {
|
||
var cv_buffer: [64]u8 = undefined;
|
||
const cv_slice = MultiSliceView.init(self.pending_chunks[0..chunk_size], &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
self.final_state.?.update(cv_buffer[0..cv_size]);
|
||
self.num_leaves += 1;
|
||
self.pending_count -= 1;
|
||
break; // No more chunks to process
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Absorb data into the hash state.
|
||
/// Can be called multiple times to incrementally add data.
|
||
pub fn update(self: *Self, data: []const u8) void {
|
||
if (data.len == 0) return;
|
||
|
||
var remaining = data;
|
||
|
||
while (remaining.len > 0) {
|
||
const space_in_buffer = chunk_size - self.buffer_len;
|
||
const to_copy = @min(space_in_buffer, remaining.len);
|
||
|
||
// Copy data into buffer
|
||
@memcpy(self.buffer[self.buffer_len..][0..to_copy], remaining[0..to_copy]);
|
||
self.buffer_len += to_copy;
|
||
self.message_len += to_copy;
|
||
remaining = remaining[to_copy..];
|
||
|
||
// If buffer is full, process it
|
||
if (self.buffer_len == chunk_size) {
|
||
if (self.first_chunk == null) {
|
||
// First time buffer fills - initialize tree mode
|
||
self.first_chunk = self.buffer;
|
||
self.final_state = StateType.init(.{});
|
||
|
||
// Absorb first chunk into final state
|
||
self.final_state.?.update(&self.buffer);
|
||
|
||
// Absorb padding (8 bytes: 0x03 followed by 7 zeros)
|
||
const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||
self.final_state.?.update(&padding);
|
||
} else {
|
||
// Add chunk to pending buffer for SIMD batch processing
|
||
@memcpy(self.pending_chunks[self.pending_count * chunk_size ..][0..chunk_size], &self.buffer);
|
||
self.pending_count += 1;
|
||
|
||
// Flush when we have enough chunks for optimal SIMD batch
|
||
// Determine best batch size for this architecture
|
||
const optimal_batch_size = comptime blk: {
|
||
if (optimal_vector_len >= 8) break :blk 8;
|
||
if (optimal_vector_len >= 4) break :blk 4;
|
||
if (optimal_vector_len >= 2) break :blk 2;
|
||
break :blk 1;
|
||
};
|
||
if (self.pending_count >= optimal_batch_size) {
|
||
self.flushPendingChunks();
|
||
}
|
||
}
|
||
self.buffer_len = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Finalize the hash and produce output.
|
||
///
|
||
/// Unlike traditional hash functions, the output can be of any length.
|
||
///
|
||
/// When using as a regular hash function, use the recommended `digest_length` value (32 bytes for KT128, 64 bytes for KT256).
|
||
///
|
||
/// After calling this method, the context should not be reused. However, the structure can be cloned before finalizing
|
||
/// to compute multiple hashes with the same prefix.
|
||
pub fn final(self: *Self, out: []u8) void {
|
||
const cv_size = Variant.cv_size;
|
||
|
||
// Calculate total length: message + customization + right_encode(customization.len)
|
||
const total_len = self.message_len + self.customization.len + self.custom_len_enc.len;
|
||
|
||
// Single chunk mode: total data fits in one chunk
|
||
if (total_len <= chunk_size) {
|
||
// Build the complete input: buffer + customization + encoded length
|
||
var single_chunk: [chunk_size]u8 = undefined;
|
||
@memcpy(single_chunk[0..self.buffer_len], self.buffer[0..self.buffer_len]);
|
||
@memcpy(single_chunk[self.buffer_len..][0..self.customization.len], self.customization);
|
||
@memcpy(single_chunk[self.buffer_len + self.customization.len ..][0..self.custom_len_enc.len], self.custom_len_enc.slice());
|
||
|
||
const view = MultiSliceView.init(single_chunk[0..total_len], &[_]u8{}, &[_]u8{});
|
||
singleChunkFn(&view, 0x07, out);
|
||
return;
|
||
}
|
||
|
||
// Flush any pending chunks with SIMD
|
||
self.flushPendingChunks();
|
||
|
||
// Build view over remaining data (buffer + customization + encoding)
|
||
const remaining_view = MultiSliceView.init(
|
||
self.buffer[0..self.buffer_len],
|
||
self.customization,
|
||
self.custom_len_enc.slice(),
|
||
);
|
||
const remaining_len = remaining_view.totalLen();
|
||
|
||
var final_leaves = self.num_leaves;
|
||
var leaf_start: usize = 0;
|
||
|
||
// Tree mode: initialize if not already done (lazy initialization)
|
||
if (self.final_state == null and remaining_len > 0) {
|
||
self.final_state = StateType.init(.{});
|
||
|
||
// Absorb first chunk (up to chunk_size bytes from remaining data)
|
||
const first_chunk_len = @min(chunk_size, remaining_len);
|
||
if (remaining_view.tryGetSlice(0, first_chunk_len)) |first_chunk| {
|
||
// Data is contiguous, use it directly
|
||
self.final_state.?.update(first_chunk);
|
||
} else {
|
||
// Data spans boundaries, copy to buffer
|
||
var first_chunk_buf: [chunk_size]u8 = undefined;
|
||
remaining_view.copyRange(0, first_chunk_len, first_chunk_buf[0..first_chunk_len]);
|
||
self.final_state.?.update(first_chunk_buf[0..first_chunk_len]);
|
||
}
|
||
|
||
// Absorb padding (8 bytes: 0x03 followed by 7 zeros)
|
||
const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||
self.final_state.?.update(&padding);
|
||
|
||
// Process remaining data as leaves
|
||
leaf_start = first_chunk_len;
|
||
}
|
||
|
||
// Process all remaining data as leaves (starting from leaf_start)
|
||
var offset = leaf_start;
|
||
while (offset < remaining_len) {
|
||
const leaf_end = @min(offset + chunk_size, remaining_len);
|
||
const leaf_size = leaf_end - offset;
|
||
|
||
var cv_buffer: [64]u8 = undefined;
|
||
if (remaining_view.tryGetSlice(offset, leaf_end)) |leaf_data| {
|
||
// Data is contiguous, use it directly
|
||
const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
} else {
|
||
// Data spans boundaries, copy to buffer
|
||
var leaf_buf: [chunk_size]u8 = undefined;
|
||
remaining_view.copyRange(offset, leaf_end, leaf_buf[0..leaf_size]);
|
||
const cv_slice = MultiSliceView.init(leaf_buf[0..leaf_size], &[_]u8{}, &[_]u8{});
|
||
Variant.turboShakeToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||
}
|
||
self.final_state.?.update(cv_buffer[0..cv_size]);
|
||
final_leaves += 1;
|
||
offset = leaf_end;
|
||
}
|
||
|
||
// Absorb right_encode(num_leaves) and terminator
|
||
const n_enc = rightEncode(final_leaves);
|
||
self.final_state.?.update(n_enc.slice());
|
||
const terminator = [_]u8{ 0xFF, 0xFF };
|
||
self.final_state.?.update(&terminator);
|
||
|
||
// Squeeze output
|
||
self.final_state.?.final(out);
|
||
}
|
||
|
||
/// Hash a message using sequential processing with SIMD acceleration.
|
||
///
|
||
/// Parameters:
|
||
/// - message: Input data to hash (any length)
|
||
/// - out: Output buffer (any length, arbitrary output sizes supported, `digest_length` recommended for standard use)
|
||
/// - options: Optional settings to include a secret key or a context separation string
|
||
pub fn hash(message: []const u8, out: []u8, options: Options) !void {
|
||
const custom = options.customization orelse &[_]u8{};
|
||
|
||
// Right-encode customization length
|
||
const custom_len_enc = rightEncode(custom.len);
|
||
|
||
// Create zero-copy multi-slice view (no concatenation)
|
||
const view = MultiSliceView.init(message, custom, custom_len_enc.slice());
|
||
const total_len = view.totalLen();
|
||
|
||
// Single chunk case - zero-copy absorption!
|
||
if (total_len <= chunk_size) {
|
||
singleChunkFn(&view, 0x07, out);
|
||
return;
|
||
}
|
||
|
||
// Tree mode - single-threaded SIMD processing
|
||
ktSingleThreaded(Variant, &view, total_len, out);
|
||
}
|
||
|
||
/// Hash with automatic parallelization for large inputs (>2MB).
|
||
/// Automatically uses sequential processing for smaller inputs to avoid thread overhead.
|
||
/// Allocator required for temporary buffers. IO object required for thread management.
|
||
pub fn hashParallel(message: []const u8, out: []u8, options: Options, allocator: Allocator, io: Io) !void {
|
||
const custom = options.customization orelse &[_]u8{};
|
||
|
||
const custom_len_enc = rightEncode(custom.len);
|
||
const view = MultiSliceView.init(message, custom, custom_len_enc.slice());
|
||
const total_len = view.totalLen();
|
||
|
||
// Single chunk case
|
||
if (total_len <= chunk_size) {
|
||
singleChunkFn(&view, 0x07, out);
|
||
return;
|
||
}
|
||
|
||
// Use single-threaded processing if below threshold
|
||
if (total_len < large_file_threshold) {
|
||
ktSingleThreaded(Variant, &view, total_len, out);
|
||
return;
|
||
}
|
||
|
||
// Tree mode - multi-threaded processing
|
||
try ktMultiThreaded(Variant, allocator, io, &view, total_len, out);
|
||
}
|
||
};
|
||
}
|
||
|
||
/// KangarooTwelve is a fast, secure cryptographic hash function that uses tree-hashing
|
||
/// on top of TurboSHAKE. It is built on the Keccak permutation, the same primitive
|
||
/// underlying SHA-3, which has undergone over 15 years of intensive cryptanalysis
|
||
/// since the SHA-3 competition (2008-2012) and remains secure.
|
||
///
|
||
/// K12 uses Keccak-p[1600,12] with 12 rounds (half of SHA-3's 24 rounds), providing
|
||
/// 128-bit security strength equivalent to AES-128 and SHAKE128. While this offers
|
||
/// less conservative margin than SHA-3, current cryptanalysis reaches only 6 rounds,
|
||
/// leaving a substantial security margin. This deliberate trade-off delivers
|
||
/// significantly better performance while maintaining strong practical security.
|
||
///
|
||
/// Standardized as RFC 9861 after 8 years of public scrutiny. Supports arbitrary-length
|
||
/// output and optional customization strings for domain separation.
|
||
pub const KT128 = KTHash(KT128Variant, turboShake128MultiSliceToBuffer);
|
||
|
||
/// KangarooTwelve is a fast, secure cryptographic hash function that uses tree-hashing
|
||
/// on top of TurboSHAKE. It is built on the Keccak permutation, the same primitive
|
||
/// underlying SHA-3, which has undergone over 15 years of intensive cryptanalysis
|
||
/// since the SHA-3 competition (2008-2012) and remains secure.
|
||
///
|
||
/// KT256 provides 256-bit security strength and achieves NIST post-quantum security
|
||
/// level 2 when using at least 256-bit outputs. Like KT128, it uses Keccak-p[1600,12]
|
||
/// with 12 rounds, offering a deliberate trade-off between conservative margin and
|
||
/// significantly better performance while maintaining strong practical security.
|
||
///
|
||
/// Use KT256 when you need extra conservative margins.
|
||
/// For most applications, KT128 offers better performance with adequate security.
|
||
pub const KT256 = KTHash(KT256Variant, turboShake256MultiSliceToBuffer);
|
||
|
||
test "KT128 sequential and parallel produce same output for small inputs" {
|
||
const allocator = std.testing.allocator;
|
||
const io = std.testing.io;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
// Test with different small input sizes
|
||
const test_sizes = [_]usize{ 100, 1024, 4096, 8192 }; // 100B, 1KB, 4KB, 8KB
|
||
|
||
for (test_sizes) |size| {
|
||
const input = try allocator.alloc(u8, size);
|
||
defer allocator.free(input);
|
||
|
||
// Fill with random data
|
||
random.bytes(input);
|
||
|
||
var output_seq: [32]u8 = undefined;
|
||
var output_par: [32]u8 = undefined;
|
||
|
||
// Hash with sequential method
|
||
try KT128.hash(input, &output_seq, .{});
|
||
|
||
// Hash with parallel method
|
||
try KT128.hashParallel(input, &output_par, .{}, allocator, io);
|
||
|
||
// Verify outputs match
|
||
try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
|
||
}
|
||
}
|
||
|
||
test "KT128 sequential and parallel produce same output for large inputs" {
|
||
const allocator = std.testing.allocator;
|
||
const io = std.testing.io;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
// Test with input sizes above the 2MB threshold to trigger parallel processing.
|
||
// Include a size with partial final leaf to stress boundary handling.
|
||
const test_sizes = [_]usize{
|
||
5 * 512 * 1024, // 2.5 MB
|
||
5 * 512 * 1024 + 8191, // 2.5 MB + 8191B (partial leaf)
|
||
};
|
||
|
||
for (test_sizes) |size| {
|
||
const input = try allocator.alloc(u8, size);
|
||
defer allocator.free(input);
|
||
|
||
// Fill with random data
|
||
random.bytes(input);
|
||
|
||
var output_seq: [64]u8 = undefined;
|
||
var output_par: [64]u8 = undefined;
|
||
|
||
// Hash with sequential method
|
||
try KT128.hash(input, &output_seq, .{});
|
||
|
||
// Hash with parallel method
|
||
try KT128.hashParallel(input, &output_par, .{}, allocator, io);
|
||
|
||
// Verify outputs match
|
||
try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
|
||
}
|
||
}
|
||
|
||
test "KT128 sequential and parallel produce same output for many random lengths" {
|
||
const allocator = std.testing.allocator;
|
||
const io = std.testing.io;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const num_tests = if (builtin.mode == .Debug) 10 else 1000;
|
||
const max_length = 250000;
|
||
|
||
for (0..num_tests) |_| {
|
||
const length = random.intRangeAtMost(usize, 0, max_length);
|
||
|
||
const input = try allocator.alloc(u8, length);
|
||
defer allocator.free(input);
|
||
|
||
random.bytes(input);
|
||
|
||
var output_seq: [32]u8 = undefined;
|
||
var output_par: [32]u8 = undefined;
|
||
|
||
try KT128.hash(input, &output_seq, .{});
|
||
try KT128.hashParallel(input, &output_par, .{}, allocator, io);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
|
||
}
|
||
}
|
||
|
||
test "KT128 sequential and parallel produce same output with customization" {
|
||
const allocator = std.testing.allocator;
|
||
const io = std.testing.io;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const input_size = 5 * 512 * 1024; // 2.5MB
|
||
const input = try allocator.alloc(u8, input_size);
|
||
defer allocator.free(input);
|
||
|
||
// Fill with random data
|
||
random.bytes(input);
|
||
|
||
const customization = "test domain";
|
||
var output_seq: [48]u8 = undefined;
|
||
var output_par: [48]u8 = undefined;
|
||
|
||
// Hash with sequential method
|
||
try KT128.hash(input, &output_seq, .{ .customization = customization });
|
||
|
||
// Hash with parallel method
|
||
try KT128.hashParallel(input, &output_par, .{ .customization = customization }, allocator, io);
|
||
|
||
// Verify outputs match
|
||
try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
|
||
}
|
||
|
||
test "KT256 sequential and parallel produce same output for small inputs" {
|
||
const allocator = std.testing.allocator;
|
||
const io = std.testing.io;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
// Test with different small input sizes
|
||
const test_sizes = [_]usize{ 100, 1024, 4096, 8192 }; // 100B, 1KB, 4KB, 8KB
|
||
|
||
for (test_sizes) |size| {
|
||
const input = try allocator.alloc(u8, size);
|
||
defer allocator.free(input);
|
||
|
||
// Fill with random data
|
||
random.bytes(input);
|
||
|
||
var output_seq: [64]u8 = undefined;
|
||
var output_par: [64]u8 = undefined;
|
||
|
||
// Hash with sequential method
|
||
try KT256.hash(input, &output_seq, .{});
|
||
|
||
// Hash with parallel method
|
||
try KT256.hashParallel(input, &output_par, .{}, allocator, io);
|
||
|
||
// Verify outputs match
|
||
try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
|
||
}
|
||
}
|
||
|
||
test "KT256 sequential and parallel produce same output for large inputs" {
|
||
const allocator = std.testing.allocator;
|
||
const io = std.testing.io;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
// Test with input sizes above the 2MB threshold to trigger parallel processing.
|
||
// Include a size with partial final leaf to stress boundary handling.
|
||
const test_sizes = [_]usize{
|
||
5 * 512 * 1024, // 2.5 MB
|
||
5 * 512 * 1024 + 8191, // 2.5 MB + 8191B (partial leaf)
|
||
};
|
||
|
||
for (test_sizes) |size| {
|
||
const input = try allocator.alloc(u8, size);
|
||
defer allocator.free(input);
|
||
|
||
// Fill with random data
|
||
random.bytes(input);
|
||
|
||
var output_seq: [64]u8 = undefined;
|
||
var output_par: [64]u8 = undefined;
|
||
|
||
// Hash with sequential method
|
||
try KT256.hash(input, &output_seq, .{});
|
||
|
||
// Hash with parallel method
|
||
try KT256.hashParallel(input, &output_par, .{}, allocator, io);
|
||
|
||
// Verify outputs match
|
||
try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
|
||
}
|
||
}
|
||
|
||
test "KT256 sequential and parallel produce same output with customization" {
|
||
const allocator = std.testing.allocator;
|
||
const io = std.testing.io;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const input_size = 5 * 512 * 1024; // 2.5MB
|
||
const input = try allocator.alloc(u8, input_size);
|
||
defer allocator.free(input);
|
||
|
||
// Fill with random data
|
||
random.bytes(input);
|
||
|
||
const customization = "test domain";
|
||
var output_seq: [80]u8 = undefined;
|
||
var output_par: [80]u8 = undefined;
|
||
|
||
// Hash with sequential method
|
||
try KT256.hash(input, &output_seq, .{ .customization = customization });
|
||
|
||
// Hash with parallel method
|
||
try KT256.hashParallel(input, &output_par, .{ .customization = customization }, allocator, io);
|
||
|
||
// Verify outputs match
|
||
try std.testing.expectEqualSlices(u8, &output_seq, &output_par);
|
||
}
|
||
|
||
/// Helper: Generate pattern data where data[i] = (i % 251)
|
||
fn generatePattern(allocator: Allocator, len: usize) ![]u8 {
|
||
const data = try allocator.alloc(u8, len);
|
||
for (data, 0..) |*byte, i| {
|
||
byte.* = @intCast(i % 251);
|
||
}
|
||
return data;
|
||
}
|
||
|
||
test "KT128: empty message, empty customization, 32 bytes" {
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(&[_]u8{}, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "1AC2D450FC3B4205D19DA7BFCA1B37513C0803577AC7167F06FE2CE1F0EF39E5");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: empty message, empty customization, 64 bytes" {
|
||
var output: [64]u8 = undefined;
|
||
try KT128.hash(&[_]u8{}, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "1AC2D450FC3B4205D19DA7BFCA1B37513C0803577AC7167F06FE2CE1F0EF39E54269C056B8C82E48276038B6D292966CC07A3D4645272E31FF38508139EB0A71");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: empty message, empty customization, 10032 bytes (last 32)" {
|
||
const allocator = std.testing.allocator;
|
||
const output = try allocator.alloc(u8, 10032);
|
||
defer allocator.free(output);
|
||
|
||
try KT128.hash(&[_]u8{}, output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "E8DC563642F7228C84684C898405D3A834799158C079B12880277A1D28E2FF6D");
|
||
try std.testing.expectEqualSlices(u8, &expected, output[10000..]);
|
||
}
|
||
|
||
test "KT128: pattern message (1 byte), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 1);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "2BDA92450E8B147F8A7CB629E784A058EFCA7CF7D8218E02D345DFAA65244A1F");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: pattern message (17 bytes), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 17);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "6BF75FA2239198DB4772E36478F8E19B0F371205F6A9A93A273F51DF37122888");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: pattern message (289 bytes), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 289);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "0C315EBCDEDBF61426DE7DCF8FB725D1E74675D7F5327A5067F367B108ECB67C");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: 0xFF message (1 byte), pattern customization (1 byte), 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const customization = try generatePattern(allocator, 1);
|
||
defer allocator.free(customization);
|
||
|
||
const message = [_]u8{0xFF};
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(&message, &output, .{ .customization = customization });
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "A20B92B251E3D62443EC286E4B9B470A4E8315C156EEB24878B038ABE20650BE");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: pattern message (8191 bytes), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 8191);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "1B577636F723643E990CC7D6A659837436FD6A103626600EB8301CD1DBE553D6");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: pattern message (8192 bytes), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 8192);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "48F256F6772F9EDFB6A8B661EC92DC93B95EBD05A08A17B39AE3490870C926C3");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: empty message, empty customization, 64 bytes" {
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(&[_]u8{}, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "B23D2E9CEA9F4904E02BEC06817FC10CE38CE8E93EF4C89E6537076AF8646404E3E8B68107B8833A5D30490AA33482353FD4ADC7148ECB782855003AAEBDE4A9");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: empty message, empty customization, 128 bytes" {
|
||
var output: [128]u8 = undefined;
|
||
try KT256.hash(&[_]u8{}, &output, .{});
|
||
|
||
var expected: [128]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "B23D2E9CEA9F4904E02BEC06817FC10CE38CE8E93EF4C89E6537076AF8646404E3E8B68107B8833A5D30490AA33482353FD4ADC7148ECB782855003AAEBDE4A9B0925319D8EA1E121A609821EC19EFEA89E6D08DAEE1662B69C840289F188BA860F55760B61F82114C030C97E5178449608CCD2CD2D919FC7829FF69931AC4D0");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: pattern message (1 byte), empty customization, 64 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 1);
|
||
defer allocator.free(message);
|
||
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(message, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "0D005A194085360217128CF17F91E1F71314EFA5564539D444912E3437EFA17F82DB6F6FFE76E781EAA068BCE01F2BBF81EACB983D7230F2FB02834A21B1DDD0");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: pattern message (17 bytes), empty customization, 64 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 17);
|
||
defer allocator.free(message);
|
||
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(message, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "1BA3C02B1FC514474F06C8979978A9056C8483F4A1B63D0DCCEFE3A28A2F323E1CDCCA40EBF006AC76EF0397152346837B1277D3E7FAA9C9653B19075098527B");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: pattern message (8191 bytes), empty customization, 64 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 8191);
|
||
defer allocator.free(message);
|
||
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(message, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "3081434D93A4108D8D8A3305B89682CEBEDC7CA4EA8A3CE869FBB73CBE4A58EEF6F24DE38FFC170514C70E7AB2D01F03812616E863D769AFB3753193BA045B20");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: pattern message (8192 bytes), empty customization, 64 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 8192);
|
||
defer allocator.free(message);
|
||
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(message, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "C6EE8E2AD3200C018AC87AAA031CDAC22121B412D07DC6E0DCCBB53423747E9A1C18834D99DF596CF0CF4B8DFAFB7BF02D139D0C9035725ADC1A01B7230A41FA");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: pattern message (8193 bytes), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 8193);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "BB66FE72EAEA5179418D5295EE1344854D8AD7F3FA17EFCB467EC152341284CF");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: pattern message (16384 bytes), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 16384);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "82778F7F7234C83352E76837B721FBDBB5270B88010D84FA5AB0B61EC8CE0956");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128: pattern message (16385 bytes), empty customization, 32 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 16385);
|
||
defer allocator.free(message);
|
||
|
||
var output: [32]u8 = undefined;
|
||
try KT128.hash(message, &output, .{});
|
||
|
||
var expected: [32]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "5F8D2B943922B451842B4E82740D02369E2D5F9F33C5123509A53B955FE177B2");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: pattern message (8193 bytes), empty customization, 64 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 8193);
|
||
defer allocator.free(message);
|
||
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(message, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "65FF03335900E5197ACBD5F41B797F0E7E36AD4FF7D89C09FA6F28AE58D1E8BC2DF1779B86F988C3B13690172914EA172423B23EF4057255BB0836AB3A99836E");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: pattern message (16384 bytes), empty customization, 64 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 16384);
|
||
defer allocator.free(message);
|
||
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(message, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "74604239A14847CB79069B4FF0E51070A93034C9AC4DFF4D45E0F2C5DA81D930DE6055C2134B4DF4E49F27D1B2C66E95491858B182A924BD0504DA5976BC516D");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT256: pattern message (16385 bytes), empty customization, 64 bytes" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 16385);
|
||
defer allocator.free(message);
|
||
|
||
var output: [64]u8 = undefined;
|
||
try KT256.hash(message, &output, .{});
|
||
|
||
var expected: [64]u8 = undefined;
|
||
_ = try std.fmt.hexToBytes(&expected, "C814F23132DADBFD55379F18CB988CB39B751F119322823FD982644A897485397B9F40EB11C6E416359B8AE695A5CE0FA79D1ADA1EEC745D82E0A5AB08A9F014");
|
||
try std.testing.expectEqualSlices(u8, &expected, &output);
|
||
}
|
||
|
||
test "KT128 incremental: empty message matches one-shot" {
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(&[_]u8{}, &output_oneshot, .{});
|
||
|
||
var hasher = KT128.init(.{});
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: small message matches one-shot" {
|
||
const message = "Hello, KangarooTwelve!";
|
||
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT128.init(.{});
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: multiple updates match single update" {
|
||
const part1 = "Hello, ";
|
||
const part2 = "Kangaroo";
|
||
const part3 = "Twelve!";
|
||
|
||
var output_single: [32]u8 = undefined;
|
||
var output_multi: [32]u8 = undefined;
|
||
|
||
// Single update
|
||
var hasher1 = KT128.init(.{});
|
||
hasher1.update(part1 ++ part2 ++ part3);
|
||
hasher1.final(&output_single);
|
||
|
||
// Multiple updates
|
||
var hasher2 = KT128.init(.{});
|
||
hasher2.update(part1);
|
||
hasher2.update(part2);
|
||
hasher2.update(part3);
|
||
hasher2.final(&output_multi);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_single, &output_multi);
|
||
}
|
||
|
||
test "KT128 incremental: exactly chunk_size matches one-shot" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try allocator.alloc(u8, 8192);
|
||
defer allocator.free(message);
|
||
@memset(message, 0xAB);
|
||
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT128.init(.{});
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: larger than chunk_size matches one-shot" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 16384);
|
||
defer allocator.free(message);
|
||
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT128.init(.{});
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: with customization matches one-shot" {
|
||
const message = "Test message";
|
||
const customization = "my custom domain";
|
||
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{ .customization = customization });
|
||
|
||
var hasher = KT128.init(.{ .customization = customization });
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: large message with customization" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 20000);
|
||
defer allocator.free(message);
|
||
const customization = "test domain";
|
||
|
||
var output_oneshot: [48]u8 = undefined;
|
||
var output_incremental: [48]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{ .customization = customization });
|
||
|
||
var hasher = KT128.init(.{ .customization = customization });
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: streaming chunks matches one-shot" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 25000);
|
||
defer allocator.free(message);
|
||
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT128.init(.{});
|
||
|
||
// Feed in 1KB chunks
|
||
var offset: usize = 0;
|
||
while (offset < message.len) {
|
||
const chunk_size_local = @min(1024, message.len - offset);
|
||
hasher.update(message[offset..][0..chunk_size_local]);
|
||
offset += chunk_size_local;
|
||
}
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT256 incremental: empty message matches one-shot" {
|
||
var output_oneshot: [64]u8 = undefined;
|
||
var output_incremental: [64]u8 = undefined;
|
||
|
||
try KT256.hash(&[_]u8{}, &output_oneshot, .{});
|
||
|
||
var hasher = KT256.init(.{});
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT256 incremental: small message matches one-shot" {
|
||
const message = "Hello, KangarooTwelve with 256-bit security!";
|
||
|
||
var output_oneshot: [64]u8 = undefined;
|
||
var output_incremental: [64]u8 = undefined;
|
||
|
||
try KT256.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT256.init(.{});
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT256 incremental: large message matches one-shot" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 30000);
|
||
defer allocator.free(message);
|
||
|
||
var output_oneshot: [64]u8 = undefined;
|
||
var output_incremental: [64]u8 = undefined;
|
||
|
||
try KT256.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT256.init(.{});
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT256 incremental: with customization matches one-shot" {
|
||
const allocator = std.testing.allocator;
|
||
const message = try generatePattern(allocator, 15000);
|
||
defer allocator.free(message);
|
||
const customization = "KT256 custom domain";
|
||
|
||
var output_oneshot: [80]u8 = undefined;
|
||
var output_incremental: [80]u8 = undefined;
|
||
|
||
try KT256.hash(message, &output_oneshot, .{ .customization = customization });
|
||
|
||
var hasher = KT256.init(.{ .customization = customization });
|
||
hasher.update(message);
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: random small message with random chunk sizes" {
|
||
const allocator = std.testing.allocator;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const test_sizes = [_]usize{ 100, 500, 2000, 5000, 10000 };
|
||
|
||
for (test_sizes) |total_size| {
|
||
const message = try allocator.alloc(u8, total_size);
|
||
defer allocator.free(message);
|
||
random.bytes(message);
|
||
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT128.init(.{});
|
||
var offset: usize = 0;
|
||
|
||
while (offset < message.len) {
|
||
const remaining = message.len - offset;
|
||
const max_chunk = @min(1000, remaining);
|
||
const chunk_size_local = if (max_chunk == 1) 1 else random.intRangeAtMost(usize, 1, max_chunk);
|
||
|
||
hasher.update(message[offset..][0..chunk_size_local]);
|
||
offset += chunk_size_local;
|
||
}
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
}
|
||
|
||
test "KT128 incremental: random large message (1MB) with random chunk sizes" {
|
||
const allocator = std.testing.allocator;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const total_size: usize = 1024 * 1024; // 1 MB
|
||
const message = try allocator.alloc(u8, total_size);
|
||
defer allocator.free(message);
|
||
random.bytes(message);
|
||
|
||
var output_oneshot: [32]u8 = undefined;
|
||
var output_incremental: [32]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT128.init(.{});
|
||
var offset: usize = 0;
|
||
|
||
while (offset < message.len) {
|
||
const remaining = message.len - offset;
|
||
const max_chunk = @min(10000, remaining);
|
||
const chunk_size_local = if (max_chunk == 1) 1 else random.intRangeAtMost(usize, 1, max_chunk);
|
||
|
||
hasher.update(message[offset..][0..chunk_size_local]);
|
||
offset += chunk_size_local;
|
||
}
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT256 incremental: random small message with random chunk sizes" {
|
||
const allocator = std.testing.allocator;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const test_sizes = [_]usize{ 100, 500, 2000, 5000, 10000 };
|
||
|
||
for (test_sizes) |total_size| {
|
||
// Generate random message
|
||
const message = try allocator.alloc(u8, total_size);
|
||
defer allocator.free(message);
|
||
random.bytes(message);
|
||
|
||
var output_oneshot: [64]u8 = undefined;
|
||
var output_incremental: [64]u8 = undefined;
|
||
|
||
try KT256.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT256.init(.{});
|
||
var offset: usize = 0;
|
||
|
||
while (offset < message.len) {
|
||
const remaining = message.len - offset;
|
||
const max_chunk = @min(1000, remaining);
|
||
const chunk_size_local = if (max_chunk == 1) 1 else random.intRangeAtMost(usize, 1, max_chunk);
|
||
|
||
hasher.update(message[offset..][0..chunk_size_local]);
|
||
offset += chunk_size_local;
|
||
}
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
}
|
||
|
||
test "KT256 incremental: random large message (1MB) with random chunk sizes" {
|
||
const allocator = std.testing.allocator;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const total_size: usize = 1024 * 1024; // 1 MB
|
||
const message = try allocator.alloc(u8, total_size);
|
||
defer allocator.free(message);
|
||
random.bytes(message);
|
||
|
||
var output_oneshot: [64]u8 = undefined;
|
||
var output_incremental: [64]u8 = undefined;
|
||
|
||
try KT256.hash(message, &output_oneshot, .{});
|
||
|
||
var hasher = KT256.init(.{});
|
||
var offset: usize = 0;
|
||
|
||
while (offset < message.len) {
|
||
const remaining = message.len - offset;
|
||
const max_chunk = @min(10000, remaining);
|
||
const chunk_size_local = if (max_chunk == 1) 1 else random.intRangeAtMost(usize, 1, max_chunk);
|
||
|
||
hasher.update(message[offset..][0..chunk_size_local]);
|
||
offset += chunk_size_local;
|
||
}
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|
||
|
||
test "KT128 incremental: random message with customization and random chunks" {
|
||
const allocator = std.testing.allocator;
|
||
|
||
var prng = std.Random.DefaultPrng.init(std.testing.random_seed);
|
||
const random = prng.random();
|
||
|
||
const total_size: usize = 50000;
|
||
const message = try allocator.alloc(u8, total_size);
|
||
defer allocator.free(message);
|
||
random.bytes(message);
|
||
|
||
const customization = "random test domain";
|
||
|
||
var output_oneshot: [48]u8 = undefined;
|
||
var output_incremental: [48]u8 = undefined;
|
||
|
||
try KT128.hash(message, &output_oneshot, .{ .customization = customization });
|
||
|
||
var hasher = KT128.init(.{ .customization = customization });
|
||
var offset: usize = 0;
|
||
|
||
while (offset < message.len) {
|
||
const remaining = message.len - offset;
|
||
const max_chunk = @min(5000, remaining);
|
||
const chunk_size_local = if (max_chunk == 1) 1 else random.intRangeAtMost(usize, 1, max_chunk);
|
||
|
||
hasher.update(message[offset..][0..chunk_size_local]);
|
||
offset += chunk_size_local;
|
||
}
|
||
hasher.final(&output_incremental);
|
||
|
||
try std.testing.expectEqualSlices(u8, &output_oneshot, &output_incremental);
|
||
}
|